1 Multiplication of two polynomials

Give an algorithm to multiply a degree 1 polynomial by a degree 2 polynomial in at most 4 multiplications.

2 Remainder of a sparse polynomial

In this exercise we are interested in computing a remainder of a sparse polynomial S after dividing by a polynomial D, where $S, D \in K[X]$. (Assume that operations in K have unit cost.)

1. Give an example showing that assuming that S is sparse does not lead to better bounds for the classical division algorithm.

2. What is the cost of an operation in $K[X]/(D(X))$?

3. Show that one can compute $X^N \mod D(X)$ in time $O((\deg D)^2 \log N)$. (Hint: use fast exponentiation.)

4. Assume that S has ω nonzero terms. Show that you get an algorithm of complexity $O(\omega(\deg D)^2 \log \deg S)$ which beats the classical division for ω at most $\deg S - \deg D \deg D \log \deg S$.

3 Short product

We are given two polynomials F and G both of degree $< n$. We want to compute their short product, i.e., the value $FG \mod x^n$. We can either compute their full product FG in time $O(n^{\ln 3/\ln 2})$ (using Karatsuba) and then discard large-degree coefficients, or we can be smarter and use the so-called Mulders’ trick to get the result faster.

1. Let k be an integer such that $n/2 \leq k \leq n$ and let $M(n)$ denote the complexity of a full product and $S(n)$ the complexity of a short product. Show that a short product of two degree n polynomials can be computed as a full product of two degree k polynomials, and two short products of degree $n-k$ polynomials. In other words, show that

 $$S(n) = M(k) + 2S(n-k).$$

2. Assume that $M(n) = n^\alpha$ for some $\alpha > 1$ (so we leave out the constant factor). Further let $k = \beta n$ for some $\beta < 1$. The goal is to find the optimal value for β that minimizes $S(n)$.

 1. $S(n) = \frac{\beta^n}{1-2(1-\beta)^2} M(n)$. You may want to use the fact that $\frac{S(\gamma n)}{S(n)} = \frac{M(\gamma n)}{M(n)}$ for $\gamma > 0$ and sufficiently large n.

 2. Find β_{\min} as a function of α that minimizes the above expression.
4 Multiplication of bivariate polynomials

Fact: Let \(c_0, \ldots, c_d \) be \(d + 1 \) distinct elements of \(K \) and \(Q_0, \ldots, Q_d \in K[X] \). There is a unique polynomial \(P \in K[X,Y] \) of \(Y \)-degree at most \(d \) satisfying \(P(X, c_i) = Q_i \) for every \(i = 0, \ldots, d \).

Let us assume that we can efficiently find such \(P \). Again, assume that operations in \(K \) have unit cost.

1. What is the cost of a naive multiplication of two bivariate polynomials \(A \) and \(B \) of \(X \)-degree at most \(D_1 \) and \(Y \)-degree at most \(D_2 \)?

2. Give an algorithm that computes \(A(X, c) \) for a given \(c \in K \), with \(A \) of \(X \)-degree at most \(D_1 \) and \(Y \)-degree at most \(D_2 \). What is its cost?

3. Assuming that \(|K| \geq 2D_2 + 1 \) and using the fact above, describe an algorithm for multiplying bivariate polynomials (which would, assuming that we have a fast algorithm for multiplication of polynomials of one variable, beat the naive multiplication).

5 Alternative FFT algorithm

Let \(P \) be a polynomial of degree at most \(2^k - 1 \), and write \(P = P_h X^{2^k - 1} + P_l \). Let \(\omega \) be a primitive \(2^k \)-th root of 1.

1. Prove that \(P(\omega^{2i}) = P_h(\omega^{2i}) + P_l(\omega^{2i}) \) and \(P(\omega^{2i+1}) = -P_h(\omega^{2i+1}) + P_l(\omega^{2i+1}) \)

2. Deduce an alternative FFT algorithm. You will need to introduce the polynomial

\[
Q(X) = P_l(\omega X) - P_h(\omega X).
\]

6 Is squaring easier than multiplying?

Show that computing the square of an \(n \)-digit number is not (asymptotically) easier than multiplying two \(n \)-digit numbers. We assume we work in a ring where we can divide by 2.

7 Refined Karatsuba

In class, we’ve seen that Karatsuba algorithm allows to multiply two polynomials of degree \(n \) in time \(O(n^{3/2} \ln n) \). In this exercise we look at a more refined complexity bound and, in particular, improve the \(O(n) \)-factor. Assume, \(n \) is divisible by 2.

1. First, recall Karatsuba identity, where we let \(\deg(F_0) = \deg(G_0) = \lfloor n/2 \rfloor \) and \(k := \deg(F_1) = \deg(G_1) \leq n/2 \).

\[
(F_0 + x^{n/2} F_1)(G_0 + x^{n/2} G_1) = F_0 G_0 + x^{n/2} ((F_0 + F_1)(G_0 + G_1) - F_0 G_0 - F_1 G_1) + x^n F_1 G_1. \tag{1}
\]

Argue that this identity leads to the bound \(M(n) \leq 3M(n/2) + 4n + \Theta(1) \).

2. Consider a quadratic polynomial \(H = h_0 + h_1 x + h_2 x^2 \). Recall that this polynomial can be reconstructed from \(H(0) = h_0, H(1) = h_0 + h_1 + h_2, \) and \(H(\infty) = h_2 \) as \(H = (1-x)H(0) + xH(1) + x(x-1)H(\infty) \). Now assume \(H \) is the result of the product \((F_0 + x F_1)(G_0 + x G_1) \). Show how to obtain the refined Karatsuba identity

\[
(F_0 + x^{n/2} F_1)(G_0 + x^{n/2} G_1) = (1 - x^{n/2})(F_0 G_0 - x^{n/2} F_1 G_1) + x^{n/2}(F_0 + F_1)(G_0 + G_1). \tag{2}
\]

Estimate the number of multiplications and additions you’ll need to perform using this identity.