1 Homework 4

1. Let $A_q(n, d)$ be the largest k such that a code over alphabet $\{1, \ldots, q\}$ of block length n, dimension k and minimum distance d exists (recall that this corresponds to the notation $(n, k, d)_q$). Determine $A_2(3, d)$ for all integers $d \geq 1$.

2. Suppose C is a $(n, k, d)_2$-code with d odd. Construct using C a code C' that is a $(n + 1, k, d + 1)_2$-code.

3. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code $[n, k, d]_2$ provided that

$$2^{n-k} > 1 + \binom{n-1}{1} + \cdots + \binom{n-1}{d-2}.$$ \hfill (1)

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the $[7, 4, 3]_2$ Hamming code.

4. The Hadamard code has a nice property that it can be locally decoded. Let $C_{\text{Had}, r} : \{0, 1\}^r \to \{0, 1\}^{2r}$ be the encoding function of the Hadamard code. Suppose you are interested only in the i-th bit x_i of the message $x \in \{0, 1\}^r$. The challenge is that you only have access to $y \in \{0, 1\}^{2r}$ such that $\Delta(C_{\text{Had}, r}(x), y) \leq \frac{2^r}{10}$ and you would like to look only at a few bits of y. Show that by querying only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine x_i correctly with probability $\frac{4}{5}$ (the probability here is over the choice of the queries, in particular x, y and i are fixed).

Hint: You might want to query y at the position labelled by $u \in \{0, 1\}^r$ at random and the position $u + e_i$ where $e_i \in \{0, 1\}^r$ is the binary representation of i.

2 Parity check matrix

Let C be a $[n, k, d]_q$-linear code and $G \in \mathbb{F}_q^{k \times n}$ be a generator matrix. That is, $C = \{xG, x \in \mathbb{F}_q^k\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_q^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_q^n$ we have $cH^T = 0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

1. Show that H is a parity check matrix if and only if $GH^T = 0$ and rank$(H) = n - k$.

2. Show that, from G we can construct a generator matrix G' of the form $G' = [I_k | P]$ for some $P \in \mathbb{F}_q^{k \times (n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).

3. Construct a parity check matrix from G'.

4. Construct a parity check matrix of the code given by the generator matrix $G = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ in \mathbb{F}_2.
3 Singleton Bound

For every \((n, k, d)_q\)-code, show that \(k \leq n - d + 1\).

4 Weights of Codewords

Let \(C\) be an \([n, k, d]\)-linear code over \(\mathbb{F}_q\). Prove the following.

1. For \(q = 2\), either all the codewords have even weight or exactly half have even weight and the rest have odd weight.

2. For any \(q\), either all the codewords begin with 0 or exactly a fraction \(1/q\) of the codewords begin with 0. In general, for a given position \(1 \leq i \leq n\), either all codewords contain 0 at the \(i\)-th position or each \(\alpha \in \mathbb{F}_q\) appears at the \(i\)-th position of exactly \(1/q\) of the codewords in \(C\).

3. The following inequality holds for the minimum distance \(d\) of \(C\).

\[
d \leq \frac{n(q - 1)q^{k-1}}{q^k - 1}
\]

5 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector \(m \in \mathbb{F}_q^k\) and a uniformly random \(k \times n\) matrix \(G\) over \(\mathbb{F}_q\), show that the vector \(mG\) is uniformly distributed over \(\mathbb{F}_q^n\).

2. Let \(k = (1 - H_q(\delta) - \varepsilon)n\), with \(\delta = d/n\). Show that there exists a \(k \times n\) matrix \(G\) such that

\[
\text{for every } m \in \mathbb{F}_q^k \setminus \{0\}, wt(mG) \geq d
\]

where \(wt(m)\) is the Hamming weight of the vector \(m\).

3. Show that \(G\) has full rank (i.e., it has dimension at least \(k = (1 - H_q(\delta) - \varepsilon)n\))