The problem of tropical homomorphism in vertex-colored graph

Florent Foucaud 1, Ararat Harutyunyan 2, Pavol Hell 3, Sylvain Legay 4
Yannis Manoussakis 4, Reza Naserasr 4

An homomorphism from graph \(G \) to graph \(H \) is a function \(f \) from vertices of \(G \) to vertices of \(H \) such that for all edge \(uv \) in \(G \), \(h(u)h(v) \) is an edge in \(H \). Consequently, the problem of existence of a proper colouring is easily generalised to the problem of existence of an homomorphism to a fixed graph \(H \) :

\[
\text{\(H \)-COLORING}
\]

\textbf{Input:} A graph \(G \).

\textbf{Question:} Does \(G \) admit an homomorphism to \(H \) ?

A theorem of dichotomy for this set of problem is known : If \(H \) is bipartite, then \(H \)-COLORING is polynomial. If \(H \) is not bipartite, then \(H \)-COLORING is NP-Complete.

In our work, we study a generalisation of \(H \)-COLORING. A tropical homomorphism from vertex-coloured graph \((G, c) \) to vertex-coloured graph \((H, c') \) is an homomorphism \(h \) from \(G \) to \(H \) such that for each vertex \(v \) in \(G \), \(h(v) \) has the same colour than \(v \). Thus, \(H \)-COLORING is generalised as :

\[
\text{\((H, c) \)-COLORING}
\]

\textbf{Input:} A vertex-coloured graph \((G, c') \).

\textbf{Question:} Does \((G, c') \) admit a tropical homomorphism to \((H, c) \) ?

This talk aims to present our results in the search of a dichotomy for the \((H, c) \)-COLORING problems. The main result is that the existence of such a dichotomy is equivalent to the existence of a dichotomy for the Constraint Satisfaction Problems (CSP), a largely studied and still unresolved conjecture. We have also studied the complexity of this problem for some families of graph.

1LIMOS, Université Blaise Pascal
2LIP, ENS Lyon
3School of Computing Science, Simon Fraser University
4LRI, Université Paris-Sud