

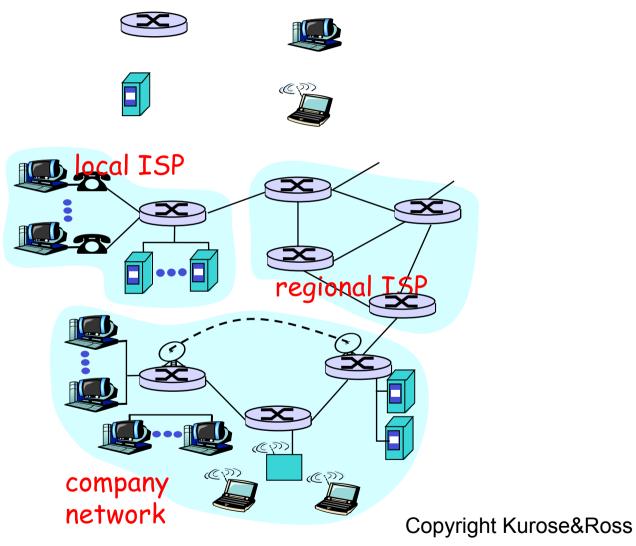
Réseaux M2 CCI SIRR

Introduction / Généralités

Isabelle Guérin Lassous
Isabelle.Guerin-Lassous@ens-lyon.fr
http://perso.ens-lyon.fr/isabelle.guerin-lassous

Objectifs

- Connaissances générales sur les réseaux
 - Principes généraux
 - Protocoles de base
- Quelques notions plus avancées (si on a le temps)
 - Applications en vogue
- Pointeurs
 - Littérature générale sur les réseaux de communication
 - Disponible à la bibliothèque
 - Computer Networking A Top-Down Approach Featuring the Internet - Kurose and Ross – Addison Wesley
 - Réseaux Locaux et Internet L. Toutain Hermès

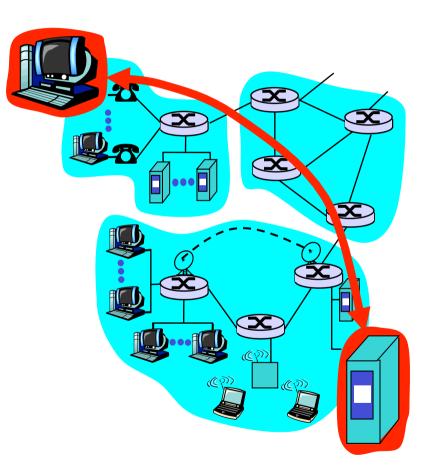

Introduction

- Difficile de se passer des réseaux de communication
 - Outil quotidien
 - Professionnel, personnel
 - Applications très variées
 - Mail, web, guidage, stockage, jeux, etc.
- Internet
 - Réseau des réseaux
 - On en parlera très souvent

Internet

- Millions de machines connectées
 - Machines hôtes End-systems
 - PCs, stations de travail, serveurs
 - Ordinateurs portables, tablettes
 - Téléphones portables
 - Capteurs
 - Applications sur les machines
- Communications entre ces machines
 - Via des liens de communications
 - Câbles, fibre optique, radio, satellites
 - Bande passante, délai de propagation, taux d'erreurs de transmission
 - Communications souvent non directes
 - Routeurs
 - Retransmission des données

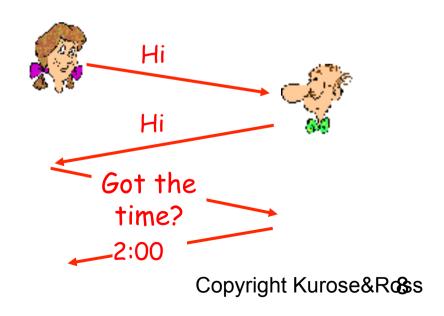
Internet



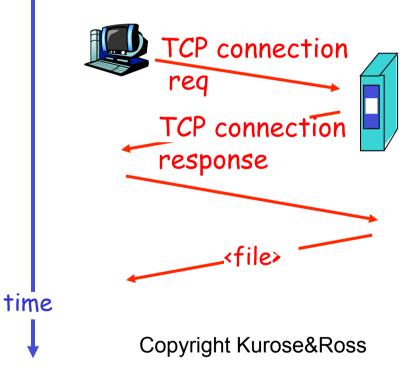
Internet

- Certaine structure
 - Même si les choses se sont faites de manière assez anarchique
- Périphérie du réseau
- Accès au réseau
- Cœur du réseau

Périphérie du réseau


- Machines périphériques
 - Contient les programmes applicatifs
 - * Web, e-mail, softphone, etc.
- Transfert de données entre les machines périphériques
 - Protocoles
 - Modèle client/serveur
 - * Ex. Web, e-mail, VoD
 - Modèle pair-à-pair
 - * Ex. Gnutella

Copyright Kurose&Ross


Protocoles humains

- Phase d'introduction
- Echange de propos
 - Dans un format assez libre...

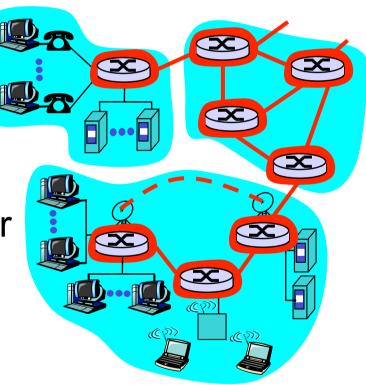
Protocoles réseaux

- Toutes les communications réseaux sont gouvernées par des protocoles
- Les protocoles définissent
 - les formats des messages
 - ordre des messages envoyés et reçus
 - actions à prendre en fonction des messages envoyés et reçus
- Exemples de protocoles réseau ?

Périphérie de réseau Communication orientée connexion

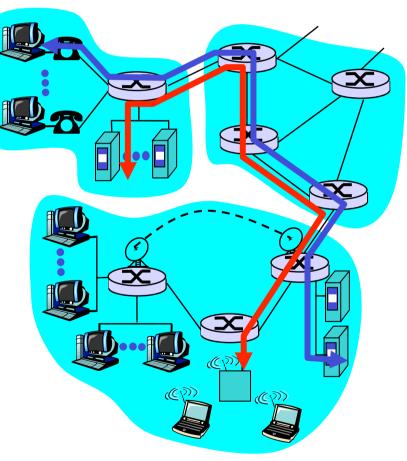
- Transfert de données entre des terminaux
- Phase de négociation
 - Echange initial d'information
 - Fixe un état dans chaque terminal

- TCP Transmission Control Protocol [RFC 793]
 - Orienté connexion
 - Fiabilité et remise en ordre des flux de données transférés
 - Perte : acquittement + retransmission
 - Contrôle de flux
 - ne pas surcharger le récepteur
 - Contrôle de congestion
 - ne pas surcharger le réseau


Seuls les terminaux établissent une connexion !!!

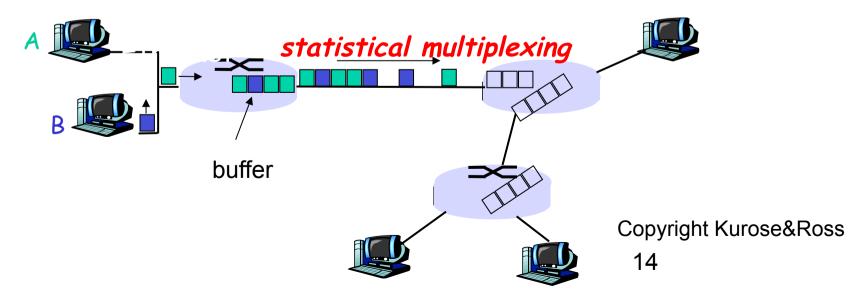
Périphérie de réseau Communication sans connexion

- Transfert de données entre des terminaux (identique!)
- UDP User Datagram Protocol [RFC 768]
 - Sans connexion
 - Pas de fiabilité
 - Pas de contrôle de flux
 - Pas de contrôle de congestion
- Applications utilisant TCP
 - HTTP (Web), FTP (File Transfer), Telnet (terminal à distance), SMTP (email), ...
- Applications utilisant UDP
 - Streaming, DNS, Téléphonie IP, ...

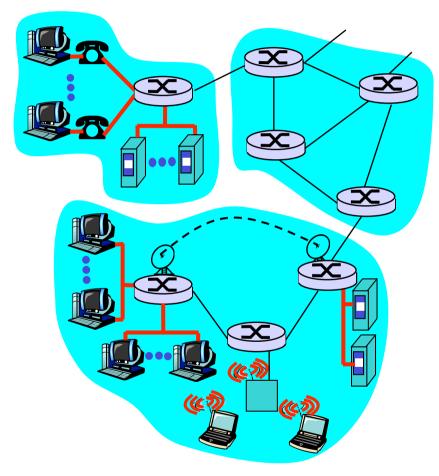

Cœur du réseau

- Maillage de routeurs interconnectés
- Routeurs
 - Liens entrées / sorties
 - Buffer
- Transfert des données sur ce maillage
 - · Commutation de circuits
 - Commutation de paquets

Cœur du réseau


- Commutation de circuits
 - Circuit dédié par communication
 - Réservation de ressources de bout-en-bout
 - Ressources dédiées
 - Pas de partage
 - Peuvent être inutilisées
- 1ère phase de mise en place du circuit
- Réseaux téléphoniques

Copyright Kurose&Ross


Cœur du réseau

- Commutation de paquets
 - Messages découpés en paquets
 - Paquets envoyés dans le réseau
 - sans l'établissement préalable d'un chemin entre la source et la destination
 - sans réservation de ressources
 - Routage
 - Pour atteindre la destination
 - Approche Store & Forward souvent utilisée
 - Partage des ressources du réseau
 - Réseaux de données

Réseau d'accès

- Connecter les machines hôtes aux réseaux de cœur
 - routeurs périphériques
- Plusieurs types
 - Résidentiels / institutionnels / d'entreprise / mobiles
- Plusieurs technologies de communication
 - ADSL / fibre optique / Ethernet / WiFi / 2-3-4G

Copyright Kurose&Ross 15

Complexité des réseaux

- Beaucoup de choses à assembler et à faire fonctionner ensemble
 - Machines hôtes
 - Routeurs
 - Liens de communications
 - Applications
 - Protocoles
 - Systèmes / Hardwares
- Grande hétérogénéité
- Organisation en couches
 - Pile protocolaire de l'Internet

Histoire

- 1961 1972
 - Principes des réseaux à commutation par paquets
 - Projet ARPAnet
 - Réseau à 15 nœuds (72)
- 1972 1980
 - Nouveaux réseaux, connexion de réseaux
 - Ethernet (73)
 - Principes de l'interconnexion (74)
- 1980 1990
 - Ère des protocoles
 - TCP/IP (83)
 - FTP (85)
 - Croissance des réseaux (100000 hôtes)
- 1990 2000
 - Commercialisation, nouvelles applications
 - Messagerie
 - Web
 - HTML, HTTP, navigateurs
- 2000 2010
 - Ère du haut débit et du pair-à-pair
 - Applications multimédia
- 2010
 - Ère du mobile et de la vidéo

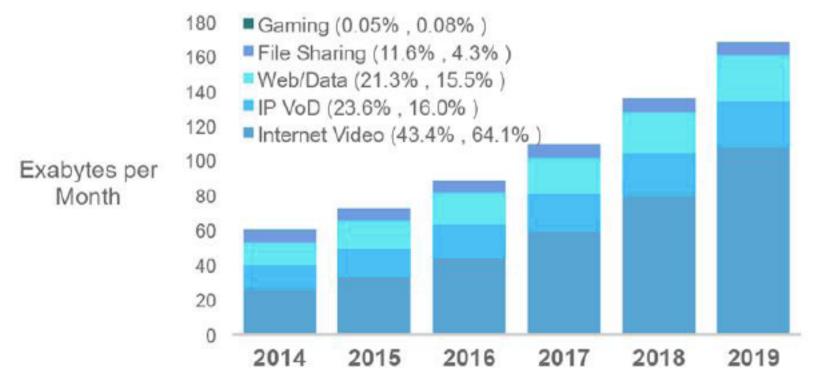
Types d'applications

- Applications initiales de l'Internet
 - Connexion à distance, transfert et partage de fichiers, e-mail, web
 - Applications élastiques

- Applications multimédia
 - Streaming audio/vidéo, voix sur IP, radio sur Internet, jeux en ligne, chirurgie à distance, etc.
 - Applications sensibles

Métriques importantes

Pour les réseaux de communication ?


Besoins des applications

- Audio interactif ToIP
- Vidéo interactive
- Streaming type Youtube
- Consultation d'une page web
 « classique » (ex. page de la formation)

Evolution du trafic Internet

- Prévision de l'évolution du trafic Internet
 - 1 Exabytes = 10¹⁸ bytes

Source: Cisco VNI Global IP Traffic

21

Chiffres annoncés par CISCO

- Trafic IP total (par an) devrait dépasser le zettaoctet en 2016 et devrait atteindre 2 zettaoctets en 2019
- Trafic IP total devrait augmenter de 23 % entre 2014 et 2019
- Trafic métropolitain plus important (en taille) que le trafic longue distance en 2014 et devrait atteindre 66% du trafic total en 2019
- Trafic généré par les réseaux de contenu devrait constituer les deuxtiers du trafic Internet d'ici 2019
- Trafic mobile et sans fil devrait dépasser le trafic filaire en 2016
- Nombre de systèmes connectés à un réseau IP devrait être trois fois plus grand que la population en 2019
- Débits des liens haut débit devraient doubler d'ici 2019

Chiffres annoncés par CISCO

- Trafic vidéo devrait représenter 80% du trafic Internet en 2019
- Trafic vidéo vers les télés a augmenté de 47% en 2014
- Trafic de VoD devrait doubler d'ici 2019
- Il faudrait 5 millions d'années pour visualiser toutes les vidéos qui seront en transit chaque mois dans les réseaux IP en 2019

Conclusion

- Utilisation de plus en plus importante des réseaux
 - Croissance de l'Internet
 - Croissance du trafic
 - Évolution des applications
- Hétérogénéité importante
 - En termes de systèmes
 - En termes de protocoles
 - En termes d'applications
 - Contraintes variées
- Réseaux en constante évolution
 - Ce qui marche aujourd'hui ne marchera peut-être pas demain
 - Utilisateurs de plus en plus exigeants

Conclusion

- Reste encore plein de points
 - à comprendre
 - à améliorer
- Problèmes d'optimisation difficiles
 - Contraintes multiples
 - Parfois antagonistes
- Aspect économique
- Aspect énergétique
 - Très à la mode
- Technologies sans fil de plus en plus importantes
 - Revenu par Mo
 - 1000 \$ SMS 1 \$ appel cellulaire 0,1 \$ appel filaire 0,0001 \$ trafic Internet

Organisation sur ma partie

- Cours partagé avec Mr Gelas
- Sur ma partie
 - 18h cours / TD
 - 12h TP
 - 3 notes
 - Examen
 - 1 ou 2 contrôles (pendant le cours)
 - TP (compte-rendu)