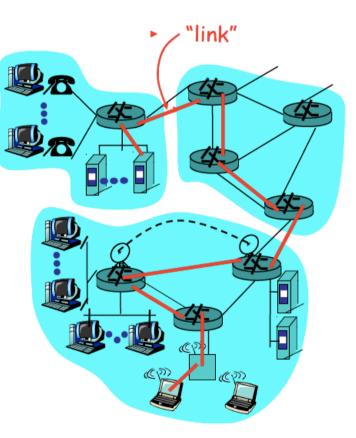


Réseaux M2 CCI SIRR

Couche liaison de données


Isabelle Guérin Lassous
Isabelle.Guerin-Lassous@ens-lyon.fr
http://perso.ens-lyon.fr/isabelle.guerin-lassous

Plan

- Introduction
- Principes des services de niveau 2
 - -Traitement des erreurs
 - -Accès au lien de communication
- Exemple de protocole de niveau 2 en filaire
 - -Ethernet

Introduction

- Vocabulaire
 - Nœud
 - Lien de communication
 - Permet de relier des nœuds
 - Nœuds voisins
 - Canal/Médium de communication
- Couche liaison de données
 - Assure le transfert de données entre deux ou plusieurs nœuds voisins
 - Trame

C. Kurose & Ross

Introduction

- Protocoles liaison de données
 - –Ethernet, PPP, Frame Relay, IEEE 802.11 (WiFi)
- Les protocoles liaison de données peuvent fournir des services différents

Services / Principes Théoriques

Adaptateur

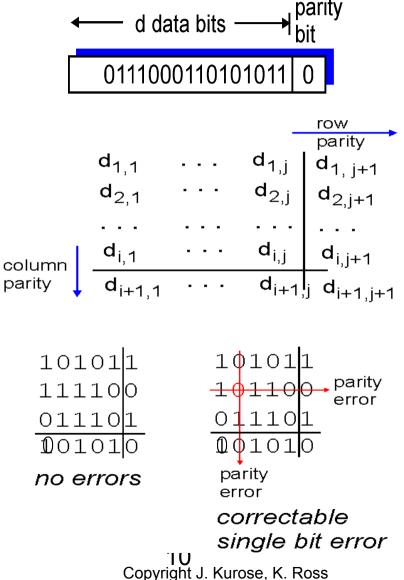
- Protocole liaison de données souvent implémenté dans un adaptateur
 - Network Interface Card
 - Processeur, mémoire, bus, etc.
- Réalise les services de niveau 2
- Mode semi-autonome

Copyright J. Kurose, K. Ross

Tramage

- Encapsulation du datagramme dans une trame
 - Champs supplémentaires
 - En-tête de niveau 2
 - Informations sur la couche 2 comme ?
 - Assurer la communication entre 2 nœuds voisins
 - Réaliser les services de niveau 2
- Délimitation d'une trame
 - Fanion (bit), marqueur de début et fin (caractères)
 - Se fait au niveau physique pour certains protocoles
 - 802.11

Détection d'erreurs

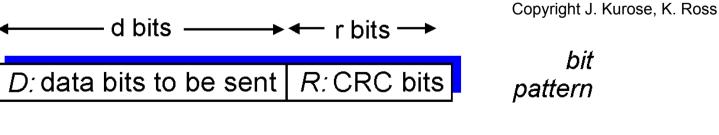

- Erreurs possibles sur le lien de communication
 - Atténuation
 - Bruit
 - Collisions / interférences
 - Echo
 - Diaphonie
- Mécanisme réalisé
 - Au niveau hardware (en général)
 - Optionnel
 - Mais souvent réalisé au niveau 2

Principe de la détection d'erreurs

- Ajout de données de contrôle dans la trame par le nœud source
 - Champ détection d'erreurs
 - Checksum somme de contrôle
- Test de validité du paquet par le récepteur
 - Utilisation du champ détection d'erreurs par le récepteur
 - Réponse positive
 - · Paquet considéré comme sans erreur
 - Réponse négative
 - Paquet considéré comme avec erreur
- Pas fiable à 100%
 - Compromis sur la taille du champ détection d'erreurs

Bit de parité

- Avec un seul bit
 - Parité paire
 - Parité impaire
 - Détection simple mais pas toujours possible
- Parité à deux dimensions
 - 1 erreur, correction possible
 - 2 erreurs, détection possible
- Plutôt utilisé pour des opérations hardware


Dans le monde IP

- Somme sur les données
 - Découpées en séquences continues de k bits
 - Utilisée comme somme de contrôle
- Emetteur
 - Données découpées en séquences de 16 bits
 - Complément à 1 de cette somme
- Récepteur
 - Somme sur les données reçues (somme de contrôle incluse)
 - · Si que des 1
 - succès
- Utilisée sur les couches 3/4 mais pas au niveau 2
 - Protection faible mais simple à réaliser
 - Utilisation du hardware au niveau 2
 - Opérations plus compliquées permises

CRC

Cyclic Redundancy Check

- D
 - Données à protéger
- G
 - Générateur négocié entre la source et la destination
 - Contient (r+1) bits
 - Bit le plus à gauche à 1
- R
 - CRC
 - r bits à ajouter à D
 - Suite de bits DR divisible par G
- Récepteur
 - Division des bits reçus par G
 - Si le reste est nul
 - succès
- Arithmétique modulo-2 (sans retenue)

mathematical formula

CRC Cyclic Redundancy Check

- 1 seule erreur toujours détectée dès que deux 1 dans G
- 2 erreurs toujours détectées dès que trois 1 dans G
- Nombre impair d'erreurs détectées dès que G se termine par 11
- Erreurs d'au plus r bits consécutifs détectées
- Erreurs d'exactement (r+1) bits consécutifs détectées
 - Avec probabilité 1-0,5^(r-1)
- Erreurs de plus de (r+1) bits consécutifs détectées
 - avec probabilité 1-0,5^r
- Très utilisé
- Taille du générateur
 - 2 à 65 bits
 - Ethernet, 802.11
 - 33 bits

Récupération d'erreur

- Si destinataire reçoit un paquet qu'il considère en erreur
 - Quelle action ?
- Rejeter le paquet et ne rien faire d'autre
 - Que suppose-t-on dans ce cas ?
- Prévenir la source qui peut éventuellement retransmettre
 - Envoi d'un ACK négatif
 - Technique inverse
 - Seuls les paquets correctement reçus sont acquittés
 - Plusieurs approches
 - Émission & attente
 - Utilisation d'une fenêtre glissante
 - Quels protocoles ?
- Corriger soi-même les erreurs (correction d'erreurs)
 - Utilisation de codes correcteurs
 - Code de Hamming
 - Peu utilisé en pratique au niveau de la couche 2

Types de liens de communication

- Lien unidirectionnel
- Lien bidirectionnel
 - Half-duplex
 - Full-duplex

Accès aux liens de communication

- Lien point-à-point
 - Seulement deux stations connectées par ce médium
 - Lien souvent full duplex
- Lien partagé
 - Plusieurs stations peuvent être connectées au lien
 - Un paquet transmis se propage vers toutes les stations
 - 2 transmissions simultanées peuvent provoquer des collisions
 - Protocole à accès multiple
 - Algorithme qui permet une utilisation partagée du médium, i.e. indique quand un nœud peut transmettre
 - Protocole MAC
 - Medium Access Control

Protocole à accès multiple idéal

- Hypothèse
 - Médium partagé avec une capacité de D b/s
- Efficacité
 - Quand un nœud est seul à vouloir parler, il doit pouvoir utiliser tout le médium
 - À quel débit ?
- Equité
 - N nœuds veulent transmettre
 - Débit moyen de chacun ?
- Décentralisé
 - Pas de coordinateur
 - Pas d'horloge
- Simple

Classification (possible)

- Basé sur la notion de canal
 - Découpage « strict » du médium de communication en sous-parties (sous-canaux)
 - Allocation a priori avant transmission
- Basé sur la notion de paquets
 - Envoi du paquet → prise de contrôle du médium
 - Utilisation de tout le médium de communication dont on a besoin pour communiquer

Techniques multicanaux

- Time Division Multiple Access
 - TDMA
 - Découpage en temps
 - Synchronisation nécessaire
- Frequency Division Multiple Access
 - FDMA
 - Découpage en fréquence
 - Débit éventuellement faible

Techniques multicanaux

- Code Division Multiple Access
 - CDMA
 - Utilisation de codes
 - Communications parallèles sur le lien partagé
 - Contrôle de puissance nécessaire

Techniques multicanaux

- Si nombre de sous-canaux > nombre d'utilisateurs
 - Allocation fixe simple
- En général
 - Nombre d'utilisateurs >> nombre de sous-canaux
- Sous-canal à trouver dynamiquement
 - On demande à une entité spécifique
 - e.g. station de base dans les réseaux GSM
 - Problème de l'œuf et de la poule
 - Il faut communiquer pour demander une allocation
 - Il faut un protocole MAC pour savoir quand on doit accéder au médium
 - Utilisation d'un protocole à accès aléatoire pour obtenir un sous-canal

Protocoles à accès aléatoire

- Quand un nœud veut envoyer un paquet
 - Utilisation complète du médium (nécessaire pour la communication)
 - -Pas de coordination a priori entre les nœuds
- Collision possible
 - -Comment détecter les collisions?
 - Comment gérer les collisions ?
- Exemples
 - -Type ALOHA
 - -Type CSMA
 - CSMA/CD
 - CSMA/CA

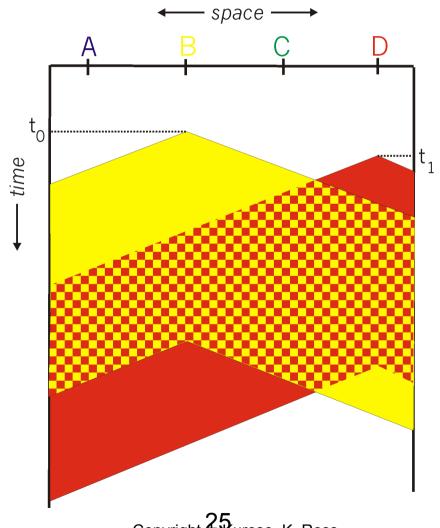
ALOHA

Bonjour!

Protocole à accès aléatoire développé pour le 1er réseau sans fil par commutation de paquets

Acquittements envoyés par le récepteur + retransmissions de la source après un temps aléatoire

Efficacité limitée : 1/(2.e) de la capacité


Slotted ALOHA

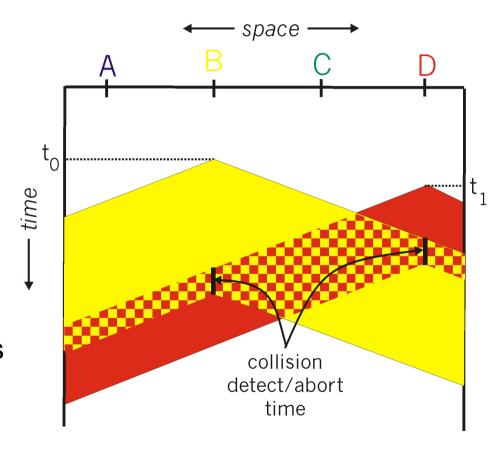
Slot = efficacité doublée

Nécessite une synchronisation

Carrier Sense Multiple Access **CSMA**

- Que fait-on avant de parler?
- Collisions encore possibles?

Copyright 25 urose, K. Ross


Carrier Sense Multiple Access CSMA

Algorithme ? (sans se préoccuper des collisions)

CSMA/CD

Collision Detection

- La station qui transmet détecte une collision
 - Arrêt de la communication
- -Lien filaire
 - Comparaison entre le signal émis et le signal reçu
 - Réalisée par les sources
- Retransmission après un temps aléatoire

Copyright J. Kurose, K. Ross

CSMA/CD Compléments

- Liens filaires assez fiables
 - Hypothèse
 - Perte de paquet due à une collision
 - Paquet non acquitté par le destinataire. Pourquoi ?
- Taille minimum sur les paquets
 - Pour détecter les collisions
 - Quelle taille (en temps) ?
 - Slot time
- Signal de brouillage envoyé par les sources détectant une collision
 - Met toutes les stations du médium dans le même état
- Repris dans Ethernet
 - De moins en moins utilisé
 - Réseaux Ethernet full-duplex

CSMA/CA

- Collision Avoidance
- Sur un médium sans fil
 - Difficile de faire du 'collision detection'
 - Paquet acquitté par le destinataire
- Obligé d'attendre la fin d'une collision
 - Coûteux en temps
 - Essayer d'éviter au maximum les collisions a priori
 - Collision avoidance
- Temps d'attente aléatoire avant la transmission d'un paquet
 - Compromis temps d'attente réduction des collisions
- Approche utilisée dans le WiFi
 - Détails dans la suite du cours

BEB

Gestion des temps d'attente aléatoire

- Algorithme du Binary Exponential Backoff
- Utilisé pour gérer les retransmissions des paquets en collision
 - Gestion des temps d'attente aléatoire
 - Permet d'espacer les retransmissions
- Fenêtre de contention
 - Intervalle de tirage
 - CW
- Backoff
- Valeur aléatoire à tirer dans la fenêtre de contention
- Détermine le temps d'attente aléatoire
- A chaque retransmission d'un paquet, la taille de la CW est doublée par rapport à la transmission précédente du même paquet
 - CW minimale
 - CW maximale
- Nombre maximal de retransmissions
 - Après, le paquet est rejeté
- Si paquet transmis avec succès
 - CW reprend la valeur minimale/initiale

Protocoles sans collision

- Sur invitation
 - Polling
 - Nœud maître qui invite les nœuds du réseau à parler
 - Approche définie dans le WiFi
 - Mais peu utilisée en pratique
- A base de jeton
 - Réseaux en anneau (liens unidirectionnels)
 - 2 paquets : message et jeton
 - Jeton circule sur l'anneau
 - Si pas de paquet à émettre, jeton directement retransmis
 - Un nœud qui a le jeton et qui a un message à envoyer
 - Bloque le jeton
 - Transmet son message à la place
 - Retransmis par toutes les stations de l'anneau
 - La destination le décode
 - Lorsque le message est reçu par le nœud source
 - Le nœud retransmet le jeton

Protocoles sans collision

- Inconvénients
 - Latence
 - Robustesse
- 2 standards IEEE
 - 802.4 et 802.5
 - Plus très utilisés

Solutions de niveau 2

- Diversité des solutions
 - Assemblage de différents services
 - Détection d'erreurs, reprise d'erreurs, MAC, BEB
- A bien réfléchir en fonction de
 - Des applications du réseau
 - Du type de médium de communication utilisé
 - Couche physique
 - Du coût
- Standards
 - Définition/choix des différents services
 - Très long travail
 - Beaucoup de participants
 - Toujours en évolution

Ethernet

Historique

- 73-75
 - Développé à Xerox Park
 - Inspiré d'ALOHA
- 79
 - Implication de différents constructeurs
 - Digital-Intel-Xerox Ethernet v1
 - 10 Mb/s

- 80
 - 1er standard IEEE
 - CSMA/CD
- Puis plein de nouvelles avancées
 - 100 Mb/s, 1 Gb/s, 10 Gb/s

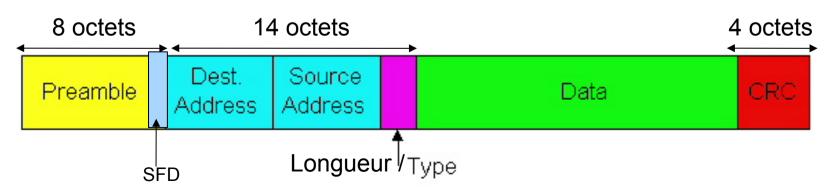
Comité IEEE 802

- IEEE
 - Institute of Electrical and Electronics Engineers
 - _ 1979
- Développer un ou des standards sur les couches 1 et 2 pour les réseaux locaux et métropolitains
- Groupe de travail 802
 - Année 80
 - Mois de février

Contraintes initiales pour les réseaux locaux / métropolitains

- Supporter au moins 200 stations
- Couverture
 - Jusqu'à 2 km pour les LAN
 - Jusqu'à 50 km pour les MAN
- Débit entre 1 et 100 Mb/s
- Insérer et retirer une station sans perturbation
- Adressage individuel ou en groupe des stations
- Services vus précédemment

Réorganisation du sous-groupe 802


- Réorganisation en plusieurs sous-groupes 802
- 802.1
 - Architecture générale
 - Format des adresses
 - Techniques d'interconnexion
- 802.2
 - Contrôle de lien
- 802.3
 - CSMA/CD
- 802.11
 - WLAN sans fil
- 802.15
 - Réseaux sans fil personnels
 - Bluetooth
- 802.16
 - Réseaux sans fil large bande
 - Wimax

Adressage IEEE 802.1

- Chaque équipement a une adresse de niveau 2
 - Pour différencier les stations
- Adresse courte 16 bits
 - Réseaux non interconnectés
- Adresse universelle 48 bits
 - Gérée par l'IEEE
 - 3 octets de gauche attribués aux constructeurs de cartes
 - ex. 00-00-0C pour Cisco
 - OUI Organizational Unit Identifier
 - 3 octets de droite correspondent au numéro de série
 - Adresse unique pour chaque équipement
- Adresses de groupe
 - Broadcast FF-FF-FF-FF-FF
 - Multicast
 - Abonnement nécessaire
 - ex. 01-00-5E-00-00 Internet Multicast
- Extension du numéro de série EUI-64

Format des trames

- Trames Ethernet et 802.3 peuvent coexister sur un même médium
- Préambule
 - synchronisation
- SFD
 - Starting Frame Delimitor
 - Début des données
- Data / données
 - Au moins 46 octets
 - Au plus 1500 octets
- Longueur (802.3)
 - Taille des données en octets (<= 1500 octets)
- Type (Ethernet)
 - Identificateur du protocole de niveau supérieur
 - Valeur > 1500

CSMA/CD

- Si médium occupé
 - Attendre que le médium se libère
- Si médium libre
 - transmission
- Si collision détectée
 - Par l'émetteur
 - Arrêt de la transmission des données
 - Envoi d'un signal de brouillage
 - Si le nombre max de retransmissions atteint
 - Paquet à transmettre enlevé
 - Sinon
- Tirage aléatoire d'un temps d'attente fonction du compteur (e.g. BEB)
- Recommencer le processus d'émission
- Si paquet transmis avec succès ou enlevé
 - réinitialisation du compteur

Paramétrage

- Taille maximale d'une trame
 - Pour ne pas monopoliser le canal
 - 1518 octets
- Signal de brouillage
 - 48 bits
- 16 retransmissions possibles
- IFS Inter Frame Spacing
 - Sépare l'émission de deux stations sur le canal
 - Pour que les stations aient le temps de se préparer à la réception d'une nouvelle trame
 - Temps pour transmettre 96 bits
 - 9,6 micros à 10 Mb/s

Algorithme de réception

- Détection d'activité
- Récupération des données
- Trame trop courte?
 - Oui collision (brouillage)
- CRC vérifié
 - Correct
 - Adresse reconnue est-ce pour moi ?
 - Oui : trame fournie au niveau supérieur
 - Incorrect
 - Trame rejetée
 - Service non fiable

Supports physiques

- Plusieurs supports possibles
 - Paire torsadée (cuivre)
 - 1, 10, 100 Mb/s et 1 Gb/s
 - Câble coaxial
 - 10 Mb/s
 - Fibre optique
 - 10, 100 Mb/s, 1 Gb/s et 10 Gb/s
- Différentes interfaces

Architectures

- Fonctions du support de communication et de ses caractéristiques
- Bus
- Hub
 - Retransmission d'un message vers toutes les autres stations
 - Niveau physique
 - Half-duplex / CSMA/CD
- Ponts
 - Analyse les trames
 - Retransmission sur l'interface appropriée selon l'adresse destination de niveau 2
- Commutateur switch
 - Plus d'interfaces
 - Full duplex

Conclusion

- Couche de niveau 2
 - Joue un rôle important dans la performance des réseaux
- Ethernet
 - Standard très suivi
 - Diversité du matériel
- Sans fil ?
 - Autre standard
 - 802.11