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Abstract

The advent of large scale multi-hop wireless networks
highlights problems of fault tolerance and scale in dis-
tributed systems, motivating designs that autonomously re-
cover from transient faults and spontaneous reconfigura-
tions. Self-stabilization provides an elegant solution for re-
covering from such faults. We present a complexity analysis
for a family of self-stabilizing vertex coloring algorithms
in the context of multi-hop wireless networks. Such ”col-
oring” processes are used in several protocols for solving
many different issues (clustering, synchronizing...). Overall,
our results show that the actual stabilization time is much
smaller than the upper bound provided by previous stud-
ies. Similarly, the height of the induced DAG is much lower
than the linear dependency on the size of the color domain
(that was previously announced). Finally, it appears that
symmetry breaking tricks traditionally used to expedite sta-
bilization are in fact harmful when used in networks that
are not tightly synchronized.
Keywords: coloring, scheduling, stabilization time, multi-
hop wireless networks

1 Introduction

Wireless multi-hop networks consist of sets of indepen-
dent mobile wireless nodes that operate without the support
of a pre-existing fixed infrastructure. They offer unique
benefits for certain environments and applications as they
can be quickly deployed. The advent of large-scale multi-
hop wireless networks highlights problems of fault toler-
ance and scale in distributed systems, motivating designs
that autonomously recover from transient faults and sponta-
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neous reconfigurations. Resuming correct behavior after a
fault occurs can be very costly [9]: the whole network may
have to be shut down and globally reset in a good initial
state. While this approach is feasible for small networks,
it is far from practical in large networks such as forecast
sensor networks. Self-stabilization [2, 3] is an attractive
approach for such problems. It provides a way to recover
from faults without the cost and inconvenience of a general-
ized human intervention: after a fault is diagnosed, one sim-
ply has to remove, repair, or reinitialize the faulty compo-
nents, and the system, by itself, will return to a good global
state within a relatively short amount of time. Distributed
self-stabilizing algorithms may thus be used for organiz-
ing and/or managing multi-hop wireless networks. For ex-
ample, the self-stabilizing distributed vertex coloring algo-
rithm can be used for resource allocation [6] or distributed
local organization [5, 7] in such networks. The vertex color-
ing problem, issued from classical graph theory, consists in
choosing different colors for any two neighboring nodes in a
graph. This problem can easily be generalized to distance k,
requiring that any two nodes that are up to k hops away must
have different colors. Then, from the color distribution, a
DAG (Directed Acyclic Graph) can be easily and locally
drawn. It is henceforth this DAG which is used by the differ-
ent applications such as e.g. the clustering or the frequency
allocation. Intuitively, the vertex coloring algorithm runs as
follows: every node repetitively collects colors chosen by
its neighbors, and if it detects a conflict with its own color,
randomly chooses a fresh color not taken by its distance-
k neighborhood. When the graph degree is bounded by a
small constant (as it is the case in sensor networks), the ex-
pected local stabilization time (i.e.the stabilization time in
any neighborhood) of the algorithm is also constant. This
makes the algorithm independent on the number of nodes
in the network, and thus scalable to large networks. More-
over, the directed acyclic graph that is induced by the colors
is of constant height, so that self-stabilizing algorithms that
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are based on the coloring can stabilize also in constant time.
This property was used, in the context of multi-hop wireless
networks, in [5] to compute a minimal distance-2 coloring,
and in [7] to self-organize the network into clusters, both
locally stabilizing in an expected constant time. While this
distance-k coloring algorithm has provenly fast local stabi-
lization time, the influence of system parameters remains
unknown.

In this paper, we study the stabilization time of distance-
k coloring algorithms in various settings that are relevant to
wireless multi-hop networks. We first provide a theoretical
study in synchronous networks: we extend the analysis car-
ried out in [1] to the context of anonymous networks. Using
simulations, we consider various topologies (grids and ran-
dom graphs), different kinds of scheduling hypothesis (syn-
chronous and probabilistically asynchronous) and different
sizes of color domain. We study the impact of these para-
meters on the stabilization time of distance-k coloring al-
gorithms. This study helps performing the better choice for
each parameter according to the use of the coloring scheme.
Overall, our results show that the actual stabilization time is
much smaller than the upper bound provided by previous
studies. Similarly, the height of the induced DAG is much
lower than the linear dependency on the size of the color
domain (that was previously announced). Finally, it appears
that symmetry breaking tricks traditionally used to expedite
stabilization are in fact harmful when used in networks that
are not tightly synchronized.

The remaining of the paper is organized as follows: Sec-
tion 2 formally presents the system model and the coloring
algorithm. In Section 3, we analytically study the stabiliz-
ing time considering a synchronous setting, while in Sec-
tion 4 we provide extensive simulations and comments on
various parameters. Section 5 gives concluding remarks.

2 Preliminaries

System model. The system is composed of a set V of
nodes in a multi-hop wireless network and each node has
a unique identifier. Each node p ∈ V can communicate
with a subset Np ⊆ V of nodes determined by the range
of their radio signal R; Np is called the neighborhood of
node p. p does not belong to Np (p /∈ Np). In the wire-
less model, transmission is omni-directional: each message
sent by p is effectively broadcast to all nodes in Np. We
also assume that communication capability is bidirectional:
q ∈ Np iff p ∈ Nq. We define N1

p = Np and for i > 1,
N i

p = N i−1
p ∪ { r | (∃q : q ∈ N i−1

p : r ∈ Nq) }

(let’s call N i
p the distance-i neighborhood of p). We assume

that the distribution of nodes is sparse: there is some known
constant δ such that for any node p, |Np| ≤ δ. Note that sen-
sor networks can control density by adjusting their radius R
and/or powering off nodes in areas that are too dense, which

is one aim of topology control algorithms.
Execution and scheduling. The scheduler is responsible
for choosing enabled nodes for executing the following rule
: collect colors of your neighborhood and if conflict, choose
another one. In this paper, we consider three possible sched-
ulers: the synchronous scheduler, the probabilistic central
scheduler, and the probabilistic distributed scheduler. With
the synchronous scheduler, nodes operate in lock steps, and
at every step, every node is activated by the scheduler. At
every step, the probabilistic central scheduler randomly ac-
tivates exactly one node. With the probabilistic distributed
scheduler, at each step, each node is activated with prob-
ability 1/n. The two last schedulers model the fact that
although nodes execute their actions at the same speed on
average, there is a chance that their clocks or speeds are not
uniform, so that the system is slightly asynchronous. The
distributed scheduler is more realistic than the central one
for wireless networks, but the latter is often used for prov-
ing self-stabilizing algorithms.
Shared Variable Propagation. Nodes communicate with
their neighbors using shared variables. To keep the analysis
simple, we assume that there exists an underlying shared
variable propagation scheme that allows nodes to collect
shared variables in their neighborhood at distance k, for a
fixed k. A possible implementation can be found in [5]. For
our purpose, we simply assume that a node is able, in one
”macro” step, to read all shared variables in its neighbor-
hood at distance k. This assumption is justified in [8].
Coloring Algorithm and DAG construction. The color-
ing algorithm N1 that we consider is the one used in [7]
and [5]. [7] and [5] differ in the size of the color domain
they use and in the way they then use the DAG color. The
coloring algorithm N1 uses a single shared variable for each
node. Let Cp be a shared variable that belongs to the domain
Δ; variable Cp is the color of node p. SCp

refers to the set of
colors that have been used in the neighborhood at distance
k of p: SCp

= {Cq | q ∈ Nk
p }. Let random(S) choose with

uniform probability some element of S. Node p uses the
following function to compute Cp:

newC(Cp) =

{
Cp if Cp �∈ SCp

random(Δ \ SCp
) otherwise

.

The algorithm for vertex coloring is the following:
N1:true → Cp := newC(Cp)
Such a coloring algorithm then leads to the construction of
a DAG when (virtually) drawing a directed edge from each
node to its only neighbor with the lowest color (if such a
node exists).
Local Stabilization. With respect to any given node v, a
solution for the coloring problem at distance k is locally
stabilizing for v with convergence time t if, for any initial
system state, after at most t time units, any node w at dis-
tance less than k from v is such that Cw �= Cv . For ran-
domized algorithms, this definition is modified to specify
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expected convergence times (all stabilizing randomized al-
gorithms we consider are probabilistically convergent in the
Las Vegas sense). In [5], the authors show that Algorithm
N1 self-stabilizes with probability 1 and has constant ex-
pected local stabilization time.

Uniform vs. Non Uniform Networks. In theory, the
coloring algorithm N1 could work in uniform and anony-
mous networks (where nodes do not have unique identifiers
and execute the same code). Collecting the neighborhood at
distance k generally requires identifiers. Then, it is possible
to tweak the algorithm to use these identifiers to break sym-
metry and expedite convergence: when at least two neigh-
bors have a conflicting color, the node with the lowest iden-
tifier never changes its color. Thus, we have the guarantee
that at any step, at least one of the conflicting nodes gets a
stable color. In the remaining of the paper, we distinguish
two operating modes for the algorithm: the all mode refers
to the mode where all conflicting nodes draw a new color
(anonymous networks), while the all but one mode refers
to the version where the previous algorithm applies (uni-
form networks where one conflicting node does not change
its color). The all mode fits well for wireless networks for
instance where nodes try to minimize the size of the packets
they have to exchange to save bandwidth. In the all mode,
they do not need to exchange their id. The all but one mode
may be used for instance in a DHCP network where nodes
know the Id of each other ([1]).

3 Analysis

In this section, we theoretically compute the expected
stabilization time of the coloring protocol N1, i.e. the ex-
pected number of steps before every node has a color that is
not already used in its distance-k neighborhood. From [5],
we already know that when the degree is upper bounded by
a constant (δ), the expected local stabilization time is also
upper bounded by a constant. However, the actual constant
is not given in [5], and the one that can be derived from the
algorithm is high (about δ6 for a distance-3 coloring).

The other metric of interest for our purpose is the height
of the DAG that is induced by the colors. Indeed, when
the coloring algorithm is used as a building block for subse-
quent algorithms, the stabilization time of those algorithms
is generally in the order of the color DAG height, a lower
DAG height inducing a smaller stabilization time. In [5],
the authors show that the height of the DAG is bounded by
|Δ| + 1, where Δ denotes the color domain.

For the theoretical study, we consider only the synchro-
nous scheduler, and we model the coloring protocol by a
successive set of random draws. The main goal is to assign
a color to each node. A way to model this problem is to
consider that the color domain is represented by a set of M
urns in which one must randomly distribute L balls which

are going to represent the nodes. In each neighborhood, the
goal is then to have only one ball (one node) associated to
a given urn (one color). This model has already been used
in [1] (for the NAP protocol), in which the authors analyze
the stabilization time of a self-addressing network where
two links must receive a unique prefix in the network. In
this model, the urns symbolize the prefix and the balls the
links. Each link chooses a random prefix in a prefix domain.
If two links have chosen the same prefix, the one with the
lowest ID keeps it while the other one(s) choose(s) a new
prefix among the ones not already assigned. The analysis
and the calculus carried out in [1] thus roughly correspond
to our all but one mode. In this section, we extend the
analysis to the all mode.

Note that this theoretical study only matches for com-
plete networks, i.e. where each node can communicate with
all the other nodes. In multi-hop networks, it is possible that
two neighboring nodes (A and B) with no conflicting col-
ors simultaneously draw a new identical color, because they
each of them has another conflicting neighbor (not visible
to A or to B). But, it is important to note that this theoretical
study gives a lower bound on the actual stabilization time
(this is further refined in Section 4). The algorithm can be
modeled in terms of urns/balls as follows.

Algorithm 1 COLORING PROCESS(L, M )
� Input: M urns and L balls

� Pre-condition: M ≥ L

if (L �= 0) then
Randomly throw the L balls in the M urns;
if (case = ’all’) then

Keep aside all urns that contain exactly one ball with
their ball inside ;

end
if (case = ’all but one’) then

Keep aside all urns containing at least one ball and
one of their balls;

end
Let note c ≤ M the number of ”correct” urns that we keep
aside;
Call COLOR PROCESS(L− c, M − c);

end

By repeating the process, eventually every ball will be
stored in a correct urn and every urn will contain at most
one ball. Let N denote the number of iterations needed to
reach such a configuration, i.e. the number of calls to the
recursive procedure of coloring. We are interested in com-
puting the distribution and the expectation of the random
variable N . We consider the homogeneous discrete-time
Markov chain X = {Xn, n ∈ }, on the finite state space
I = {0, 1, . . . , L} where the event {Xn = i} represents the
fact that, after n transitions, exactly i urns contain exactly
one ball and have been kept aside (every node has found its
final color). The Markov chain starts in state 0 with prob-
ability 1 (at the beginning, none of the urns and balls have
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been kept aside). The random variable N can be defined
more formally, for L ≥ 1, as N =

∑
n≥0

∑L−1
i=0 1{Xn=i}.

N is the number of transient states of X visited before ab-
sorption.

We denote by P(L, M) = (pi,j(L, M))(i,j)∈I2 the tran-
sition probability matrix of the Markov chain X , where
pi,j(L, M) represents the probability to move from Xn = i
to Xn+1 = j. pi,j(L, M) is thus the probability to obtain
exactly j − i urns each with one ball when throwing L − i
balls into M − i urns. For all i ≤ j, we thus have

pi,j(L, M) = pi,j = p0,j−i(L − i, M − i). (1)

The Markov chain X is clearly acyclic and the state L
is the absorbing state of X . This means that for every i ∈
I − {L} and j ∈ I, we have pi,j(L, M) = 0 for i > j and
pL,L(L, M) = 1. P(L, M) has thus the following form:

P(L, M) =

p0,0 p0,1 p0,2 · · · · · · p0,L

0 p1,1 p1,2 p1,3 · · · p1,L

...
...

. . .
. . .

. . .
...

0 0 · · · 0 pL−1,L−1 pL−1,L

0 0 · · · · · · 0 1

The computation of P(L, M) depends on the drawing
hypothesis (all but one or all mode). But, once the transi-
tion probability matrix is computed, the way of evaluating
the stabilization time of the coloring algorithm is the same
whatever the drawing hypothesis. The all but one mode is a
little bit simpler because it implies pi,i(L, M) = 0 for every
0 ≤ i ≤ L − 1, which means that the stabilization time N
of the coloring algorithm is bounded: N ≤ L. We give in
the following subsection the transition probability matrix of
each mode before giving the distribution and the expecta-
tion of the stabilization time N of the coloring algorithm.

Computation of P(L, M). We now explicit the transi-
tion probabilities pi,j(L, M) of the Markov chain X for all
i ≤ j for both modes.
Matrix for the all mode: In the all mode, all nodes in con-
flict choose a new color among the free ones. At each step,
we keep aside the urns and their balls if they contain ex-
actly one ball. Unlike the all but one mode, we may keep
none urn and ball at a step and thus the diagonal values of
P(L, M) are not null.

From relation (1), we only have to compute the transi-
tion probability p0,j−i(L − i, M − i) for i ≤ j to get all
the transition probabilities pi,j(L, M). By definition of the
transition matrix as stated above, the transition probability
p0,j(L, M) is the probability to obtain exactly j urns con-
taining only one ball when throwing randomly L balls into
M urns. The case j = L yields to the generalized birthday
problem and thus we have:

p0,L(L, M) =
M !

(M − L)!ML
(2)

For j < L, we proceed as follows. We throw L balls into
M urns. We denote by K0(L, M) the number of empty
urns and by K1(L, M) the number of urns with exactly
one ball inside. Let aL,M (k, j) denote the joint distribu-
tion of both random variables K0(L, M) and K1(L, M),
that is aL,M (k, j) = P[K0(L, M) = k, K1(L, M) = j].
The transition probability p0,j(L, M) can thus be expressed
as p0,j(L, M) = P[K1(L, M) = j] =

∑M

k=0 aL,M (k, j).
In order to compute all the probabilities aL,M(k, j) we

can proceed by recursion on integer L by conditioning on
the result of the throw of the last ball. More precisely, in
order to obtain k empty urns and j urns with only one ball
inside when throwing L balls in M urns we need:

1. Either obtaining k + 1 empty urns and j − 1 urns with
exactly one ball inside at the end of the L − 1 first
throws of L − 1 balls in M urns and throwing the last
ball in one of the k + 1 empty urns.

2. Either obtaining k empty urns and j + 1 urns with ex-
actly one ball inside at the end of the L−1 first throws
of L − 1 balls in M urns and throwing the last ball in
one of the j + 1 urns containing exactly one ball.

3. Or obtaining k empty urns and j urns with exactly one
ball inside at the end of the L− 1 first throws of L− 1
balls in M urns and throwing the last ball in one of the
M − (j + k) urns that contain at least 2 balls.

Thus, from that decomposition and for L ≥ 2, we
have: aL,M (k, j) = k+1

M
aL−1,M(k + 1, j − 1)1{j≥1} +

j+1
M

aL−1,M(k, j + 1) + M−(j+k)
M

aL−1,M(k, j)
where 1{c} is the indicator function equal to 1 if con-

dition c is true and 0 otherwise. For L = 1 we triv-
ially have as initial value for the recursion: a1,M (k, j) =
1{k=M−1, j=1}. It is also easy to check that aL,M (k, j) = 0
if either j > L either k = M or j + k > M . Note that
for j = L, we have aL,M (k, L) = 0 for k �= M − L and
aL,M(M − L, L) = p0,L(L, M) which is given by relation
(2) and that clearly satisfies the recurrence relations.
Matrix for the all but one mode. This case is the one
given in [1]. We only give here the results. In the all but
one mode, at each step, we keep aside at least one urn to-
gether with one of the balls contained inside. This means
that the transition probability pi,i(L, M) = 0 for every
0 ≤ i ≤ L − 1. The Markov chain X is thus strictly
acyclic and the stabilization time N of the coloring algo-
rithm is bounded by L. Based on a well-known result about
the number of ways of throwing r different balls in n dif-
ferent urns such that exactly m urns are non-empty [4], the
transition probability matrix is given according to (1), for
i < j, by

pi,j(L, M) =
M − i

j − i

j−i

k=0

j − i

k
(−1)k j − i − k

M − i

L−i
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Distribution and expectation of N . Now, given the tran-
sition probability matrix of the Markov chain X , we are able
to determine the distribution (P [N = n] for n = 0, . . . ,∞)
and the expected value E [N ] of the random variable N for
both modes. The mean value E [N ] is also actually the mean
number of steps needed before stabilization of our coloring
algorithm and so its stabilization time.

These calculus are easily derived from the classical re-
sults on Markov chains. Let Q denote the sub-matrix ob-
tained from P(L, M) by removing the last line and the last
column which correspond to the absorbing state L. We
denote by α the row vector containing the initial proba-
bility distribution of the transient states of X , i.e. α =
(P [X0 = i])i=0,...,L−1. As already seen, the Markov chain
starts in state 0 with probability 1 and, thus we have α =
(1, 0, . . . , 0). With these notations, we have

P [N = n] = αQn−1(I − Q) , for n ≥ 1,

P [N > n] =

∞∑
k=n+1

αQk−1(I −Q) = αQn , for n ≥ 0,

and

E [N ] =

∞∑
n=0

P [N > n] = α (I − Q)
−1

where I is the identity matrix and is the column vec-
tor with all entries equal to 1, both of dimension L. If
V = (Vi)0≤i≤L−1 is the column vector defined by Vi =
E [N |X0 = i], we have E [N ] = V0. The vector V of con-
ditional expectations is given by V = (I − Q)−1 , which
means that it is solution to the linear system (I −Q)V = ,
which can also be written as V = + QV or equivalently,
since the matrix P(L, M) is acyclic, as

Vi =
1

1 − pi,i

⎛
⎝1 +

L−1∑
j=i+1

pi,jVj

⎞
⎠ for i = L − 2, . . . , 0,

with VL−1,L−1 = 1/(1 − pL−1,L−1).
We are now able to compute E [N ] = V0 by recurrence

from Vi. We use these theoretical results in the next sections
to compare with the simulation outcomes.

4 Simulations

We performed simulations to evaluate the stabilization
time of the coloring algorithms over different assumptions,
to analyze the directed acyclic graph derived from it in each
case, and to compare those values to the theoretical ones in
order to validate our analytical model. As mentioned in the
previous sections, we are mainly interested in the stabiliza-
tion time under several scheduling and coloring hypothesis
but also on the height of the derived DAG.

Simulation model. We use a simulator we developed and
that assumes an ideal MAC layer. We say that a node exe-
cutes an action (or acts, for short) when it checks its neigh-
bors’ color and if needed, chooses another color among the
available ones. For a distance-k coloring, a color c ∈ Δ
is said available for a node u if ∀v ∈ Nk

u , Cv �= c. As
mentioned in Section 2, we studied the coloring algorithm
for different kinds of scheduling hypothesis: Synchronous
(every node acts at every step), Probabilistic Central (ex-
actly one random node acts at every step) and Probabilistic
Distributed (at each step, each node acts with probability
1
n

). Each scheduling hypothesis is studied for both modes
of coloring: all but one mode (for each pair of conflicting
nodes, every node but one chooses another color) and all
mode (every conflicting node chooses another color).

We have run Algorithm N1 for distance-1 and distance-2
colorings with these scheduling hypothesis and modes over
a random geometric topology and a grid with a varying
number of neighbors per node and different sizes of color
domain Δ . The initial stabilizing algorithm has been de-
signed using |Δ| = (maxp∈V |Np|)

2×k, k being the col-
oring distance, but as we are interested in the impact of
this domain size over the stabilization time and the DAG
height, we have also run Algorithm N1 for |Δ| = 2 ×(
maxp∈V |Nk

p |
)
. Moreover, as in sensor networks, nodes

do not have a general view of the network and thus have
no way a priori to know the maximum degree in the graph,
we have also run simulations where each node has its own
color domain size such that ∀p ∈ V, |Δp| = (|Np|)

2×k. In
these settings, we collect the stabilization time of the col-
oring algorithm as well as the height of the induced DAG.
In the synchronous mode, every node acts with probability
1 (so the expected time before acting is 1 step) whereas in
both probabilistic modes, every node acts within expected
n steps. As schedulers are meant to model scheduling prop-
erties rather than implemented scheduling mechanisms, in a
“real” system a particular node would act within a constant
expected time. So, in order to be able to compare the three
schedulers and to be fair when considering the stabilization
time of different schedulings, the number of steps before
stabilization in probabilistic modes is divided by n.

In the geometric approach, nodes are randomly deployed
using a Poisson Process in a 1×1 square with various levels
of intensity λ (from 500 to 1000). In such processes, λ
represents the mean number of nodes per surface unit. The
communication range R is set to 0.1 in all tests. We thus
have a mean number of neighbors per node ranging from
15 to 32. In the grid, we consider topologies where each
central node has 4 and 8 neighbors.

Theory vs. Simulation. As mentioned in Section 3, we
expect that our theoretical results give an accurate lower
bound on the stabilization time of the coloring algorithm.
Indeed, each node stops running the coloring algorithm
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when it has kept aside all its neighbors. In the theoretical
approach, as we consider a complete graph, when a node x
has been kept aside, it has been kept aside by all its neigh-
bors. That means that it has found its definitive color and, as
the graph is complete, every node in the graph is neighbor
of node x, every node is aware of the color of x and will not
choose it anymore. Thus, nodes and colors kept aside will
never run again the coloring process.

But, in a non-complete graph, balls and urns kept aside
should re-integrate the coloring process as illustrated on
Figure 1 (for distance-1 coloring). Let’s run the algorithm
over the graph plotted on Figure 1, under the synchronous
scheduling and the all mode. Every node has to choose a
color from 0 to 4 until getting a locally unique color. Black
lines symbolize wireless links between nodes, e.g. node B
has two neighbors, A and C. The example shows the colors
drawn at each step by each node. At the end of Step 2, node
B is not in conflict with node C and thus, C and its color
3 can be kept apart by node B. But node C has a conflict-
ing color with node D and thus has not stopped the coloring
process yet. C and B both choose another color and may
draw the same one (Step 3). So, the coloring process has
not stabilized yet whereas node B has already kept aside all
its neighbors, including node C. Therefore our theoretical
analysis only leads to a lower bound.

A,0 B,0 C,0 D,0Step 1

System execution

A,1 B,1 C,3 D,3

A,1 B,2 C,2 D,4

Step 2

Step 3

Available colors to B

1 32 4

0 2 4

0 3 4

Kept aside balls by B

C

CA

Figure 1. A possible execution for distance-1
coloring in a synchronous network.

In order to evaluate the difference between the analyt-
ical lower bound and the simulated stabilization time, we
compute by simulation the number of times that two neigh-
boring nodes not originally in mutual conflict have to both
choose another color and both get the same color. Results
for a distance-1 synchronous scheduling coloring are given
in Figure 2. As we can see, the greater the color domain
size, the more unlikely this case is to appear (almost 0%
of the cases when the color domain size is quadratic in the
maximum degree of the nodes). We also note that, even for
a small color domain size (such as twice the maximum de-
gree), this case does not occur very often (less than 18% in
the worst case). Thus, we can expect that in practice, our
analytical result gives a very accurate lower bound on the
stabilization time of the coloring protocol.

Tables 1 and 2 compare analytical and simulation results
for the Synchronous scheduling in both modes, when using
two different color domain sizes |Δ|, for grids and random
topologies. As expected, theoretical results give tight lower
bounds of the simulation outcome. Note that the size of the
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Figure 2. Proportion of nodes creating a new
conflict over the number of nodes choosing
another color.

grid has no influence on the results, the number of neighbors
being the only key parameter.

Stabilization time. Figure 3 presents the stabilization
time for each scheduling hypothesis and both modes when
using different sizes of color domain, for a random spatial
distribution of the nodes. The most striking result compared
to those of [5] is that the stabilization time is much lower
than expected. From the results of [5], the stabilization time
is at least linear in |Δ| (being upper bounded by a constant
when δ also is a constant). In contrast, our simulation re-
sults show a sub-linear (in |Δ|) stabilization time, since con-
sidering |Δ| = 2 × maxp∈V |Np| vs. |Δ| = maxp∈V |Np|

2

merely divides by two the stabilization time. Also, doubling
the degree of the nodes (when the network grows from 500
nodes to 1100 nodes) does not double the stabilization time.
Especially, with the synchronous and distributed probabilis-
tic schedulers, the stabilization time remains upper bounded
by a constant.

In all cases, whatever the coloring distance k and the
color domain Δ, we can note that the behavior of both
probabilistic schedulers is similar. With the probabilistic
scheduling hypothesis, in order to stabilize, the scheduler
has to choose a node in conflict. In the all but one mode,
only one particular node per pair of conflicting nodes ac-
tually chooses another color. The probabilistic schedulers
thus have less chance to elect a conflicting node in the all
but one mode than in the all mode (almost half chances
less). Therefore, with the all mode, these probabilistic
schedulings achieve better stabilization time (almost half
time) than with the all but one mode. In the synchronous
mode, at each step, every node acts. As in the all but one
mode, in any pair of conflicting nodes, already one of those
nodes has a stable color, so the stabilization time is lower
than in the all mode. Note that for sensor networks, nodes
are rarely tightly synchronized, so that the most realistic
model is the distributed probabilistic scheduler, so the all
mode is to be preferred in this context. This mode also is
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4 neighbors
all but one all

2 ∗ Max Max2 2 ∗ Max Max2

Theory Simulation Theory Simulation Theory Simulation Theory Simulation
1.88 1.89 1.51 1.64 2.14 2.14 1.56 1.61

8 neighbors
all but one all

2 ∗ Max Max2 2 ∗ Max Max2

Theory Simulation Theory Simulation Theory Simulation Theory Simulation
1.51 1.56 1.14 1.22 1.56 1.67 1.15 1.21

Table 1. Theory and simulations results for the stabilization time for synchronous distance-1 coloring
with |Δ| = (maxp∈V |Np|)

2) and |Δ| = 2 × (maxp∈V |Np|) in grids.

500 nodes 600 nodes 700 nodes 800 nodes 900 nodes 1000 nodes
Mean degree 15.7 18.8 22.0 25.1 28.3 31.4

all but one
Theory 2.35 2.40 2.44 2.50 2.53 2.56
Simulation 2.78 2.91 2.87 2.94 2.99 2.97

all
Theory 2.83 2.91 2.94 2.95 3.05 3.08
Simulation 3.25 3.31 3.29 3.28 3.42 3.41

Table 2. Theory and simulations results for the stabilization time for synchronous distance-1 coloring
with |Δ| = 2 × (maxp∈V |Np|) in random geometry topologies.

the easiest to implement in sensor networks as it does not
require that every node knows the identity of the nodes in
its k-neighborhood.

Influence of the size of the color domain. Since the most
realistic model for sensor networks is the distributed prob-
abilistic one with all mode, Figures 4(a) and 4(b) plot the
stabilization time with these hypothesis for the distance-
1 coloring algorithm as well as the height of the induced
DAG, using different sizes of color domain. Nevertheless,
results for the DAG height are similar whatever the coloring
hypothesis.

Results clearly show that a higher domain size |Δ| in-
duces a lower stabilization time and a higher DAG. There
thus is a trade-off to do between these two characteris-
tics depending of the application that will use the color-
ing. However, and although theoretical results show that
the DAG height can be up to |Δ| − 1, simulation results
show that the actual height is in fact much lower, and most
certainly sub-linear in |Δ|.

5 Concluding remarks

Distance-k coloring is a useful mechanism for multi-hop
wireless networks. In [5], distance-3 coloring was used
to construct a TDMA schedule and in [7], distance-2 col-
oring permitted to expedite density-based cluster construc-
tion. Further applications could be derived, e.g. distance-k
maximal independent set construction, by having nodes that
have locally minimal color in their k-neighborhood be part
of the independent set, and remaining nodes that do not see
distance-k neighbors with lower colors in the independent

set join the independent set.
In this paper, we have first extended the theoretical

analysis of [1] to anonymous networks (all but one mode).
Then, by simulations, we have evaluated the impact of two
considered modes (all but one and all modes), of different
scheduling policies and of the color domain on the stabiliza-
tion time and the induced DAG height. We have shown ana-
lytically and by simulation that the stabilization time and the
DAG height of such coloring protocols in multi-hop wire-
less networks are low.
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Figure 3. Stabilization time of the distance-1 coloring process for different modes and scheduling
hypothesis over a geometric node distribution with different sizes of color domain.
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