

TP – Séance 6 – RS2P

Mise en place de la redondance dans les LANs

Objectif général : le but de ce TP est de faire connaissance avec l'outil iPerf3, de mettre en œuvre l'agrégation de liens (avec EtherChannel) et de comprendre le fonction de Spanning Tree Protocol (STP).

Ressources requises (par binôme)

- 2 commutateurs 2950 ou 2960
- 2 ordinateurs fixes (sous Ubuntu)
- câbles pour configurer et pour relier les périphériques
- le simulateur Packet Tracer (utilisé individuellement)

1^{ère} partie : Installation et utilisation de l'outil iPerf3

Topologie considérée pour cette partie

Dans cette partie, vous utilisez des équipements réels.

Étape 1 : Connectez les équipements

Utilisez les ports indiqués.

Étape 2 : Initialisez les commutateurs

Reprendre le processus d'initialisation indiqué dans l'énoncé de TP sur les VLANs.

Étape 3 : Configurez les adresses IPv4 de PC-A et PC-B

Choisissez les adresses (il faut qu'elles soient dans le même sous-réseau).

Par la suite, vous allez utiliser l'outil **iPerf3** : <u>https://iperf.fr/</u>. Cet outil permet de générer du trafic dans un réseau dont on peut contrôler le profil. Cet outil permet aussi de faire des mesures de performances sur le réseau étudié.

Étape 4 : Installez iPerf3 sur PC-A et PC-B

Vérifiez tout d'abord que l'outil n'est pas déjà présent sur les stations. Si ce n'est pas le cas, installez le, par exemple avec les commandes :

sudo apt-get update

sudo apt -y install iperf3.

Étape 5 : Démarrez un serveur iPerf3 sur le PC-B

de telle sorte qu'il soit en attente d'un flux UDP, avec la commande :

iperf3 -s -B adresse-IP-PC-B

Étape 6 : Démarrez un client iPerf3 sur le PC-A

avec la commande :

iperf3 -c adresse-IP-serveur-iPerf -u -b debit

Ainsi, le PC-A va envoyer un flux UDP au PC-B avec un débit applicatif de debit bits / seconde. Notez les statistiques remontées par iPerf3 sur le débit en réception pour le récepteur quand debit = 10 Mb/s, puis debit = 100 Mb/s, puis debit = 200 Mb/s.

2^e partie : Mesure avec deux flux iPerf3 du PC-A vers PC-B

Topologie considérée pour cette partie

Étape 7 : Ajouter les câbles

Comme sur la figure.

Étape 8 : Configurer les adresses IPv4 sur PC-A et PC-B

Les deux adresses doivent être dans le même sous-réseau qui est différent du sous-réseau des interfaces configurées lors de la 1^{ère} partie.

Étape 9 : Mesures quand les deux flux iPerf3 sont actifs

Lancez deux flux iPerf3 et notez les statistiques remontées par iPerf3 :

- lorsque les deux flux ont un débit applicatif de 10Mb/s chacun :

- lorsque les deux flux ont un débit applicatif de 100 Mb/s chacun :

- lorsque les deux flux ont un débit applicatif de 200 Mb/s chacun :

3^e partie : Mise en œuvre d'EtherChannel

L'objectif de cette partie est d'apprendre à aggréger des liens entre commutateurs et de vérifier si les performances obtenues sont meilleures qu'avec un seul lien. Vous pourrez vous aider du module 6 – EtherChannel du CCNA SRWE.

Topologie considérée pour cette partie

Étape 10 : Ajouter un 2^e câble entre les deux commutateurs

Étape 11 : Créez un canal de port

sur chaque commutateur, avec la commande :

Switch(config) # interface port-channel 1

Étape 12 : Ajoutez des ports au canal de port

sur chaque commutateur et pour chaque port concerné, avec les commandes :

Switch(config)# interface FastEthernet 0/1

Switch(config-if)# channel-group 1 mode active

N'oubliez pas de bien ajouter tous les ports concernés, c'est-à-dire tous les ports reliant les deux commutateurs.

Étape 13 : Vérifiez la configuration du lien EtherChannel

avec les commandes données dans la section 6.3.1. Notez les différentes commandes :

Étape 14 : Testez les performances du lien EtherChannel

Avec l'outil iPerf3 et les configurations testées à l'étape 9. Notez les résultats obtenus. Que pouvez-vous en conclure ?

5^e Partie : Réinitialisez les commutateurs

6^e Partie : Étude du protocole STP

Étape 15 : Généralités

Cette partie se base sur le module 5 – Concepts du STP du CCNA SRWE.

TP – Séance 6

Quel est l'inconvénient de la topologie du réseau étudié lors de la séance 4 (portant sur les VLANs) lorsqu'un lien inter-commutateurs tombe en panne ? Comment modifie-t-on le LAN pour parer à ce problème ?

Est-ce qu'il peut y avoir des boucles de routage dans un réseau comprenant des routeurs ? Est-ce qu'un datagramme peut tourner indéfiniment dans un boucle de routage ? Justifier votre réponse.

Est-ce qu'il peut y avoir des boucles de niveau 2 dans un LAN (entre des commutateurs) ? Est-ce qu'une trame peut tourner indéfiniment dans un boucle de niveau 2 ? Justifier votre réponse.

À quoi sert le Spanning Tree Protocol (STP)?

Étape 16 : Récupérez le fichier Packet Tracer « Investiguer la prévention des boucles de STP »

dans la section 5.1.9 du module 5. Attention, le sujet proposé dans ce document est légèrement différent de celui proposé avec ce fichier Packet Tracer.

Étape 17 : Indiquez les adresses IPv4 et les adresses MAC de PC1 et de PC2

Vous trouverez les adresses MAC avec la commande ipconfig /all

Station	IPv4	MAC
PC1		
PC2		

TP – Séance 6

Étape 18 : Vérifiez la connectivité entre PC1 et PC2

avec la commande ping.

Étape 19 : Déterminer le pont racine

parmi les 3 commutateurs, grâce à la commande

Switch> show spanning-tree

Quelles ont été les informations utilisées pour déterminer ce pont racine ?

Étape 20 : Affichez l'état du spanning tree sur chaque port de chaque commutateur

Toujours grâce à la commande show spanning-tree

Commutateur	Interface	Rôle (racine, désigné, etc.)	État (acheminement, blocage, etc.)	Coût
S1	Gi0/1			
	Gi0/2			
S2	Gi0/1			
	Gi0/2			
S3	Gi0/1			
	Gi0/2			

Qu'est-ce qui détermine le coût des ports ?

Expliquez pourquoi ces différentes interfaces ont ces rôles et ces états.

Étape 21 : Observez les tables de commutation des commutateurs

après avoir lancé un ping de PC1 vers PC2. Notez les entrées qui correspondent aux adresses MAC de PC1 et PC2. Êtes-vous d'accord avec ce que vous abservez ?

Rappel : utilisez la commande show mac address-table pour visualiser une table de commutation

Étape 22 : Quel chemin empruntent les paquets du PC1 vers PC2 ?

Étape 23 : Observez la convergence du spanning tree

En effectuant les actions suivantes (lisez d'abord toutes les actions à réaliser avant de les effectuer) :

- 1. Exécutez la commande show spanning-tree sur le commutateur S3. Laissez la fenêtre CLI ouverte.
- 2. Supprimez le lien qui relie les commutateurs S1 et S2.

TP – Séance 6

3. Exécutez régulièrement la commande **show spanning-tree** sur le commutateur S3 afin d'observer l'évolution de l'interface Gi0/2. Notez les différentes évolutions de cette interface.

Rôle (racine, désigné, etc.)	État (acheminement, blocage, etc.)

Est-ce que le pont racine a été modifié suite à la rupture de lien entre S1 et S2 ?

Étape 24 : Vérifiez la connectivité entre le PC1 et le PC2 ?

Quel chemin empruntent les paquets du PC1 vers le PC2 ?