Evaluation of the BRuIT protocol

Claude Chaudet (ENST PARIS)
Isabelle Guérin Lassous (INRIA - CITU)
Isabelle.Guerin-Lassous@inrialpes.fr

Architectures de Réseaux de Services
Context: QoS for ad hoc networks

- Ad hoc networks
 - IEEE 802.11
 - Medium overloaded
 - Unpredictable use of the radio medium

- QoS for ad hoc networks
 - Mechanisms to provide guarantees
 - BRuIT [Chaudet and Guérin Lassous, EW 2002]
 - Bandwidth Reservation under Interferences
BRuIT

- Share of the medium with 802.11
 - Carrier sensing range
 - Twice the communication range
 - Simulation / experimentation (at 2Mb/s)

- Principles of BRuIT
 - Routing + reservation
 - On-demand: AODV-like
 - Flooding of a request
 - Admission control
 - Reply on the reverse path + reservation
 - Admission control
 - Used bandwidth per node: all the traffic on the 2-hop neighborhood
Why two hops?

- Two hops ≠ twice the communication range
- How many nodes are undetected?
 - Random geometric graphs

One hop - Max: 70%

Two hops - Max: 50%
Why not three hops?

undetected
Max: 48 %

“Over-detected”
Max: 40%
Evaluation of BRuIT

- **Simulation**
 - NS-2 version 2.27
 - Random geometric graphs from 10 to 100 nodes
 - 5 to 30 flows of 80kbit/s
 - Average over 100 simulations
 - Comparison with AODV
 - Impact of admission control
 - Impact of guarantees

- **Admission rate of BRuIT**
 - Between 50% and 60% compared to AODV
 - The difference increases with the network load

- **Establishment time**
 - Around 100 ms
 - Between 20% and 40% slower than AODV
Evaluation of BRuIT

- **Route length**
 - Between 50% and 100% longer than the shortest path (AODV 10% longer than the shortest path)
 - Load balance with BRuIT

- **Signaling load**
 - Comparable
 - BRuIT: Hello packets
 - AODV: Route reconstruction
 - BRuIT more stable

- All the curves are available in the paper