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Winding of a planar curve

Figure: A curve X : [0,1] — R? on the plane allows to define a winding
function 60X : R?2 — Z. For any point z € R2, X (z) describes the
number of time X winds around z.
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Winding of a planar Brownian motion

Figure: Coloration of the plane depending on the value of 6%, when X is
a planar Brownian motion.
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Winding of a planar Brownian motion

| studied the set of points with winding at least IV,

Dy = {z € R?: 0(z) > N},

and its Lebesgue measure

Dy =1Leb({z € R?: 4(z) > N}).

4/12



Winding of a planar Brownian motion
| studied the set of points with winding at least IV,

Dy = {z € R?: 0(z) > N}, (1)
and its Lebesgue measure
Dy =1Leb({z € R?: 4(z) > N}). (2)
In 1994, W. Werner has obtained the following estimation [1].
Theorem
The sequence Dy is equivalent to 52 in L?.
That is,

E[(NDy — )% O
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Winding of a planar Brownian motion
| studied the set of points with winding at least IV,

Dy = {z € R?: 0(z) > N}, (1)
and its Lebesgue measure
Dy =1Leb({z € R?: 4(z) > N}). (2)
In 1994, W. Werner has obtained the following estimation [1].
Theorem
The sequence Dy is equivalent to 52 in L?.
That is,

E[(NDy — )% O

| obtained the following improvement [2].

Theorem
The sequence Dy is equivalent to 52, in LP for all p and in the

: _1
almost sure sense. The convergence rate is at least N~21°(1),
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To be more specific:

o Forall p € [1+ 00), for all € > 0, there exists C' such that for

all N > 1,

1
E[|[NDy — L[] < ON~—37,

o Almost surely, for all € > 0, there exists C' such that for all

N >1, )

INDy — 5| <CN™27%
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Why was | interested in such an improvement?
Let us recall the following facts.
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More generally, for a smooth loop X with self-intersections,
le dx? = fR2 0.
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Let us recall the following facts.
o Green's theorem: for a smooth loop X = (X!, X?) without
self-intersection,

/X1 dX? = £Leb(C(X)). / =2

Z

More generally, for a smooth loop X with self-intersections,
[XPdX?= [.0

o Monte—-Carlo method: for an homogeneous Poisson process P
with large intensity,

Leb(C 1
(C( ~ 75 Z%; c(x
More generally, [z, 6 ~ #—173 Y epb(2).

By averaging the winding of random points, we can
compute integrals along smooth curves.
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What about the Brownian case?

The estimation on the convergence rate of Dy, in the almost sure
sense, allows to prove the following.

Theorem ([2])

For a planar Brownian motion X, the function 0% is not integrable,

b

ut
/X1 dX?= lim max(—K, min(6%(z), K)) dz.
K—+oco Jr2

(the left-hand side is a stochastic integral, either in the sense of It6
or Stratonovich)
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What about the Brownian case?

The estimation on the convergence rate of Dy, in the almost sure
sense, allows to prove the following.

Theorem ([2])

For a planar Brownian motion X, the function 0% is not integrable,
but

/X1 dX?= lim max(—K, min(6%(z), K)) dz.
K—+oco Jr2

(the left-hand side is a stochastic integral, either in the sense of It6
or Stratonovich)

The average winding of random points converges in distribution,
toward a Cauchy variable centered at this value.

#17) Z 0% (2) @, Cauchy(/ X' dX?, ).

zEP
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The proof relies on the idea that the distribution of Dy is
‘balanced’ along the trajectory of X. | made this idea formal with
the following result.
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The proof relies on the idea that the distribution of Dy is
‘balanced’ along the trajectory of X. | made this idea formal with
the following result.

Theorem ([3])

The measure 2w N1p, dz converges almost surely, weakly, toward
the occupation measure of the Brownian motion.

8/12



Gaussian multiplicative chaos

To compute other integrals, the Lebesgue measure must be
replaced with other area elements. For a smooth 1-form 7,

/n:/ 60X dn.
X R2
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Gaussian multiplicative chaos

To compute other integrals, the Lebesgue measure must be
replaced with other area elements. For a smooth 1-form 7,

/77:/ 60X dn.
X R2

What happens when the area measure becomes very irregular?

Theorem ([4])

When the measure M is a Gaussian multiplicative chaos on the
plane with small enough intermittency parameter vy, and X is a
planar Brownian motion, one can still define a ‘principal value’ for
the integral [, 6~ dM.
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Gaussian multiplicative chaos

To compute other integrals, the Lebesgue measure must be
replaced with other area elements. For a smooth 1-form 7,

/77:/ 60X dn.
X R2

What happens when the area measure becomes very irregular?

Theorem ([4])

When the measure M is a Gaussian multiplicative chaos on the
plane with small enough intermittency parameter vy, and X is a
planar Brownian motion, one can still define a ‘principal value’ for
the integral [, 6~ dM.

This defines a notion of Lévy area enclosed by the Brownian
motion, but with GMC as underlying area measure.
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Work in progress: gauge fields

o Each of the random points now carries some ‘charge’ in a
compact Lie group G.
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With a proper scaling, when the number of points increases, the
value associed to the Brownian trajectory converges toward a
non-trivial G-valued ‘Cauchy’ law.
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Work in progress: gauge fields

o Each of the random points now carries some ‘charge’ in a
compact Lie group G.

o To each loop, we associate a value in G, which is a word in
the charges.

Theorem

With a proper scaling, when the number of points increases, the
value associed to the Brownian trajectory converges toward a
non-trivial G-valued ‘Cauchy’ law.

Roughly speaking, we are studying a ‘Brownian particle interacting
with an extremely weak quantum Yang-Mills field’.
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That's it!
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