
Brownian winding and Gaussian multiplicative

chaos

Isao Sauzedde

PhD supervisor: Thierry Lévy

LPSM - Sorbonne Université

1 / 12



Winding of a planar curve
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Figure: A curve X : [0, 1]→ R2 on the plane allows to de�ne a winding

function θX : R2 → Z. For any point z ∈ R2, θX(z) describes the
number of time X winds around z.
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Winding of a planar Brownian motion

Figure: Coloration of the plane depending on the value of θX , when X is

a planar Brownian motion.
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Winding of a planar Brownian motion
I studied the set of points with winding at least N ,

DN := {z ∈ R2 : θ(z) ≥ N}, (1)

and its Lebesgue measure

DN := Leb({z ∈ R2 : θ(z) ≥ N}). (2)

In 1994, W. Werner has obtained the following estimation [1].

Theorem
The sequence DN is equivalent to 1

2πN in L2.

That is,

E[
(
NDN − 1

2π

)2
] −→
N→+∞

0.

I obtained the following improvement [2].

Theorem
The sequence DN is equivalent to 1

2πN , in Lp for all p and in the

almost sure sense. The convergence rate is at least N−
1
2
+o(1).
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To be more speci�c:

� For all p ∈ [1 +∞), for all ε > 0, there exists C such that for
all N ≥ 1,

E[
∣∣NDN − 1

2π

∣∣p] 1p ≤ CN− 1
2
+ε.

� Almost surely, for all ε > 0, there exists C such that for all
N ≥ 1, ∣∣NDN − 1

2π

∣∣ ≤ CN− 1
2
+ε.
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Why was I interested in such an improvement?
Let us recall the following facts.

� Green's theorem: for a smooth loop X = (X1, X2) without
self-intersection,∫

X1 dX2 = ±Leb(C(X)).

X

C(X)

More generally, for a smooth loop X with self-intersections,∫
X1 dX2 =

∫
R2 θ.

� Monte�Carlo method: for an homogeneous Poisson process P
with large intensity,

Leb(C(X)) ' 1

#P
∑
z∈P

1C(X)(z).

More generally,
∫
R2 θ ' 1

#P
∑

z∈P θ(z).

By averaging the winding of random points, we can

compute integrals along smooth curves.
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What about the Brownian case?

The estimation on the convergence rate of DN , in the almost sure
sense, allows to prove the following.

Theorem ([2])

For a planar Brownian motion X, the function θX is not integrable,

but ∫
X1 dX2 = lim

K→+∞

∫
R2

max(−K,min(θX(z),K)) dz.

(the left-hand side is a stochastic integral, either in the sense of Itö

or Stratonovich)

The average winding of random points converges in distribution,

toward a Cauchy variable centered at this value.

1

#P
∑
z∈P

θX(z)
(d)−→ Cauchy(

∫
X1 dX2, 1

2π ).
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The proof relies on the idea that the distribution of DN is
`balanced' along the trajectory of X. I made this idea formal with
the following result.

Theorem ([3])

The measure 2πN1DN
dz converges almost surely, weakly, toward

the occupation measure of the Brownian motion.
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Gaussian multiplicative chaos

To compute other integrals, the Lebesgue measure must be
replaced with other area elements. For a smooth 1-form η,∫

X
η =

∫
R2

θX dη.

What happens when the area measure becomes very irregular?

Theorem ([4])

When the measure M is a Gaussian multiplicative chaos on the

plane with small enough intermittency parameter γ, and X is a

planar Brownian motion, one can still de�ne a `principal value' for

the integral
∫
R2 θ

X dM.

This de�nes a notion of Lévy area enclosed by the Brownian
motion, but with GMC as underlying area measure.
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Work in progress: gauge �elds

� Each of the random points now carries some `charge' in a
compact Lie group G.

� To each loop, we associate a value in G, which is a word in
the charges.

Theorem
With a proper scaling, when the number of points increases, the

value associed to the Brownian trajectory converges toward a

non-trivial G-valued `Cauchy' law.

Roughly speaking, we are studying a `Brownian particle interacting

with an extremely weak quantum Yang�Mills �eld'.
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That's it!
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