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Abstract. The Amperean area of a Brownian motion is to its Lévy area what its self-
intersection measure is to its occupation measure. It plays an important role in the study
of the displacement of a particle surrounded by a random magnetic �eld.

We prove that the Amperean area of a planar Brownian motion admits a renormalisation.
We also explain the central role played by this Amperean area in the Symanzik loop repre-
sentation of the continuous Abelian Higgs�Yang�Mills �eld in 2 dimensions. As much as the
self-intersection measure is related to the self-interaction φ4 term, the Amperean area is related
to the quartic interaction term between the Higgs and the Yang�Mills �elds.

As the renormalisation method uses a molli�cation and a counterterm that we can asymp-
totically estimate up to a o(1), we can rigorously link the molli�ed Higgs�Yang�Mills �elds with
the molli�ed Amperean area.
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1. Introduction

1.1. Amperean Area and Higgs�Yang�Mills Field. Let W,W ′ two Brownian motions in
the Euclidean plane, each concatenated with a straight line segment between its endpoints.
Consider their winding functions

nW : R2 \ Range(W ) → Z, nW ′ : R2 \ Range(W ) → Z,

which to a point z maps the number of time the corresponding loop winds around z.
These functions are unbounded in the vicinity of the corresponding path, and in fact are not

even locally integrable on R2. The integrals1

IW (f) :=

∫
R2

fnW dλ and ȲW,W ′(f) :=

∫
R2

fnWnW ′ dλ

with respect to the Lebesgue measure dλ are thus ill-de�ned, yet plays important roles in both
physics and mathematics.

The �rst one can in fact be de�ned by several di�erent regularisation methods which give
the same limit (see [8, 11]). This limiting value de�ning IW (f) is equal to the Stratonovich
stochastic integral along W of any vector �eld A such that curlA = f . Such an equality can be
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understood as a formal application of Stokes' theorem. In particular for f = 1, corresponding
to A = x dy−y dx

2 , IW (f) is merely the Lévy area of W .

The second integral ȲW,W ′(f), in the case W =W ′ and f = 1, has been coined the Amperean
area of the loop. Wendelin Werner showed in [10] that upon deleting from the integration
the points at distance less than ϵ from W , one gets a �nite random variable, which diverges
logarithmically fast as ϵ goes to 0.2

In physics, such an integral arises in the study of particle displacement in random magnetic
�ux (see e.g. [4]), as well as in the Symanzik's polymer representation of the Abelian Higgs-Yang�
Mills (HYM) �eld in two dimensions (also known as Ginzburg�Landau �eld), which informally
is a random couple (Φ, A), where Φ is a complex valued function (truly, a distribution) , and A
is a vector �eld (truly, distributional) with probability distribution given by

dP(Φ, A) :=
1

Z
exp(−

∥ gradΦ + iαAΦ∥2L2(R2,C2) + ∥ curlA∥2L2(R2,R)

2
+ c.t.) DΦDA,

where c.t. are formally in�nite counterterms which prevent Φ from collapsing to 0.
This relation goes as follows. For a given A, let ZA be the formally de�ned normalising

constant such that
1

ZA
exp(−∥ gradΦ + iαAΦ∥2

2
)DΦ

is a probability measure, and consider γ a straight line segment from y ∈ R2 to x ∈ R2, and
look at the gauge-invariant 2-points observable

Sx,y :=
〈
Φ(x), exp

(
iα

∫
γ
A
)
Φ(y)

〉
.

Then, it formally holds that

E[(
ZA

ZZ ′ )
−1Sx,y] =

∫ ∞

0
pt(x, y)Et,x,y

[
exp

(
− α2

2
ȲW,W (1)

)]
dt, (1)

where W is a Brownian bridge from x to y with duration t under Pt,x,y. Details of the compu-
tation (which we cannot emphasize enough, is purely formal and in no way rigorous) are given
in Appendix A. Similar but more complex expressions hold formally for the moments

E
[( j∏

i=1

∫
ℓi

A
)( l∏

k=1

Sxk,yk

)]
,

where the ℓj are smooth enough loops. These general moments are believed to characterise the
probability distribution of P (up to gauge equivalence).

Symanzik's polymer representation turns terms in the action de�ning a �eld into terms asso-
ciated to Brownian trajectories, as follows,

Mass or potential term ⟨ϕ,mϕ⟩
↔ occupation measure µW ,

∫
m(z)µW ( dz) =

∫
m(Ws) ds

Interaction with external magnetic potential (· · ·+ iαBϕ)
↔ winding function nW ,

∫
nW (z) curl(B) dz =

∫
B(Ws) ◦ dWs

renormalised self-interaction potential ⟨ϕ, λϕ⟩2
↔ renormalised self-intersection measure νW ,

∫
λ(z)νW ( dz)

Interaction with renormalised internal magnetic potential (· · ·+ iαAϕ) + ∥ curlA∥2
↔ squared winding function n2

W ,
∫
n2
W (z) curl(B) dz = YW,W (curlB).

It is the fourth link (which I am not aware is documented) which makes the study of the
Amperean area relevant.

2In [10], a Brownian loop is considered rather than a �free" Brownian motion. Our results here only consider
the case of the free Brownian motion, although part of them can easily be transferred to bridges. The two
situations are qualitatively the same, and the di�culties to transfer results between them purely technical.
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The main goal of this paper is to rigorously de�ne the random variables ȲW,W ′(f) through
a regularisation procedure when W and W ′ are independent, and through a renormalisation
procedure when W =W ′.

These procedures use molli�cation, so that at �xed ϵ > 0 the approximations Ȳ ϵ
W,W ′(f) can

rigorously be related to the molli�ed Higgs�Yang�Mills �eld, in which �rst A is build, then
molli�ed into Aϵ, and then for a given and smooth Aϵ, Φ is built as a Gaussian �eld interacting
with the now external magnetic potential Aϵ.

1.2. Regularisation procedure and main results. From now on, letW andW ′ be indepen-
dent. As the index functions nW ,nW ′ are not even integrable, it might look like we cannot event
mollify them in the �rst place. We consider a symmetric, positive, compactly supported, smooth
enough, molli�er φ with integral 1, set φϵ the rescaled function x 7→ ϵ−2φ(ϵ−1x) Then we de�ne
the molli�ed winding nϵ(z) as the stochastic integral of τzA

ϵ along W , where curlAϵ = φϵ, and
τz is a shift operator. This is to be thought as a rigorous way to de�ne the ill-de�ned convolu-
tion n ⋆φϵ, and does not depend on the speci�c choice of Aϵ, provided we consider Stratonovich
integrals. We will always choose Aϵ such that divAϵ = 0, so that Ito and Stratonovich integrals
agree with each other. We then show that the random variables

Ȳ ϵ
W,W ′(f) :=

∫
R2

fnϵ
Wnϵ

W ′ dλ and :X̄ϵ
W (1) : := X̄ϵ

W (1)− E[X̄ϵ
W (1)],

both converge in L2 in the limit ϵ → 0, where X̄ϵ
W = Ȳ ϵ

W,W . We will refer to the limits,

noted ȲW,W ′(f) and : X̄W (1) :, as the Amperean area between W and W ′ and the renormalised
Amperean area of W .

Remark 1. We do not construct the renormalised variables :X̄ϵ
W (f) : for more general functions f ,

but it should be noted that the correct way to normalise these random variables is by subtracting
the random counterterm

log(ϵ−1)

2π

∫
f(Wt) dt =

log(ϵ−1)

2π

∫
R2

f(z)µW ( dz),

which is the main order estimation for the non-renormalised variables Ȳ ϵ
W,W (f) as we show in

the companion paper []. The analogy with the construction of the self-intersection measure,
which requires an identical normalisation, will �oat around during the paper.

We will also show that there exists a constant Cφ, which depend on the molli�er φ, such that

E[X̄ϵ
W (1)] =

T

2π
log(ϵ−1) +

T log T

4π
+ CφT +O(ϵ), (2)

where T is the duration of the loop. The �rst term in this expansion is not surprising, as it
matches the main result in [10]. The regularisation methods (i.e. the choice of the functions
nϵ used to approximate n) used here and there are di�erent, but one can convince ourself both
methods should have the same asymptotic expansion up to order 1 (excluded).

We are interested in this asymptotic expansion mostly because it tells us which negative,
asymptotically divergent, mass to use as a counterterm in the de�nition of Higgs�Yang�Mills
�eld, and which e�ective mass results. In this regard, the expansion is relevant up to order o(1).

Remark 2. Combining this with Jay Rosen's estimation for the renormalised self-intersection
local time γW of W in [6], it tells us that the counterterms used to de�ne :X̄W (1) : −1

4γW cancel

each other not only at the main order, but up to order 1.3 This means that for Higgs-Yang�
Mills �elds with a self-interaction φ4 term, there exists a speci�c tuning of the self-interaction
constant λ (or more precisely, of λα−2, where as above α is the electric charge) for which some
of the counterterms cancel each other.

3The factor 1
4
is to be replaced by another factor for di�erent ways to normalise γW .
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Stretch-exponential moments of the limit ȲW,W ′(f) are also investigated: we prove that for
all η < η0 = 1 and su�ciently nice function f ,

E[exp |ȲW,W ′(f)|η] <∞. (3)

Although we do not make the full computation, we believe the same holds for : X̄W (1) : and
that this value of η0 is optimal for the following reason: neglecting the divergences that come
from the fact that the domain of integration is unbounded, the only possibility for : X̄W (1) :
to be exceptionally large (resp. small) is that there exist a large value k such that the set
of points with windings larger than k (in absolute value) is exceptionally large (resp. small)
compared to its typical size. Yet, for large values of k, the �uctuations of this size should comes
in part from �uctuations of the renormalized self-intersection local time.4 It is thus very likely
that the variable : X̄W (1) : do not admit better moments than the ones of the renormalized
self-intersection local time, which are known to be exactly exponential moments [5].

Remark 3. The question of which exponential moments do exist, which is crucial for further study
of Symanzik's loop representation of the Higgs�Yang�Mills �elds, seems to be much subtler. The
relevant observables are then given by

E
[
exp

(∑
i,j

(cȲWi,Wj (1) + c′γWi,Wj

)]
,

where γWi,Wj is the intersection local time between the Brownian paths Wi and Wj , and the
diagonal terms are renormalised. A credible possibility is that this expectation is �nite if and only
if some a�ne combination of c and c′ is non-negative, in which case it is �nite for all possible total
duration of the Brownian paths if and only if some linear combination of c and c′ is non-negative.
Study of such moments might require a much better understanding of the relations between the
self-intersection local time and the Amperean area, in particular the relation between their large
deviations.

Remark 4. Such exponential moments being in�nite would indicate that additional counterterms
are necessary to de�ne the Higgs-Yang�Mills �eld. This would not be very surprising, considering
its construction through lattice approximation [1] does rely on the introduction of such additional
counterterms.

In summary, the main results we obtain are the following.

Theorem 1. Let f ∈ Lp(R2) for some p ∈ (1,∞]. The molli�ed random variables Ȳ ϵ
W,W ′(f)

and : X̄ϵ
W (1) : both converge in L2, as ϵ → 0. The limits do not depend on the choice of the

molli�er.
For f = 1, the asymptotic estimation on average (2) holds.
For f ∈ L∞

c (R2), Ȳ ϵ
W,W ′(f) has �nite stretch-exponential moment up to order 1, i.e. Equation

(3) holds for all η < 1.

1.3. Di�erent possible construction of the Amperean areas. There are other natural
candidates to de�ne the Amperean areas which we now present (only in the case f = 1 for sim-
plicity, although more complex formulas for general f are also likely to hold). The construction
we make here has two speci�c advantages. The �rst is that the approximations can directly be
linked to the molli�ed Higgs�Yang�Mills �eld, when some other constructions only make formal
links between the limiting objects. The other is that it allows to compute the divergence rate
(2) of the counterterm, when other constructions would not give any value to this counterterm,
or make it impossible to compute practically.

The following de�nition directly at the limit has the strong advantage that it should allow
for accurate numerical estimation, while being fairly easy to manipulate with straightforward
probabilistic tools.

4In [7], the author proved a result corresponding to such a statement, but for a pair of Brownian paths. In such
a case, corresponding to the variable ȲW,W ′(1), the contributions coming from the �uctuations of the intersection
local time actually cancel each other, which is not the case for the contributions coming from the �uctuations of
the self-intersection local time.
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Conjecture 1. Let W,W ′ be independent, with respective durations S and T . Up to an additive
boundary term that depends only on the endpoints ofW andW ′, the random variables ȲW,W ′(1)
and :X̄W (1) : are given by

ȲW,W ′(1) =

∫ S

0

∫ T

0
log(|Ws−W ′

t |−1) dW ′
t dWs, :X̄W (1) := 2

∫ T

0

∫ t

0
log(|Ws−Wt|−1) dWs dWt.

I believe such a formula was �rst proposed in [4], however the analysis made there is not
mathematically rigorous, and involves in�nite integrals in the computation, even when W and
W ′ are smooth loops. In this smoother case, one can turn the arguments in [4] into a rigorous
proof, but this is already non-trivial. Were such a formula to hold, it might lead to some
simpli�cations in our proofs. However, the most technical steps rely on integral estimations
which would probably appear identically even with such a formula in hand.

Conjecture 2. For relative integers k, j, let Ak and Ak,j be the measure of the sets

Ak(W ) := {z : nW (z) = k}, Ak,j(W,W
′) := Ak(W ) ∩ Aj(W

′).

The random variables ȲW,W ′(1) and :X̄W (1) : are given by

ȲW,W ′(1) = lim
k0,j0→∞

k0∑
k=−k0

j0∑
j=−j0

kjAk,j , :X̄W (1) := lim
k0→∞

k0∑
k=−k0

k2(Ak − E[Ak]).

The sums
∑

k∈Z k
2|Ak − E[Ak]| and

∑
(k,j)∈Z2 |kj|Ak,j are both in�nite.

One advantage of such a normalisation is that it is geometry independent: it would allow to
compute the Amperean areas with the data of the curve and the Lebesgue measure on the plane,
without the detail of the underlying Riemmanian (indeed Euclidean) metrics.

2. Notations and preliminary remarks

2.1. General notations. The Euclidean norm in R2 is written | · |. The ball centred at 0 with
radius R is written BR, and the ball centred at z with radius R is written BR(z). For a point
z ∈ R2, we write (z1, z2) = z its coordinates. For a function f : R2 → R (resp. a vector �eld
V : R2 → R2), we write either fz or f(z) (resp. Vz) for the value of f (resp. V ) at z. We write
(V 1, V 2) the coordinates of V , so for example, V 1

z := (Vz)
1 = (V 1)z. For three points x, y, z

in the plane, x̂yz is the angle at y in the interval (−π, π]. When x, y, z are given by longer
expressions, we will prefer instead the notation ⟨x, y, z⟩ := x̂yz.

We write
∫
W V for the Stratonovich integral of the vector �eld V along the Brownian path

W : [0, t] → R2, ∫
W
V :=

∑
i∈{1,2}

∫ t

0
V i
Ws

◦ dW i
s .

Where necessary, we set (Ω,F ,P) a probability space on which W is a Brownian motion from
R+ to R2 started from 0, with (Ft)t≥0 the canonical �ltration. Furthermore we assume this
probability space is also endowed with measures Px, Pt,x and Pt,x,y, for all t > 0 and x, y ∈ R2,
such that W is a Brownian motion with in�nite duration started from x under Px (in particular
P0 = P), a Brownian motion with duration t started from x under Pt,x, and a Brownian bridge
with duration t from x to y under Pt,x,y, and such that for all t > 0 we have the disintegration
formula

P|Ft
=

∫
pt(0, y)Pt,0,y dy,

where pt is the whole-plane heat kernel. We emphasize that pt always designate the 2 dimensional
heat kernel. Sometimes, for r ≥ 0, we use the shortcut notation pt(0, r) for the common value
pt(0, x) of any x with |x| = r.
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2.2. Winding notations. A smooth mollifying function φ : R2 → R+, rotationally invariant
and which integrates to 1, is �xed for the whole paper. We further assume that φ is com-
pactly supported and C∞. Through the paper we let Kφ the smallest constant K such that
Supp(φ) ⊆ BKφ . We will often write Cφ for a constant that depend only on the molli�er φ,
but we can change from proof to proof (although it is �xed in any given computation). Let also
ρφ := supz |z|3φ(z) < +∞. Given ϵ > 0, we set φϵ : z 7→ ϵ−2φ(ϵ−1), which also has integral 1.

We de�ne a vector �eld θ : R2 \ {0} → R2, by

θx =
1

2π|x|2
(−x2, x1).

For z ∈ R2, we also de�ne θz : R2 \ {z} → R2 the vector �eld θ shifted to be centred around z,
i.e. θzx := θx−z.

This vector �eld θz has the following properties. When integrated along a loop γ which is

smooth enough (γ ∈ C
1
2
+ϵ) and which avoids the point z (i.e. z /∈ Range γ), the integral is

equal to a relative integer, which is the winding index nγ(z) of γ around z. The distributional
divergence of θz is equal to 0, whilst its distributional curl is equal to the Dirac measure δz.

Since θz ∈ L1 +L∞, i.e. it decomposes as the sum of a vector �eld in L1 and one in L∞, e.g.
θz = θz1B1(z) + θz1R2\B1(z) =: θ

z
0 + θz∞, the convolution θz ⋆ f is a well-de�ned vector �eld in

L∞ as soon as the function f is in L1 ∩ L∞. We can thus de�ned the molli�ed vector �eld

ψz,ϵ := θz ⋆ φϵ. (4)

We omit the superscript z when z = 0 and the superscript ϵ when ϵ = 1.
For a Brownian motion W : [0, t] → R2, we de�ne nϵ

W (z) the ϵ-molli�ed winding index of x
at z as

nϵ
W (z) :=

∫
W
ψz,ϵ. (5)

We de�ne W̄ the loop obtained by concatenation of W : [0, t] → R2 with the straight line
segment [Wt,W0] between its endpoints. Since we are only interested in integrals of vector �elds
along that curve, and since these integrals are invariant by orientation-preserving reparametri-
sation, the speci�cs of time parametrisation of this line segment is irrelevant. We then de�ne

nϵ
W̄ (z) :=

∫
W̄
ψz,ϵ =

∫
W
ψz,ϵ +

∫
[Wt,W0]

ψz,ϵ = nϵ
W (z)− (2π)−1

∫
R2

φ(v)⟨W0, z + ϵv,Wt⟩ dv.

In some cases, we will prefer to nϵ
W̄

the function n̂ϵ
W de�ned by

n̂ϵ
W (z) := nϵ

W (z)− (2π)−1⟨W0, z,Wt⟩.

For t > 0, we de�ne functions K,K∗,Kt,K
∗
t from (R2)2 to R ∪ {+∞}, all equal to +∞ on

the diagonal x = y, and given for x ̸= y by the formulas

K(x, y) :=

∫ 1

0
Kt(x, y) dt, Kt(x, y) :=

∫
R2

pt(0, z)⟨θxz , θyz ⟩ dz,

and

K∗(x, y) :=

∫ 1

0
K∗

t (x, y) dt, K∗
t (x, y) :=

∫
R2

pt(0, z)

|x− z||y − z|
dz = 4π2

∫
R2

pt(0, z)|θxz ||θyz |dz.

We further de�ne

K†(v) := sup{K∗(x, y) : x− y = v}, K†
t (v) := sup{K∗

t (x, y) : x− y = v}.

By looking at the behaviour of these integrals near +∞ (sub-Gaussian decay), near 0 (loga-
rithmic divergence for K∗), near x and near y (integrable power-like divergences), K∗(x, y) and
K∗

t (x, y) are seen to be �nite as soon as x ̸= y, so that K(x, y) and Kt(x, y) are well-de�ned.
The two cases x = 0 and y = 0 are to be treated separately from the case when x ̸= 0 and
y ̸= 0, since then two of the singularities are merged together, but the integral is still �nite in
these speci�c cases. An artefact of these merging singularities will remain in later computation:
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for �xed x ̸= 0, these functions diverge logarithmically in |x− y|−1 as y → x, but in a way that
is not uniform in x near 0.

For x > 0, we denote by Γ(0, x) the value of the incomplete Gamma function at (0, x): for
z ∈ R2 \ {0},

Γ(0,
|z|2

2
) = 2π

∫ 1

0
pt(0, z) dt.

2.3. Preliminary properties and remarks. Let us explain further why we call nϵ
W a molli�ed

winding index. For a loop γ and z ∈ R2 \Range(γ), let nγ(z) ∈ Z be the winding index of γ of
around z �which roughly speaking counts how many times γ winds around z. As long as γ ∈ Cα

for some α > 1
2 , one can also de�ne nϵ

γ(z) by a formula analogous to (5), except the Stratonovich
integrals are replaced with the corresponding Young integrals (or Riemann�Stieltjes integrals, if
γ has bounded variation). Then, it does hold that

nϵ
γ = nγ ⋆ φ

ϵ. (6)

Indeed, for any z ∈ R2 \ Range(γ), ∫
γ
θz = nγ(z)

by residue theorem. The formula (6) then follows from swapping the order of integration, which
crucially one cannot do when W is say a Brownian loop, for then the winding index nW is not
an integrable function any longer, and the convolution nW ⋆ φϵ is ill-de�ned. As we mentioned
already, there are nonetheless ways to de�ne rigorously the `integral' of nW , or even the integral
of the product fnW , as long as f is smooth enough. Interpreting the convolution in the right-
hand side of (6) in these ways, (6) becomes a true formula also for γ = W̄ with W a Brownian
motion.

From a mathematical point of view, we do not rely on such formula in this paper (although
they would allow for slight simpli�cation at some speci�c places). Yet, keeping in mind this point
of view that nϵ

W̄
is the `convolution' of nW̄ with φϵ has fruitful consequences. For example, one

quickly sees that nϵ
W̄

is compactly supported on B∥W∥∞+ϵK . This can then be checked easily:

for z outside this ball, nϵ
W (z) is the integral along the loop W̄ of a function that is holomorphic

on B∥W∥∞ . We conclude by relying on the fact that meromorphic integral and Stratonovich
integral agree.

We will have to go back and forth between the three functions nϵ
W , nϵ

W̄
, and n̂ϵ

W , mostly
for technical reasons and because each has a unique property that distinguishes it from the
other two, but also some drawbacks: the �rst, as a stochastic integral along a martingale, has
explicit second moment through Ito isometry. However, it decays very slowly as |z| → ∞,
which prevents it from having good integrability properties. As we have just seen, the second
is compactly supported (although its support is random), which avoid some very cumbersome
estimation. It is to be understood as the molli�cation of nW̄ . The last one often serves as
an intermediate between the other two. It is not compactly supported but still has better
integrability properties than nϵ

W , as it decays a bit faster near +∞. It often has a simpler usage
than nϵ

W̄
, as the corrective term (2π)−1⟨W0, z,Wt⟩ do not depend on ϵ.

Setting x and y the endpoints of W and using complex coordinates z = reiθ, it holds that
nϵ
W (z) decays as x̂zy, which is of order r−1 when r → ∞, and in particular nϵ

W /∈ L2(R2)
although it belongs in L2

loc(R2). This lack of global square-integrability will in fact be the cause
of many troubles, which are super�cial in nature but rather tricky to deal with.

Since ⟨W0, z + ϵv,Wt⟩ ∈ (−π, π] and ∥φϵ∥L1 = 1, it follows that for any point z and indepen-
dently from ϵ,

|nϵ
W̄ (z)− nϵ

W (z)| ≤ 1

2
and |n̂ϵ

W (z)− nϵ
W (z)| ≤ 1

2
. (7)

Locally, these are good approximations since nϵ
W is unbounded as a function of z and ϵ.

Certainly the function n̂ϵ
W is slightly less natural than nϵ

W̄
to consider, from a geometric point

of view. For example, it cannot be written as one line integral along a loop, as opposed to nϵ
W̄
,

and it also does not enjoy the same property as nϵ
W̄

of being compactly supported. Yet, it is
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computationally slightly more pleasant to deal with. Furthermore, we will see by comparing
these two functions that

n̂ϵ
W (z) =

z→∞
O(|z|−2). (8)

In particular it does belong in L2(R2). Local square-integrability will follow from the fact that
nϵ
W is continuous, which we are about to see. Notice we can easily deduce from this that nϵ

W̄
is continuous, but that n̂ϵ

W (z) admits exactly two discontinuity points, at the endpoints of W ,
but where the �jumps" remain bounded.

The three families of functions nϵ
W , n̂ϵ

W and nϵ
W̄

are exactly invariant by translation and

scaling, in the sense that for f ϵW any one of these three functions, for all v ∈ R2 and for all
λ > 0, for all z ∈ R2,

f ϵW (z) = f ϵW+v(z + v) = fλϵλW (λz).

Lemma 2.1. For all z ∈ R2, ψz,ϵ ∈ C3(R2,R2), and the map z 7→ ψz,ϵ is continuous from R to
C3(R2,R2).

Proof. Here we only assume that φ ∈W 3,∞, since this is su�cient to conclude.
First we show that ψz,ϵ ∈W 3,∞ for all z, then that z 7→ ψz,ϵ is continuous from R2 to W 3,∞.

This would be enough to conclude: for an arbitrary multiindex I ∈ {1, 2}3, we would deduce

|∂3Iψz,ϵ(x+ h)− ∂3Iψ
z,ϵ(x) = |∂3Iψz−h,ϵ(x)− ∂3Iψ

z,ϵ(x)| ≤ ∥∂3Iψz−h,ϵ − ∂3Iψ
z,ϵ∥∞ −→

h→0
0,

hence ψz,ϵ ∈ C3. Since the topology on C3 is that of W 3,∞, it would follow that z 7→ ψz,ϵ is
continuous indeed as a C3-valued function.

The fact ψz,ϵ ∈W 3,∞ follows from

∥∂3Iψz,ϵ∥∞ = ∥(θz0 + θz∞) ⋆ ∂3Iψ
ϵ∥∞ ≤ ∥θz0∥L1∥ψϵ∥L∞ + ∥θz∞∥L∞∥ψϵ∥L1 <∞.

To prove the continuity of z 7→ ψz,ϵ from R2 to W 3,∞, at a given point z, we decompose
θz = θz0 + θz∞ as above, and we decompose θw = θw1B1(z) + θw1R2\B1(z) = θw0 + θw∞. Then, it
holds

∥∂3Iψw,ϵ − ∂3Iψ
z,ϵ∥∞ = ∥(θw − θz) ⋆ ∂3Iφ

ϵ∥∞ ≤ ∥θw0 − θz0∥L1∥∂3Iφϵ∥∞ + ∥θw∞ − θz∞∥L∞∥∂3Iφϵ∥L1 .

The �rst term then converges toward 0 as w → z by Sche�é's lemma, whilst the second term
converges toward 0 as θw∞ converges uniformly toward θz∞ on R2 \B1(z), and both function are
vanishing on B1(z). This concludes the proof. □

Corollary 2.2. For all ϵ > 0, nϵ
W (z) is de�ned jointly for all z and the function z 7→ nϵ

W (z) is
continuous.

Proof. Recall there are ways to de�ne stochastic integals in such a way that the integration map
V 7→

∫
W V is almost surely de�ned on the whole space C3(R2,R2), and is continuous in the C3

topology. This can be done for example through rough path theory. Since z 7→ ψz,ϵ is continuous
as well, the result follows. □

Corollary 2.3. The functions nϵ
W̄

and n̂ϵ
W are both square integrable.

Remark 5. For all z ∈ R2, it holds div(θz) = 0 in the distributional sense. Therefore, div(ψz,ϵ) =
0 for all z ∈ R2 and ϵ > 0. As the Stratonovich-to-Ito correction term for the integral of a vector
�eld V along a Brownian motion takes the form of an integral of div(V ), we deduce that

∫
W ψz,ϵ

has the same value whether it is interpreted as an Ito or as a Stratonovich integral, so in practice
we will evaluate it as an Ito integral and use Ito's formula in particular, although in principle it
should really be thought of as a Stratonovich integral.

Remark 6. In the following, when we compare some random variable de�ned from nϵ
W with the

same random variable but for ϵ′ instead of ϵ we do not assume that the same molli�er is
necessarily used to de�ne nϵ

W and nϵ′
W , and the same goes when we have four di�erent ϵ's.

It would just be too cumbersome to keep track of the molli�er in the notation.
For example, when we will prove that Y ϵ1,ϵ2(f)−Y ϵ3,ϵ4(f) goes to 0 as the ϵi go to 0, it should

be understood that four, possibly all di�erent, arbitrary but �xed, molli�ers are used, and in
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particular the limit then automatically does not depend on the chosen molli�ers (although the
convergence is of course not uniform over all possible choice of molli�er).

3. Some upper bounds

In this section obtain some upper-bounds of both analytic and probabilistic nature to be used
through the paper.

Lemma 3.1. The following properties hold.

(1) For all x ∈ R2 and ϵ > 0, |ψϵ(x)|2 = ϵ−2|ψ(ϵ−1x)|2.
(2) There exists a constant Cφ such that for all x ∈ R2, |ψ(x)|2 ≤ Cφ

(1+|x|)2 ≤ Cφ

1+|x|2 .

(3) For all x ∈ R2 and ϵ > 0, |ψz,ϵ(x)|2 ≤ Cφ

ϵ2+|z−x|2 .

(4) As r → ∞, ∫
Br

|ψ(x)|2 dx =
1

2π
log(r) +O(1).

Proof. Here we do not assume φ is compactly supported.
Item (1) is a simple change of variable in this convolution de�ning ψϵ.
For Item (2), it su�ces to show that ψ is bounded and that for C,R large enough, |ψ(x)| ≤

C|x|−1 for all x with |x| ≥ R. On the one hand, we have

|ψ|(x) ≤ 1

2π

∫
B1(x)

1

|z − x|
φ(z) dz +

1

2π

∫
R2\B1(x)

1

|z − x|
φ(z) dz ≤ ∥φ∥∞ +

∥φ∥L1

2π
.

On the other hand,

|ψi(x)| =
∣∣∣ ∫

R2

φ(x− v)θi(v) dv
∣∣∣ ≤ 1

2π

∫
R2

φ(x− v)

|v|
dv

≤ ρφ

∫
B |x|

2

4

|v||x|3
dv +

∫
R2\B |x|

2

2φ(x− v)

|x|
dv

≤ 4ρφ + 2

2π|x|
, (for |x| ≥ 1)

which concludes the proof of the second item.
Item 3 follows immediately from the previous 2 with elementary computation.
For the last estimation we need to be a bit more precise. Let R = |x|α, α ∈ (0, 1). Notice for

|x| ≥ 1,

∣∣∣ ∫
BR(x)

φ(x− v)
( vi

|v|2
− xi

|x|2
)
dv

∣∣∣ ≤ maxv∈BR(x) |vi|x|2 − xi|v|2|
|x|2(|x| −R)2

≤ 3|x|2+α

|x|4
= O(|x|α−2) (9)

Besides, ∫
R2\BR

φ(u) du ≤ 2πρφ

∫ ∞

R

dr

r3
≤ πρφ

R2
,

thus ∣∣∣ ∫
R2\BR(x)

φ(x− v) dv
xi

|x|2
∣∣∣ = O(|x|−1−2α). (10)

Furthermore, ∣∣∣ ∫
B |x|

2

φ(x− v)
vi

|v|2
dv

∣∣∣ ≤ 8ρφ
|x|3

∫
B |x|

2

vi

|v|2
dv =

4πρφ
|x|2

, (11)

and ∣∣∣ ∫
R2\(B |x|

2

∪BR(x))
φ(x− v)

vi

|v|2
dv

∣∣∣ ≤ 2

|x|

∫
R2\BR(x)

φ(x− v) dv = O(|x|−1−2α). (12)
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Combining (9), (10), (11), and (10), we deduce∫
R2

φ(x− v)
vi

|v|2
=

∫
R2

φ(x− v) dv
xi

|x|2
+O(|x|−1−2α + |x|α−2).

The optimal bound is obtained for α = 1
3 and we get

ψi(x) = θi(x) +O(|x|−
5
3 ).

Notice we would, with similar methods, get a better bound by assuming a quicker decrease of
φ.

It follows that |ψ(x)|2 = |θ(x)|2 +O(|x|−
8
3 ). Let C be such that ||ψ(x)|2 − |θ(x)2| ≤ C|x|−

8
3 .

Then, ∣∣∣ ∫
Br\B1

|ψ(x)|2 dx−
∫
Br\B1

|θ(x)|2 dx
∣∣∣ ≤ C

∫
R2\B1

|x|−
8
3 dx <∞.

Since |θ(x)| = 1
2π|x| , we �nally get∫

Br

|ψ(x)|2 dx =
1

4π2

∫
Br\B1

|x|−2 dx+

∫
B1

|ψ(x)|2 dx+O(1) =
log(r)

2π
+O(1),

which concludes the proof. □

Lemma 3.2. Then,

⋄ There exists C such that for all ϵ, ϵ′ ∈ (0, 1], for all x ̸= y,

|E[nϵ
W (x)nϵ′

W (y)]| ≤ CK∗(x, y). (13)

⋄ As (ϵ, ϵ′) → (0, 0),

E[nϵ
W (x)nϵ′

W (y)] −→ K(x, y). (14)

Proof of Lemma 3.2. By Ito isometry,

E[nϵ
W (x)nϵ′

W (y)] =

∫ 1

0
E[⟨ψx,ϵ(Wt), ψ

y,ϵ′(Wt)⟩] dt

=

∫ 1

0

∫
R2

pt(0, z)⟨ψx,ϵ(z), ψy,ϵ′(z)⟩ dz dt.

It follows from Lemma 3.1, (3) that

⟨ψx,ϵ(z), ψy,ϵ′(z)⟩ ≤ C

|x− z||y − z|
,

from which the �rst point (13) follows. Furthermore, by properties of the convolution, for all
z ∈ R2 \ {x, y},

⟨ψx,ϵ(z), ψy,ϵ′(z)⟩ −→
ϵ→0

⟨θxz , θyz ⟩.

Since ∫ 1

0

∫
R2

pt(0, z)|⟨ψx,ϵ(z), ψy,ϵ′(z)⟩|dz dt ≤ CK∗(x, y),

we can apply the dominated convergence theorem (for integrals with respect to z) and conclude
to the second point, the convergence (14). □

We will now derive a few upper bounds, most of which are related to these kernels K, K∗.
Let us brie�y explain what these bounds amount to. It can easily be seen that K∗(x, y) diverges
as x→ y, for in the limit x = y we have

K∗
t (x, x) ≥

∫
B1(x)

pt(0, z)

|z − x|2
dz = +∞.

From the shape of the function we integral, one can naturally expect the divergence to be

logarithmic. Furthermore as x→ 0, the logarithmic divergence of
∫ 1
0 pt(0, z) dt comes into play

as well. Although it does not prevent K∗(0, y) to be �nite, it worsen the divergence of K∗(0, y)
as y → 0. In the following we will show that K∗ diverges more slowly than log2, which implies
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that it is locally integrable to any power. Unfortunately, both K∗ and K fails shortly from being
square-integrable.

3.1. Analytic estimations: Pointwise upper bounds for the K's. For a measurable non-
negative function f : Rd → R+, let f

∗ : Rd → R+ be its symmetric decreasing rearrangement (or
Schwarz symmetrization of f). In the case when f is given by f(z) = f̄(|z|) for a non-increasing
function f̄ : R+ → R+, it holds f

∗ = f and more generally (x 7→ f(x + y))∗ = f . Furthermore
if f ≤ g, then f∗ ≤ g∗. We will generally use this inequality with f = h1R2\BR

, h(z) = h̄(|z|)
for a non-increasing h̄, and g = g∗ : z 7→ h̄(|z| ∧ R). These basic facts, together with the three
following inequalities, are the only thing we will need to know about these symmetric decreasing
rearrangements; which is why we do not provide the precise de�nition of it. Let us simply say
that, as the name suggests, these are rotationally symmetric, non-increasing, and the Lebesgue
mass of the superlevel set of f∗ is equal to that for f .

The Hardy�Littlewood inequality states that for any measurable f, g : Rd → R+,∫
Rd

fg ≤
∫
Rd

f∗g∗.

The Riesz-Sobolev inequality states that for any measurable f, g, h : Rd → R+,∫
(Rd)2

f(x)g(y)h(x− y) dx dy ≤
∫
(Rd)2

f∗(x)g∗(y)h∗(x− y) dx dy.

Both these inequalities have later be generalized into the Brascamp-Lieb-Luttinger in-
equality ([, Theorem 3.4]A General Rearrangement Inequality for Multiple Integrals ), a special
case of which states that for any measurable f1, . . . , fk : Rd → R+,∫

Rd

f1 . . . fk ≤
∫
Rd

f∗1 . . . f
∗
k .

Lemma 3.3. For all t ∈ (0, 1] and v ∈ R2,

K†
t (v) ≤

∫
R2\B|v|/2

pt(0, z)

|z|2
dz + 6 |v|−1

∫
B|v|/2

pt(0, z)

|z|
dz.

Proof. Let x, y be such that v = x − y, set r = |v|/2, and de�ne the functions fa : z 7→
|z − a|−1 ∧ r−1 for a ∈ {x, y}.

Using Brascamp-Lieb-Luttinger inequality to the functions pt(0, ·), fx, fz , we obtain∫
R2\(Br(x)∪Br(y))

pt(0, z)

|z − x||z − y|
dz ≤

∫
R2

pt(0, z)fx(z)fy(z) dz

≤
∫
R2

pt(0, z)f
∗
x(z)f

∗
y (z) dz

≤
∫
R2\Br

pt(0, z)

|z|2
dz + r−1

∫
Br

pt(0, z)

|z|
dz.

Furthermore, using the Hardy�Littlewood inequality to the functions z 7→ pt(0, z)1|z|≤r and fx,
and using the fact that |z − y| ≥ r for all z ∈ Br(x), we obtain∫

Br(x)

pt(0, z)

|z − x||z − y|
dz ≤ r−1

∫
Br(x)

pt(0, z)

|z|
dz,

and similarly ∫
Br(y)

pt(0, z)

|z − x||z − y|
dz ≤ r−1

∫
Br(x)

pt(0, z)

|z|
dz.

Combining these estimations, we get∫
R2

pt(0, z)

|z − x||z − y|
dz ≤

∫
R2\Br

pt(0, z)

|z|2
dz + 3 r−1

∫
Br

pt(0, z)

|z|
dz.

We conclude by taking the supremum over x, y such that x− y = v. □
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Lemma 3.4. For all p > 2, there exists a constant C such that for all t ∈ (0, 1],∫
R2

K†
t (v)

p dv ≤ Ct1−p.

Proof. Let

f1 : v 7→
∫
R2\B|v|/2

pt(0, z)

|z|2
dz and f2 : v 7→ |v|−1

∫
B|v|/2

pt(0, z)

|z|
dz.

The real number f1(v) is equal to 1
2tΓ(0,

|v|2
8t ). Thus, making the change of variables v =

r(cos(θ), sin(θ)) and u = r√
t
gives

∥f1∥pLp =

∫
R2

f1(v)
p dv =

2πt

2ptp

∫
R
Γ(0,

u2

8
)pudu = Cpt

1−p,

for a constant Cp which is �nite since Γ(0, ·) decays subgaussianity fast near in�nity and diverges
only logarithmically near 0.

On the other hand, with the change of variables v = r(cos(θ), sin(θ)), z = ρ(cos(φ), sin(φ)),

then u = t−
1
2 ρ, w = t−

1
2 r, we get

∥f2∥pLp =

∫
R2

f2(v)
p dv = (2π)1+p

∫ ∞

0

(∫ r/2

0
pt(0, ρ) dρ

)p
r1−p dr

= (2π)1+pt1−p

∫ ∞

0

(∫ v/2

0
p1(0, u) du

)p
v1−p dv

= C ′
pt

1−p,

for a constant C ′
p which is �nite since(∫ v/2

0
p1(0, u) du

)p
v1−p ≤ min(

1

(4π)p
v, v1−p),

which is integrable in v over (0,∞) since we assumed p > 2.
Using Lemma 3.3 and ∥a+ b∥pLp ≤ 2p−1(∥a∥pLp + ∥b∥pLp), we deduce∫

R2

K†
t (v)

p dv ≤ 2p−1(∥f1∥pLp + 6p∥f2∥pLp) = C ′′
p t

1−p,

as announced. □

Lemma 3.5. For all v ∈ R2 \ {0}, K†(v) ≤ 4
√
2π

|v| .

Proof. For all x, y, z ∈ R2, either or both |x− z| and |y − z| is greater than |x− y|/2. It follows
that

|x− z|−1|y− z|−1 = (|x− z| ∧ |y− z|)−1(|x− z| ∨ |y− z|)−1 ≤ (|x− z|−1+ |y− z|−1)(2|x− y|−1).

Using Hardy�Littlewood inequality, we deduce∫
R2

pt(0, z)

|z − x||z − y|
dz ≤ 2

|x− y|

(∫
R2

pt(0, z)

|z − x|
dz +

∫
R2

pt(0, z)

|z − y|
dz

)
≤ 4

|x− y|

∫
R2

pt(0, z)

|z|
dz

=
4

|x− y|

√
π

2t
.

The lemma follows, by integrating over t ∈ [0, 1] and then taking the supremum over {(x, y) :
x− y = v}. □

Lemma 3.6. There exists a constant C such that for all v ∈ R2 \ {0},

K†(v) ≤ Cmax(1, log(|v|−1)2).
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Proof. Since we already know by the previous lemma that K†(v) decreases toward 0 as |v| → ∞,
it su�ces to show that

lim inf
|v|→0

K†(v)

log(|v|−1)2
<∞.

Recall Lemma 3.3:

K†
t (v) ≤

∫
R2\B|v|/2

pt(0, z)

|z|2
dz + 6 |v|−1

∫
B|v|/2

pt(0, z)

|z|
dz.

The exponential decay of Γ(0, r) as r → ∞ ensures that∫ 1

0

∫
R2\B1

pt(0, z)

|z|2
dz dt =

∫ ∞

1
ρ−1Γ(0,

ρ2

2
) dρ <∞.

Furthermore, the asymptotic estimation

Γ(0,
ρ2

2
) ∼
ρ→0

1

2
log(ρ−1)

allows to deduce∫ 1

0

∫
R2\Br

pt(0, z)

|z|2
dz dt =

∫ ∞

r
ρ−1Γ(0,

ρ2

2
) dρ ∼ 2

∫ 1

r
ρ−1 log(ρ−1) dρ = log(r−1)2

and

r−1

∫ 1

0

∫
Br

pt(0, z)

|z|
dz dt = r−1

∫ r

0
Γ(0,

ρ2

2
) dρ ∼ 1

2
log(r−1),

hence

lim inf
|y−x|→0

K∗(x, y)

log(|x− y|−1)2
≤ 1 <∞,

which concludes the proof. □

Corollary 3.7. The function K† is in Lp(R2) for all p ∈ (2,∞), hence in Lp
loc(R

2) for all
p ∈ [1,∞). For all p ∈ [1,∞), there exists a constant Cp such that for all measurable subset A
of R2 with �nite Lebesgue measure µ(A),

∥K†∥pLp(A) ≤ Cpµ(A)(1 ∨ log(µ(A)−1))p.

Proof. By Lemma 3.5 and Lemma 3.6, there exists a constant C such that for all v,

K†(v) ≤ 4
√
2π

|v|
∧ (C(1 ∨ log(|v|−1))),

which clearly belongs in Lp(R2) if and only if p ∈ (2,∞).
To prove the bound on ∥K†∥pLp(A), one can restrict to the sets A such that µ(A) ≤ cp, where

cp is an arbitrary but �xed positive constant. It then extends to all sets with �nite Lebesgue
measure, up to eventually replacing the constant Cp with a larger one, using ∥ · ∥pLp(

⋃
Ai)

=∑
∥ · ∥pLp(Ai)

, and decomposing a measurable set A with µ(A) ≥ cp into a disjoint union of sets

Ai with µ(Ai) ≥ cp/2.
We take cp = πe−2p. This way, for any ρ > 0 with πρ2 ≤ c, it holds that ρ < e−1 and that

r 7→ r(log r−1)p is increasing on [0, ρ].
Let f(z) = C(1∨ log(|z|−1)) and g = f1A. Since f is radially decreasing, g∗ ≤ f1Bρ where ρ

is such that πρ2 = µ(Bρ) = µ(A). We get

∥K†∥pLp(A) ≤
∫
Bρ

(C log(|z|−1))p dz =

∫ ρ

0
Cp log(r−1)p2πr dr ≤ 2πCpρ2 log(ρ−1)p,

which concludes the proof since πρ2 = µ(A). □

Lemma 3.8. For all p > 2, ∫
(R2)2

K∗
1 (x, y)

p dx dy <∞.
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Proof. Unfortunately, our proof here is not very elegant. We will decompose the integral into
several pieces, and estimate these pieces separately. First, we show that∫

(R2)2
1|x−y|≥1K

∗
1 (x, y)

p dx dy

is �nite. We thus de�ne the following subsets of (R2)3, using comas for logical conjunctions.

F0 := {(x, y) : |x| ≤ |y|},
F1 := {(x, y) : |x− y| ≥ 1, |x| ≤ |y|},
E0 := {(x, y, z) : |x− y| ≥ 1, |x| ≤ |y|},
E1 := {(x, y, z) ∈ E0 : |x| ≥ 1, |z − x| ≥ 1

2 , |z − y| ≥ 1
2 , |z| ≥ |y|/2},

E2 := {(x, y, z) ∈ E0 : |x| ≥ 1, |z − x| ≥ 1
2 , |x|/2 ≤ |z| < |y|/2},

E3 := {(x, y, z) ∈ E0 : |x| ≥ 1, |z| < |x|/2},
.E4 := {(x, y, z) ∈ E0 : |x| ≥ 1, |z − x| ≥ 1

2 , |z − y| < 1
2},

E5 := {(x, y, z) ∈ E0 : |x| ≥ 1, |z − x| < 1
2 , |y − x| ≥ 1, }

E6 := {(x, y, z) ∈ E0 : |x| ≥ 1, |z − x| < 1
2 , |y − x| < 1, }

E7 := {(x, y, z) ∈ E0 : |x| ≤ 1},

For i ∈ {0, . . . , 7}, let

Ii :=

∫
(R2)2

(∫
R2

1(x,y,z)∈Ei

p1(0, z)

|x− z||y − z|
dz

)p
dx dy.

Using the symmetry between x and y, the fact that E0 is equal to the disjoint union of the
(Ei)i∈1..7, and triangle inequality, we get∫

(R2)2
1|x−y|≥1K

∗
1 (x, y)

p dx dy = 2I0 ≤ 2 · 7p−1(I1 + · · ·+ I7),

so that it su�ces to show these Ii are �nite for i = 1..7. For integral involving only the heat
kernel, such as∫

F0

p1(0, y)
p dy dx,

∫
R2

(∫
|z|≥|x|/2

p1(0, z) dz
)p

dx, or

∫
R2

p1(0, x)
p dx,

we will not systematically prove they are �nite, since this is always elementary but tedious
(remark however

∫
F0
p1(0, x)

p dy dx, for example, is in�nite, since for all x the integral in y is

already in�nite).

⋄ First, we have

I1 ≤ 4p
∫
F0

(∫
|z|≥|y|/2

p1(0, z) dz
)p

dx dy <∞.

⋄ On E2, |y − z| ≥ |y|/2, hence

I2 ≤ 4p
∫
F0

(∫
|z|≥|x|/2

p1(0, z)

|y|
dz

)p
dx dy ≤ 4p

∫
R2\B1

|y|−p dy

∫
R2

(∫
|z|≥|x|/2

p1(0, z) dz
)p

dx <∞.

⋄ On E3, |x− z| ≥ |x|/2 and |y − z| ≥ |y|/2, hence

I3 ≤ 4p
∫
F0

|x|−p|y|−p
(∫

R2

p1(0, z) dz
)p

dx dy ≤ 4p
(∫

R2\B1

|x|−p dx
)2

<∞.

⋄ On E4, |z| ≥ |y|/2, hence

I4 ≤ 2p
∫
F0

p1(0,
y

2
)p
(∫

R2

1|z−y|≤1/2

|y − z|
dz

)p
dx dy = 2p

∫
F0

p1(0,
y

2
)p dx dy

(∫
B 1

2

1

|z|
dz

)p
<∞.
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⋄ On E5, |y − z| ≥ |y − x|/2 and |z| ≥ |x|/2, hence

I5 ≤ 2p
∫
F0

1|y−x|≥1p1(0, x/2)
p

|y − x|p
(∫

B 1
2

1

|z|
dz

)p
dx dy

≤ 2p
∫
R2\B1

1

|y|p
dy

(∫
B 1

2

1

|z|
dz

)p
∫
R2

p1(0, x/2)
p dx <∞.

⋄ On E6, |y − z| ≥ 1/2 and |z| ≥ |x|/2, hence

I6 ≤ 2p
∫
F0

1|y−x|≤1

(∫
B 1

2 (x)

pt(0, z)

|x− z|
dz

)p
dx dy ≤ 2p

∫
R2

πp1(0, x/2)
p dx

(∫
B 1

2

1

|z|
dz

)p
<∞.

⋄ Finally,

I7 ≤
∫
B1

∫
R2

K∗(x, y)p dy dx ≤ π

∫
R2

K∗(v)p dv <∞

by Lemma 3.4, which concludes the proof that∫
(R2)2

1|x−y|≥1K
∗
1 (x, y)

p dx dy <∞.

In order to show that ∫
(R2)2

1|x−y|≤1K
∗
1 (x, y)

p dx dy <∞,

we now set

G0 := {(x, y, z) ∈ (R2)3 : |x| ≤ |y|, |x− y| ≤ 1},
G1 := {(x, y, z) ∈ G0 : |x| ≤ 4},

G2 := {(x, y, z) ∈ G0 : |x| > 4, |z| ≤ |x|
1
2 },

G3 := {(x, y, z) ∈ G0 : |x| > 4, |z| > |x|
1
2 , |z − x| ≥ |x− y|/2},

G4 := {(x, y, z) ∈ G0 : |x| > 4, |z| > |x|
1
2 , |z − x| < |x− y|/2},

and set

Ji :=

∫
(R2)2

(∫
R2

1(x,y,z)∈Gi

p1(0, z)

|x− z||y − z|
dz

)p
dy dx.

⋄ On G1, we have

J1 ≤
∫
B4

∫
R2

K∗
1 (x, y)

p dy dx ≤ 16π

∫
R2

K†
1(v)

p dv <∞

by Lemma 3.4.
⋄ On G2, since |z| ≤ |x|

1
2 ≤ |x|/2, both |x− z| and |y − z| are greater than |x|/2, hence

J2 ≤
∫
R2\B4

∫
B1(x)

(∫
B

|x|
1
2

4

|x|2
dz

)p
dy dx = π1+p42p

∫
R2\B1

|x|−p dx <∞.

⋄ On G3, let θ ∈ (0, 1) be such that θp < 2. Using |x − z| ≥ (|x − y|/2)θ|x − z|1−θ and
then the Riesz-Sobolev inequality, we get we get

J3 ≤
∫
R2\B4

√
p1(0, |x|

1
2 )

∫
B1(x)

2θp

|x− y|θp
(∫

R2

√
p1(0, z)

|z|2−θ
dz

)p
dy dx

≤ Cp

∫
R2\B4

√
p1(0, |x|

1
2 ) dx <∞.
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⋄ On G4, it holds |y − z| ≥ |x− y|/2, thus

J4 ≤
∫
R2\B4

p1(0, |x|
1
2 )

∫
B1(x)

( 2

|x− y|

∫
B |x−y|

2

1

|v|
dv

)p
dy dx

=

∫
R2\B4

p1(0, |x|
1
2 )π(2π)p dx <∞,

which concludes the proof.

□

Lemma 3.9. For all p > 2, for all t > 0,∫
(R2)2

K∗
t (x, y)

p dx dy = Cpt
2−p, where Cp =

∫
(R2)2

K∗
1 (x, y)

p dx dy <∞.

Proof. We have just prove the �niteness of Cp in the previous lemma. The fact that ∥K∗
t ∥

p
Lp

scale as t2−p follows simply from the change of variables x′ = t−
1
2x, y′ = t−

1
2 y, z′ = t−

1
2 z and

the relation pt(0, z) = t−1pt(0, t
− 1

2 z). □

Remark 7. We just `gained' a factor t compared to
∫
R2 K

†
t (v)

p dv that we estimated in Lemma
3.4. This extra factor will allow us later one to obtain better stretch-exponential moments.

3.2. Trigonometric estimations.

Lemma 3.10. Let

δW (z) := n̂ϵ
W (z)− nϵ

W (z) = −(2π)−10̂zWt and δϵW := nϵ
W̄ − nϵ

W = (δW ⋆ φϵ). (15)

Then, for all p > 2, δϵW , δW ∈ Lp(R2) and

∥δϵW ∥pLp ≤ ∥δW ∥pLp ≤ (π +
1

(p− 2)
)
|W1|2

4
.

In particular, ∥δW ∥Lp ∈ Lq(Ω) for all p > 2 and all q ∈ (1,∞).

Proof. The fact that δϵW ∈ Lp(R2) if δW ∈ Lp(R2) and the inequality ∥δϵW ∥pLp ≤ ∥δW ∥pLp follow
from Young's convolution inequality and the fact that ∥φϵ∥L1 = 1.

The inequality for ∥δW ∥pLp is elementary trigonometry: for z ∈ B|W1|, we bound |δW (z)| by
1
2 . For z outside this ball, which contains the ball B|W1|/2(W1/2), it holds that |0̂zWt| ≤ π

2 , and

it follows from concavity that |0̂zWt| ≤ π
2 | sin(0̂zWt)|, thus, |δW (z)| ≤ 1

4 sin(0̂zWt). Let w be
the orthogonal projection of 0 on the axis (z,Wt). In particular, the distance between 0 and w
is less than |W1|. By looking at the right triangle 0, w, z, we get

sin(0̂zWt) =
|w|
|z|

≤ |W1|
|z|

.

Thus,

∥δW ∥pLp ≤ π

4
|W1|2 +

∫
R2\BW1

1

4

|W1|p

|z|p
dz = (π +

1

(2− p)
)
|W1|2

4
.

□

Lemma 3.11. For all x, y in the plane with |y| ≤ |x|
2 , the function θy : x 7→ 0̂xy satis�es

| grad θy(x)| ≤ 24|y||x|−2,

where the gradient is on the x variable whilst y is �xed.

Proof. We use complex notations. Since θzy(zx) = θy(x) for all z, grad θzy(zx) = |z|−1θy(x),
and so it su�ces to prove the inequality for y = 1 to deduce the general case. Let θ = θ1.

By elementary computations, we get for x = x1 + ix2

∂1θ(x) =
2x1x2 + x1
|x|2|x+ 1|2

, ∂2θ(x) =
x21 − x22 − x2
|x|2|x+ 1|2

.
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Since |x+ 1| ≥ |x|
2 , we deduce

|∂1θ(x) ≤
12

|x|2
, |∂2θ(x)| =

12

|x|2
,

hence the result. □

Lemma 3.12. Let x, y, z ∈ R2 with |x| ∧ |y| ≥ 2|z|, then,

|0̂xz − 0̂yz| ≤ 24π|x− y||z|(|x| ∧ |y|)−2.

Proof. We assume without lossing generality that |y| ≥ |x|. Let γ be the path from x to y
obtained as follows. If the straight line segment from x to y does not intersect B|y| or intersects
it tangentially, then γ is that segment. Otherwise, let x′ be the intersection point other than
y. We then take γ be the concatenation of the segment [x, x′] with the smallest path γ′ from y
to x′ in ∂B|y| (or one the two such paths in the case when x′ and y are opposite points of this
circle). The path γ′ then as a length equal to π|x′ − y|, hence the length of γ is smaller than or
equal to π|x− y|. Thus,

|0̂xz − 0̂yz| ≤
∫

|γ̇t|| grad θz(γt)|dt ≤ π|x− y| sup
w∈Range(γ)

| grad θz(w)| ≤ 24π|x− y||z||x|−2,

where the last inequality follows from Lemma 3.11. □

In the following, for a subset A of R2, we set

dA := inf{|x| : x ∈ A}

Lemma 3.13. The following holds.

⋄ There exists a constant C such that for all z ∈ R2,

|δϵW (z)− δW (z)| ≤ 21|z|≤2|W1|+2Kφ
+ C(1 ∧ (|W1||z|−2)).

⋄ For all p ∈ (1,∞), there exists a constant such that for all ϵ ∈ (0, 1],

∥δϵW − δW ∥pLp ≤ C(1 + ∥W1∥2 + ϵp(1 + ∥W1∥)2−p).

In particular, supϵ∈(0,1] ∥δϵW − δW ∥Lp is �nite and in Lq(Ω) for all p ∈ (1,∞) and all

q ∈ [1,∞).
⋄ For all p, q ∈ [1,∞), there exists a constant C such that for all ϵ ∈ (0, 1], for all measur-
able subset A of R2,

E
[( ∫

A
|δϵW − δW ||δϵW ′ − δW |

)2]
≤ Cµ(A)2(1 ∧ d−8

A ).

Proof. For z inside the ball B2|W1|+2Kφ
, we simply bound |δϵW − δW | by 2.

For z outside this ball, we have

|δϵW (z)−δW (z)| ≤ sup
v∈BϵKφ

|0̂zW1− ̂0(z + v)W1| ≤ sup
v∈BϵKφ

24πϵKφ|W1|(|z|−ϵKφ)
−2 ≤ 96πϵKφ|W1||z|−2,

by lemma 3.12. Thus,

∥δϵW − δW ∥pLp ≤ 2p+2π(Kφ + |W1|)2 + (96πϵKφ)
p2π|W1|p

∫ ∞

2|W1|+2Kφ

r−2p+1 dr,

from which the second point follows.
As for the fourth point, the case dA ≤ 4Kφ follows from |δϵW − δW | ≤ 2 and we focus on the

case dA ≥ 4Kφ. Then, for all x, y ∈ A, the condition |x| ≤ 2|W1| + 2Kφ implies |W1| ≥ dA/4,
hence

E
[
|δϵW (x)− δW (x)||δϵW (y)− δW (y)|

]
≤ 8P(|W1| ≥

dA
4
) + 2C2E[|W1|2]d−4

A ≤ C ′d−4
A ,

from which it follows that

E
[( ∫

A
|δϵW −δW ||δϵW ′−δW ′ |

)2]
=

∫
A2

E
[
|δϵW (x)−δW (x)||δϵW (y)−δW (y)|

]2
dx dy ≤ C ′µ(A)2d−8

A .
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□

3.3. Local and global upper bounds for K̄.

Lemma 3.14. There exists a constant C such that for all measurable subset A,A′ of R2 with
�nite Lebesgue measures, for all ϵ, ϵ′ ∈ (0, 1], for all f, g ∈ L∞(R2),∣∣∣ ∫

A×A′
f(x)g(y)E[nϵ

W̄ (x)nϵ
W̄ (y)] dx dy

∣∣∣ ≤ ∥f∥∞∥g∥∞CE(A)E(A′),

where
E(A) := µ(A)(1 ∨ log(µ(A)−1))

1
4 .

The same hold for the 8 other inequalities when nϵ
W̄
(x) is replaced with either nϵ

W (x) or n̂ϵ
W (x)

and nϵ
W̄
(y) is replaced with either nϵ

W (y) or n̂ϵ
W (y).

Proof. We decompose nϵ
W̄
(x) = nϵ

W (x) + δϵ(x), and we bound the four integrals this give us
independently. First, we have∣∣∣ ∫

A×A′
f(x)g(y)E[nϵ

W (x)nϵ
W (y)] dx dy

∣∣∣ = E
[( ∫

A
f(x)nϵ

W (x) dx
)(∫

A′
g(y)nϵ

W (y) dy
)]

≤ E
[( ∫

A
f(x)nϵ

W (x) dx
)2] 1

2E
[( ∫

A′
g(y)nϵ

W (y) dy
)2] 1

2

≤ ∥f∥∞∥g∥∞
(∫

A2

K†(x− y) dx dy
) 1

2
(∫

A′2
K†(x− y) dx dy

) 1
2

≤ C∥f∥∞∥g∥∞µ(A)µ(A′)(1 ∨ log(µ(A)−1))
1
4 (1 ∨ log(µ(A′)−1))

1
4 ,

where the last inequality follows from Corollary 3.7 applied with p = 1.
Secondly, we have trivially∣∣∣ ∫

A×A′
f(x)g(y)E[δϵW (x)δϵW (y)] dx dy

∣∣∣ ≤ ∥f∥∞∥g∥∞µ(A)µ(A′).

Finally, we have by Hölder inequality in L2(Ω) and using the two previous bounds∣∣∣ ∫
A×A′

f(x)g(y)E[δϵW (x)nϵ
W (y)] dx dy

∣∣∣ ≤ E
[( ∫

A
f(x)δϵW (x) dx

)2] 1
2E

[( ∫
A′
g(y)nϵ

W (y) dy
)2] 1

2

≤
√
C∥f∥∞∥g∥∞µ(A)µ(A′)(1 ∨ log(µ(A′)−1))

1
4 ,

and by symmetry also∣∣∣ ∫
A×A′

E[f(x)g(y)nϵ
W (x)δϵW (y)] dx dy

∣∣∣√C∥f∥∞∥g∥∞µ(A)µ(A′)(1 ∨ log(µ(A)−1))
1
4 ,

which concludes the proof (the cases with n̂ are treated similarly). □

Now we will in two steps sharpen this estimation.

Lemma 3.15. There exists a constant C such that for any two measurable subsets A,A′ of R2

with �nite mass, for all ϵ, ϵ′ ∈ (0, 1), for all f, g ∈ L∞(R2),∫
A×A′

f(x)g(y)E[nϵ
W̄ (x)nϵ′

W̄ (y)] dx dy ≤ C∥f∥∞∥g∥∞e−
1
4
(dA∧dA′ )2E(A)E(A′),

where dX := inf{|x| : x ∈ X}.

Proof. Let τ be the �rst time when W exits the ball B centered at 0 and with radius (dA ∧
dA′) −Kφ, or τ = 0 if (dA ∧ dA′) −Kφ ≤ 0, or τ = 1 if ∥W∥∞,[0,1] < (dA ∧ dA′) −Kφ. This is

a stopping time, and it holds that both nϵ
W̄
(x) and nϵ′

W̄
(y) are equal to 0 in the event τ = 1.

Let W ′ : t ∈ [1 − τ ] 7→ Wt+τ , which by strong Markov property is the restriction to [1 − τ ]

of a Brownian motion W̃ ′ started from Wτ and independent from τ conditionally on Wτ . For
z, w ∈ R2, set rz(w) ∈ {−1, 0, 1} to be 0 for w outside the triangle with vertices 0, z,W1 , and
equal otherwise to ±1 depending on the orientation of this triangle, so that nϵ

W̄
= nϵ

W̄ ′ + rWτ .
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We get

E
[ ∫

A×A′
f(x)g(y)nϵ

W̄ (x)nϵ′

W̄ (y) dx dy
]

≤ P(τ < 1) sup
t∈[0,1],z∈∂B

Et,z

[ ∫
A×A′

f(x)g(y)(rWτ (x) + nϵ
W̄ ′(x)))(rWτ (y) + nϵ′

W̄ ′(y)) dx dy
]
.

Since r is bounded by 1, it holds

sup
t∈[0,1],z∈∂B

Et,z

[ ∫
A×A′

f(x)g(y)rWτ (x)rWτ (y) dx dy
]
≤ ∥f∥∞∥g∥∞µ(A)µ(A′).

By Lemma 3.14, and using scale and translation invariance to eliminate the supremum, we get

sup
t∈[0,1],z∈∂B

Et,z

[ ∫
A×A′

f(x)g(y)nϵ
W̄ ′(x)n

ϵ′

W̄ ′(y) dx dy
]
≤ C∥f∥∞∥g∥∞E(A)E(A′).

By using Hölder inequality we deduce

sup
t∈[0,1],z∈∂B

Et,z

[ ∫
A×A′

f(x)g(y)rWτ (x)n
ϵ′

W̄ ′(y) dx dy
]
≤

√
C∥f∥∞∥g∥∞µ(A)E(A′).

The lemma then follow from

P(τ ≤ 1) ≤ C ′e−c(dA∧dA′ )2 ,

for C ′ large enough, which follows from a succession of re�exion principle and invariance by
re�exion: say dA ≤ dA′ . Then,

P(τ ≤ 1) = P(∥W∥∞ ≥ dA) ≤ 2P(∥W 1∥∞ ≥ dA√
2
) ≤ 4P( sup

t∈[0,1]
W 1

t ≥ dA√
2
) = 4P(|W 1

1 | ≥
dA√
2
)

= 8P(W 1
1 ≥ dA√

2
) ≤ 4

√
2

πdA
e−

d2A
4 ,

from which the lemma follows (bounding instead this probability by 1 for say dA ≤ 1). □

Lemma 3.16. Let c < 1
8 . There exists a constant C such that for any two measurable subsets

A,A′ of R2 with �nite mass, and such that for all ϵ, ϵ′ ∈ (0, 1), for all f, g ∈ L∞(R2),∫
A×A′

f(x)g(y)E[nϵ
W̄ (x)nϵ′

W̄ (y)] dx dy ≤ C∥f∥∞∥g∥∞e−c(d2A+d2
A′ )E(A)E(A′).

Proof. It su�ces to notice∫
A×A′

f(x)g(y)E[nϵ
W̄ (x)nϵ′

W̄ (y)] dx dy = E
[( ∫

A
f(x)nϵ

W̄ (x) dx
)(
g(y)

∫
A′

nϵ′

W̄ (y) dy
)]
,

use Hölder inequality and the previous lemma 3.15. □

Remark 8. It is certainly possible to show that the subgaussian decay in |x| ∧ |y| holds directly
at the pointwise level, i.e. that

E[nϵ
W̄ (x)nϵ

W̄ (y)] ≤ Ce−2c(|x|2∧|y|2)(1 ∨ log(|x− y|−1))2.

We do believe that the stronger estimation also holds pointwise, i.e. that

E[nϵ
W̄ (x)nϵ

W̄ (y)] ≤ e−c(|x|2+|y|2)(1 ∨ log(|x− y|−1))2,

but that seem way more complicated to show.
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3.4. Local upper bounds for K̂.

Lemma 3.17. There exists a constant C such that for any two measurable subsets A,A′ of R2,
for all ϵ, ϵ′ > 0, for all f, g ∈ L∞(R2),∫

A×A′
f(x)g(y)E[n̂ϵ

W (x)n̂ϵ′
W (y)] dx dy ≤ C∥f∥∞∥g∥∞(1 ∧ d−2

A )(1 ∧ d−2
A′ )E(A)E(A′).

Proof. We assume without loosing generality that dA ≤ d′A. First notice if we replace n̂ϵ
W with

nϵ
W̄

then the result follows from Lemma 3.16. Recall nϵ
W̄

− n̂ϵ
W = δϵW − δW . By Lemma 3.13,∫

A×A′
f(x)g(y)E[(δϵW (x)− δW (x))(δϵ

′
W (y)− δW (y))] dx dy

≤ 4P(|W1| ≥ dA)∥f∥∞∥g∥∞µ(A)µ(A′) + C∥f∥∞∥g∥∞E[|W1|2]
∫
A×A′

|x|−2|y|−2 dx dy

≤ C ′∥f∥∞∥g∥∞(e−
d2A
4 + d−2

A d−2
A′ )µ(A)µ(A

′).

By Hölder inequality,∫
A×A′

f(x)g(y)E[(δϵW (x)− δW (x))(δϵ
′
W (y)− δW (y))] dx dy

≤ E
[( ∫

A
f(x)(δϵW (x)− δW (x)) dx

)2] 1
2E

[( ∫
A′
g(y)(δϵ

′
W (y)− δW (y)) dy

)2] 1
2

≤ C ′∥f∥∞∥g∥∞(e−
d2A
4 + d−4

A )
1
2 (e−

d2A
4 + d−4

A′ )
1
2µ(A)µ(A′)

≤ C ′′∥f∥∞∥g∥∞d−2
A d−2

A′ µ(A)µ(A
′).

Furthermore, using Hölder inequality again, we get∫
A×A′

f(x)g(y)E[(δϵW (x)− δW (x))nϵ
W̄ (y)] dx dy

≤ E
[( ∫

A
f(x)(δϵW (x)− δW (x)) dx

)2] 1
2E

[( ∫
A′
g(y)nϵ

W̄ (y) dy
)2] 1

2

≤ C3d
−1
A d−1

A′ ∥f∥∞∥g∥∞E− c
2
(d2A+d2

A′ )µ(A)E(A′) ≤ C4∥f∥∞∥g∥∞d−2
A d−2

A′ E(A)E(A′),

from which we conclude easily. □

Remark 9. With more subtle estimations using the symmetry of the molli�er, it should be
possible to improve the factor d−2

A d−2
A′ into d−3

A d−3
A′ , which in turn would imply that (x, y) 7→

E[n̂ϵ
W (x)n̂ϵ′

W (y)] is globally integrable whilst our estimations only allows to deduce it is in Lp

for all p > 1.

4. L2 convergence for the variables Y

In these sections we will consider the following random variables:

Y ϵ,ϵ′

W,W ′(f) :=

∫
R2

f(z)nϵ
W (z)nϵ′

W ′(z) dz,

Ŷ ϵ,ϵ′

W,W ′(f) :=

∫
R2

f(z)n̂ϵ
W (z)n̂ϵ′

W ′(z) dz,

Ȳ ϵ,ϵ′

W,W ′(f) :=

∫
R2

f(z)nϵ
W̄ (z)nϵ′

W̄ ′(z) dz.

As we will show, these are well-de�ned for W , W ′ two independent planar Brownian motions
with duration 1 and started from 0, ϵ, ϵ′ ∈ (0, 1], and for f a measurable function which belong

in Lr(R2), for r ∈ (1,∞) in the case of Y ϵ,ϵ′

W,W ′(f) and for r ∈ (1,∞] in the case of Ŷ ϵ,ϵ′

W,W ′(f) and

Ȳ ϵ,ϵ′

W,W ′(f), and we will show that these random variables converge in L2 as ϵ, ϵ′ → 0.
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The fact that Y ϵ,ϵ′

W,W ′(f) is in general ill-de�ned for f ∈ L∞(R2) is directly related to the lack

of global square-integrability of the function θ.5

4.1. The case of Lr-functions, r < 2.

Proposition 4.1. Let r ∈ (1, 2). For all f ∈ Lr(R2), Y ϵ,ϵ′

W,W ′(f) converges in L2(Ω), as ϵ, ϵ′ → 0.

The limit YW,W ′(f) satis�es

E[YW,W ′(f)2] =

∫
(R2)2

f(x)K(x, y)2f(y) dx dy.

Furthermore, Ŷ ϵ,ϵ′

W,W ′(f) and Ȳ
ϵ,ϵ′

W,W ′(f) also converges in L2 as ϵ, ϵ′ → 0 toward a common limit

ŶW,W ′(f).

Proof. We will prove convergence in L2(Ω) (e.g. for Y ϵ,ϵ′

W,W ′(f)) by showing the L2 distance

goes to 0 (e.g. dL2(Ω)(Y
ϵ1,ϵ2

W,W ′(f), Y
ϵ3,ϵ4

W,W ′(f)) −→
ϵi→0

0), so we �rst need to show that for any given

ϵ, ϵ′ ∈ (0, 1], Y ϵ,ϵ′

W,W ′(f) ∈ L2(Ω). Let q be such that q−1 + 2r−1 = 2. The condition r ∈ (1, 2)

ensures that q ∈ (1,∞). Let ϵ1, ϵ2, ϵ3, ϵ4 ∈ (0, 1]. First assume f takes non-negative values so
we can apply Tonelli's theorem to swap integration in space and in Ω. By (13),

E[Y ϵ1,ϵ2

W,W ′(f)Y
ϵ3,ϵ4

W,W ′(f)] = E
[( ∫

R2

f(x)nϵ1

W (x)nϵ2

W ′(x) dx
)( ∫

R2

f(y)nϵ3

W (y)nϵ4

W ′(y) dy
)]

=

∫
(R2)2

f(x)f(y)E[nϵ1

W (x)nϵ3

W (y)]E[nϵ2

W ′(x)nϵ4

W ′(y)] dx dy

≤ C2

∫
(R2)2

f(x)f(y)K∗(x, y)2 dx dy

≤ C ′
∫
(R2)2

f(x)f(y)K†(x− y)2 dx dy

≤ C ′′∥f∥2Lr∥K†∥2L2q <∞.

At the end we used Young's convolution inequality, and Corollary 3.7 to ensure the �niteness
∥K†∥L2q . Since this expectation is �nite, we can now repeat the same computation without the
assumption that f takes non-negative values, and where the �rst equality is now justi�ed by
Fubini's theorem.

In the process we have also shown that the function

(x, y) 7→ f(x)f(y)E[nϵ1

W (x)nϵ3

W (y)]E[nϵ2

W ′(x)nϵ4

W ′(y)]

is bounded in absolute value by a function independent from the ϵi ∈ (0, 1] and integrable

over (R2)2. Since we also know by (14) that E[nϵ′
W (x)nϵ′

W ′(y)] converges toward K(x, y), for all
x, y ∈ R2, the dominated convergence theorem ensures that

E[Y ϵ1,ϵ2

W,W ′(f)Y
ϵ3,ϵ4

W,W ′(f)] =

∫
(R2)2

f(x)f(y)E[nϵ1

W (x)nϵ3

W (y)]E[nϵ2

W ′(x)nϵ4

W ′(y)] dx dy

−→
ϵ,ϵ′→0

∫
(R2)2

f(x)f(y)K(x, y)2 dx dy,

from which we easily deduce that

E[(Y ϵ1,ϵ2

W,W ′(f)− Y ϵ3,ϵ4

W,W ′(f))
2] −→

ϵ1,ϵ2,ϵ3,ϵ4→0
0.

5This is not related to Remark 9.
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It follows from completness that Y ϵ,ϵ′

W,W ′(f) converges in L2(Ω) as ϵ, ϵ′ → 0. Furthermore, the

limit YW,W ′(f) satis�es

E[YW,W ′(f)2] = lim
ϵ,ϵ′→0

E[Y ϵ,ϵ′

W,W ′(f)
2] =

∫
(R2)2

f(x)f(y)K(x, y)2 dx dy.

Now we will deduce the convergence of Ŷ ϵ,ϵ′

W,W ′(f) and Ȳ
ϵ,ϵ′

W,W ′(f). First we show they belong

in L2(Ω). Recall the de�nition of δW and δϵW from (15).
It holds

Ŷ ϵ,ϵ′

W,W ′(f)− Y ϵ,ϵ′

W,W ′(f) =

∫
R2

f(x)
(
δW (x)nϵ′

W ′(x) + nϵ
W (x)δW ′(x) + δW (x)δW ′(x)

)
dx.

To estimate the last term, let p ∈ (4,+∞) be such that 2p−1+r−1 = 1, and use Hölder inequality,∣∣∣ ∫
R2

f(x)δW (x)δW ′(x) dx
∣∣∣ ≤ ∥f∥Lr(R2)∥δW ∥Lp(R2)∥δW ′∥Lp(R2).

By Lemma 3.10, the right-hand side is �nite and in L2(Ω).
Furthermore, using �rst the Cauchy-Schwarz inequality in L2((R2)2), then Young's convo-

lution inequality, then the Cauchy-Schwarz inequality in L2(R2) with s : s−1 + r−1 = 1, we
get

E
[( ∫

R2

f(x)δW (x)nϵ′
W ′(x) dx

)2] 1
2

=

∫
(R2)2

f(x)f(y)E[nϵ′
W ′(x)nϵ′

W ′(y)]E[δW (x)δW (y)] dx dy

≤ C
(∫

(R2)2
f(x)f(y)K†(x− y)2 dx dy

) 1
2
(∫

(R2)2
f(x)f(y)E[δW (x)δW (y)]2 dx dy

) 1
2

≤ C∥f∥Lr∥K†∥L2qE
[( ∫

R2

f(x)δW

)2] 1
2

≤ C∥f∥2Lr∥K†∥L2qE[∥δW ∥2sLs ]
1
2 . (16)

Since r < 2, s > 2 and Lemma 3.10 together with Corollary 3.7 ensure this last expression is

�nite, which �nally concludes the proof that Ŷ ϵ,ϵ′

W,W ′(f) − Y ϵ,ϵ′

W,W ′(f) ∈ L2(Ω), hence Ŷ ϵ,ϵ′

W,W ′(f) ∈
L2(Ω).

The proof that Ȳ ϵ,ϵ′

W,W ′(f) ∈ L2(Ω) is identical in every point, except all the δW and δW ′ must

be replaced with δϵW or δϵ
′
W ′ .

Furthermore, doing the same computation by with the δW and δW ′replaced with δϵW − δW
and δϵ

′
W ′ − δW ′ , we deduce

E(Ŷ ϵ,ϵ′

W,W ′(f)− Ȳ ϵ,ϵ′

W,W ′(f))
2] ≤ C ′∥f∥2Lr(E[∥δW − δϵW ∥2Lp(R2)∥δW ′ − δϵ

′
W ′∥2Lp(R2)]

+ ∥K†∥L2q(E[∥δW − δϵW ∥2sLs ]
1
2 + E[∥δW ′ − δϵ

′
W ′∥2sLs ]

1
2 ).

As δϵW converges toward δW when ϵ→ 0, and as ∥δW − δϵW ∥ is dominated by 4∥δW ∥, it follows
that

Ŷ ϵ,ϵ′

W,W ′(f)− Ȳ ϵ,ϵ′

W,W ′(f)
L2(Ω)−→
ϵ,ϵ′→0

0.

It only remains to show that the distance in L2(Ω) between Ŷ ϵ1,ϵ2

W,W ′(f) and Ŷ
ϵ3,ϵ4

W,W ′(f) converges

toward 0 as the ϵi goes to 0.
An elementary computation, using the fact that δW (z) do not depend on ϵ, shows that

Ŷ ϵ1,ϵ2

W,W ′(f)− Ŷ ϵ3,ϵ4

W,W ′(f) = Y ϵ1,ϵ2

W,W ′(f)− Y ϵ3,ϵ4

W,W ′(f) +

∫
R2

f(x)δW (x)(nϵ2

W ′(x)− nϵ4

W ′(x)) dx

−
∫
R2

f(x)δW ′(x)(nϵ1

W ′(x)− nϵ3

W ′(x)) dx.
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Since dL2(Ω)(Y
ϵ1,ϵ2

W,W ′(f), Y
ϵ3,ϵ4

W,W ′(f)) −→
ϵ1,ϵ2,ϵ3,ϵ4→0

0 and by symmetry between W and W ′, it su�ces

to show that

Rϵ,ϵ′ := E
[( ∫

R2

f(x)δW (x)(nϵ
W ′(x)− nϵ′

W ′(x)) dx
)2]

−→
ϵ,ϵ′→0

0.

Using �rst the independence between W and W ′, we deduce

Rϵ,ϵ′ ≤
∫
(R2)2

|f(x)f(y)||E[δW (x)δW (y)|
∣∣E[(nϵ

W ′(x)− nϵ′
W ′(x))(nϵ

W ′(y)− nϵ′
W ′(y))]

∣∣dx dy.
For all x and y,

E[(nϵ
W ′(x)− nϵ′

W ′(x))(nϵ
W ′(y)− nϵ′

W ′(y))] −→
ϵ,ϵ′→0

0

by (14). Besides,

|f(x)f(y)||E[δW (x)δW (y)|
∣∣E[(nϵ

W ′(x)− nϵ′
W ′(x))(nϵ

W ′(y)− nϵ′
W ′(y))]

∣∣
≤ 4|f(x)f(y)||E[δW (x)δW (y)|K†(x− y)2,

the integral of which is smaller than ∥f∥2Lr∥K†∥L2qE[∥δW ∥2sLs ]
1
2 by (16), hence is �nite. The

dominated convergence thus applies and shows that Rϵ,ϵ′ −→
ϵ,ϵ′→0

0, which concludes the proof of

the proposition.
□

4.2. Uniform intergability: the case of L∞ function.

Lemma 4.2. For all c < 1
2 , there exists a constant C such that for all measurable subset A of

R2 with �nite area, for all ϵ, ϵ′ ∈ (0, 1], for all f ∈ L∞(R2)

E[Ȳ ϵ,ϵ′

W,W ′(f1A)
2] ≤ C∥f∥2∞e−cd2Aµ(A)2(1 ∨ log(µ(A)−1))2.

Proof. In the event that either ∥W∥∞ < dA − Kφ or ∥W ′∥∞ < dA − Kφ, it holds that either

nϵ
W̄
(x) = 0 for all x ∈ A, or nϵ′

W̄
(x) = 0 for all xy ∈ A, and in both case it follows that

Ȳ ϵ,ϵ′

W,W ′(A) = 0.

In the complementary event, let τ (resp. τ ′) be the �rst time t when |Wt| = dA −Kφ (resp.
|W ′

t | = ρA/2), which are stopping times, or τ = τ ′ = 0 in the case dA ≤ Kφ. Let Wp be the
restriction of W to [0, τ ], and Wf be its restriction to [τ, 1]. By strong Markov property and
translation invariance of the winding function, we deduce that

nϵ
W̄ = nϵ

W̄p
+ nϵ

W̄f
+ φϵ ⋆ T0,Wτ ,W1 ,

where Ta,b,c(x) is equal to 0 for x outside the triangle delimited by a, b, c, and equal to ±1
otherwise, with the sign depending on the orientation of this triangle. In particular, ∥φϵ ⋆
Ta,b,c∥∞ ≤ 1 for any a, b, c . Since nϵ

W̄p
(x) = 0 for all x ∈ A, we get for x, y ∈ A

E[nϵ
W̄ (x)nϵ

W̄ (y)] =P(τ ≤ 1)
(
E[nϵ

W̄f
(x)nϵ

W̄f
(y)|τ ≤ 1] + E′[φϵ ⋆ T0,Wτ ,W1(x)n

ϵ
W̄f

(y)|τ ≤ 1]

+ E′[nϵ
W̄f

(x)φϵ ⋆ T0,Wτ ,W1(y)|τ ≤ 1] + E′[φϵ ⋆ T0,Wτ ,W1(x)φ
ϵ ⋆ T0,Wτ ,W1(y)|τ ≤ 1])

It follows that

E[Ȳ ϵ,ϵ′

W,W ′(f1A)
2] =

∫
A2

f(x)f(y)E[nϵ
W̄ (x)nϵ

W̄ (y)]2 dx dy

≤ 4∥f∥2∞P(τ ≤ 1)2 sup
t∈(0,1],

z∈∂BdA−Kφ

∫
A2

(
Et,z[n

ϵ
W̄ (x)nϵ

W̄ (y)]2 + Et,z[φ
ϵ ⋆ T0,z,Wt(x)n

ϵ
W̄f

(y)]2

+ Et,z[n
ϵ
W̄f

(x)φϵ ⋆ T0,z,Wt(y)]
2 + Et,z[φ

ϵ ⋆ T0,z,Wt(x)φ
ϵ ⋆ T0,z,Wt(y)]

2
)
dx dy.
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By scale invariance and translation invariance, and using Lemma 3.2, we get

sup
t∈(0,1],

z∈∂BdA−Kφ

|Et,z[n
ϵ
W̄ (x)nϵ

W̄ (y)]| ≤ CK†(x− y).

Using Corollary 3.7, we deduce

sup
t∈(0,1],

z∈∂BdA−Kφ

∫
A2

Et,z[n
ϵ
W̄ (x)nϵ

W̄ (y)]2 dx dy ≤ µ(A) sup
x∈A

∫
A
K†(v+x)2 dx ≤ Cµ(A)2(1∨log(µ(A)−1))2.

Since |T0,z,Wt | ≤ 1, we also have

sup
t∈(0,1],

z∈∂BdA−Kφ

∫
A2

E[φϵ ⋆ T0,z,Wt(x)φ
ϵ ⋆ T0,z,Wt(y)]

2 dx dy ≤ µ(A)2.

The crossed terms requires to juggle a bit in order to uncouple the two functions without creating
divergences:∫

A2

Et,z[n
ϵ
W̄f

(x)φϵ ⋆ T0,z,Wt(y)]
2 dxd y

=

∫
A2

E⊗2
t,z [n

ϵ
W̄f

(x)φϵ ⋆ T0,z,Wt(y)n
ϵ
W̄ ′

f
(x)φϵ ⋆ T0,z,W ′

t
(y)] dx dy

= E⊗2
t,z

[ ∫
A
nϵ
W̄f

(x)nϵ
W̄ ′

f
(x) dx

∫
A
φϵ ⋆ T0,z,Wt(y)φ

ϵ ⋆ T0,z,W ′
t
(y) dy

]
≤ E⊗2

t,z

[( ∫
A
nϵ
W̄f

(x)nϵ
W̄ ′

f
(x) dx

)2] 1
2E⊗2

t,z

[( ∫
A
φϵ ⋆ T0,z,Wt(y)φ

ϵ ⋆ T0,z,W ′
t
(y) dy

)2] 1
2

≤ Cµ(A)(1 ∨ log(µ(A)−1))µ(A).

We conclude the proof with a straightforward computation:

P(τ ≤ 1) = P(∥W∥∞ ≥ dA −Kφ) ≤ 2P(∥W 1∥∞ ≥ dA −Kφ√
2

) ≤ 4P( sup
t∈[0,1]

W 1
t ≥ dA −Kφ√

2
)

= 4P(|W 1
1 | ≥

dA −Kφ√
2

) = 8P(W 1
1 ≥ dA −Kφ√

2
) ≤ 4

√
2

π(dA −Kφ)
e−

(dA−Kφ)2

4 .

Since we can also bound this probably by 1, we conclude that for any c < 1
4 , for C large enough,

P(τ ≤ 1) ≤ Ce−cd2A

here the choice c < 1
4 rather than c = 1

4 allow for the gaussian term to kill the exponential term

which arise when we develop the square (dA −Kφ)
2. □

Corollary 4.3. For all c < 1
4 , there exists a constant C such that for all measurable subsets

A,A′ of R2 with �nite area, for all ϵ1, ϵ2, ϵ3, ϵ4 ∈ (0, 1], for all f, g ∈ L∞(R2)

E[Ȳ ϵ1,ϵ2

W,W ′(f1A)Ȳ
ϵ3,ϵ4

W,W ′(g1A′)] ≤ C∥f∥∞∥g∥∞e−c(d2A+d2
A′ )µ(A)µ(A′)(1∨log(µ(A)−1))(1∨log(µ(A′)−1)).

Proof. This follows directly from Hôlder inequality and Lemma 4.2. □

Lemma 4.4. There exists a constant C such that for all measurable subset A of R2 with �nite
area and such that dA > Kφ, for all ϵ, ϵ′ ∈ (0, 1], for all f ∈ L∞(R2)

E[Ŷ ϵ,ϵ′

W,W ′(f1A)
2] ≤ C∥f∥2∞(1 ∧ d−8

A )µ(A)2(1 ∨ log(µ(A)−1))2.

Proof. Using Lemma 4.2 and triangle inequality in L2(Ω), it su�ces to show that

E
[(
Ŷ ϵ,ϵ′

W,W ′(f1A)− Ȳ ϵ,ϵ′

W,W ′(f1A)
)2] ≤ C∥f∥2∞µ(A)2(1 ∧ d−8

A )µ(A)2(1 ∨ log(µ(A)−1))2.

The right-hand side is equal to

E
[( ∫

A
f(x)

(
n̂ϵ
W (x)n̂ϵ′

W ′(x)− nϵ
W̄ (x)nϵ′

W̄ ′(x)
)
dx

)2]
,
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which again we can bound by 3 times the sum

E
[( ∫

A
f(δW − δϵW )nϵ′

W̄ ′

)2]
+E

[( ∫
A
fnϵ

W̄ (δW ′ − δϵW ′)
)2]

+E
[( ∫

A
f(δW − δϵW )(δW ′ − δϵW ′)

)2]
.

To control the last one, we use the third point in Lemma 3.13, which gives

E
[ ∫

A
f(δW − δϵW )2 dx

]
≤ C2∥f∥2∞µ(A)2(1 ∨ d−8

A ).

The �rst and second are symmetric so we only treat the �rst. Using Cauchy-Schwarz inequality,
Lemma 3.13 and Lemma 4.2, we get

E
[( ∫

A
f(δW − δϵW )nϵ′

W̄ ′

)2]
=

∫
A2

f(x)f(y)E[(δW (x)− δϵW (x))(δW (y)− δϵW (y))]E[nϵ′

W̄ ′(x)n
ϵ′

W̄ ′(y)] dx dy

≤ C∥f∥2∞
(∫

A2

E[(δW (x)− δϵW (x))(δW (y)− δϵW (y))]2 dx dy
) 1

2
(∫

A2

E[[nϵ′

W̄ ′(x)n
ϵ′

W̄ ′(y]
2 dx dy

) 1
2

≤ C∥f∥2∞(1 ∧ d−4
A )e−cd2Aµ(A)2(1 ∨ log(µ(A)−1))

≤ C ′∥f∥2∞(1 ∧ d−8
A )µ(A)2(1 ∨ log(µ(A)−1)),

which concludes the proof. □

Corollary 4.5. For all δ > 0, there exists R < ∞ such that for all f ∈ L∞(R2), for all
ϵ, ϵ′ ∈ (0, 1],

E[Ŷ ϵ,ϵ′

W,W ′(f1R2\BR
)2] ≤ δ∥f∥2∞.

and

E[Ȳ ϵ,ϵ′

W,W ′(f1R2\BR
)2] ≤ δ∥f∥2∞.

Proof. First note that Ȳ ϵ,ϵ′

W,W ′(f) and Ŷ ϵ,ϵ′

W,W ′(f) are well-de�ned random variable for all f ∈
L∞(R2): indeed both nϵ

W̄
and nϵ

W̄ ′ are compactly supported and bounded, so there product

is integrable, which ensures that Ȳ ϵ,ϵ′

W,W ′(f) is well-de�ned. As for the fact that Ŷ ϵ,ϵ′

W,W ′(f) is
well-de�ned, it then follows from the fact that for z large enough,

nϵ
Ŵ
(z)nϵ

Ŵ ′(z)− nϵ
W̄ (z)nϵ

W̄ ′(z) = (nϵ
Ŵ
(z)− nϵ

W̄ (z))(nϵ
Ŵ ′(z)− nϵ

W̄ ′(z)) ≤ C|z|−4,

for a constant C which depends on φ, ϵ,W,W ′. This is enough to ensure integrability.
For k ≥ 0, set Ak = Bk+1 \ Bk, and fk = f1Ak

, so that f1R2\Bn
=

∑∞
k=n fk. Note dAk

= k,
and E(Ak) = µ(Ak) = 2π(k + 1/2).

Using the linearity of Ȳ ϵ,ϵ′

W,W ′ and Lemma 4.4, we deduce that

E[Ȳ ϵ,ϵ′

W,W ′(f1R2\Bn
)2] ≤

∞∑
j,k=n

E[Ȳ ϵ,ϵ′

W,W ′(fk)Ȳ
ϵ,ϵ′

W,W ′(fj)]

≤
∞∑

j,k=n

E[Ȳ ϵ,ϵ′

W,W ′(fk)
2]

1
2E[Ȳ ϵ,ϵ′

W,W ′(fj)
2]

1
2

≤ 4π2C∥f∥2∞
∞∑

k,j=n

(k + 1/2)(j + 1/2)k−4j−4.

The corollary thus follows from the fact this sum is �nite and goes to 0 as n→ ∞. □

Theorem 4.6. For all f ∈ L∞(R2), both Ȳ ϵ,ϵ′

W,W ′(f) and Ŷ ϵ,ϵ′

W,W ′(f) converges in L2(Ω), toward

the same limit ŶW,W ′(f).
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Proof. Let f ∈ L∞(R2). Corollary 4.5 ensures that for all ϵ, ϵ′ ∈ (0, 1), Ŷ ϵ,ϵ′

W,W ′(f) ∈ L2(Ω), so we

show that ∥Ŷ ϵ1,ϵ2

W,W ′(f) − Ŷ ϵ3,ϵ4

W,W ′(f)∥L2(Ω) goes to 0 as the ϵi goes to 0. Let δ > 0. By Corollary

4.5, there exists R such that for all ϵ, ϵ′ ∈ (0, 1],

∥Ŷ ϵ,ϵ′

W,W ′(f1R2\BR
)2∥L2(Ω) ≤

δ

4
.

Since f1BR
∈ Lr(R2) for all r ∈ (1, 2), hence for some arbitrary such r, Proposition 4.1

ensures that Ŷ ϵ,ϵ′

W,W ′(f1BR
) converges in L2(Ω) toward YW,W ′(f1BR

). It follows that there exists

ϵ0 such that for all ϵ, ϵ′in(0, ϵ0],

∥Ŷ ϵ,ϵ′

W,W ′(f1BR
)− YW,W ′(f1BR

)∥L2(Ω) ≤
δ

4

Thus, for ϵ1, ϵ2, ϵ3, ϵ4 ∈ (0, ϵ0],

∥Ŷ ϵ1,ϵ2

W,W ′(f)− Ŷ ϵ3,ϵ4

W,W ′(f)∥L2(Ω) ≤ ∥Ŷ ϵ1,ϵ2

W,W ′(f1BR
)− YW,W ′(f1BR

)∥L2(Ω) + ∥Ŷ ϵ1,ϵ2

W,W ′(f1R2\BR
)2∥L2(Ω)

+ ∥Ŷ ϵ3,ϵ4

W,W ′(f1R2\BR
)2∥L2(Ω) + ∥Ŷ ϵ3,ϵ4

W,W ′(f1BR
)− YW,W ′(f1BR

)∥L2(Ω) ≤ δ,

which ensures indeed the convergence of Ŷ ϵ,ϵ′

W,W ′(f). The convergence of Ȳ ϵ,ϵ′

W,W ′(f) is shown

identically. Furthermore, if the two a priori di�erent limits are denoted ŶW,W ′(f) and ȲW,W ′(f),

then it is easily checked that ∥ŶW,W ′(f)− ŶW,W ′(f1R)∥L2(Ω) goes to 0 as R→ ∞, but also that

∥ȲW,W ′(f) − ŶW,W ′(f1R)∥L2(Ω) goes to 0 as R → ∞ (recall that the limits in Proposition 4.1

are identical), from which we conclude that ŶW,W ′(f) = ȲW,W ′(f). □

5. Stretch-exponential moments

In this section we will prove that for all f ∈ L∞
c (R2), the convergence of Y ϵ,ϵ′

W,W ′(f) toward

YW,W ′(f) holds with all strech-exponential moment up to order 1, i.e. that for all η < 1,

E[exp(|YW,W ′(f)|η)] <∞ and E[exp(|Y ϵ,ϵ′

W,W ′(f)− YW,W ′(f)|η)] −→
ϵ,ϵ′→0

0.

Our overall strategy is rather standard. Since we have already shown the L2 convergence of

Y ϵ,ϵ′

W,W ′(f), we only need to show the stretch-exponential moments are �nite and bounded inde-

pendently from ϵ, ϵ′, i.e. that

∀η < 1, f ∈ L∞
c (R2), sup

ϵ,ϵ′>0
E[exp(|Y ϵ,ϵ′

W,W ′(f)|η)] <∞.

To this end, we will show that for all δ > 0 and f ∈ L∞
c (R2), there exists a constant C such that

∀k ∈ N, sup
ϵ,ϵ′>0

E[Y ϵ,ϵ′

W,W ′(f)
2k] ≤ C((2k)!)1+δ,

which is su�cient to conclude by choosing δ such that (1 + δ)η < 1.
Setting

Y ϵ,ϵ′

s,t (f) := Y ϵ,ϵ′

W|[0,s],W
′
|[0,t]

(f),

we will see that t 7→ Y ϵ,ϵ′

t,t (f) is a continuous martingale. Through the Burkholder inequality, in

its version with the constants depending explicitly on k, the moment of order 2k of Y ϵ,ϵ′

W,W ′(f) is

thus controlled by the moment of order k of the corresponding quadratic variation.
We write ⟨M⟩s the value at time s of the quadratic variation of a continuous semimartingale

M .
For a positive integer k, we set ξk the optimal constant in the Burkholder inequality, i.e. the

optimal constant such that for any continuous martingale M ,

E[Mk
t ] ≤ ξkkE[⟨M⟩

k
2 ].

It has been shown in [2] that ξk is the value of the highest zero of the Hermite polynomial of

order k. It is known that this value is asymptotically equivalent to
√
2k as k → ∞, and is in fact
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smaller than
√
2k for all k (see e.g. Theorem 2, Equation (1.5) in [3] for a much more accurate

estimation which implies this one).

Lemma 5.1. Let f ∈ L∞
c (R2). For all t, ϵ, ϵ′ ∈ (0, 1], the random variable Y ϵ,ϵ′

t,t (f) is given by

Y ϵ,ϵ′

t,t (f) =

2∑
i=1

∫ t

0

(∫
R2

ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z)f(z) dz

)
dW i

s +
(∫

R2

nϵ
W,s(z)ψ

z,ϵ′

i (W ′
s)f(z) dz

)
dW ′i

s .

In particular, t ∈ (0, 1] 7→ Y ϵ,ϵ′

t,t (f) is an L2-bounded martingale. Its quadratic variation is given
by

⟨Y ϵ,ϵ′
·,· (f)⟩t =

∫ t

0

∫
(R2)2

nϵ
W,s(z)n

ϵ
W,s(w)⟨ψz,ϵ′(W ′

s), ψ
w,ϵ′(W ′

s)⟩f(z) dzf(w) dw ds

+

∫ t

0

∫
(R2)2

⟨ψz,ϵ(Ws), ψ
w,ϵ(Ws)⟩nϵ′

W ′,s(z)n
ϵ′
W ′,s(w)f(z) dzf(w) dw ds.

This is merely a question of swapping integrals, for which we will use the stochastic Fubini
theorem given by [9, Theorem 2.2]. For convenience we simplify it our situation:

Theorem 5.2 (Special case of [9, Theorem 2.2]). Let W be a Brownian motion with respect to
some �ltration F , and µ a σ-�nite measure on R2. Let ψ : R2 × [0, 1] × Ω be F-progressively
measurable and such that almost surely,∫

R2

(∫ 1

0
|ψ(x, t)|2 dt

) 1
2
dµ <∞.

Then, almost surely, for all t ∈ [0, 1],∫
R2

∫ t

0
ψ(x, s) dWsµ( dx) =

∫ t

0

∫
R2

ψ(x, s)µ( dx) dWs,

where both sides are measurable with respect to Ft.

Proof of Lemma 5.1. For t ∈ (0, 1], let Ft be the σ-algebra generated by Ft(W )∪Ft(W
′), where

(Ft(W
′))t (resp. (Ft(W ))t) is the canonical �ltration associated with W (resp. W ′ ). Let

F = (Ft)t.

We apply the stochastic Fubini theorem to the process ψ(z, t) := ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z), the mea-

sure µ := f dz, the Brownian motion t 7→ W i
t and with the �ltration (Fs,u)u∈[0,1]. For all t, the

random function z 7→ ψ(z, t) is continuous in z. For each z, it is progressively measurable in u.
Since R2 is separable, it follows that (z, t) 7→ ψ(z, t) is progressively measurable (in the sense of
[9]). The integrability condition necessary to apply Theorem 5.2 is∫

R2

(∫ 1

0
|ψz,ϵ

i (Ws)n
ϵ′
W ′,s(z)|2 dt

) 1
2
f(z) dz <∞,

which is easily checked since f is compactly supported and bounded, and |ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z)| is

bounded in s and z. It follows that almost surely, for all t ∈ [0, 1],∫ t

0

(∫
R2

ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z)f(z) dz

)
dW i

u =

∫
R2

(∫ t

0
ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z) dW

i
u

)
f(z) dz, (17)

and both sides are measurable with respect to Ft.
A similar computation, with the role of W and W ′ inverted, gives∫ t

0

(∫
R2

nϵ
W,s(z)ψ

z,ϵ′

i (W ′
s)f(z) dz

)
dW ′i

u =

∫
R2

(∫ t

0
nϵ
W,s(z)ψ

z,ϵ′

i (W ′
s) dW

′i
u

)
f(z) dz. (18)

By Ito's formula for a product of martingales, for all z ∈ R2, the martingale M z : t 7→
nϵ
W,t(z)n

ϵ′
W,t(z) satis�es

M z
t =

2∑
i=1

∫ t

0

(
ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z) dW

i
s + nϵ

W,s(z)ψ
z,ϵ′

i (W ′
s) dW

′i
s

)
.
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Integrating over z with respect to f dz gives

Y ϵ,ϵ′

t,t (f) =
2∑

i=1

(∫
R2

(∫ t

0
ψz,ϵ
i (Ws)n

ϵ′
W ′,s(z) dW

i
u

)
f(z) dz+

∫
R2

(∫ t

0
nϵ
W,s(z)ψ

z,ϵ′

i (W ′
s) dW

′i
u

)
f(z) dz

)
,

which together with (17) and (18) gives the equality we were searching for.
The second formula in the lemma follows easily:

⟨Y ϵ,ϵ′
·,· (f)⟩t =

2∑
j=1

∫ t

0

(∫
R2

nϵ
W,s(x)ψ

x,ϵ′

j (W ′
s)f(x) dx

)2
ds+

2∑
i=1

∫ t

0

(∫
R2

ψx,ϵ
j (Ws)n

ϵ′
W ′,s(x)f(x) dx

)2
ds

=

∫ t

0

∫
(R2)2

nϵ
W,s(x)n

ϵ
W,s(y)⟨ψx,ϵ′(W ′

s)|ψy,ϵ′(W ′
s)⟩f(x)f(y) dx dy ds

+

∫ t

0

∫
(R2)2

⟨ψx,ϵ(Ws)|ψy,ϵ(Ws)⟩nϵ′
W ′,s(x)n

ϵ′
W ′,s(y)f(x)f(y) dx dy ds,

which concludes the proof. □

Remark 10. The computation we do below actually shows that the integrability condition to
apply Theorem 5.2 is in fact satis�ed for all f ∈ Lp(R2), and so Lemma 5.1, as well as Lemma 5.5
below, extend to such functions. We simply thought it would be odd to dive into estimations of
a rather complicated functional without showing �rst that this functional is in fact the quadratic
variation of the random variable we are interested in in the �rst place.

In order to simplify some expressions, we use the notations t0 = 0R, and z0 = 0R2 .

Lemma 5.3. Let q ∈ (1, 2). There exists C < ∞ such that for all ϵ, ϵ′ ∈ (0, 1], for all k ∈ N,
for all 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ 1, for all f ∈ Lq(R2),∫
(R2)2k

E
[ k∏
i=1

⟨ψxi,ϵ(Wti), ψ
yi,ϵ

′
(Wti)⟩

]2( k∏
i=1

f(xi)f(yi) dxi dyi

)
≤ Ck∥f∥2kLq(R2)

k∏
i=1

(ti−ti−1)
1− q

2(q−1) .

Proof. Let p > 2 be such that p−1 + q−1 = 1. For s > 0, a ∈ R2, let

Rs,a(x, y, w) =
ps(0, w)

|x− a− w||y − a− w|
f(x)f(y).

Then, by Lp − Lq inequality in (R2)2,∫
R3

Rs,a(x, y, w) dx dy dw =

∫
R2

K∗
s (x

′, y′)f(x′ + a)f(y′ + a) dx′ dy′ ≤ ∥K∗
s∥Lp((R2)2)∥f∥2Lq(R2).

By disintegration, then Lemma 3.1, then making the change of variables wi = zi − zi−1 and
writing ai :=

∑
j<iwj to shorten notations, we get

E
[ k∏
i=1

⟨ψxi,ϵ(Wti), ψ
yi,ϵ(Wti)⟩

]
=

∫
(R2)k

k∏
i=1

(
pti−ti−1(zi−1, zi)⟨ψxi,ϵ(zi), ψ

yi,ϵ(zi)⟩ dzi
)

≤ C2k
φ

∫
(R2)k

k∏
i=1

(pti−ti−1(zi−1, zi)

|xi − zi||yi − zi|
dzi

)
= C2k

φ

∫
(R2)k

k∏
i=1

( pti−ti−1(0, wi)

|xi − ai − wi||yi − ai − wi|
dwi

)
,

thus

E
[ k∏
i=1

⟨ψxi,ϵ(Wti), ψ
yi,ϵ(Wti)⟩

]( k∏
i=1

f(xi)f(yi)
)
≤ C2k

φ

∫
(R2)k

k∏
i=1

(
Rti−ti−1,ai(xi, yi, wi) dwi

)
.
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Integrating over the xi's and yi's, we get∫
(R2)2k

E
[ k∏
i=1

⟨ψxi,ϵ(Wti), ψ
yi,ϵ(Wti)⟩

]( k∏
i=1

f(xi)f(yi) dxi dyi

)
≤ C2k

φ

∫
(R2)3k

k∏
i=1

(
Rti−ti−1,ai(xi, yi, wi) dxi dyi dwi

)
≤ C2k

φ ∥f∥2kLq(R2)

k∏
i=1

∥K∗
ti−ti−1

∥Lp((R2)2)

≤ CpC
2k
φ ∥f∥2kLq(R2)

k∏
i=1

(ti − ti−1)
1− p

2 (by Lemma 3.9).

which concludes the proof. □

For a non-negative integer k, de�ne the tetrahedra

Tk = {(t1, . . . , tk) ∈ [0, 1]k : t0 ≤ t1 ≤ · · · ≤ tk}, and T̃k = {(u1, . . . , uk) ∈ [0, 1]k :
k∑

i=1

ui ≤ 1}.

Lemma 5.4. Let s > −1. There exists Cs <∞ such that for all k ∈ N \ {0},∫
Tk

k∏
i=1

(ti − ti−1)
s dt1 . . . dtk =

∫
T̃k

k∏
i=1

usi du1 . . . duk =
Γ(1 + s)k

Γ(1 + k(1 + s))
≤ Ck

s k
−k(1+s).

Proof. The �rst equality is a simple change of variable ui = ti − ti−1.
For the bound, we set

f(k, t) :=

∫
tT̃k

k∏
i=1

usi du1 . . . duk

for t > 0 and k ∈ N. The change of variables u′i = t−1ui gives f(k, t) = t(1+s)kf(k, 1). Isolating

the last variable u = uk+1 in T̃k+1, we get

f(k+1, 1) =

∫ 1

0
usf(k, 1−u) du = f(k, 1)

∫ 1

0
us(1−u)(1+s)k du = f(k, 1)

Γ(1 + s)Γ(1 + k(1 + s)

Γ(1 + (k + 1)(1 + s))
,

from which we deduce

f(k, 1) =
k−1∏
j=0

Γ(1 + s)Γ(1 + j(1 + s)

Γ(1 + (j + 1)(1 + s))
=

Γ(1 + s)k

Γ(1 + k(1 + s))
.

The upper bound at the end follows from Stirling's approximation. □

Lemma 5.5. Let q ∈ (65 , 2). There exists C < ∞ such that for all ϵ, ϵ′ ∈ (0, 1], for all k ∈ N,
for all f ∈ L∞

c (R2),

E[Y ϵ,ϵ′

W,W ′(f)
2k] ≤ Ck∥f∥2kLq(R2)k

k(1+ q
2(q−1)

)
.

Proof. Using Lemma 5.1 to see Y ϵ,ϵ′

W,W ′(f) as the value at time 1 of a martingale, and using
Burkholder inequality, we get

E[Y ϵ,ϵ′

W,W ′(f)
2k] ≤ (2k)kE[⟨Y ϵ,ϵ′

·,· (f)⟩k1].

The quadratic variation on the right-hand side is given as the sum of two terms, symmetric with
respect to each other,

⟨Y ϵ,ϵ′
·,· (f)⟩ = Aϵ,ϵ′

W,W ′(f)+A
ϵ′,ϵ
W ′,W (f), E[Y ϵ,ϵ′

W,W ′(f)
2k] ≤ 2k−1(2k)k(E[Aϵ,ϵ′

W,W ′(f)
k]+E[Aϵ′,ϵ

W ′,W (f)k]).
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This terms are given by Lemma 5.1. In particular,

E[Aϵ,ϵ′

W,W ′(f)
k] = E

[( ∫ 1

0

∫
(R2)2

nϵ
W,s(x)n

ϵ
W,s(y)⟨ψx,ϵ′(W ′

s), ψ
y,ϵ′(W ′

s)⟩f(x)f(y) dx dy ds
)k]

= k!

∫
Tk

∫
(R2)2k

E
[ k∏
i=1

nϵ
W,ti(xi)n

ϵ
W,ti(yi)

]
E
[ k∏
i=1

⟨ψxi,ϵ
′
(W ′

ti), ψ
yi,ϵ

′
(W ′

ti)⟩
]

k∏
i=1

(f(xi)f(yi) dxi dyi) dt1 . . . dtk

≤ k!

∫
Tk

(∫
(R2)2k

E
[ k∏
i=1

nϵ
W,ti(xi)n

ϵ
W,ti(yi)

]2 k∏
i=1

(f(xi)f(yi) dxi dyi)
) 1

2

(∫
(R2)2k

E
[ k∏
i=1

⟨ψxi,ϵ
′
(W ′

ti), ψ
yi,ϵ

′
(W ′

ti)⟩
]2 k∏

i=1

(f(xi)f(yi) dxi dyi)
) 1

2
dt1 . . . dtk.

The second equality has been obtained by simply developing the power and then ordering the
time variables (hence the factor k!). We already control the second part in this last equation
with Lemma 5.3. For the �rst part, we remark that∫

(R2)2k
E
[ k∏
i=1

nϵ
W,ti(xi)n

ϵ
W,ti(yi)

]2 k∏
i=1

(f(xi)f(yi) dxi dyi) = E[
k∏

i=1

Y ϵ,ϵ
ti,ti

(f)2] ≤
k∏

i=1

E[Y ϵ,ϵ
ti,ti

(f)2k]
1
k

≤ E[Y ϵ,ϵ
W,W ′(f)

2k].

The last inequality follows for example from the fact t 7→ Y ϵ,ϵ
t,t (f) is a martingale. Using now

Lemma 5.3, we end up with

E[Aϵ,ϵ′

W,W ′(f)
k] ≤ k!

∫
Tk

Ck∥f∥kLq(R2)

k∏
i=1

(ti − ti−1)
1
2
− q

4(q−1)E[Y ϵ,ϵ
W,W ′(f)

2k]
1
2 . (19)

Applying this to ϵ = ϵ′, we get

E[Y ϵ,ϵ
W,W ′(f)

2k] ≤ (4C)k∥f∥kLq(R2)k
k(k!)E[Y ϵ,ϵ

W,W ′(f)
2k]

1
2

∫
Tk

k∏
i=1

(ti − ti−1)
1
2
− q

4(q−1) dt1 . . . dtk

≤ Ck
q ∥f∥kLq(R2)k

kk!E[Y ϵ,ϵ
W,W ′(f)

2k]
1
2k

−k( 3
2
− q

4(q−1)
)

(by Lemma 5.4).

and it follows that
E[Y ϵ,ϵ

W,W ′(f)
2k] ≤ C ′

q
k∥f∥2kLq(R2)k

k(1+ q
2(q−1)

)
.

We can now plug this bound (and the identical one with both ϵ replaced by ϵ′) into (19), and

deduce that E[Y ϵ,ϵ′

W,W ′(f)2k] satis�es the same type of estimation (with now ϵ ̸= ϵ′). □

Corollary 5.6. For all η < 1 and f ∈ L∞
c (R2),

E[exp(|YW,W ′(f)|η)] <∞ and E[exp(|Y ϵ,ϵ′

W,W ′(f)− YW,W ′(f)|η)] −→
ϵ,ϵ′→0

0.

Proof. Since we have proved that Y ϵ,ϵ′

W,W ′(f) converges in L2(Ω) toward Y ϵ,ϵ′

W,W ′(f), it su�ces to
show that

sup
ϵ,ϵ′∈(0,1]

E[exp(|Y ϵ,ϵ′

W,W ′(f)|η)] <∞

for all η, f . It then su�ces to expand the exponential into a sum, swap the sum with the
expectation, and use the estimation provided by Lemma 5.5 for the polynomial moments, taking
q < 2 su�ciently close to 2 so that

1 +
q

2(q − 1)
<

2

η
,

which is possible for η < 1. □
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6. Convergence for the recentred variable X

In this section we study the random variables

Xϵ
W :=

∫
R2

n̂ϵ
W (z)2 dz and X̃ϵ

W := Xϵ
W − E[Xϵ

W ].

We will show that the latter converges in L2(Ω), as ϵ→ 0, with a limit independent of the initial
molli�er. We also make an asymptotical estimation of E[Xϵ

W ].
To this end, we will decompose Xϵ

W in a way reminiscent of Paul Lévy's construction of the
Lévy area or Varadhan's construction of the renormalised self-intersection local time. Because
of the infrared divergences, we must work with the integer-valued winding functions n̂ rather
than n. Since these functions n̂ are not exactly additive under concatenation of curves (we must
add a part corresponding to the triangle between the 3 endpoints of the 2 concatenated curves),
the iterative decomposition of Xϵ

W contains more terms than the iterative decomposition of the
Lévy area or the renormalised self-intersection local time: these are the terms Tk,j and Z

ϵ
k,j we

will soon de�ne.

Lemma 6.1. For all ϵ > 0, the random variable Xϵ
W is well-de�ned and �nite almost surely,

and lies in L2(Ω).

Proof. The fact it is well-de�ned and �nite is given by Corollary 2.3. Its L2(Ω) norm is equal to∫
(R2)2

E[n̂ϵ(z)2n̂ϵ(w)2] dz dw.

By Burkholder inequality and Ito isometry, we get

E[nϵ
W (z)4] ≤ CE

[( ∫ 1

0
|ψx,ϵ

Wt
|2 dt

)2]
Using Hardy�Littlewood inequality, and Lemma 3.1, Item (3), we deduce that for a constant

C which only depends on the molli�er ϕ∫ t

0

∫
R2

pu(z, w)|ψx,ϵ
w |2 dw du ≤ C

∫ t

0

∫
R2

pu(0, w)

ϵ2 + |w|2
dw du

=
C

2

∫ 2ϵ−2t

0

e
1
vΓ(0, 1v )

v
dv.

The integrand is smaller than 1 on R+, and thus

E0[n
ϵ
W (x)4] ≤ 2C

∫ 1

0

∫ t

0
E
[
|ψx,ϵ

Ws
|2|ψx,ϵ

Wt
|2
]
ds dt

≤ C ′
∫ 2ϵ−2

0

∫ 2ϵ−2t

0

e
1
sΓ(0, 1s )

s

e
1
t Γ(0, 1t )

t
ds dt

≤ C ′′ϵ−4.

It follows that E0[n̂
ϵ
W (x)4] ≤ C(3)(1 + ϵ−4), for a constant C(3) independent from x, ensuring

that for any given compact K,∫
K2

E[n̂ϵ(z)2n̂ϵ(w)2] dz dw < Cϵ vol(K)2.

One passes to (R2)2 with technics similar to the one we have used to prove Lemma 3.17. □

Remark 11. With a lot of re�nement revolving around the previous computation, it is in fact
possible to show that

E[(Xϵ
W )2] ≤ log(ϵ−1)2

4π2
(1 + o(1)),

and even to estimate the error term rather nicely, which would be su�cient (together we �rst

moment estimation) to show that Xϵ
W ∼ log(ϵ−1)

2π . However, the Varadhan-type decomposition
of Xϵ

W we are about to prove gives in fact an even better estimation.
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6.1. Iterative decomposition of Xϵ
W . We use a parameter s which always varies in [1, 2].

We de�ne M the set of couples (k, j), where k is a non-negative integer, j is a positive integer
and j ≤ 2k. For such a couple, we set Wk,j the restriction of W to [2−k(j − 1), 2−kj]. For all
(k, j) ∈ M, Wk,j is equal to the concatenation of Wk+1,2j−1 and Wk+1,2j .

For four points x, y, z, o ∈ R2, let δx,y,z(o) ∈ {−2π, 0, 2π} be de�ned by

δx,y,z(o) := x̂oy + ŷoz + ẑox,

or equivalently
x̂oz = x̂oy + ŷoz − δx,y,z(o)

Let then δk,j be the function

δk,j := δW
2−k(j−1)

,W
2−k−1(2j−1)

,W
2−kj

.

We then de�ne

Xϵ
k,j :=

∫
R2

n̂ϵ
Wk,j

(z)2 dz, Xϵ
W = Xϵ

0,1

Y ϵ
k,j := Ŷ ϵ,ϵ

Wk+1,2j−1,Wk+1,2j
(1) =

∫
R2

n̂ϵ
Wk+1,2j−1

(z)n̂ϵ
Wk+1,2j

(z) dz,

Tk,j :=

∫
R2

δk,j(z)
2 dz,

Z1,ϵ
k,j :=

∫
R2

δk,j(z)n̂
ϵ
Wk+1,2j−1

(z) dz, Z2,ϵ
k,j :=

∫
R2

δk,j(z)n̂
ϵ
Wk+1,2j

(z) dz,

Y ++,ϵ
k,j :=

∫
R2

|n̂ϵ
Wk+1,2j−1

(z)n̂ϵ
Wk+1,2j

(z)|dz,

Z++,ϵ
k,j :=

∫
R2

|δk,j(z)(n̂ϵ
Wk+1,2j−1

(z) + n̂ϵ
Wk+1,2j

(z))|dz,

Zϵ
k,j := Z1,ϵ

k,j + Z2,ϵ
k,j , Z1,ϵ

W = Z1,ϵ
0,1, Z2,ϵ

W = Z2,ϵ
0,1, Zϵ

W = Zϵ
0,1.

For each of these quantities Ak,j , we also set Ãk,j = Ak,j − E[Ak,j ].

Lemma 6.2. For all ϵ > 0 and (k, j) ∈ M, all these quantities are well-de�ned, and lies in
L2(Ω).

Proof. The fact Tk,j is well-de�ned is clear. It lies in L2(Ω) by subexponential decay, as |Tk,j | ≤
|N1||N2| for two Gaussian random variables N1, N2.

The fact Xϵ
k,j is well-de�ned and in L2(Ω) follows from Lemma 6.1 by a scaling argument.

The fact Y ++,ϵ
k,j and Z++,ϵ

k,j are well-de�ned and in L2(Ω) then follows from Cauchy�Schwarz

inequality in L2(R2 × Ω):

E[(Y ++,ϵ
k,j )2] ≤ E[(Xϵ

k+1,2j−1)
2]

1
2E[(Xϵ

k+1,2j)
2]

1
2 <∞,

E[(Z++,ϵ
k,j )2] ≤ 2E[T 2

k,j ]
1
2 (E[(Xϵ

k+1,2j−1)
2]

1
2 + E[(Xϵ

k+1,2j)
2]

1
2 ) <∞.

The fact Y ϵ
k,j and Z

ϵ
k,j are well-de�ned and in L2(Ω) follows directly. □

The point of these de�nitions is that the relation of concatenationWk,j =Wk+1,2j−1 ·Wk+1,2j ,
gives the pointwise equality

n̂ϵ
Wk,j

(z) = n̂ϵ
Wk+1,2j−1

(z) + n̂ϵ
Wk+1,2j

(z)− δk,j ,

from which it follows that

Xϵ
k,j = Xϵ

k+1,2j−1 +Xϵ
k+1,2j + 2Y ϵ

k,j + Tk,j − 2Zϵ
k,j .

Iterating over k, we deduce that for any integer n,

Xϵ
W =

2n∑
j=1

Xϵ
n,j +

n−1∑
k=0

2k∑
j=1

Tk,j + 2
n−1∑
k=0

2k∑
j=1

Y ϵ
k,j − 2

n−1∑
k=0

2k∑
j=1

Zϵ
k,j . (20)
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In the following, we use this decomposition with n ∝ log(ϵ−1) in order to deduce the L2 con-
vergence of Xϵ

W . As we will now prove, the contribution of the �rst sum will vanish in the limit
ϵ→ 0, but the other three do contribute to the limit.

6.2. L2 convergence.

Lemma 6.3. As n→ ∞,

sup
s∈[1,2]

∥∥∥ 2n∑
j=1

X̃s2−n/2

n,j

∥∥∥
L2(P)

−→ 0.

Furthermore,
∑n−1

k=0

∑2n

j=1 T̃k,j converges in L2(P).

Proof. By Brownian scaling, we easily obtain the equality in distribution

Xϵ
n,j = 2−nX2n/2ϵ

W .

Taking ϵ = s2−n/2, we get in particular Var(Xs2−n/2

n,j ) = 2−2nVar(Xs
W ) < ∞. Furthermore, by

Markov property of the Brownian motion, the family (Xs2−n/2

n,j )j is a family of i.i.d. random

variables which varies continuously in s. Setting X̃s
n :=

∑2n

j=1 X̃
s2−n/2

n,j , we deduce that,

sup
s∈[1,2]

Var(X̃s
n) = O(2−n),

hence the �rst point.

As for the second point, let Tk :=
∑2k

j=1 Tk,j . We similarly obtain that for any given k, the

family (Tk,j)j is a family of i.i.d. random variables, with Tk,j
(d)
= 2−kT0,1, hence

Var
(
Tk

)
≤ C2−k.

Since this is summable over k, we deduce the second convergence. □

Lemma 6.4. For all ϵ > 0 and (k, j) ∈ M, E[Y ϵ
k,j ] = 0.

Proof. Let

f(x) := n̂ϵ
Wk+1,2j−1

(x)n̂ϵ
Wk+1,2j

(x).

Since Y ++,ϵ
k,j is in L1(Ω), we can apply Fubini's theorem,

E[Y ϵ
k,j ] =

∫
R2

E[f(z)] dz,

so it su�ces indeed to show that for all x ∈ R2, f(x)
(d)
= −f(x). Assume (k, j) = (0, 1) for

simplicity. Otherwise, replace the times 0, 12 , 1 respectively with 2−(k+1)(2j−2), 2−(k+1)(2j−1)

and 2−(k+1)(2j). It su�ces then to apply the re�ection principle to the Brownian motion W̃ :

t ∈ [0, 1/2] 7→ W (1/2 + t), with re�ection on the axis (W̃ (1/2), x). Letting W̃ † be the re�ected

Brownian motion, we have (W1,1, W̃ )
(d)
= (W1,1, W̃

†), but n̂ϵ
W̃ †(x) = −n̂ϵ

W̃
(x), which su�ces to

conclude. □

Remark 12. Let us emphasize that the symmetry f(x)
(d)
= −f(x) is true for each x individually

but not jointly. The couple (f(x), f(y)), for example, is not symmetric in distribution when
x ̸= y. Consequently, the random variables Y ϵ

k,j themself are not symmetric in distribution.

By Theorem 4.6, for any �xed (k, j) ∈ M, the random variable Y ϵ
k,j converges in L2(P), as

ϵ → 0, and we de�ne Yk,j as the limit, which has a vanishing mean. Applying translation and
scale invariance, as well as the Markov property, as �xed ϵ > 0 before taking the limit, we deduce

that the family (Yk,j)j is also a family of i.i.d. random variables, for each �xed k, with Yk,j
(d)
=

2−kY0,1, and it follows from summability of the variances that the sum Y :=
∑∞

k=0

∑2k

j=1 Yk,j is

well-de�ned in L2(P).
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Lemma 6.5. As n → ∞, Y s
n :=

∑n−1
k=0

∑2k

j=1 Y
s2−n/2

k,j converges toward Y , and the convergence

is uniform over s ∈ [1, 2] in the sense that

sup
s∈[1,2]

∥Y s
n − Y ∥L2(P) −→

n→∞
0.

Proof. The convergence in L2(P) of Y ϵ
k,j toward Yk,j as ϵ → 0 is equivalent to the convergence

in L2(P), uniformly over s ∈ [1, 2], of Y s2−n/2

k,j toward Yk,j as n→ ∞.

Hence, for any given integer n0, uniformly over s ∈ [0, 1], as n → ∞, the �nite sum∑n0−1
k=0

∑2k

j=1 Y
s2−n/2

k,j converges in L2(P) toward
∑n0−1

k=0

∑2k

j=1 Yk,j .

It only remains to show that for all δ > 0, there exists an integer n0 such that for all s ∈ [1, 2]
and for all n ≥ n0,

∥∥ n−1∑
k=n0

2k∑
j=1

Y s2−n/2

k,j

∥∥2
L2(P) ≤ δ.

As Y ϵ,ϵ′

W,W ′ converges in L2(P) when ϵ, ϵ′ → 0, the supremum C of ∥Y ϵ,ϵ′

W,W ′∥L2(P) over ϵ, ϵ
′ ∈ (0, 2]

is �nite. Using the independence between the Y s2−n/2

k,j (where k is �xed and smaller than n),

and using the fact the Y s2−n/2

k,j are centred, we deduce

E
[( 2k∑

j=1

Y s2−n/2

k,j

)2]
≤

2k∑
j=1

E[(Y s2−n/2

k,j )2] ≤ C22−k.

Hence, for n0 large enough, it does hold that

∥
n−1∑
k=n0

2k∑
j=1

Y s2−n/2

k,j ∥2L2(P) ≤ C2−n0 ≤ δ,

which concludes the proof. □

Lemma 6.6. The random variables Z1,ϵ
W and Z2,ϵ

W converge in L2(P) as ϵ→ 0. Hence, Zϵ
W also

converges in L2(P) as ϵ→ 0.

Proof. First we consider Z ′ϵ
W :=

∫
R2 δ0,1(x)n̂

ϵ
W[0,1/4]

(x) dx. By disintegration with respect to

W1/4, W1/2 and W1, and setting

f ϵ,ϵ
′

W (x, y) := (n̂ϵ
W[0,1/4]

(x)− n̂ϵ′
W[0,1/4]

(x))(n̂ϵ
W[0,1/4]

(y)− n̂ϵ′
W[0,1/4]

(y)),

and q(z,W ) := p1/4(0,W1/4)p1/4(W1/4, z), we get, for an arbitrary positive measurable function
g which we will take to be g(z) := p 1

4
(0, z2),

E[(Z ′ϵ
W − Z ′ϵ′

W )2] =

∫
(R2)4

δ0,z,w(x)δ0,z,w(y)p1/2(0, z)p1/2(z, w)E1/2,0,z[f
ϵ,ϵ′(x, y)] dx dy dz dw

=

∫
(R2)4

δ0,z,w(x)δ0,z,w(y)p1/2(z, w) dwE[q(z,W )f ϵ,ϵ
′
(x, y)] dx dy dz

≤
(∫

(R2)3
g(z)

(∫
R2

δ0,z,w(x)δ0,z,w(y)p1/2(z, w) dw
)2

dx dy dz
) 1

2

×
(∫

(R2)3
g(z)−1E[q(z,W )f ϵ,ϵ

′
(x, y)]2 dx dy dz

) 1
2
.
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We recognize∫
(R2)2

E[q(z,W )f ϵ,ϵ
′
(x, y)]2 dx dy

= E⊗2[q(z,W )q(z,W ′)
(∫

(R2)2
(n̂ϵ

W
[0, 14 ]

(x)− n̂ϵ′
W

[0, 14 ]
(x))(n̂ϵ

W ′
[0, 14 ]

(x)− n̂ϵ′

W ′
[0, 14 ]

(x)) dx
)2

]

= E⊗2[q(z,W )q(z,W ′)(Ŷ ϵ,ϵ
W,W ′(1)− Ŷ ϵ′,ϵ

W,W ′(1)− Ŷ ϵ,ϵ′

W,W ′(1) + Ŷ ϵ′,ϵ′

W,W ′(1))]

≤ sup
w∈R2

q(z, w)2Eϵ,ϵ′ , Eϵ,ϵ′ := E⊗2[|(Ŷ ϵ,ϵ
W,W ′(1)− Ŷ ϵ′,ϵ

W,W ′(1)− Ŷ ϵ,ϵ′

W,W ′(1) + Ŷ ϵ′,ϵ′

W,W ′(1)|].

The expectation Eϵ,ϵ′ goes to 0 as ϵ, ϵ′ → 0, by L2 convergence of Ŷ ϵ′,ϵ
W,W ′(1).

The supremum of q(z, w) over w is achieved for w = z/2, as it is seen by noting that |w|2 +
|w − z|2 = |z|2/2 + 2|w − z/2|2, and is equal to p 1

4
(0, z2)

2. It follows that∫
(R2)3

g(z)−1E[q(z,W )f ϵ,ϵ
′
(x, y)]2 dx dy dz ≤ Eϵ,ϵ′

∫
R2

p 1
4
(0,

z

2
) dz −→

ϵ,ϵ′→0
0.

On the other hand,

C :=

∫
(R2)3

p 1
4
(0, z2)

(∫
R2

δ0,z,w(x)δ0,z,w(y)p 1
2
(z, w) dw

)2
dx dy dz

≤
∫
(R2)5

p 1
4
(0, z2)δ0,z,w(x)δ0,z,w′(x)δ0,z,w(y)δ0,z,w′(y)p 1

2
(z, w)p 1

2
(z, w′) dw dw′ dx dy dz.

Using for example∫
R2

δ0,z,w(x)δ0,z,w′(x) dx ≤ |z||w|,
∫
R2

δ0,z,w(y)δ0,z,w′(y) dy ≤ |z||w|,

we get

C ≤
∫
R2

|z|2p 1
4
(0, z2)

∫
R2

p 1
2
(z, w)|w|2 dw dz

=

∫
R2

|z|2p 1
4
(0, z2)

∫
R2

p 1
2
(z, w)(|z|2 + |w − z|2) dw dz

=

∫
R2

|z|2p 1
4
(0, z2)(|z|

2 + 1) dz

<∞,

which concludes the proof that

∥Z ′ϵ
W − Z ′ϵ′

W ∥L2(P) −→
ϵ,ϵ′→0

0.

A similar but simpler computation, replacing f ϵ,ϵ
′
(x, y) with n̂ϵ[0,1/4](x)n̂

ϵ
[0,1/4](y), shows that

Z ′ϵ
W ∈ L2(P). These two properties together ensure that Z ′ϵ

W converges in L2(P). The random
variable Z ′′ϵ

W :=
∫
R2 δ0,1(x)n̂

ϵ
W[1/4.1/2]

(x) dx, although not identical in distribution to Z ′ϵ
W , it shown

to converge in a very similar fashion, and we deduce that Z1,ϵ
W = Z ′ϵ

W +Z ′′ϵ
W +

∫
R2 δ0,1(z)δ1,2(z) dz

converges in L2(P).
Using the properties of invariance of the Brownian motion and the Lebesgue measure in the

plane, we see that Z1,ϵ
W and Z2,ϵ

W are identical in distribution, so Z2,ϵ
W also converges in L2(P). □

Corollary 6.7. The sum
∑n−1

k=0

∑2k

j=1 Z̃
s2−n/2

k,j converges in L2(Ω) as n → ∞, and the conver-

gence is uniform over s ∈ [1, 2].

Proof. This is identical to Lemma 6.5, except Y is replaced with Z̃ and that we use Lemma 6.6
instead of Theorem 4.6 to ensure the convergence, uniformly over s ∈ [1, 2], of the individual

Zs2−n/2

k,j , as n→ ∞. □

We can now conclude:
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Theorem 6.8. As ϵ→ 0, X̃ϵ
W converges in L2(P).

Proof. Since for a given ϵ ∈ (0, 1), there exists a couple (s, n) ∈ (1, 2] × N such that s2−n = ϵ,

proving the theorem amounts to show that X̃s2−n

W converges as n→ ∞, uniformly over s ∈ [1, 2]
and toward a limit independent from s. This follows from the decomposition (20), Lemma 6.3,
Lemma 6.5 and Corollary 6.7. □

6.3. Estimation of the average E[Xϵ
W ]. We now obtain asymptotic estimation for the average

E[Xϵ
W ], which is important in relation to Higgs-Yang�Mills theory as it tells us about the in�nite

negative mass term used for renormalisation.
We let ZW (resp. Z1

W , Z2
W , Zk,j) be the L

2-limit of Zϵ
W (resp. Z1,ϵ

W , Z2,ϵ
W , Zϵ

k,j).

Lemma 6.9. There exists a constant Cφ such that for all ϵ, ϵ′ ∈ (0, 1],

|E[Zϵ
W − ZW ]| ≤ Cφϵ.

Proof. Let F be the vector �eld such that curlF = δ0,1 and divF = 0,∆F = 0. Then,
F ∈W 1,∞ ∩W 1,1. In particular,

∥φϵ ⋆ F − F∥∞ ≤ sup
z∈R2

∫
BϵKφ

ϵ−2φ(ϵ−1v)|F (z + v)− F (z)|dv

≤
∫
BϵKφ

ϵ−2φ(ϵ−1v)|v|∥DF∥∞ dv

≤ ϵKφ∥F∥W 1,∞ ,

hence

∥φϵ ⋆ F − φϵ′ ⋆ F∥∞ ≤ (ϵ+ ϵ′)Kφ∥F∥W 1,∞

Using the stochastic Fubini's theorem, we can write Zϵ as

Zϵ =

∫ 1

1
2

φϵ ⋆ F (Ws) ◦ dWs =

∫ 1

1
2

φϵ ⋆ F (Ws) dWs.

Remark that F is random but measurable with respect to (W1/2,W1). Let B : [0, 12 ] → R2 be
such that B0 = 0 and for s ∈ (0, 1/2)

dWs = dBs +
W1/2 −Ws

1/2− s
ds.

Conditionally on (W1/2,W1), the restriction of W to [0, 12 ] is a Brownian bridge, and it follows
that conditionally on (W1/2,W1), B is a Brownian motion. In particular, we deduce that for
any ϵ, ϵ′ ∈ (0, 1],∣∣E[Z1,ϵ

W − Z1,ϵ′

W

∣∣W1/2,W1

]∣∣ = ∣∣∣ ∫ 1
2

0

E
[(
φϵ ⋆ F (Ws)− φϵ′ ⋆ F (Ws)

)
(W1/2 −Ws)|W1/2,W1

]
1/2− s

ds
∣∣∣

≤ ∥φϵ ⋆ F − φϵ′ ⋆ F∥∞
∫ 1

2

0

E
[
|W1/2 −Ws|

∣∣W1/2,W1

]
1/2− s

ds

Conditionnally on (W1/2,W1), W1/2−Ws is distributed as a Gaussian random variable centered
at (1− 2s)W1/2 and with covariance 2s(1− 2s). Thus,

E
[
|W1/2 −Ws|

∣∣W1/2,W1

]
≤ (1− 2s)|W1/2|+

√
2s(1− 2s),

and we deduce∣∣E[Z1,ϵ
W − Z1,ϵ′

W

∣∣W1/2,W1

]∣∣ ≤ (ϵ+ ϵ′)Kφ∥F∥W 1,∞

(
|W1/2|+ 2

√
2

∫ 1
2

0

√
s

1−2s ds
)

= (ϵ+ ϵ′)Kφ∥F∥W 1,∞(|W1/2|+ π
2 ),

thus

|E[Z1,ϵ
W − Z1,ϵ′

W ]| ≤ (ϵ+ ϵ′)Kφ∥F∥W 1,∞(1 + π
2 ).
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Letting ϵ′ → 0, we deduce

|E[Z1,ϵ
W − Z1

W ]| ≤ ϵKφ∥F∥W 1,∞(1 + π
2 ).

By symmetries of the Brownian motion, the couples (Z1,ϵ
W , Z1

W ) and (Z2,ϵ
W , Z2

W ) are equal in
distribution, and we deduce by summation

|E[Zϵ
W − ZW ]| ≤ ϵKφ∥F∥W 1,∞(2 + π),

which concludes the proof. □

Lemma 6.10. There exists constants C,C ′ such that, for ϵ = 2−n/2, n ∈ N, as ϵ→ 0,

E[Xϵ
W ] = C log(ϵ−1) + C ′ +O(ϵ).

Proof. By scaling arguments,

E[X2−n/2

n,j ] = 2−nE[X1
W ], E[Tk,j ] = 2−kE[T0,1], E[Zk,j ] = 2−kE[Z0,1], E[Y 2−n/2

k,j ] = 0

E[Z2−n/2

k,j − Zk,j ] = 2−kE[Z2−(n−k)/2

0,1 − Z0,1].

By Lemma 6.9,

Rn :=
∞∑
l=n

E[Z2−l/2

0,1 − Z0,1] ≤ Cφ

∞∑
l=n

2−l/2 < C ′
φ2

−n/2,

Hence,

E[X2−n/2
] = E[X1

W ] +
n−1∑
k=0

(E[T0,1] + E[Z0,1] + E[Z2−(n−k)/2

0,1 − Z0,1])

= E[X1
W ] + n(E[T0,1] + E[Z0,1]) +R1 −Rn+1

= Cn+ C ′ +O(2−n/2),

which concludes the proof. □

Remark that when we consider a Brownian motion with duration t ̸= 1, we can easily see how
these constants C,C ′ depends on t by a scaling argument:

Et[X
ϵ
W ] = tE1[X

ϵ/
√
t

W ] = tC log(ϵ−1
√
t) + C ′ +O(ϵ) = tC log(ϵ−1) + (tC ′ +

t log(t)C

2
) +O(ϵ).

Remark also that the constant C ′ is not universal: it necessarily depends on the initial molli�er
φ, as it can be seen by using the rescaled φλ instead of φ as initial molli�er.

The constant C, however, is universal and we will now prove C = 1
2π . Although this result

is, as far as I know, new, it is not per se novel, and this value should be expected from [10,
Theorem 1]. The regularisation method used in [10] is not the same as our regularisation by
molli�cation, and I don't think there is any simple argument that would allow to rigorously
prove the constants arising from both regularisation methods should be the same. However, at
an intuitive level, it is very clear that they should be. The argument goes as follows: for points
whose distance to Range(W ) is much greater than ϵ, both regularisation can be neglected, and
they should thus give similar contribution to Xϵ

W . For points whose distance to Range(W ) is of
order ϵ or less, their contribution to Xϵ

W is of order 1, in both normalisation. Thus, the di�erence
between the two normalisation should be of order 1. In other words, for both normalisation, the
cut-o� happens at scales of the same order ≈ ϵ.

6.4. Computation of the Constant C. In order to compute C explicitly, it would be practical
to use nW (z) instead of either nW̄ (z) or n̂W (z). Yet, as we have see the planar integral of nϵ

W (z)2

is divergent because of the infrared issues. We �x a large radius Cϵ, which is such that there
is only a small probability for W to exit BCϵ . Inside this ball, we accept to make an error by
replacing nϵ

W̄
(z) with nϵ

W (z). Of course this produce an error term that grows large when Cϵ

grows. Outside the ball, we do not make this replacement. It is more di�cult to deal with
nϵ
W̄
(z) directly, but we can do it has we only need a rough upper bound, rather than a precise
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estimation, since we treat this an error term. The choice of Cϵ is then made to balance the error
term inside the ball with the one outside the ball.

Lemma 6.11. Let Cϵ be a function of ϵ such that Cϵ ≥ 4
√
2. As ϵ→ 0,

E0

[ ∫
BCϵ

nϵ
W̄ (z)2 dz

]
=

1

2π
log(ϵ−1) +O(C2

ϵ + e−
C2
ϵ
8 log(ϵ−1) + Cϵ

√
log(ϵ−1)),

Proof. Let Ī be the left-hand side, and let

I = E0

[ ∫
BCϵ

nϵ
W (z)2 dz

]
.

Using

E[nϵ
W (z)2] = ϵ−2

∫ 1

0

∫
R2

pt(z, y)|ψ(ϵ−1y)|2 dy dt (21)

and splitting the integral over y ∈ R2 into three parts, we get I = J +R1 +R2 with

J := ϵ−2

∫
BCϵ

∫
BCϵ

2

∫ 1

0
pt(z, y)|ψ(ϵ−1y)|2 dtdy dz,

R1 := ϵ−2

∫
BCϵ

∫
B2Cϵ\BCϵ

2

∫ 1

0
pt(z, y)|ψ(ϵ−1y)|2 dt dy dz,

and

R2 := ϵ−2

∫
BCϵ

∫
R2\B2Cϵ

∫ 1

0
pt(z, y)|ψ(ϵ−1y)|2 dtdy dz.

To estimate J , we swap the two integrals in its de�nition, then we use the change of variable
z′ = y − z, and then the inclusions

∀y ∈ BCϵ
2
, BCϵ

2
⊂ BCϵ(y) ⊂ B 3

2
Cϵ
. (22)

We so obtain the inequalities

J ≥ ϵ−2

∫
BCϵ

2

∫
BCϵ

2

∫ 1

0
pt(0, z

′)|ψ(ϵ−1y)|2 dt dz′ dy,

J ≤ ϵ−2

∫
BCϵ

2

∫
B 3Cϵ

2

∫ 1

0
pt(0, z

′)|ψ(ϵ−1y)|2 dt dz′ dy.

In both right-hand sides, the spatial integrals can now be performed independently from each
other. With the change of variable v = ϵ−1y, and since

∫
R2 pt(0, z) dz = 1, we deduce

J ≤
∫
B ϵ−1Cϵ

2

|ψ|2(v) dv =
1

2π
log(ϵ−1Cϵ) +O(1), (23)

and we similarly deduce that

J ≥

∫
BCϵ

2

∫ 1
0 pt(0, z) dt dz

2π
log(ϵ−1Cϵ) +O(1).

For x ≥
√
2t, ∂tpt(0, z) ≥ 0, and it follows from the condition Cϵ ≥ 4

√
2 that for all z ∈ R2\BCϵ/2

and all t ∈ [0, 1], pt(0, z) ≤ p1(0, z). Thus,∫
R2\BCϵ

2

∫ 1

0
pt(0, z) dtdz ≤

∫
R2\BCϵ

2

p1(0, z) dz = e−
C2
ϵ
8 ,

thus

J ≥ 1

2π
log(ϵ−1Cϵ)− e−

C2
ϵ
8 log(ϵ−1Cϵ) +O(1).
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Together with (23), we obtain

J =
1

2π
log(ϵ−1Cϵ) +O(e−

C2
ϵ
8 log(ϵ−1Cϵ)) +O(1).

We now focus on the estimation of the residual terms R1 and R2. We know by Lemma 3.1, that
there exists C such that |ψ|2(y) ≤ C|y|−2 for all y ∈ R2, so that

R1 ≤ ϵ−2

∫
B2Cϵ\BCϵ/2

C

ϵ−2|y|2
dy ≤ π(2Cϵ)

2 C

(Cϵ/2)2
= 16πC.

As for R2, we notice that for all y ∈ R2 \B2Cϵ and z ∈ BCϵ , |y−z| ≥
|y|
2 , thus pt(y, z) ≤ pt(0,

y
2 ).

Hence,

R2 ≤
∫
BCϵ

∫
R2\B2Cϵ

∫ 1

0
pt(0,

y

2
) dt

C

|y|2
dy dz = (πC2

ϵ )2π

∫ 1

0

∫ ∞

2Cϵ

pt(0,
r

2
)
C

r2
r dr dt = o(1).

Altogether, we obtain

I = J +R1 +R2 =
1

2π
log(ϵ−1Cϵ) +O(e−

C2
ϵ
8 log(ϵ−1Cϵ)) +O(1)

=
1

2π
log(ϵ−1) +O(log(Cϵ) + e−

C2
ϵ
8 log(ϵ−1)). (24)

Now we need to go from I to Ī, for which we apply the generic identity∣∣∥a∥2 − ∥b∥2
∣∣ = ∣∣∥a− b∥2 + 2⟨a− b, b⟩

∣∣ ≤ ∥a− b∥2 + 2∥a− b∥∥b∥ (25)

with a = nϵ
W̄
, b = nϵ

W , and with the Hilbert norm ∥f∥2 =
∫
E0[f(z)

2] dz on L2(Ω×BCϵ). Since

|nϵ
W̄
(z) − nϵ

W (z)| ≤ 1 for all z, we have ∥a − b∥ ≤
√
πCϵ. By (24), ∥b∥2 = O(log(ϵ−1Cϵ)), and

using (24) a second time we obtain∫
BCϵ

E0[n
ϵ
W̄ (z)2] dz = ∥b∥2 +O(∥a− b∥2 + ∥a− b∥∥b∥)

=
1

2π
log(ϵ−1) +O(C2

ϵ + e−
C2
ϵ
8 log(ϵ−1) + Cϵ

√
log(ϵ−1)), (26)

where we simpli�ed some smaller order terms such as O(Cϵ

√
log(Cϵ)) for the last inequality. □

Lemma 6.12. Let Cϵ be a function of ϵ such that Cϵ ≥ 4
√
2. Assume φ is compactly supported.

Then, as ϵt→ 0,

E0[

∫
R2\BCϵ

nϵ
W̄ (z)2] dz = O

(e− 17
512

C2
ϵ

Cϵ
log(ϵ−1)

)
+ o(1).

Proof. As we explained several times already, one must be very careful here with replacing W̄

with W . For |z| ≥ Cϵ, let τz be the �rst time when |W | = |z|
2 , and notice that, for topological

reasons,

τz ≥ 1 =⇒ ∀y ∈ R2 \B|z|/2, nW̄ (y) = 0.

For ϵ su�ciently small (which we now assume), Cϵ ≥ 2ϵ sup{|y|, y ∈ Supp(φ)}. Then, for all
z ∈ R2 \BCϵ ,

τz ≥ 1 =⇒ nϵ
W̄ (z) = 0.

This can be proved rigorously using the fact that ψz,ϵ, seen as complex function, is analytical
on B∥W∥∞ , hence its Stratonovich integral along the closed curve W̄ is zero. Alternatively, it
follows trivially from the stochastic Green's formula from [8].

On the even τz < 1, let W : t ∈ [0, 1 − τz] 7→ Wτz+t. Conditional on (τz, (Wt)t≤τz), W
is a Brownian motion of duration τz started from Wτz . The integer nϵ

W̄
(z) − nϵ

W̄(z) is equal
(up to sign) to the winding around z of the triangle with vertices 0, Wτz , and W1, which is at
most 1. Thus, nϵ

W̄
(0) and nϵ

W(0) di�ers from each other from at most 2. Denoting by Et,y the
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expectation under which Y is a planar Brownian motion started from y and with duration t,
and using (a+ b)2 ≤ 2(a2 + b2), we deduce

E0[n
ϵ
W̄(z)2] ≤ P0(τz ≤ 1) sup

y∈∂B|z|/2
t∈[0,1]

Et,y[(n
ϵ
W(z) +Rϵ)2], |Rϵ| ≤ 2

≤ 2P0(τz ≤ 1)( sup
y∈∂B|z|/2
t∈[0,1]

Et,y[(n
ϵ
W(z))2] + 4)

= 2P0(τz ≤ 1)( sup
y∈∂B|z|/2
t∈[0,1]

Et,0[(n
ϵ
Ws(z − y))2] + 4) (27)

For z ∈ R2 \ B4
√
2, y ∈ ∂B|z|/2, and w ∈ B1, we have |z − y| − |w| ≥ |z|/2 − 1 ≥ |z|/4 ≥

√
2,

hence for all and s ∈ [0, 1], ps(z − y, w) ≤ ps(0, |z|/4) ≤ p1(0, |z|/4). From Equation (21) and
Lemma 3.1, we thus have, uniformly over z ∈ [4

√
2,∞) and ϵ ∈ (0, 1]

Et,0[(n
ϵ
W (z − y))2] ≤

∫ t

0

∫
R2

ps(z − y, w)
C

ϵ2 + |w|2
dw ds

≤ p1(0,
z
4) ds

∫
B1

C

ϵ2 + |w|2
dw +

∫ t

0

∫
R2\B1

ps(z − y, w)C dw ds

≤ Cp1(0,
z
4)(log(ϵ

−1) +
log(2)

2
) + Ct

= O(e−
|z|2
32 log(ϵ−1)) +O(1). (28)

Besides, since {(x1, x2) : x1 ≤ c, x2 ≤ c} ⊂ B√
2c for all c, using the re�ection principle for

the 1-dimensional Brownian motion, we have

P0(τz ≤ 1) ≤ 2P0(∃s ∈ [0, 1] : |W 1
s | ≥

|z|
4
)

≤ 4P0(∃s ∈ [0, 1] :W 1
s ≥ |z|

4
)

= 4P0(|W 1
1 | ≥

|z|
4
) = 8P0(W

1
1 ≥ |z|

4
) =

8√
2π

∫ ∞

|z|
4

e−
r2

32 dr =
|z|→∞

O
(e− |z|2

512

|z|

)
. (29)

Together with (27) and (28), we get

E[(nϵ
W̄ (z))2] = O

(e− 17|z|2
512

|z|
log(ϵ−1) +

e−
|z|2
512

|z|

)
.

By integrating over z, we deduce that∫
R2\BCϵ

E[(nϵ
W̄ (z))2] dz = O

(e− 17
512

C2
ϵ

Cϵ
log(ϵ−1)

)
+ o(1).

□

Corollary 6.13. Assume φ is compactly supported. For all x ∈ R2, as ϵ→ 0,

Ex

[ ∫
R2

nϵ
W̄ (z)2 dz

]
=

log(ϵ−1)

2π
+O

(
log(log(ϵ−1))

√
log(ϵ−1)

)
.

Proof. From translation invariance, we can assume x = 0 without loss of generality. Then we
conclude by applying Lemma 6.11 and Lemma 6.12 with Cϵ = 8

√
log(log(ϵ−1)). Notice this is

the (up to a multiplicative constant) the minimal scale for which the residual term coming from
integration over R2 \BCϵ is not prevalent over the other ones. □
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Appendix A. Formal relation between Higgs�Yang�Mills and the Amperean

area

Recall the Higgs�Yang�Mills measure (without self-interaction term) is the formally de�ned
probability measure P on couples (A,Φ), where Φ : R2 → C and A : R2 → R2. One can as well
consider a proper domains of R2, in which case f = 1 must be replaced with f = 1D in some
expressions.

One can also consider a surface Σ endowed with a Riemannian metric instead of R2. Geo-
metrically speaking, A is then not a vector �eld but rather a connection over some complex line
bundle, whilst Φ is a section of this bundle.

The probability measure P is given formally by

dP(Φ, A) :=
1

Z
exp(−

∥ gradΦ + iαAΦ∥2L2(R2,C2) + ∥ curlA∥2L2(R2,R)

2
)DΦDA.

Here the discussion is too rough to consider counter-terms. For a given A, ZA is the formally
de�ned normalising constant such that the measure PA given by

dPA(Φ) :=
1

ZA
exp(−∥ gradΦ + iαAΦ∥2

2
)DΦ

is a probability measure, that γ is the straight line segment from y to x, and that

Sx,y :=
〈
Φ(x), exp

(
iα

∫
γ
A
)
Φ(y)

〉
.

Let GA = (−∆A)
−1 be the Green function associated with the Dirichlet Magnetic Laplacian

∆A = (∇+ iαA)∗(∇+ iαA)

acting on complex-valued functions. For a genuine and smooth enough A, the objects PA,
∆A, and GA are rigorously de�ned (although the given expression for PA is not: it has to be
interpreted as a Gaussian measure in an appropriate distributional space), and furthermore the
partition function ZA which is formally the square root of the determinant of the Laplacian can
be rigorously de�ned, as a positive real number, through ζ-regularisation. The relation we now
write formally would hold rigorously for such a smooth A, but the reader should understand
that the typical A under the measure P is too irregular for these rigorous de�nitions to apply.

We write PYM for the formally de�ned probability measure on A given by

dPYM (A) :=
1

Z ′ exp(−
∥ curlA∥2L2(R2,R)

2
)DA.

Expanding the Green function as a time integral of the heat kernel and using Feynman-Kac's
formula, one gets

GA(x, y) =

∫ ∞

0
pAt (x, y) dt =

∫ ∞

0
pt(x, y)Et,x,y[e

iα
∫
W A] dt,

where W is a Brownian bridge from x to y with duration t. Hence,

E[(
ZA

ZZ ′ )
−1Sx,y] =

∫ ∞

0
pt(x, y)Et,x,y ⊗ EYM [exp

(
− iα

∫
W ·γ−1

A
)
] dt.

Yet, ξ := curlA is a Gaussian white noise under PYM , and Green's formula gives

EYM [exp
(
−iα

∫
W ·γ−1

A
)
] = EYM [exp

(
−iα

∫
R2

nW ·γ−1(z)ξ( dz)
)
] = exp

(
−α

2

2

∫
R2

nW ·γ−1(z)2 dz
)
,

which �nally gives

E[(
ZA

ZZ ′ )
−1Sx,y] =

∫ ∞

0
pt(x, y)Et,x,y[exp

(
− α2

2

∫
R2

nW ·γ−1(z)2 dz
)
] dt.

We recognize the Amperean area in the right-hand side.
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When considering higher order moments of the Sx,y's, say monomial of order 2k, we must �rst
use Isserlis' theorem (also known as Wick's formula). Then, we end up with k independant Brow-

nian bridges. When using the Gaussianity of A, appears the expression
∫
R2

(∑
i nW ·γ−1(z)

)2
dz.

Expanding the square explains with not only the variables :XW (1) : but also the YW,W ′(1)matter,
as crossed terms. When adding some Wilson loops, we get extra diagonal term that corresponds
to the usual Wilson loop expectations in Abelian Yang�Mills theory (without Higgs �eld), and
extra crossed terms given by the classical stochastic integrals IW (f).

As for the partition function ZA, it can be dealt with in a similar manner thanks to its
representation as an expected product over a Brownian loop soup L,6

ZA = Z ′′E[
∏
ℓ∈L

exp(i

∫
ℓ
A)]

1
2 .

Remark that the addition of a mass term ⟨φ,mφ) in the de�nition of PYM would introduce
an extra factor e−mt inside the time integral if m is constant, or more generally an extra factor∫ t
0 m(Ws) ds inside the expectation if m varies in space (i.e. �is a potential"). In particular, the
renormalisation we used to de�ne XW do translate into a renormalisation of PYM by addition
of a negative diverging mass term.
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