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On wetting andapparentlyasymmetrickinetics in free growth
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We have calculatedanalytically the shapeand velocity of a moving front separatingtwo phasesof a pure substance.The
material is confinedbetweentwo parallelplates,which imposea contact angle and a meniscusat the interfacebetweenthe two
phases.Assumingthe contact angle to beconstantand the molecularattachmentkinetics to be both linear and symmetricabout
the melting temperatureT,~,we show that themeniscusshapeand thefront velocity aredifferent aboveandbelowT~.if thewetting
contact angle differs muchfrom 900. This effect can explain the apparentlyasymmetricgrowthkinetics observedin thin films of
semiconductors,aswell as certainanomaliesobservedin the moving nematic-isotropicinterfaceof a liquid crystal.

1. Introduction set by the plate spacing.Indeed,the shapeof the
meniscusdependsnot only on the wetting condi-

For several years, much attention has been tions of the plates, but also on the velocity at
focusedon the dynamicsof movinginterfacesand which the front propagates.Because the plate
the patterns they form. These interfaces may spacing in experimentsis typically small, pho-
separate,for example, two immiscible fluids or tographs or other records of the interface will
two different thermodynamicphasesof the same show the vertical part of the meniscuswithout
material. Becausetwo-dimensional models are giving information about its structure. In short,
easier to study theoretically than three-dimen- the front motion will not be accuratelydescribed
sional ones,experimentalstudiesof interfacedy- by a purely two-dimensionaltheory but must in-
namics, in order to make contactwith existing steadincorporateelementsof a full three-dimen-
theories, have often adopted a pseudo-two-di- sional theory.
mensional geometry, in which the material to be Such effectshavebeenstudiedin detail in the
studied is confined betweentwo parallel plates. Saffman—Taylor hydrodynamic instability, in
The hope is that if the plate spacing is much which the front separatesair from oil [1]. They
smallerthan the scaleof the finest details in the are equally important in free growth and direc-
pattern,the systemwill essentiallybe two-dimen- tional solidification, where the interface usually
sional. Although the abovescenariois true quali- separatesa liquid phase from a more-ordered
tatively, it is now clearly recognizedto be false solid or liquid-crystalline phase. In the case of
quantitatively.The main reasonis that any con- directional solidification, meniscus effects have
tact anglebetweenthe interfaceandthe support- been shown to decreasethe velocity at which
ing platesother than 90 will lead to a curved interfacesdestabilizein thin samples[2]. Another
meniscusin the vertical direction of the experi- consequenceof a meniscusin directionalsolidifi-
mental cell. This meniscus guaranteesthat the cation is an asymmetry between melting and
interfacewill havesome structurewhosescaleis freezingfronts. This effect is particularly clear in

the caseof the nematic—isotropicfront of a liquid
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when the nematic “freezes”, whereas,when it ~2~//7/t/~~ I
melts, no such deformation can be seen. Con-
phase wets, the opposite is observed: a large 2D

versely, if (by changingthe substrate)the liquid Solid Liquid

meniscusforms upon melting, but nothing is ob- I •

servedwhen the samplefreezes [3]. Another ex-
perimental example of such melting—freezing ~ ////‘///~~~
asymmetry is in the measurementof the kinetic X

coefficient of a thin silicon layer depositedon a Fig. 2. Schematicrepresentationof the meniscusseparating
sapphire substrate [4]. In this experiment, the thetwo phases.

front velocity nearthe coexistencetemperature7~
increaseslinearly with T — T~I, but the propor-
tionality constant(the kinetic coefficient) is dif- assumptionwill bevalid if the latent heatof the
ferent for melting andfreezing.In this article,we transitionis small, if the plateshavehigh thermal
show that such an asymmetryin the kinetic coef- conductivity and if the samplethicknessis small
ficient is not necessarilyintrinsic to the material,
as studiesto datehaveassumed,but could rather Let V be the meniscusvelocity and L the
be due to the presenceof a meniscus. latent heat of transition per unit volume. (We

neglect any density differencesbetweenthe two
phases.)We assumethat attachmentkinetics are

2. Theoretical model linear and symmetric about I~.The velocity of
the interfacenormal is then given by

Consider a pure material confined between = ~ ~r, (1)
two parallel platesspaced a distance2D apart
from eachother. Let the temperatureT be dif- where 6T = Te — T is the local kinetic undercool-
ferent from ~ so that a moving front separates ing, ~ the kinetic coefficient, and Te the equilib-
the two phases.We assumethat the contactangle rium temperatureof the curvedfront given by the
~ betweenthe front andthe platesis constantin Gibbs—Thomsonequation:
time and independentof the front velocity. In = T~(1 — d

0K). (2)
other words, the angle O~will be assumedequal
to that fixed by thermodynamicequilibrium. (See Here, d0 = F/L is the capillary length, F the
fig. 1.) Let a0 be the complementof 0~.(Thus, surfacetension(assumedto be isotropic), and K

= — 0g.) We suppose,also, that the tem- the local meancurvatureof the interface.
peratureis constantand homogeneousthrough- To obtain the relation betweenthe meniscus
out the system. In particular, we neglect any velocity J/ andthe imposedundercooling~.i1T= T~
latent heat releasedat the moving interface. As — T, we write the equationsof motion for the
Sekerkaand co-workershave discussed,this last meniscusin cartesiancoordinatesZ = F(X). (See

fig. 2.) We assumethat in the transversedirec-
tion, the interface is flat; the problem is then

_____ - - _____ one-dimensional.The normal velocity of the in-
terfacev~is, from geometry,

V~=Vcos(a), (3)
Solid meniscusmakeswith the normal to the plates.In

where a is the local anglethat the tangentto the

________________________________ Cartesiancoordinates,tan(a)= dF/dX, cos(a)
Fig. 1. Definition of the contact anglebetweenthe front and = 1/(l + Ft

2)1/2, and the curvature K =

theplate. (1 + F’2)3~’2.
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From eqs. (l)—(3), we canwrite I 13

______ — Li(l +f’2), (4) [ ~:i_/32
_=

____ cos(a)—13
where we have introducedthe following dimen- xln(
sionlessquantities: ~l — /32 sin(a) + 1 —/3 cos(a)

i=V/~, Li=(~-T)/~, f=F/d
0, for /31<1. (9h)

x=X/d~). On the plates, a=a0 and x=d=D/d0. This

boundarycondition, along with eqs. (8) and (9),Defining u(x) ~l +f (x) ,we canrewrite eq. fixes the front velocity as a function of undercool-
(4): ing:

U’ Li
=vf’, with f3~—. (5) t’=Li/f3. (It)

u(1—13u) 1’
where 13 is now a function of Lid and of a11

Integratingthis equationonce,we obtain: definedby ‘1(a0, /3) = Lid.
For this value of /3, eq. (8) unambiguously

f(x) ~l 1—13= — nI I. (6) determinesa(x). The meniscusprofile satisfies
I\ cos(a(x)) /~3J the following equation:

The above equation(6) is a first-order differ-
13 / l—f3

Ini I. (11)
ential equation in f, since a is a function of f(x) = ~ ~, cos(a(x)) —/3)
f’(x). We can invert it so that f’ is expressedin
termsoff, which gives,with y exp(—t’f): The depth of the meniscus p =f(d) (measured

/3JY(x) dy relative to f(0) = 0) is obtainedby settinga = a11
+ 1 — 13) in the precedingequation:

I YV1-[P+(113)Y1
2

/3 1 I—f3 \
Py(x) dy Lix

xJ =-~, (7) P=~ln~~
13). (12)

I i)1—[/3+(l—f3)y] /3
We note, finally, that /3 becomesinfinite when

with V= 0 and Lid = —sin(a0).This limit corresponds

cos[a(x)] 13 to a round, stationary meniscus whose radius
y(x) = _____________ r = d/sin(a0) and depth p = d[l

1 — cos(a0)]/sin(a0).

Evaluating theseintegrals[6], we obtain

tI~(a(x),/3) =Lix, (8) 3. Discussion

with

________ Fig. 3 illustratesthe aboveresultsfor a contact

~(a, /3) =13[a — 132 angle a11 = 1 radian.There are five points to he
132 — 1 noted:

First, although the meniscusshapeis triangu-

/1 — /3 cos(a) 1 lar while freezing, it is flat while melting. This
>< arccos I I, conclusionis reversedif we invert the sign of the

cos(a) _13 J] contactangle a11. This asymmetryis reminiscent

of that observedfor the nematic—isotropicinter-
for I /3 I > 1, (9a) facein directionalsolidification [3].
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Fig. 3. (a)Shapeof the meniscusin free growth for various valuesof id; the solid line correspondsto the static meniscus.(b)
Depth of themeniscusversus .id. (c) Velocity i of themeniscusversusundercooling.i. (d) Enlargementof the precedingcurve

near~d = 0. All of thesecurveshave beencalculatedfor a
11= 1 rad.

Second,the slope ~1~’/0Ligives the apparent result was observedfor several materials. If we
kinetic coefficient 4~, which is what is measured take the experimentsat face value — and one
experimentally. Although ~ dependson the must rememberthat the measurementsarediffi-
wetting angle, the thicknessand the undercool- cult — we canconclude that the contactangle in
ing, its valuesaturatesfor small Lid at oneof two theseextremelyweak first-order transitionsmust
different limits: for freezing, ~ = ~, while for generically be 90 0 (a11 = 0). The conclusion is
melting, ~ = ~/cos(a11).These limiting values significant becausejust the opposite occurs in
dependonly on the wetting angle a11. Wetting binary mixtures near a critical point andin Ising-
effectsthus leadto an apparentkinetics asymme- like systems [8]. The argument,which is fairly
try about Le, in the thin-plate geometry, even general,comparesthe rate at which the surface
thoughthe bulk kinetics are perfectly symmetri- tension (T~) between two phases(a and /3)
cal. Our model shouldbe relevantto the analysis vanisheswith the rate that the difference be-
of the observedasymmetryin the kinetics of thin tweenthe substrate(x) surfacetensionsvanishes
layerof silicon [4]. (T~— F~).For Ising model, F~a Li

13 and F
05

Another set of experimentson the nematic— — F~a Li°
3.Near a critical point, cos(0

0) di-
smecticA front in liquid crystalswould a priori vergesas Li~°.Thus, 0~= 00 at sometempera-
be a secondsituation in which one would expect ture below T~,andoneor theother phasestotally
to seetheseeffects; however,recentexperiments wets.Apparently, the resultsfor nematic—smectic
show no evidenceof anyasymmetry[7]. The same A systemssuggestthat the reverseis true (cos(011)
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—sOor0~—s90°),implyingthattheexponentfor _________________________I
F04 is smallerthan that governing(F05 — F45). Of
course, we have also assumedthat the system Solid Liquid
remainsat local equilibrium andthat the contact
anglesarewell definedandindependentof veloc-
ity. But typically, if thecontactanglechangesas a ________________________________
front’s velocity increases,the effect is to drive the I
systemtowardsa completewetting by the phase Fig. 4. Shapeof themeniscuswhen thetwo contactanglesare

that partially wets at equilibrium. So it is not I erent.
clearwhetherthe variation of contact anglewith
velocity is of any help in explainingthe observa-
tions in the experimentsof Cladiset al. [7].All of from theplate the solid wets the most (Seefig.
thesehypotheseswould have to be re-examined . . .

4.) This meniscusinstability doesnot qualitatively
in systemsneara critical point. Finally,we might .changethe kinetics: if the solid wets the plates
expectthis result on contactanglesto be sensitive with two different contactangles0 and 0 such
to the orientation of moleculesin the nematic— 2that 0 > 0 , the apparentkinetic coefficient will
smecticA sample.Sincethe experimentsof Cladis .

havea limiting value~/cos(a), with a = ir/2 —

et al. were done for a planar molecular align- . - 2
0-, whenthe solid grows.We seethat thevelocity

ment, it would be worthwhile repeatingthem for - . . .of a meniscuswill fluctuate if it encountersinho-
a homeotropicalignment. .mogeneouswetting conditionson oneor the other

Third, the origin of the apparentasymmetry . .

plates. In directional solidification experiments
maybe tracedbackto the Gibbs—Thomsonequa- . .

on the nematic—tsotropicinterface,such fluctua-
tion, which relatesthe interface curvature to a .tionsof the meniscusdepthare in fact commonly
change in equilibrium temperature.The curva-

observed.
tureis a signed quantityandwill thusbe sensitive
to whether the interfacebows out or in. Funda-
mentally, the effect is a geometricalone brought
about by the geometry of two parallel plates 4. Generalization to directional solidification
separatedby a small gap. One could observe
similar effects in a roundor squarecapillary, as Let us now consider the samesample in a
well, temperaturegradient parallel to the z axis. We

Fourth, like ~app’ the meniscus depth p is a assumethat the low temperaturephasepartially
function of Lid; however,its limit PIjm = d tan(a0) wets the substrateand that the temperaturegra-
is attainedfor valuesof Lid longafter which ~ dient is positive. In thiscase,the curvatureof the
has saturatedat ~T/cos(a0):the meniscusvelocity meniscusis positive. (Seefig. 5.) The undercool-
saturateswhen part of the meniscus is flat or,
roughly,whenthe radiusof curvatureis less than
half the plate spacingD. By contrast,the menis-
cus depthsaturatesonly when the radius of cur- 6 >0
vatureof the tip is small with respectto D, which I I

implies a much higher front velocity. Solid p Liquid

Fifth, the triangular meniscus that appears
during solidification (or melting, for appropriate I z

contactangles)is unstablewith respectto fluctu- ~ — —

ations in the contactangleon one of the plates. I

One can easily redo the above calculationsfor x~
wetting angles that differ on each plate. The Fig. 5. Schematicrepresentationof the meniscus in dircc-
result is that the tip of the meniscusmoves away tional solidification.
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ing now varieswith position, and we can write distancethat the front recedesbecauseof kinetic
T(z) = T~+ Gz.Eq. (4) takesthe form effects.

______ Fig. 6 illustratesthe results obtainednumeri-
f” — ~i+f’2 Li~~—(1+f’2), (13) cally for a contactanglea

11 1 rad. We note that
_____ — — f(0) there is no qualitative difference between the

caseof directionalsolidification andthat of free
where we have introducedthe following dimen- growth. The differencesbecomesignificant quan-
sionlessquantities: titatively only when the meniscus depth ap-

= V/~T7~,Li = —GF(0)/T~, f= F/d0, proaches f(0). (i.e., when the undercooling is
small)x = X/d11. Finally, we discussbriefly the role of impuri-

The parameterLi is now the undercoolingat the ties in directionalsolidification. If the velocity is
tip of the meniscus; f(0) is the dimensionless small enoughso that the diffusion length is much
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Fig. 6. (a) Shapeof the meniscusin directional solidification for various valuesof ~d. (b) Depthof the meniscusversus~d. (c)
Velocity of the meniscusversusundercooling ~. (d) Kinetic recedingversus .~d.All of thesecurveshave beencalculatedfor
0 = 1 rad. Triangleshave been computed numerically for directional solidification; dashed lines correspondto the previous

analyticalresultsfor free growth.
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