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We have calculated analytically the shape and velocity of a moving front separating two phases of a pure substance. The
material is confined between two parallel plates, which impose a contact angle and a meniscus at the interface between the two
phases. Assuming the contact angle to be constant and the molecular attachment kinetics to be both linear and symmetric about
the melting temperature T, we show that the meniscus shape and the front velocity are different above and below T. if the wetting

[S

contact angle differs much from 90 °. This effect can explain the apparently asymmetric growth kinetics observed in thin films of
semiconductors, as well as certain anomalies observed in the moving nematic-isotropic interface of a liquid crystal.

1. Introduction

For several years, much attention has been
focused on the dynamics of moving interfaces and
the patterns they form. These interfaces may
separate, for example, two immiscible fluids or
two different thermodynamic phases of the same
material. Because two-dimensional models are
easier to study theoretically than three-dimen-
sional ones, experimental studies of interface dy-
namics, in order to make contact with existing
theories, have often adopted a pseudo-two-di-
mensional geometry, in which the material to be
studied is confined between two parallel plates.
The hope is that if the plate spacing is much
smaller than the scale of the finest details in the
pattern, the system will essentially be two-dimen-
sional. Although the above scenario 1s true quali-
tatively, it is now clearly recognized to be false
quantitatively. The main reason is that any con-
tact angle between the interface and the support-
ing plates other than 90° will lead to a curved
meniscus in the vertical direction of the experi-
mental cell. This meniscus guarantees that the
interface will have some structure whose scale is
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set by the plate spacing. Indeed, the shape of the
meniscus depends not only on the wetting condi-
tions of the plates, but also on the velocity at
which the front propagates. Because the plate
spacing in experiments is typically small, pho-
tographs or other records of the interface will
show the vertical part of the meniscus without
giving information about its structure. In short,
the front motion will not be accurately described
by a purely two-dimensional theory but must in-
stead incorporate elements of a full three-dimen-
sional theory.

Such effects have been studied in detail in the
Saffman-Taylor hydrodynamic instability, in
which the front separates air from oil [1]. They
are equally important in free growth and direc-
tional solidification, where the interface usually
separates a liquid phase from a more-ordered
solid or liquid-crystalline phase. In the case of
directional solidification, meniscus effects have
been shown to decrease the velocity at which
interfaces destabilize in thin samples [2]. Another
consequence of a meniscus in directional solidifi-
cation is an asymmetry between melting and
freezing fronts. This effect is particularly clear in
the case of the nematic—isotropic front of a liquid
crystal, where experiments have shown that if the
nematic wets the substrate, a large meniscus forms
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when the nematic “freezes”, whereas, when it
melts, no such deformation can be seen. Con-
versely, if (by changing the substrate) the liquid
phase wets, the opposite is observed: a large
meniscus forms upon melting, but nothing is ob-
served when the sample freezes [3]. Another ex-
perimental example of such melting-freezing
asymmetry i1s in the measurement of the Kinetic
coefficient of a thin silicon layer deposited on a
sapphire substrate [4]. In this experiment, the
front velocity near the coexistence temperature 7T,
increases linearly with | T — 7.1, but the propor-
tionality constant (the kinetic coefficient) is dif-
ferent for melting and freezing. In this article, we
show that such an asymmetry in the kinetic coef-
ficient is not necessarily intrinsic to the material,
as studies to date have assumed, but could rather
be due to the presence of a meniscus.

2. Theoretical model

Consider a pure material confined between
two parallel plates spaced a distance 2D apart
from each other. Let the temperature T be dif-
ferent from T, so that a moving front separates
the two phases. We assume that the contact angle
6, between the front and the plates is constant in
time and independent of the front velocity. In
other words, the angle 6, will be assumed equal
to that fixed by thermodynamic equilibrium. (See
fig. 1.) Let a, be the complement of 6,. (Thus,
a,=m/2—8,) We suppose, also, that the tem-
perature is constant and homogeneous through-
out the system. In particular, we neglect any
latent heat released at the moving interface. As
Sekerka and co-workers have discussed, this last

80> 0

Fig. 1. Definition of the contact angle between the front and
the plate.

Fig. 2. Schematic representation of the meniscus separating
the two phases.

assumption will be valid if the latent heat of the
transition is small, if the plates have high thermal
conductivity and if the sample thickness is small
[5].

Let V' be the meniscus velocity and L the
latent heat of transition per unit volume. (We
neglect any density differences between the two
phases.) We assume that attachment kinetics are
linear and symmetric about 7_.. The velocity of
the interface normal is then given by

v, =¢ 8T, (1)

where 67 =T, — T is the local kinetic undercool-
ing, { the kinetic coefficient, and T, the equilib-
rium temperature of the curved front given by the
Gibbs-Thomson equation:

TezTc(1 _d(]K)' (2)

Here, d,=T/L is the capillary length, I" the
surface tension (assumed to be isotropic), and «
the local mean curvature of the interface.

To obtain the relation between the meniscus
velocity V' and the imposed undercooling AT = T,
— T, we write the equations of motion for the
meniscus in cartesian coordinates Z = F(X). (See
fig. 2.) We assume that in the transverse direc-
tion, the interface is flat; the problem is then
one-dimensional. The normal velocity of the in-
terface V, is, from geometry,

V,=V cos(a), (3)

where « is the local angle that the tangent to the
meniscus makes with the normal to the plates. In
Cartesian coordinates, tan(a)=dF/d X, cos(a)
=1/(1 +F'®'/2, and the curvature «k = -F"/
(1+ F%)32,
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From egs. (1)-(3), we can write

"

L i s @

where we have introduced the following dimen-
sionless quantities:

v=V/T,, A=(T,=T)/T., f=F/d,,
x=X/d,.

Defining u(x) =1 +f'*(x) , we can rewrite eq.

(4):

“ h - 5
—_—— =f ", wit = .
o Y v p= (s)
Integrating this equation once, we obtain:
B 1-8
=—In| ——————|.
169 =73 “(cos(am) —/s) (©

The above equation (6) is a first-order differ-
ential equation in f, since a« is a function of
f’(x). We can invert it so that f’ is expressed in
terms of f, which gives, with y = exp( —uvf):

x dy
B/‘Y() i 2+(1_B)
Loyl [B+(1-8)y]
d A
X]y(X) ’J—’l——j - _ .X’ (7)
Ly =[B+(1-B)Y] B
with
cos[a(x)] - B
YD) =Ty
Evaluating these integrals [6], we obtain
D(a(x), B) =A4x, (8)
with

p=1

( 1—pB cos(a) )]
X arccos| —————— | |,

cos(a) — B
for |B| > 1, (9a)

P(a, B) :B[a—i—ﬁ—z
y1-8

“ln cos(a) — B
y1—B?sin(a) + 1 - cos(a)

for |B] < 1. (9Db)

On the plates, e =a, and x=d=D/d,. This
boundary condition, along with egs. (8) and (9),
fixes the front velocity as a function of undercool-
ing:

v =A4/8, (10)

where B is now a function of Ad and of «,
defined by ®(«,, B) = Ad.

For this value of B, eq. (8) unambiguously
determines a(x). The meniscus profile satisfics
the following equation:

.
cos(a(x))w)' th

The depth of the meniscus p = f(d) (measured
relative to f(0) = ) is obtained by setting a = «a
in the preceding equation:

)

B
f(x) :Z“‘(

p= (12)

—In

A cos(a,) — B

We note, finally, that 8 becomes infinitc when
V=0 and Ad = —sin(a,). This limit corresponds
to a round, stationary meniscus whose radius
r=d/sin(a,) and depth p = d[l -
cos(a)]/sin(ay).

3. Discussion

Fig. 3 illustrates the above results for a contact
angle a, =1 radian. There are five points to be
noted:

First, although the meniscus shape is triangu-
lar while freezing, it is flat while melting. This
conclusion is reversed if we invert the sign of the
contact angle a,. This asymmetry is reminiscent
of that observed for the nematic—isotropic inter-
face in directional solidification [3].
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Fig. 3. (a) Shape of the meniscus in free growth for various values of Ad; the solid line corresponds to the static meniscus. (b)
Depth of the meniscus versus Ad. (¢) Velocity ¢ of the meniscus versus undercooling 4. (d) Enlargement of the preceding curve
near Ad = 0. All of these curves have been calculated for ¢, =1 rad.

Second, the slope {ar/dA gives the apparent
kinetic coefficient £, , which is what is measured
experimentally. Although ¢, depends on the
wetting angle, the thickness and the undercool-
ing, its value saturates for small Ad at one of two
different limits: for freezing, {,,, = ¢, while for
melting, £, = {/cosla,). These limiting values
depend only on the wetting angle «,. Wetting
effects thus lead to an apparent kinetics asymme-
try about T, in the thin-plate geometry, even
though the bulk kinetics are perfectly symmetri-
cal. Our model should be relevant to the analysis
of the observed asymmetry in the kinetics of thin
layer of silicon [4].

Another set of experiments on the nematic—
smectic A front in liquid crystals would a priori
be a second situation in which one would expect
to see these effects; however, recent experiments
show no evidence of any asymmetry [7]. The same

result was observed for several materials. If we
take the experiments at face value — and one
must remember that the measurements are diffi-
cult — we can conclude that the contact angle in
these extremely weak first-order transitions must
generically be 90° (a,=0). The conclusion is
significant because just the opposite occurs in
binary mixtures near a critical point and in Ising-
like systems [8]. The argument, which is fairly
general, compares the rate at which the surface
tension (I, ;) between two phases (a and B)
vanishes with the rate that the difference be-
tween the substrate (x) surface tensions vanishes
(I, —I},)- For Ising model, I',; A" and T,
— I}, « A% Near a critical point, cos(,) di-
verges as A~ '?, Thus, 8,=0° at some tempera-
ture below T, and one or the other phases totally
wets. Apparently, the results for nematic—smectic
A systems suggest that the reverse is true (cos(8,)
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— 0 or 6, 90°), implying that the exponent for
I,5 is smaller than that governing (I, — I’). Of
course, we have also assumed that the system
remains at local equilibrium and that the contact
angles are well defined and independent of veloc-
ity. But typically, if the contact angle changes as a
front’s velocity increases, the effect is to drive the
system towards a complete wetting by the phase
that partially wets at equilibrium. So it is not
clear whether the variation of contact angle with
velocity is of any help in explaining the observa-
tions in the experiments of Cladis et al. [7]. All of
these hypotheses would have to be re-examined
in systems near a critical point. Finally, we might
expect this result on contact angles to be sensitive
to the orientation of molecules in the nematic—
smectic A sample. Since the experiments of Cladis
et al. were done for a planar molecular align-
ment, it would be worthwhile repeating them for
a homeotropic alignment.

Third, the origin of the apparent asymmetry
may be traced back to the Gibbs—Thomson equa-
tion, which relates the interface curvature to a
change in equilibrium temperature. The curva-
ture is a signed quantity and will thus be sensitive
to whether the interface bows out or in. Funda-
mentally, the effect is a geometrical one brought
about by the geometry of two parallel plates
separated by a small gap. One could observe
similar effects in a round or square capillary, as
well.

Fourth, like {,,,, the meniscus depth p is a
function of Ad; however, its limit p,,, = d tan(e,)
is attained for values of Ad long after which ¢,
has saturated at {/cos(«,): the meniscus velocity
saturates when part of the meniscus is flat or,
roughly, when the radius of curvature is less than
half the plate spacing D. By contrast, the menis-
cus depth saturates only when the radius of cur-
vature of the tip is small with respect to D, which
implies a much higher front velocity.

Fifth, the triangular meniscus that appears
during solidification (or melting, for appropriate
contact angles) is unstable with respect to fluctu-
ations in the contact angle on one of the plates.
One can easily redo the above calculations for
wetting angles that differ on each plate. The
result is that the tip of the meniscus moves away

Solid Liquid

i
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Fig. 4. Shape of the meniscus when the two contact angles are
different.

from the plate the solid “wets” the most (See fig.
4.) This meniscus instability does not qualitatively
change the kinetics: if the solid wets the plates
with two different contact angles 6, and 6, such
that 6, > 6,, the apparent kinetic coefficient will
have a limiting value {/cos(a,), with a, =7/2 —
6, when the solid grows. We see that the velocity
of a meniscus will fluctuate if it encounters inho-
mogeneous wetting conditions on one or the other
plates. In directional solidification experiments
on the nematic—isotropic interface, such fluctua-
tions of the meniscus depth are in fact commonly
observed.

4. Generalization to directional solidification

Let us now consider the same sample in a
temperature gradient parallel to the z axis. We
assume that the low temperature phase partially
wets the substrate and that the temperature gra-
dient is positive. In this case, the curvature of the
meniscus is positive. (See fig. 5.) The undercool-

Fig. 5. Schematic representation of the meniscus in dircc-
tional solidification.
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ing now varies with position, and we can write
T(z)=T, + Gz. Eq. (4) takes the form

I A e
N £(0)

where we have introduced the following dimen-
sionless quantities:

v=V/T, A=-GF()/T,
x=X/d,.

(1+£7%),  (13)

f:F/do»

The parameter A is now the undercooling at the
tip of the meniscus; f(0) is the dimensionless
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distance that the front recedes because of kinetic
effects.

Fig. 6 illustrates the resuits obtained numeri-
cally for a contact angle ¢, = 1 rad. We note that
there is no qualitative difference between the
case of directional solidification and that of free
growth. The differences become significant quan-
titatively only when the meniscus depth ap-
proaches f(0). (i.e., when the undercooling is
small)

Finally, we discuss briefly the role of impuri-
ties in directional solidification. If the velocity is
small enough so that the diffusion length is much
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Fig. 6. (a) Shape of the meniscus in directional solidification for various values of Ad. (b) Depth of the meniscus versus Ad. (c)

Velocity ¢ of the meniscus versus undercooling 4. (d) Kinetic receding versus Ad. All of these curves have been calculated for

ay =1 rad. Triangles have been computed numerically for directional solidification; dashed lines correspond to the previous
analytical results for free growth.
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larger than the meniscus depth, then the impurity
gradient is constant over that length scale with a
value that is approximately that found for a pla-
nar front. The main effect of impurities then is to
renormalize the temperature gradient to an effec-
tive value.

G =G — |ml| Ac/Ly, (14)

where m is the slope of the liquidus, Ac the gap
of impurity at the interface and L,=D/V the
diffusion length. Note that in the limit we are
considering, (G, — G)/G is necessarily much less
than one: the correction to the gradient must be
small.

5. Conclusions

We have thus shown that apparent asymme-
tries in the kinetic coefficient can be observed in
restricted geometries even when kinetic effects
are intrinsically symmetric about 7.. The asym-
metries result from the presence of a meniscus,
which qualitatively modifies the interface dynam-
ics. If one can extend the theoretical analysis
given here to incorporate explicitly the contribu-
tion of impurities at large velocity, the results
might be compared with those obtained from
directional solidification experiments [3].
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