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Rapid Solidification of a Columnar Hexagonal Liquid Crystal. 
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PACS. 81.10F - Growth from melts. 
PACS. 64.70M - Transitions in liquid crystals. 
PACS. 64.70D - Solid-liquid transitions. 

Abstract. - We have measured the molecular-attachment kinetic law for the interface velocity of 
the columnar hexagonal phase of the liquid crystal HET (hexaoctyloxytriphenylene) when it 
grows into its isotropic liquid. This law is linear and characterized by a kinetic coefficient p(0)  = 
= p(1 + E ~ C O S ~ ~ ) .  The coefficient ,U is close to 130 p.m/s/oC and is independent of the impurity 
concentration. The anisotropy has been measured (€6 = 5.6.10-3) as well as the directions of 
maximal p(0): they make a 30" angle with the directions of maximal surface energy y(0). 

Recently, we have studied the growth of the discotic liquid crystal HET (2, 3, 6, 7, 10, 
11-hexa-n-octyloxytriphenylene) [l] at dimensionless supersaturations less than 1. We have 
shown the existence of three growth regimes: a diffusive petal-shape regime at  very small 
supersaturation, the dendritic regime at  intermediate supersaturations and the dense 
branching regime at supersaturation close to 1. In this article, we examine what happens at 
supersaturation larger than 1. In this case, attachment kinetics are known to play an 
essential role. 

Our goal is to show that it is possible to reach the limit of absolute restabilization and to 
measure accurately the kinetic coefficient and its anisotropy. Next, we shall discuss the 
physical origin of the kinetic process. 

In order to  observe the rapid solidification of the hexagonal mesophase, it was necessary 
to quench the samples. Briefly, the sample is first sandwiched between two 1 mm thick glass 
plates, one of which is coated with a conducting transparent IT0 layer. The sample 
thickness, ranging between 2 and 20 pm, is measured to about ? 0.2 pm on an optical bench 
with a Brace-Kohler compensator. This method is possible because the liquid crystal is 
birefringent. This sample is then placed in an oven whose temperature is controlled to about 
2 3 mK. The temperature is chosen below the solidus temperature, because we are 
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Fig. 1. - Experimental phase diagram, measured as described in ref.[2]. The impurity solute 
concentration has been estimated from the law of Van t'Hoff for dilute solution. H means hexagonal 
mesophase and I isotropic liquid. T * = 86.1 "C is the extrapolated melting temperature of the pure 
HET. K = 0.33. 

interested in working at  supersaturation larger than 1. We recall that the supersaturation is 
defined to be(l) 

where T,  (respectively, TJ is the solidus (respectively, the liquidus) temperature and T the 
actual growth temperature (fig. 1). In order to grow a germ, we send an electric impulse 
(typically 50V during 0.1 s) through the conducting layer in contact with the liquid crystal. 
Its duration is chosen to be as short as possible, in order to melt the liquid crystal without 
appreciably heating the glass plates. Just after the impulse, the sample temperature 
decreases exponentially with an initial slope of about lO"C/s. After a few seconds, the 
temperature of the sample is again equal to that of the oven. Because the rate of 
heterogeneous nucleation increases with the undercooling, germs often nucleate before the 
sample temperature is restabilized. For this reason, we record simultaneously the average 
sample temperature (obtained by measuring the temperature-dependent electric resistance 
of the I T 0  layer) and the times at  which the different germs nucleate. In this way, it is 
possible to determine the actual supersaturation a t  which each germ has grown. 
Experimentally, it ranges between 1 and 14. The germs are also video-taped and then 
digitalized on a Macintosh I1 computer, in order to measure the front velocity as a function of 
the supersaturation. This method allows us to determine the temperature to ? 0.3 "C and the 
front velocity to about 1%. The main sources of errors are due to  the smallness of the 
temperature coefficient of the conducting layer (40 mQZ/"C) and to the fact that the internal 
timer of the computer gives the time with a precision of only 0.2s. 

( l )  The supersaturation, as we have defined it, is different from the chemical supersaturation 3, 
generally used, in particular in ref. [l, 21. The relationship between them is 

where CO is the impurity concentration in the liquid a t  temperature T given by the liquidus line of the 
phase diagram. 
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Fig. 2. - Two germs growing a t  different supersaturation a) a t  A = 3, the front is locally unstable; b)  a t  
A = 5, the front is perfectly stable up to the microscope resolution. On the other hand, its shape is 
slightly hexagonal. c) Radius us. time. o for A = 3, for A = 5. 

Figure 2 shows the growth in the basal plane (the molecular columns are perpendicular to 
the glass plates) of two germs at different supersaturations ( A  = 3 and A = 5) and the 
evolution of their radii as a function of time. In both cases, the front velocity is constant and 
depends only upon temperature. One notes also that the globally circular front is locally 
unstable at A = 3, whereas no cellular structure is visible at large supersaturation. Thus, 
there exists experimentally a critical value A* above which the front restabilizes. 
Experimentally, we find a value A* = 4 ? 2 that is independent of the impurity concentration 
within our experimental errors (fig. 3). Note that this supersaturation defines the limit above 
which we no longer see cells within the resolution of the microscope. Therefore, the 
experimental value necessarily underestimates the true A*. The phenomenon of <<absolute 
restabilizationn will be analysed in detail in a more complete publication. Figure 4 shows the 
front velocity V as a function of T, - T: the different symbols represent samples of various 
impurity concentrations and thicknesses. Within the experimental errors, all these points lie 
on the same straight line as long as A > 1.5: 

(2) 

This is the signature of a linear kinetic law. The slope of this curve gives the kinetic coefficient 
p = 130 pm/s/”C (2). This coefficient, being independent of the impurity concentration, must be 
the same for the pure material. It characterizes the interface dissipation and by how much the 
system must be shifted from equilibrium in order to make the front grow at a given 
velocity. 

One must, however, be cautious because the measured front velocity could be due to the 
latent heat release and its diffusion in the glass plates, rather than to kinetic effects. One can 
nevertheless reject this interpretation for two reasons. First, the front velocity is 
independent of the sample thickness over a large range. Second, it is possible to  determine 
analytically the conditions under which thermal effects are negligible compared to 

V(pm/s) = 130(T, - 2’) (“(3). 

(‘1 Recently, we argued that if the solid phase wets preferentially the glass plates, just measuring 
the meniscus velocity leads to overestimate the kinetic coefficient [3]. This wetting effect can be 
neglected in the opposite case, the measured coefficient being equal to the real one a t  large enough 
velocity. We have checked that in our system the liquid wets the plates better than the solid, with a 
contact angle near to 30°, so that no correction is necessary. 
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Fig. 3. - Supersaturation A* (=4  5 2) of absolute restabilization vs. the freezing range AT = TI - T,. 
Fig. 4. - Front velocity V vs. undercooling T, - T x AT= 0.40 K, AT= 0.30 K, A AT= 0.35 K, 

AT=0.64K, H AT=0.74K, 0 AT=0.55K. 

attachment kinetics. Indeed, the front is equivalent to a line source of heat propagating at 
velocity V in a medium of thermal conductivity K (we assume that the conductivities of the 
substrate and of the sample are equal). The latent heat is negligible if the local overheating of 
the front is much smaller than the imposed undercooling: 

Ti-  T<<T,- T ,  (3) 

where Ti is the local interface temperature and T the temperature imposed far away (that we 
measure experimentally). An estimation of the heat flux from the interface gives LV= 
= K ( T ~  - T) /d .  On the other hand, the velocity is given by the kinetic relation, namely V =  
= p(T, - Ti). From these two relations, it follows that (Ti - T ) / ( T ,  - T) = 1/(1 + ~ / L d p ) .  
Thus, condition (3) is fulfilled if 

E!t <<1, 
K (4) 

where L is the latent heat per unit volume and d the sample thickness (see (l)). As expected, 
thermal effects decrease when latent heat, kinetic coefficient or sample thickness decrease 
and when the heat conductivity increases. Experimentally, K = lo4 erg/cm/s/K, 

0.2 j Ii 
0 10 20 30 40 50 60 200 250 300 350 400 450 
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Fig. 5. - a) Relative shape anisotropy E6 of a germ as a function of its radius R (€6 = 5.6 * w3); b) €6 VS. 
growth velocity V ( E 6  = 5.3. 
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Fig. 6. - Two different shapes of the same germ observed at  large and small undercoolings: the bigger 
germ was grown in the kinetic regime at A = 5, whereas the smaller one shows the destabilization of the 
same germ in the dendritic regime at A = 0.3. The solid lines represent the directions of maximal p(@, 
while the dashed lines are those of maximal r(0) along which dendrites grow at small undercooling. The 
directions of maximal y(0) and p(0) do not coincide and clearly form an angle of 30". 

L = 5 * 10' erg/cm3, ,u = 130 pm/s/OC and d < 20 pm, so that Ldp/ic is less than 0.1. This value 
is smaller than 1, justifying a posteriori the assumption that the latent-heat release is 
negligible. One can now return to the problem of the absolute restabilization. A linear 
stability calculation, which neglects latent-heat effects, gives 

(5) 

where do = y / L  = 1.3A is the capillary length, D = 1.2.10-7cm2/s the impurity diffusion 
coefficient in the isotropic liquid, K = 0.33 the impurity partition coefficient that we assume 
independent of the front velocity V (experimentally V is always much smaller than D/A = 
= lcm/s, where A is a diffusion jump distance of the order of a molecular distance) and 
T* = 359 K the melting temperature of the pure material. With these values, known 
generally with an uncertainty of lo%, one calculates A* = 7 k 2.5. This value is larger but 
compatible with the experimental one. Indeed, one can show that perturbations have not 
enough time to grow and become visible through the microscope when the supersaturation is 
larger than 5. This is due to the finite resolution of the microscope and the finite duration of 
the experiment. 

Another important property of the kinetic-coefficient is its anisotropy. It can be measured 
from the shape of the germs observed beyond absolute restabilization. Indeed one knows that 
the growth form obeys Wulff's rule for the kinetic-coefficient diagram [4]. Experimentally, 
one can measure R(e,t) (e polar angle) and expand it in a Fourier series 

R(O, t )  = &(t) -t &(t) COS (SO -k $6) -k ... . (6) 

According to the Wulff construction, Ro (t) and 86 (t)  are both proportional to time so that the 
relative anisotropy &6 = 86 (t)/Ro (t) must be constant. We have checked this experimentally 
by measuring €6 as a function of the germ size (fig. 5a)): experimentally, the germ form 
remains similar in time. Furthermore, we have found that €6 does not depend on the 

A * = l + y ,  W O  

KPT 
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supersaturation and the impurity concentration (fig. 5b)). Moreover, it is easy to prove that 
€6 is equal to the relative anisotropy of the kinetic coefficient itself. One can thus write 

(7) 

with &6 = 5.6. One must note that the equality of the E’S does not apply to higher-order 
harmonics: thus, for instance, f c P t i c  ‘Oefficient. These components, which are much 
smaller than & 6 ,  will be given in a more complete publication. Finally, we note that this 
anisotropy is not very different from that found for the surface energy (3 * 

Let us now discuss the problem of the relative orientation of the directions of maximal y(6) 
and ~(6). Because of the C,, symmetry of our crystalE51, the angle between these two 
directions may be 0 or x/6. To obtain this angle, we first grow a germ at large 
supersaturation in the kinetic regime (fig. 6) we mark the directions of maximal p(6). Then, 
we slowly increase the temperature to melt the germ until its radius is close to a few pm. The 
final temperature is chosen slightly below the liquidus temperature to insure that the germ 
never disappears completely, thus losing its crystallographic orientation. After about half an 
hour, the germ is perfectly circular and it is possible to destabilize it in the diffusive regime 
by decreasing the temperature again (fig. 6). The new temperature is chosen such that the 
supersaturation is close to 0.3. It is then very easy to locate the directions of dendritic growth 
corresponding to the maxima of the surface energy y(6). This experiment has been performed 
many times and shows unambiguously that the directions of maximal p(e)  and r(e) do not 
coincide but meet at an angle of 30”. This 30 degree offset has been found by Liu and 
Goldenfeld in numerical simulations of crystal growth process on a two-dimensional 
lattice [6]. 

In order to  explain the order of magnitude of the kinetic coefficient, let us write it 

p(6) = p[1 -k €6 COS (66 -k $6) -k . . .] 

[2]. 

as [71 

p D s d  LD 
E * =  - akB T *2 

In this formula, Dsd is the self-diffusion coefficient of the pure material in the liquid phase, D 
the molecular volume and a some molecular average size which can be defined through Q as 
a = (U~/Z)’ /~ .  The dimensionless parameter p characterizes the difference between a 
molecular jump leading to attachment to the solid and the diffusional jump of a molecule in 
the liquid. To our knowledge, there is no direct measurement of Dsd but, for estimation, we 
can express it through the viscosity 7 of the liquid via the Einstein relation 

kB 
Dsd = Z T q  * 

(9) 

This viscosity has been measured in HET and is close to 0.3 poise at the transition 
temperature T * [8]. It gives Dsd = 1.2 10-’cm2 /s by taking Q = 1.6.10-21 em3, a value that is 
very close to that we found for the impurity diffusion coefficient. From these values and 
using eqs. (8) and (9) we calculate 

,U = 3.7.10-~p (cm/s/”C). (10) 

Experimentally, we have measured ,U = 1.3 cm/s/”C, so we can estimate the parameter 
,!? = 3.5. This value is reasonable. 

In conclusion, we have investigated the fast growth of the impure liquid crystal HET 
at large supersaturation. We found that the growth rate is linear with undercooling: 
V = p(TS - T) .  The kinetic coefficient ,U is independent of impurity concentration and equal to 



J. c. GEMINARD et al.: RAPID SOLIDIFICATION OF A COLUMNAR HEXAGONAL LIQUID CRYSTAL 75 

130pm/s/”C. This value is much smaller than in usual plastic crystals. For instance, 
Glicksman et al. [9] give ,U =20cm/s/”C for succinonitrile, a value that is three orders of 
magnitude larger than ours. We believe that this is mainly due to the difference between the 
diffusion coefficients in both materials. We also measured the anisotropy of the kinetic 
coefficient and the directions along which its value is maximal. These directions do not 
coincide with those of maximal surface energy and make an angle of 30”. 

* * *  
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