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ABSTRACT. Many real-world networks of interest are embedded in physical
space. We present a new random graph model aiming to reflect the interplay
between the geometries of the graph and of the underlying space. The model
favors configurations with small average graph distance between vertices, but
adding an edge comes at a cost measured according to the geometry of the
ambient physical space. In most cases, we identify the order of magnitude
of the average graph distance as a function of the parameters of the model.
As the proofs reveal, hierarchical structures naturally emerge from our simple
modeling assumptions. Moreover, a critical regime exhibits an infinite number
of discontinuous phase transitions.
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1. INTRODUCTION

In the Erdés-Rényi random graph, pairs of nodes are connected independently
and with the same probability. It is now well-known that most networks of interest
in biological, social and technological contexts depart a lot from this fundamental
model. In a very influential paper [8], Barabasi and Albert suggested that these
more complex networks have in common that their degree distributions seem to
follow a power law. This is in stark contrast with the degree distribution observed
in Erd6s-Rényi graphs, which has finite exponential moments. They proposed that
this property become the signature of complex networks, a sort of “order parameter”
of these systems. They then observed that a growth mechanism with preferential
attachment reproduces the power-law behavior of the degree distribution. The
work of Barabasi and Albert triggered a lot of activity, in particular on preferential
attachment rules and the configuration model. We refer to [37] for a comprehensive
account of the mathematical activity on the subject.

This point of view is however not all-encompassing [24]. Several studies point to
the fact that different graphs may share the same degree distribution, and yet have
very different large-scale geometries; and moreover, that the “entropy maximizing’
graphs with a power-law degree sequence—those that would be favored by the point
of view expressed above—actually do not resemble certain real-world networks. For
instance, the authors of [25] show that the physical infrastructure of the Internet
is very far from resembling a graph obtained from the dynamics of preferential
attachment; instead, hierarchical structures are observed, and the organization of
the network is best explained as the result of some optimization for performance (see
in particular [25, Figures 6 and 8]). Similarly, the network of synaptic connections
of the brain depart a lot from “maximally random” graphs with a power-law degree
sequence [34]. They also exhibit a hierarchical organization, as well as high clustering,
and the authors of [34] suggest that this is the result of an attempt to maximize a
certain measure of complexity of the network, with a view towards computational
capabilities (see also [35, 36, 33]).

)
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The goal of the present paper is to introduce a new model of random graph
which is hopefully more representative of such real-world graphs. In our view, one
fundamental requirement for our model is to retain the fact that graphs such as the
infrastructure of the Internet, transportation or neural networks, are embedded in
physical space. The examples we described above seem to suggest that the graphs
of interest are the result of some optimization: for the efficient transportation of
information in the case of the infrastructure of the Internet, or for some notion of
complexity for neural networks. In fact, it is very easy to imagine a wealth of other
natural objective functions for a network, depending on the context. As for the
geometry of the underlying space, it would be natural to take it as a large subgraph
of Z%. Here we restrict our attention to a one-dimensional underlying structure.
As for the objective function, we chose a measure of connectedness of the graph:
minimizing the diameter of the graph is an example of objective we consider.

One of the key findings of our study is that despite its simplicity, our model
displays a very rich variety of behavior. In particular, a critical case displays an
infinite number of discontinuous phase transitions. Moreover, hierarchical structures
emerge spontaneously, in the sense that they are not built into the definition of
the model. As was pointed out above, hierarchical structures have been seen to
occur in real-world networks. While these hierarchies were assumed to emerge
from technological constraints in [25] (in particular, because only a handful of
routers with different bandwidths are commercially available), we show here that the
requirements of optimization of the objective function can be sufficient to account
for the emergence of such structures.

The random graph we study is the result of a balance between a desire to optimize
a certain objective function and entropy effects. As announced, we wish to focus
here on the simplest possible such model, and therefore restrict ourselves to a
one-dimensional ambient space. Let N be a positive integer, and let G, = (Vn, EYy)
be the graph with vertex set

Vy={0,...,N—1}
and edge set
Ejy={{z,x+1} : z,2+1€Vn}.

We will refer to elements of E3; as ground edges. In analogy with a transportation
network, we may think of elements of Vi as towns, and of edges in E3; as a basis of
low-speed roads connecting towns in succession. We now consider the possibility of
adding additional edges “above” the ground edges, which we may think of as faster
roads, or flight routes. Let

en ={{z,y} : s #FyeVn}
be the set of (unordered) pairs of elements of Vi, and
Yn ={9=(Vn,En): E}; C Exy C én}
be the set of graphs over V that contain G§; as a subgraph. Each graph g =
(Vn, En) € 9 induces a graph metric given by
dg(z,y) =inf {k € N: Jzg = z,21,..., 21, 7k = y s.t.
forall 0 <j < k,{z;,z;41} € EN}.

This distance is not to be confused with the “Euclidean” distance | - |. For a given
p € [1,00] and for each g € Gy, we define the ¢P-average path length by

P

(1) M) = |2 2 A .

z,yeVN
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with the usual interpretation as a supremum if p = co. (In other words, Hoo(g) is
the diameter of the graph g.) We would like to minimize this average path length,
subject to a “cost” constraint. The cost is defined in terms of a parameter v € (0, o)

by
Cylg)= D lel,

c€EpN

le|>1
where for each edge e = {x,y} € &y, we write |e] = |y — x| for the length of the
edge e. When « = 1, the cost of a link is equal to its length; the case v < 1 can be
thought of as a situation with “economies of scale”, in which the marginal cost of
an edge is lower when the edge is longer.

Ideally, we would wish to find the graph g minimizing #,(g) subject to a given
upper bound on the cost function C,(g). However, real-life constraints prevent this
optimization problem from being resolved exactly. Instead, the resulting graph will
be partly unpredictable, and we assume that its probability distribution follows the
Gibbs principle. In other words, we are interested in the Gibbs measure with energy
given by a suitable linear combination of #,(g) and C,(g).

In order to simplify a little the ensuing analysis, we define our model in a slightly
different way. We denote the canonical random graph on 95 by Gy = (Vn,En).
For each v € (0,00), we give ourselves a reference measure P, on ¢y such that
under P,

(1.2) the events ({e € En})ecey,|e|>1 are independent,

and each event has probability exp (—|e|”?).
(We do not display the dependency on N on the measures P; we may think of the
latter as a measure on [ %n.) We denote by E, the associated expectation. Then,

for each given b € R and p € [1, 00], we consider the probability measure Pg’p such
that for every g € 9y,

€Xp (_Nb Hp(ﬂ)) Pv[gN = gl,

b, _ _
(1.3) PYon =gl =55
v,N

where the constant Z:’ ‘v ensures that ]P’E’Y’p is a probability measure:

(1.4) 228 =By [exp (—N"H,(Gn))] -

We denote by Ef’y’p the expectation associated with ]p{)ym . One can check that the
measure Pg’p is the Gibbs measure with energy

b2y () S log (Rl
N*H,(g) GEZE:NI g <1 exp(|e|v))’

which is a minor variant of the energy N*H,(g) +C,(g). A natural extension of our
model would be to consider energies of the form

/BNHp(g) + )‘NC’Y(g)7

for general sequences (Sy) and (Ay). However, this increase in generality does not
seem to change the qualitative behavior of the model, so we favored clarity over
generality.

Our first main result characterizes the behavior of the average path length in
terms of the parameters 7, b and p when ~ # 1.
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Theorem 1.1. For every v # 1 and b € R, let

1-b
<A1>v0 ify <1,
2—vy

a(y,b) = _b
<7A1> VO ify > L.
v

For every vy # 1, be R, p € [1,00] and € > 0, we have

b,p |: log H;D(gN)
v

lim P
e log N

N—o0

- Ck(’)/, b)

>E]=0.

Drawings of the function b — «(y,b) in the cases 0 < v < 1 and v > 1 are
displayed in Figure 1.

0<y<l1 v>1

« «

a(7,b) a(v,b)

14y 0 1 b 0 1oy b

FIGURE 1. Under P%? for v # 1, we have % ~ a(7v,b) with high probability.

The proof of Theorem 1.1 essentially reduces to showing that under the reference
measure P, for every p € [1,00] and « € (0,1), one has

o N1-al=7) if vy <1,
(15) - 1OgP’Y [HP(QN) ~N ] = Nl—i—(l—a)(’y—l) if v > 1.

For v < 1, the lower bound for this probability is obtained by the hierarchical
construction depicted in the top graph of Figure 2: we draw the edge connecting
the extremities of the interval Vi, then the two edges connecting each extremity
with the middle point of Vi, and so on recursively until reaching edges of length
N®. The lower bound for the case v > 1 is obtained similarly, but starting from
edges of length 2 and building successive layers of larger edges, as depicted in the
bottom graph in Figure 2, until we reach edges of size N'1~2.

The proof of the upper bound for the left-hand side of (1.5) confirms the relevance
of the strategy used in the proof of the lower bound in the following sense. For
v > 1, we show that outside of an event of probability smaller than the right side of
(1.5), there are of order N points at Euclidean distance at least N1=¢ from one
another and such that no edge of length N~ or more goes “above” any of these
points. For v < 1, outside of an event of suitably small probability, we identify
about N1~ disjoint sub-intervals which are each of diameter N® and have no direct
connection between one another.

Our second main result concerns the case v = 1. This case is critical, and therefore
more difficult. Rather than “all b € R and all p € [1,00]” (as in the statement of
Theorem 1.1), Theorem 1.2 is applicable to a certain set of (b,p) € R x [1,00]. This
set is shown in Figure 3 and defined by

k-1 k
1. _— —_— fi
(1.6) A + h(k,p) <b< P or some k € N,
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— : — — : —

FIGURE 2. Hierarchical constructions that provide lower bounds for
Theorem 1.1: case v < 1 (top) and v > 1 (bottom).

where h: N x [1,00] — R is defined by
2p=(p—Dk _\, 0 if p < ooy

%(kt1)(k+2p)
(1.7) h(k,p) = 1 if p=ocand k = 1;
0 if p=o0and k > 1.

FS
3
e
~1
®I

FIGURE 3. Each rectangular region delimited by the horizontal lines
p =1 and p = oo and the vertical lines b = % and b = kL_H is divided
into a dark part and a white part. The white part consists of the values

of (b, p) covered by Theorem 1.2.

Theorem 1.2. Ifp € [1,00], k € N, b € R satisfy % + h(k,p) <b< kiﬂ, and

€ > 0, we have

log”Hp(gN) _ 1
log N E+1

. b,
lim P} [

N—oc0

‘>5}—0.

We note in particular that for each p > 1, we have h(k,p) > 0 if and only if
k< %. Therefore, for each p > 1, Theorem 1.2 guarantees an infinite number of
discontinuous transitions for

1
lim og Hp(gN) 7
N—oo logN
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which ultimately spans the sequence (%) pen 38 b increases to 1. Figure 4 displays
this phenomenon more precisely, and is in sharp contrast with the naive continuation
of the graphs of Figure 1 to the value v = 1.

A«
1
—
a(l,b)
1/2 j—
JUEE SE— _
1/4 i
0 1
2

FIGURE 4. The function a(1,b) plotted above is such that, if b and p
satisfy the condition given in (1.6), then under ]P)l{‘p we have % ~

a(1,b) with high probability as N — co.

The origin of this phenomenon can be intuitively understood as follows. Irre-
spectively of the value of v, the only efficient strategies for reducing the average
path length consist in the addition of successive layers of edges above ER;, each of
which essentially covers the interval {1,..., N}. When v = 1, all layers covering
{1,..., N} without redundancy have the same cost. If only one layer is allowed,
then the most distance-reducing layer is one made of edges of length N %, which
brings the average path length down to about N 3. If two layers are allowed, then it
is best to choose one made of edges of length N 3, and one made of edges of length
N %, in which case the average path length is about N 3 If k coverings are allowed,
then we use layers made of edges of length N E , N = Y T respectively, so as
to reduce the average path length to V . The graphs for the cases k =1 and k = 2
are illustrated in Figure 5. Note that these graphs may be seen as “in between’
those displayed at the top and bottom of Figure 2.

)

N2

NL/3

N2/3

FIGURE 5. Hierarchical constructions that provide lower bounds for Theorem 1.2.
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In view of this, the proof of Theorem 1.2 will necessarily be more involved than
that of Theorem 1.1. Indeed, in the limiting case v = 1, the right side of (1.5) no
longer depends on a. The estimate is therefore no longer discriminative, and the
proof of Theorem 1.2 must rely on more precise information on the probability of
deviations of H,(Gn) under the reference measure P;. Our argument is faithful to
the intuition described above, in that we inductively “reveal” the necessity of the
existence of these successive layers.

Remark 1.3. We conjecture that Theorem 1.2 holds with h = 0. Although we do
not prove this, our proof of the theorem provides some extra information concerning
values of (b, p) that do not satisfy (1.6). Namely,

(1) for every p € [1,00], b < 0 and € > 0, we have

[log Hp(Gn)

lim PP
e 1 log N

N—oc0

<1—e]:0;

(2) for every p € [1,00], k€N, b e (%, kL—H) and € > 0,

1 long(gN) 1
[k:—i— 1 °° TlgN k]

(3) for every p € [1,00], b> 1 and € > 0, we have

. logH,(Gn)
b,p g Mp\YN
fm B [ log N

: b
lim P}
N—oc0

> 5] =0.

N—o00

Theorems 1.1 and 1.2 demonstrate that random graph models that are embedded
in some ambient space, and that relate to the minimization of some objective
function, are amenable to mathematical analysis. They offer a glimpse of some
features of real-world networks not captured by more common models, in particular
with naturally emerging hierarchical structures. Of course, these results also call for
improvement: besides closing the gap apparent in Theorem 1.2, it would be very
interesting to obtain more specific results about the exact structure of the hierarchies
we expect to be present in the graph. We point out that it is not straightforward
to see them appearing in simulations of Glauber-type dynamics adapted to the
model we study. We are grateful to Vincent Vigon (University of Strasbourg) for
performing such simulations, which are accessible at

http://mathisgame.com/small_projects/SpacialGibbsRandomGraph/index.html

It would also be very interesting to explore generalizations of the model. For many
real-world networks, it would be most natural to consider an underlying geometry
given by a large box of Z9, d € {2,3}, as opposed to the case d = 1 considered
here. In fact, the model we consider could be defined starting from an arbitrary
reference graph G°: the cost of the addition of an edge would then be a function
of the distance in the original graph G°. Ideally, one would then aim to determine
how the properties we discussed here depend on the geometry of the graph G°.

Another possible direction for future work would be to consider other objective
functions to minimize. We already mentioned that a certain measure of “complexity”
was identified as a parameter to optimize for neural networks; and that the efficient
transportation of information is certainly an explanatory variable for the physical
structure of the Internet. Many variations can be imagined. For instance, one may
assume that in order to turn a vertex into an efficient “hub” with many connections
to other vertices, one needs to pay a certain cost (e.g. because more infrastructure
is necessary, a more powerful router needs to be bought and installed, etc.). This
assumption may strengthen the possibility of degree distributions having a fat
polynomial tail.
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One of the implicit assumptions in our model is that the vertices in Vyy are all
given the same importance in the computation of the average path length. If we
think of the vertices of Viy as towns, it would be more natural to weigh the average
path length according to some measure of the number of inhabitants in each town.
That is, we would endow each = € Vi with a number 7, measuring the “importance”
of the vertex z, and replace H,(g) by a suitable multiple of

p

(1.8) > Ty di(z,y)

z,yeEVN

As is well-known, city size distributions follow a power law, as do a wide range of
other phenomena [39, 31, 32]. In this disordered version of our model, it would
therefore be natural to assume that (7,,) are i.i.d. random variables with a power-law
tail.

We conclude this introduction by mentioning related works. First, as was apparent
in (1.5), our results can be entirely recast in terms of large deviation estimates for
some long-range percolation model. While this point of view is also natural, we
prefer to emphasize the point of view based on Gibbs measures, which motivates
the whole study (and explains in particular our need for a very fine control of the
next-order correction to (1.5) in the critical case v = 1, see Proposition 3.1 below).
For long-range percolation models, it is natural to assume a power-law decay of the
probability of a long connection. In contrast, under the reference measure P of
our model, we recall that the probability of presence of an edge of length |e| decays
like exp (—le|”) instead; power-law behavior of long connections is only expected
under the Gibbs measure, and for the right choice of parameters. Early studies in
long-range percolation models include [30, 29, 4, 3, 18], and were mostly focused
on the existence and uniqueness of an infinite percolation cluster. The order of
magnitude of the typical distance and the diameter for such models was studied in
[9, 14, 10, 11, 16]. The variant of our model discussed around (1.8) is reminiscent
of the inhomogeneous, long-range percolation model introduced in [15]. We are not
aware of previous work on large deviation events for long-range percolation models.

With aims comparable to ours, several works discussed models obtained by
modulating the rule of preferential attachment by a measure of proximity, see
[17, 2, 23, 22, 13, 20, 21]. The survey [7] is a good entry point to the literature on
geometric and proximity graphs, where for example one draws points at random in
the plane and connects points at distance smaller than a given threshold. Upper and
lower bounds in problems of balancing short connections and costs of routes were
obtained in [6, 5]. Similar considerations led to the definition of certain “cost-benefit”
mechanisms of graph evolution in [26, 27, 38]. Another line of research is that of
exponential random graphs, see for instance [12], where Gibbs transformations of
random graphs such as the configuration model are studied. (We are not aware of
spatially embedded versions of these models.) Yet another direction is explored in
[1], where the authors give conditions ensuring that the uniform measure on a set of
graphs satisfying some constraints can be well-approximated by a product measure
on the edges.

Organization of the paper. We prove Theorem 1.1 in Section 2, and Theorem 1.2
in Section 3. The appendix contains a classical large deviation estimate, which we
provide for the reader’s convenience.

Terminology. We call any set of the form {a,...,b} with a,b € Vy, a < b an
integer interval. Whenever no confusion occurs, as in this introduction, we simply
call it an interval.
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2. CASE v #1

The goal of this section is to prove Theorem 1.1. The section is split into three
subsections: we first prove respectively lower and upper bounds on the probability
of deviations of H,(Gn) under the reference measure P, and then use them to
conclude the proof in the last subsection.

2.1. Lower bounds. In this subsection, we prove lower bounds on the probability
of deviations of the diameter Ho.(Gn) under the reference measure P.,.

Proposition 2.1. (1) If v < 1, then there exists C < oo such that for every
a € (0,1),

Py[Hoo(Gn) < N¥| > exp (_CNl—a(l——y)) '
(2) If v > 1, then there exists C' < 0o such that for every a € (0,1),
]P;"/ [Hoc (gN) < Na] 2 exp (_CN1+(1—(1)(7—1)> )

Proof. For 1 < k <, let
(2.1) En(k, 1) :={{i2?,(i+1)2'} € &y : i €N, k<j <L}
We denote by Ay (k,1) the event that En(k,1) C En.
Let n be the largest integer such that 2" < N, and let £ < n. When v < 1, the
most efficient strategy for reducing the diameter H is to start building a binary

hierarchy starting from the highest levels. We are therefore interested in showing
that

(2.2) Ax(k,n) =  Hoo(Gn) <281 4 2(n — k).

Let 2 € V. For ij, := |2/2%], we have ;2% € Viy and |z — 2| < 2. We then
define inductively, for every [ € {k+1,...,n},

i1 = |1/2].
We observe that 7,41 = 0 and
12! — i 127 € {0,2',

so either the edge {i;2',4;,12!%1} belongs to En(k,n), or the endpoints are equal.
On the event Ay (k,n), the following path connects = to 0 and belongs to Gy: take
less than 2* unit-length edges to go from x to i;2*, and then follow the edges
{i;2!,4;,12!71} (when the endpoints are different) until reaching 0 for I = n. The
total number of steps in this path is less than 2¥ + (n — k). Hence, on the event
An(k,n), any two points can be joined by a path of length at most twice this size,
and this proves (2.2).
It follows from (2.2) that

B, [Hoo (Gn) < 257 4 2(n — k)] > By [An (R, n)].

In view of what we want to prove and of the fact that n < log,(N), we fix k to
be the largest integer such that 2 < N/4. Since n < log,(N), for N sufficiently
large, for this choice of k, we have

P’Y[Hoo(g]\f) < Na] = ]P)«,[.AN(k,n)].
By (1.2) and the fact that v < 1, the probability in the right-hand side is
(exp (—277)) V=D S exp (—CNQ_(l—’Y)k)
=k

J
> exp (—CNl_a(l_"*)) ,
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where C' < co may change from line to line, and where we used the definition of &k
in the last step. This completes the proof of part (1) of the proposition.

We now turn to part (2) of the proposition. When ~ > 1, it is more efficient to
use events of the form Ay (1, k) for a suitably chosen k. Indeed, similarly to (2.2),
one can show

(2.3) Av(LE) =  Hoo(Gn) <272 4 2k,
and therefore
P, [Hoo(Gn) < 277742 4 2k] > P [An (1, ).

We choose k to be the smallest integer such that 2"7% < N%/8. (Recall that by
the definition of n, this roughly means 2¥ ~ N'=%.) For this choice of k and N
sufficiently large, we have

Py[Hoo(Gn) < N = P, [AN(1,E)].
The latter probability is equal to

k .
H (exp (,27]’)) L(N=1)/27] > exp (70]\]2(7*1%)

j=1
> exp <_CN1+<H><1704>) ’
where we used that v > 1 and the definition of k. O

2.2. Upper bounds. In this subsection, we prove upper bounds on the P.,-proba-
bility of deviations of the ¢!-average path length H;(Gx). Those upper bounds
match the lower bounds obtained in Proposition 2.1 for the diameter Ho,(Gn ).

Proposition 2.2. Assume v < 1.
(1) For every o € (0,1), there exists ¢ > 0 such that

Py[H1(Gn) < N9 < exp (—ch—a(l—v)) .
(2) There exists ¢ > 0 such that
P,[H1(Gn) < e¢N] < exp (—cN7).

Proposition 2.3. Assume v > 1.
(1) For every o € (0,1), there exists ¢ > 0 such that

P, [Hi1(Gn) < N9 < exp (—CN1+(1_O‘)(7_1)> ;
(2) There exists ¢ > 0 such that
P, [H1(Gn) < eN] < exp(—cN).

While part (2) of Propositions 2.2 and 2.3 are not really needed for the proof
of Theorem 1.1, we find it interesting to point out that these small probability
estimates already hold as soon as the diameter is required to be a small constant
times N.

For clarity of exposition, we will prove Proposition 2.3 first. We start by intro-
ducing the notion of o-cutpoint, which in its special case 0 = 1 was already used in
[9]. For any ¢ > 0, we say that x € Viy is a o-cutpoint in the graph G if no edge
e={e ,et} € Ex is such that e~ < x and e > x + 0. In other words, no edge of
length o passing “above ” reaches x + o or further to the right. (In view of the
proof of Proposition 2.1, we can anticipate that for v > 1, we will ultimately choose
o~ N'"%) Let Xy =0, and define recursively

Xit1 =inf{z > X; + 0 :z is a o-cutpoint in Gy},
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with the convention that X;;; = N if the set is empty. We also define
T =sup{i: X; < N}.

Both the sequence (X;) and T depend on N and o, although the notation does
not make it explicit. The quantity T records a number of o-cutpoints that are
sufficiently separated from one another. We would like to say that up to a constant,
H1(Gn) should be at least as large as T'. While this would be correct if H;(Gn) was
replaced by the diameter H,(Gn ), counter-examples can be produced for Hi(Gy).
The next lemma provides us with a suitably weakened version of this idea. There,
one should think of X7, and (N — Xr,) as being of order N and of T, — T as being
of order T.

Lemma 2.4 (average path length via o-cutpoints). If 0 < Ty < To < T, then
_ 2Xr, (N = Xr,)

Hi1(Gn) = N2 (T — T1).
Proof. Consider the situation where z,y € Viy and 1 < 4,5’ < T are such that
(2.4) r< X; <Xy <y.
Any path connecting z to y must visit each of the intervals {X;, ..., X;11 —1}, where

i €{4,...,5" — 1}. Indeed, it suffices to verify that there is no edge e = {e™,e*}
such that e~ < X; and e > X;,;. This is true since X; is a o-cutpoint and
Xi+1 — X; = 0. Hence, if (2.4) holds, then dg, (z,y) > j' — j. As a consequence,

Z dgy (m,y) 22 Z Z dgN($7y)

z,yeVN 1<G<i’'<ST Xj-1<a<X;
Xj/§y<Xj/+1

>2 > (X = X)) (X — X))
1<i<y’'<T
Restricting the sum to indices such that 1 < j < 771 and T < 5/ < T, we obtain the

announced bound. O

In order to proceed with the argument, it is convenient to extend the set of
vertices to the full line Z: we consider &, = {{z,y} : x # y € Z}, and the random
set of edges £, whose law under P, is described by
(2.5) the events ({e € Eoc})ecs. |e|>1 are independent,

and each event has probability exp (—|e|”).

We can and will assume that under P, the sets &5 and £, are coupled so that
EN C €. In particular, a o-cutpoint in G, 1= (Z,E) is a o-cutpoint in Gy =
(Vi,En). We define the sequence (X;);en as following the definition of (X;), but
now for the graph G,,. That is, we let )Z'O =0 and for all i > 0,

)~Q+1 = inf{z > )~(, + 0 :xisao-cutpoint in G }.
The aforementioned coupling guarantees that for every ¢ € N,
(2.6) X; < X

Lemma 2.5 (i.i.d. structure). The sequence (X;y1 — )?1)190 is stochastically domi-
nated by a sequence of i.i.d. random variables distributed as X .

Proof. For every i > 0, the event X’Hl — X’Z > x can be rewritten as

{Vye{)?iJra,...,)?ier} Je={e et} €&y st ef<yande+>y+a}.
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For i # 0, the point )}i is a o-cutpoint, hence the event above is not modified if we
add the restriction that e~ > X;. For any given xq, ..., x;, the event

{XOZCE(),...,Xi:{L‘i}

is a function of (L.ecg. ) over edges e whose left endpoint is strictly below z;. Hence,

P,y [X0:x07...,)?i:$i, )’ZiJ’»]_)’Zi >£C]

>P7 |:5(:0:.Z‘0,...,X,':Ii:| P,y [)?1>Ij|7

and the lemma is proved. 0

Remark 2.6. In fact, the argument above shows that the random variables (X;41 —
X’i)@l are i.i.d. We could arrange that ()?Z-H — Xi)i)O be i.i.d. by choosing to define
Gso over the vertex set N instead of Z. However, we prefer to stick to the present
setting, which makes the proofs of Lemmas 2.7 and 2.9 slightly more convenient to

write.

We now state an estimate on the tail probability of )~(1 in the case v > 1, and
use it to prove Proposition 2.3.

Lemma 2.7 (Exponential moments of )?1 for v > 1). For every v > 1, there exists
co >0 and Cy < 0o (not depending on o > 1) such that for every 0 < coo? ™1,

E, [exp (95(1)} < exp (Cobo) .
Proof. For every x € Z, we define the reach of x in the graph G, as
(2.7) R(x)=sup{y >0 : I2<0s.t. {z+z,2+y} €&} (= 0).

This quantity will be helpful to control X 1, since the point x is a o-cutpoint if and
only if R(z) < o; and moreover, the random variables (R(x))zez are identically
distributed. We start by estimating their tail.

P[R(0) > ] < S Py[Fy > 1 ¢ {24} € Ex

z<0
o0
<Y e (—(y—2)7) < Cexp(—ar),
2<0y=r+1

where the constants C,c > 0 depend only on . We can adjust the constant ¢ > 0
so that

(2.8) P,[R(0) > 7] < exp (—cr?).
As a consequence,

E, [exp (0R(0))] < exp (0o) + iexp (2"100) P, [2F0 < R(0) < 2"10]
k=0

S k _ ok(y—1)
< exp (fo) —i-];exp (2 {290 2" U'YD.

Since v > 1, assuming 0o < c10” with ¢; > 0 sufficiently small, we have
E, [exp (0R(0))] < exp (200 + C).

By Jensen’s inequality, for 8 < ci0”!, we can rewrite this estimate in the more
convenient form

E, [exp (0R(0))] < E, [exp (107 R(0))] T
(2.9) < exp (C100) .
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for some constant C; < oo not depending on 6 or 0. We now define inductively
Zo =0,

(2.10) Ziv1 = Zi + R(Z),
and we let
(2.11) I'=inf{i >20: R(Z;) < o}

The point Z; is a o-cutpoint if R(Z;) < o, so )~(1 < Z;, and we will focus on
estimating the exponential moments of Z;. By (2.10), no edge {e",e™} with
e~ < Z; is such that et > Z;11, so

R(Zi+1) = Sup{eJr > 0:de” € {ZZ, .. .7Zi+1 — 1} s.t. {67,Z¢+1 + €+} S Eoo}

Conditionally on R(Zp), ..., R(Z;), the law of the events ({e™, Z;41 + et} € Ex)
for e~, e as above are independent, and each has probability exp (—|e|”). Hence,
the sequence (R(Z;))ien is stochastically dominated by a sequence (R});en of i.i.d.
random variables distributed as R(0). Letting

i—1
(2.12) Z] :0+ZR;.
j=0
and
(2.13) I'=inf{i >0: R, <o},

we also have that Z; is stochastically dominated by Z,. Our task is thus reduced
to evaluating the tail of Z},. We note that by (2.8),

(2.14) P,[I' > i] = (P, [R(0) > 0])" < exp (—cio?),
and decompose

E. [exp (027)] < Ey [exp (027,)]
<exp((2% +1)00) + > exp (25100) P, [2°0 < 2}, — 0 < 2"Ho]
k=ko

where kg is chosen as the smallest integer such that 2% > 2C}, the constant C;
being that appearing in (2.9). We have

2k,—k'0 -1

Py [Zp —o 2 2% SP[I' 22 M)+ P, | Y Rj>2%
7=0

The first term is estimated by (2.14). In order to control the second term, we assume
that 6 < %07_1, and use Chebyshev’s inequality, independence of the summands
and (2.9) to get

P | B fexp(s0R0)]}

P, iz Ry 2200 < exp(2++360)
< exp (280130100 — 2M300)
< exp (—2°200),
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where we used the definition of kg in the last step. We thus obtain, for 6 < %07_1,
that

E, [exp (0Z))] < exp((2¥° 4+ 1)60)

+ Z exp (2’““90) {exp(—c2k_k°07) + exp (—2k+290)} ,
k=ko
and this yields the desired result. O

Proof of Proposition 2.3. We begin with part (1) of the proposition. We denote
by ¢y and Cj the constants appearing in Lemma 2.7. Let m be an integer that
will be fixed later in terms of Cy only. By Chebyshev’s inequality, Lemma 2.5 and
Lemma 2.7 with 6 = cqo? 1,

~ [exp (Cocoa'y)]mNa
P [X, ne > N]| <
v [ N ] exp (coNov—1)

-«
= exp {—CoNaO"Y <N — C’Om) } .
o

Fixing 0 = N'=%/(2Cym) (which is greater than 1 for N sufficiently large, since
a < 1), we obtain

Py [XmNa > N] < exp (*QNO&V(FQ)) ,

for some ¢; > 0. By (2.6), on the event jsz" < N, we have X,,nyo < N and thus
T > mN®. On this event, since X;11 — X; > 0 = N'7%/(2Cym), we also have

1 1
XmN”/S 2 EN andN—XQmNa/g >XmN0< _XQmN‘l/S 2 EN
By Lemma 2.4, we thus have
> 2m
Xpunoe <N =— H >——_N¢%
mN (Gn) 36002

Choosing m = 3 - (6Cy)?/2, we obtain

P, [H(Gx) < N <Py [Kune > N] <exp (—er N2

which proves part (1). The proof of part (2) is identical, except that we choose
o = 1 throughout. O

We now turn to the proof of Proposition 2.2, that is, we now focus on the case
~v < 1. From now on, we fit o =1 and call a 1-cutpoint simply a cutpoint. If I is an
integer interval, we say that a point € I is a local cutpoint in I (for the graph Gy)
if whenever an edge e € Ey goes above x, none of its endpoints is in I, that is,

{e={e et} eéyst. e <z <etand {e ,e"}NI#£0}=0.
We first give a substitute to Lemma 2.4 adapted to this notion.
Lemma 2.8 (average path length via local cutpoints). Let I C Vi be an integer

interval, and T denote the number of local cutpoints in I. We have

TS

z,ycl

If I,I' C Vy are two disjoint integer intervals, and if T is the minimum between
the number of local cutpoints in I and in I', then we also have
T3
Z dgy (2,y) =2 —.
63
zel,yel’
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Proof. We only prove the first statement; it will be clear that the proof applies to
the second statement as well. Let Y7 < --- < Y7 be an enumeration of the local
cutpoints in I. Assume that for 1 < j < 7/ < T and z,y € I, we have

Yio <z <Y <Yy <y < Vi,

As was seen in the proof of Lemma 2.4, if a path joins x to y without exiting I,
then its length is at least j' — 7.

By the definition of Y7, there is no edge linking a point outside of I to a point
2’ such that x’ > Y;. Similarly, there is no edge linking a point y’ < Y7 to a point
outside of I. As a consequence, a path joining x to y faces the following alternative:

(1) go from z to y without exiting I;

(2) go through a number of excursions to the left of I, then reenter I to the left
of Y7 and go to y without further exiting I;

(3) go through a number of excursions to the left of I, then jump directly from
the left of I to the right of I and do a number of excursions to the right
of I, possibly several times jumping back and forth to the left and to the
right of I, and then finally enter I to the right of Y and connect with y.

Since we want to find a lower bound on the length of such a path, it suffices to
consider the following cases:

(1) the path goes from x to y without exiting I;
(2) the path first reaches a point 2’ < Y] while staying in I, then exits I to its
left, then jump to the right of I, then reaches 3’ > Y7, and finally reaches y
while staying in I.
We already found the lower bound j' — j for the first scenario. In the second case,
the length of the pathisat least (j — 1)+ 14+1+1+(T—35'-1)>T - (4" —j).
Therefore,

Z dgN (as,y) 22 Z Z dgN ('T7y)

z,yel 1<i<y'ST Y152y
Y Sy<¥jia

>2 ) (YY) =)0 =) A (T =5+ )

1<j<j'<T

Restricting the sum to indices such that

T_o_or 3T, AT

- X - an X X -

5 5755 5 )87

and observing that Yyr/5 — Y5 = T'/5 and Yyp/s — Ysp s > T/5, we obtain the
result. O

We now estimate the tail probability of X; (recall that we fixed o = 1).

Lemma 2.9 (Exponential moment of X, for ~v < 1). For every v < 1, there exists
0 > 0 such that

B, [oxp (657)] < oo

Proof. We first recall some elements of the proof of Lemma 2.7. We define R(z) as
in (2.7), and observe that the estimate (2.8) still holds under our present assumption
v < 1. We also define (Z;) and I as in (2.10) and (2.11) respectively (with o = 1).
We have that X; < Z;, and that the sequence (R(Z;)) is stochastically dominated
by a sequence (R});en of i.i.d. random variables distributed as R(0). We define (Z))
by (2.12) and I’ by (2.13), and recall that Z; is stochastically dominated by Z7,.
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As in Lemma 2.7, our final goal is to estimate the exponential moments of Z7,.
We start by estimating those of R(z):

E, [exp (AR(0)")] < exp (6) + iexp (027““*1)) P, [2% < R(0) < 2]
k=0

<exp () + Z exp [-27% (c — 270)] .
k=0

For 6 > 0 sufficiently small, we thus have
E, [exp (§R(0)7)] < oo.

By Proposition A.1 of the Appendix, letting Cy := E,[R(0)] + 1, there exists cg > 0
such that

i—1
(2.15) P, | Rj > Coi| < exp(—coi?).

§=0

Recall from (2.8) that

PL[R(0) > 1] < exp(~¢) < 1,
and thus
(2.16) P, [I' > i] < exp(—ci).
We now write

E, {exp [6(Z5)"]} < exp(6) + Y exp (92“’”1)) P, [28 < Z) — 1< 28]
k=0

and bound the probability on the right-hand side by
i—1
P [Z1 — 12 28] By I' > ]+ Py | > Ry > 2|
j=0

The estimate above is valid for every i. We choose i = 2¥/Cj, so that the second
term on the right-hand side is bounded by (2.15). Using (2.16) on the first term,
we obtain

Ey {exp [0(Z7.)"]}

S (k1) 2 2"
<exp(0) + ;)exp (92 ) exp | —C + exp *Cocfg )

0

and the latter series is finite when 6 > 0 is sufficiently small. O

Corollary 2.10. For every v < 1, there exists ¢c; > 0 such that
Py [[{z €{0,...,N —1} : z is a cutpoint in Goo }| < c1N] < exp (—c1N7).
In particular,
P, [Gn has less than 1N cutpoints] < exp (—c1N7).

Proof. In order to prove the corollary, it suffices to see that for some ¢ > 0 sufficiently
small,

P, {X’CN > N] < exp(—cN7).

This is a consequence of Lemmas 2.5, 2.9 and Proposition A.1. U
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We are now ready to complete the proof of Proposition 2.2. In this proof, we will
consider integer intervals I C Vi, and discuss the notion of being a cutpoint in the
graph induced by the vertex set I. Before going to the details, we wish to emphasize
that this notion is defined only in terms of edges with both endpoints in I. It is
therefore different from the notion of being a local cutpoint in I (for the graph Gy),
since in the latter case, every edge having at least one endpoint in I matters.

Proof of Proposition 2.2. We fix ¢; > 0 as in Corollary 2.10. Note that since we
fixed o = 1, the sequence (X;);>1 is just enumerating the sequence of cutpoints. By
Lemma 2.8, we have

3
(2.17) Gy has at least ¢y N cutpoints = H(Gn) > (% N.

Hence, part (2) of the proposition is a consequence of Corollary 2.10.

We now turn to part (1). Throughout the argument, we denote by ¢ > 0 a generic
constant whose value may change from place to place to be as small as necessary,
and is not allowed to depend on N.

We partition Vi into K := N1=%/3 integer intervals of length 3N<, which we
denote by I1,...,Ix. For each k € {1,..., K}, we denote by J; the middle third
interval in I. Let %) be the set of cutpoints induced by the vertex set I, and let
Ci. denote the event that

|Jk ﬂ%ﬂ >N
By construction, the events (Cy)1<k<k are independent. Moreover, each has proba-

bility at least 1 — exp (—c1 N®7), by Corollary 2.10. Consequently, the probability
that

K
(2.18) Hke{l,...,K} : Cy holds}| > 5
is at least
1—exp (—chfO‘J”’”) ,
by a standard calculation (see e.g. [28, (2.15)-(2.16)]). We may therefore assume

that the event (2.18) holds.
Let B denote the event

-«
En > N <
feetn : lel> N7} < =
We now argue that for some ¢ > 0,
(2.19) P,[B] > 1 — exp (—cN1*O‘<1*7>) .

In order to do so, we use independence to note that there exists a constant C' < 0o
such that for every A\ € [O, %N”‘"’L we have

Elexp A Y Leegy || <Q+eph-N)Y <0,
le| >N

and therefore, by Chebyshev’s inequality,

NY lea
1—P,[B] < Cexp ( 5 30 ) :
so that (2.19) is proved.
From now on, we therefore assume that both the event B and the event in (2.18)
are realized, and show that this implies H(Gn) > cN*.

Denote the set of endpoints of edges with length at least N* by
Endy :={x € Vy : Jyst. {z,y} €&y and |y — | > N*}.
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Since we assume the event B to be realized, the set Endy contains no more than
N1=2/10 points. Since we also assume (2.18), we can isolate at least

K 1 11
re_ - _ —nNlma_ (- _ -«
K=5 -1 (6 10>N

pairwise disjoint intervals I, ..., I;,, such that for every k € {1,..., K"},
I, NEndy =@ and |J;, N, | > i N™.

Fix k € {1,..., K'}. We now show that

(2.20) there are at least ¢; N local cutpoints in Ij, .

As recalled before the beginning of the proof, the potentially problematic edges are
those with one endpoint in I and one outside of I. Since I;, contains no element
of Endy, no such edge can have length larger than N®. Therefore, if a point is at
distance at least N from the extremities of I;,, then there is no edge going above it
and that has exactly one endpoint outside of I;, . Since we chose J;, as the middle
third interval in I;, , and Ij, is of total length 3N, this yields (2.20).

By Lemma 2.8, we deduce that for every k, k' € {1,..., K'}, we have

Z dgN('Tay) 2 cN°,
welzk7yelzk,
Summing over k, k' and recalling that K’ > cN'~%, we obtain that H;(Gx) = cN®,
as desired. O

2.3. Conclusion. In this final subsection, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix vy < 1,p € [l,00],b € (y—1,1) and
1-b
= 1).
aimy e

Let ¢ > 0 be sufficiently small, and let o' € (0,1) \ (@ — 26, + 2¢). By the
comparisons Hi < Hp < Hoo and Propositions 2.1 and 2.2, there exists a constant
C < oo such that

b, _
P?Y:p [No/ —€

0(+E}

Hp(Gn)
(2.21) -

< N) <N
< Hp(Gn) < No'Fe]
exp (_C—l [Nb+a+a +N1—(a—5)(1—’y)])

~ exp (—C [Nv+e'— 4 NI=(e/+e)1-7)]) 7

The function
a—b+a)v(1—a(l—17))

attains a strict minimum at the value & = o. Reducing € > 0 as necessary, we can
make sure that the right-hand side of (2.21) tends to infinity as N tends to infinity.
The other cases are handled similarly. For example, when v > 1 and b € (0,7), we
fix

—-b

a:=21"2¢(0,1),

Y

take o € (0,1) \ (o — 2¢, 0 + 2¢), and observe that

)
B[N~ < Hy(Gu) < N
PPN < Hy(Gn) < No']
exp (_C—l [Nb+a+a +N1+(1—a—5)(7—1)])
> .
= exp (70 [NbJra/fs + N1+(170/+€)('yfl)])
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The exponent a was chosen to be realize the strict minimum of the function
a—b+a)v(A+(1-a)(y-1)),

so the conclusion follows as before. O

3. CRITICAL CASE

The goal of this section is to prove Theorem 1.2. The main step of the proof
consists in showing the following upper and lower bounds on the probability of
deviations of the average path length H,(Gn) under the measure P;.

Proposition 3.1. (i.) For any p € [1,0], k € N and N large enough, we have
(3.1) P, [Hp(gN) < 3kN%] > exp {—(k — 1)N}.
(ii.) Assume p € [1,00], k€N, n € (k— %) and

k+2p(1 - kﬂ) ifp € [1700)7

3.2 » =
(3.2) ¢ <) L1 — k) Fp— oo.

Then, for N large enough we have
(3.3) Py [Hp(Gn) < N < exp {—kN + N'"¢}.

The proof of this proposition rests on the following two lemmas, which involve
no probability. For each g € ¥y, we denote

Clg):=Ci(g) = D _ lel.

e€EN
le[>1

Lemma 3.2. For any k € N and N large enough, there exists g € Yn such that
C(g) < (k—1)N and Hoo(g) < 3kNT.

Lemma 3.3. Letp € [1,00], k€N, n € (k+1’ k) and 6 € (0,1 — kn). For every

N large enough and g = (Vi, En) € 9y, we have the implication
(34)  Hp(9) SN = > |e| = kN - N'"%ws. (log N)s*

ecEnN:
le|>N?°
where
(1—Fkn—2¢) ifpe(l,o00),
(3.5) i) = | .
1—kn—46, if p= o0.

In Subsection 3.1, we show how Lemmas 3.2 and 3.3 imply Proposition 3.1, and
how this proposition in turn gives Theorem 1.2. In Subsection 3.2, we prove the
two lemmas.

3.1. Proofs of Proposition 3.1 and Theorem 1.2.

Proof of Proposition 3.1. For the first statement, let Ex be the set of edges in a
graph as described in Lemma 3.2. The desired result follows from

H,(Gn) < 3kN%] > P [Hm(gN) < 3kNH
> [ exp{-lel} > exp{—(k—1)N}.

eEEN
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We now turn to the second statement. Fix p € [1,00], k € Nand n € (k%rl, %)
Also let § € (0,1 — kn) to be chosen later. For any 6 > 0 we have

B few{o- Y lelp| = T Eilesp{6-lel Lpcrn)]

e€En:|e|>N? e€EN:
le|>N°

< H (1 +exp{(6 — 1)[el})
o

N
< II I explep{®-1)i}

i=|N%| e€én:

e|=1

(3.6) <expg N Z exp{(6 —1)i}
i=| N3 |

If6 <fand@=1— N9, (3.6) implies that, for N large enough,

(3.7 E; |exp - Z le] < 2.
e€En:|e|>N?

Then, using Lemma 3.3 and Chebyshev’s inequality, if IV is large enough,
Py [Hp(Gn) S N"J<Py| D el = kN — (log N)**N'=¢re ()

Y gexp {037 (kN — (Qog N)PFN ) |

(3.8) < 2exp {—kN + (log NSk N1=Cra(n) kNl—é'} .

We are still free to choose § and ¢’ < d. Having in mind the two exponents of N
that appear in (3.8), we choose 0 solving

1=0=1-¢Cs(n);
this is achieved for ¢ = (,,(n), as defined in (3.2). Next, we take { < (,(n), as in the
statement of the proposition. Observing that § = ¢, s(n) = (,(n), we can choose ¢’
so that
1—Cs(n=1-6<1-0<1-¢.
Then, for N large enough the expression in (3.8) is smaller than exp{—kN + N1~¢}
as required. O
Proof of Theorem 1.2. Define
Apen = [N#l—f, Ntk NeEN, e>o0.

The desired statement will follow from proving that, for any k € N, if ¢ > 0 is small
enough and

k—1 k
(3.9) be (k + h(k,p) + 2¢, Pl 25) ,

then
N—oo

(3.10) PYP [H,(Gn) € Apen] —5 1.
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To this end, recalling the definition of Zb v in (1.4), we start bounding:
Zf:?\f P?m [Hp(gN) € Ak,&N] =E, [eXp {_N 'Hp(gN)} -1 {Hp(gN) € Ak,&N}]

> By [exp {—N - Hy(Gn)} - 1 {NFT = <, (Gw) <30+ )N FH ]

> exp {=3(k + )N T |- (Py [H,(Gn) <3(k+ DNFT| = Py [H,(Gy) < N7 7] )

(3.1),(3.3) 1
> exp {—B(k + 1)Nb+kT1} (exp{—kN} — exp{—(k + 1)N + 0.(N)}),

where o.(N) is a function that depends on k, € and N and satisfies o.(N)/N — 0
as N — oo. We thus obtain

1 ,
(3.11) 20 PYP [, (Gn) € Apen] > 5 oxp {—kN ~3(k + 1)Nb+kT1} .

2
We note that, by (3.9), we have b+ k—ﬂ <1, so
(3.12) N ET <« N as N — oo,

hence the term —3(k+1)N b+ is negligible (in absolute value) compared to —kN
in the exponential on the right-hand side of (3.11).

Now that we have this lower bound, let us explain how the rest of the proof will
go. Define

Al(cos N = [0 NwT E} ; Al(gl,Z:,N = {Nﬁl“, N%_E} ; A,(j;N = [N%-ﬂ N] ’
so that [0, N] = Ak v U A(O) ~U A N U AE;N. We will obtain upper bounds for
b, b, i .
Z B [HP(QN) € Al(c,)s,N] , 1€{0,1,2}

that will all be negligible compared to the right-hand side of (3.11) as N — oo.
From this, (3.10) will immediately follow.

(a) Upper bound for ]P’l{’p [Hp(gN) c Agi,N}

This bound is quite simple:

ZUR PP [Hy(Gn) € AL ]
=E, {GXP {=N"-#,(Gn)} -1 {Hp(g]\’) € Al(c(,)i,NH

<P [”Hp(gN) € Al(c(?i,N}

(3.3)
< exp{—(k+1)N —o-(N)}.

Using (3.12), it is then readily seen that the right-hand side above is
negligible compared to the right-hand side of (3.11).

(b) Upper bound for P’* |# [ »(GN) € A,c . N}
Similarly to the previous bound,

VAR [Hp<gN) € Agiz\/} S exp {_NH%_E} B [Hp(g )€ A% N

< exp {—NH%_E} .
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In order to show that this is negligible compared to the right-hand side of
(3.11), we note that, due to (3.9), we have

NPT > kN + 3(k + 1) NV =i as N — oco.

(c) Upper bound for P}? [’HP(QN) € AgiN}
This bound is harder than the previous two, as in this case it is not enough
to dismiss the term N'~¢ in (3.3) as being o(N). Rather, in the comparison
with (3.11), this term is now decisive. This complication is what leads to
the introduction of the function h(k,p) in (1.7) (and the corresponding dark

parts of Figure 3).
We define f,g: [+, +] — R by

[ZaRNT
f(n) =b+n,
BP0 it p € [1,00),
gm =1 0
5+35n if p=oo.

The definition of g is motivated by the fact that

1 1
1 1-— = for all —_— =
(3.13) o) =) oraitne (577 ).
where (,(n) was defined in (3.2). We also note that the function h(k, p)
defined in (1.7) satisfies

1 k—1 1
.14 h(k,p) = — -
(3.14) (k) (9(k+1) K k+1)\/0
We now claim that f(n) > g(n) for all n € [%ﬂ, ﬂ Indeed, since both

f and g are affine functions of 7, this follows from

1\ G9 k—1 1 1
- 4h “>1=9(1),
f(k) > —— thlkp)+ 4 g<k>

1\ 69 k-1 BRCUIAR!
LNV EL g —— S g ().
f<k+1> > T thlkp) A+ s g<k+1>

As a consequence, we can find ¢ > 0 and a partition of the interval
{%Hqu,%fs] with numbers 79 = %H+5<m < <77r:%fssuch
that

(315) f(nz) > g(mH) +¢’ forall .

We now have
208 PP M AL
NS p(ON) € ke, N

< szf\/ Eul{m [N < Hp(Gn) < N+

<Y exp{—N"1} Py [H,(Gy) < N7

(3.3),(3.13) ,
< Zexp{—Nb-H” — kN + NIMit1)+e }

In order to show that each of the terms of the above sum is negligible
compared to the right-hand side of (3.11), we need to check that, for all 4,

N s, N9t +e" 3(k + 1)Nb+k7i1 as N — oo.
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But this follows promptly from (3.15) and the fact that 7; > =5 +1 for each 1,
so we are done.

O
3.2. Proof of deterministic lemmas.

Proof of Lemma 3.2. Let L = |N* | and zj =L, for i,j with j € {1,...,k— 1}
and i € {0,...,[(N —1)/L7]}. Then define Ey as the set of edges in EY; together
with all edges of the form {z; ;,ziy1,;}, and let ¢ = (Vn, En). We clearly have
C(g9) < (k—1)N. Moreover, writing Sy = Vi and S; = U;{z; ;} for j € {1,...,k—1},
we have

dg(z,Sj+1) < Lforallz € S; and j € {0,...,k —2};

N N 1
dg(z,y) < 1= [Ni/&]T < 2N* forall z,y € Si_1
if N is large enough; from this, H(g) < 3kN* readily follows. O

We now turn to the proof of Lemma 3.3, and first introduce some general
terminology. If I = {a,...,b} is an integer interval, we define its interior as
int(I) :={z € Vv : a <z < b}. Welet E°(I) be the set of edges of E}, with both
extremities belonging to I. For 0 < u < v < 1, we define

[u,v] :={z € Vi : uN <2 < vN};
if I is an integer interval, we define
[u,v]f :={x €l :minl+ull|] <z <minl+v|I|}.

From now on, we assume that

€ [1,00], keN, ne(m %) 5 € (0,1),
g=(Vn,En) €9, Hp(g) <N

Due to the assumption H,(g) < N7, if we take o > 7, then we expect most pairs
x,y € Vn to satisfy d,(z, y) < N° (1n case p = oo, this in fact holds for ¢ = 7
and all pairs z,y). Wlth this in mind, we fix ¢ > 1 and introduce some additional
terminology. We say that a vertex x € Vi is regular if there exists y € Vy such that
ly — x| > N/4 and dg(x,y) < N?. Vertex z is irregular if this does not hold, that is,
if dg(x,y) > N7 for all y with |y — | > N/4. Note that for p = oo all vertices are
regular. For p < oo, we have

(3.16)

1 N
NP > (g N2 Z Z db(z,y) > W'E'ng"{x : x is irregular}|,
lrzreﬁgtﬁar vily—e|>N/4
so that
(3.17) {z € Vy : z is irregular}| < 2N P,

In the remainder of this section, the exponents 7, 6 and ¢ will be held fixed, but
N will often be assumed to be large enough, possibly depending on 7, é and o.
Given I' C &y and e = {a,b} € EY;, we define

¥(e,T') ;== number of edges ¢/ = {a’,V'} € T\E}, with o’ < a and b > b.

In case ¥(e,I') = n, we say that the ground edge e is covered n times by I'. Since
~v =1, for any g = (V, En) € 9n we have

(3.18) Cg)= 3 fel= Y wle B,

ecEN\EY, ecEY,
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The proof of Lemma 3.3 is split into three parts, called “levels”, in which we
progressively argue that ground edges are covered by long edges of Ey (a “long
edge” here is an edge {z,y} with |z —y| > N?). Level 1 (carried out in Lemma
3.4) is a simple initializing estimate. Level 2 (in Lemma 3.5) is obtained from
recursively using Level 1, and identifies one layer in the pile of layers alluded to in
the introduction. Level 3, which contains the statement of Lemma 3.3, is obtained
from recursively using Level 2 to identify the correct number of layers present in
the graph.

It will be helpful to describe heuristically the ideas of proof for the first two
levels. Both Level 1 and 2 take as input an integer interval I C Vi and state two
alternatives, at least one of which must hold true for I. One of the alternatives is of
the form “I has many irregular vertices” and the other states that the ground edges
of I are covered by long edges of Fy in a way which we deem satisfactory for that
level. We will simultaneously treat the cases p € [1,00) and p = 0o, and the reader
will note that the latter case is simpler, as irregular vertices are then absent and
only one of the aforementioned alternatives is possible (namely, ground edges being
satisfactorily covered).

For Level 1, the first alternative is that the middle third of I only has irregular
vertices. If this is not the case, then we can find a path of length less than N?
from the middle third of I to the exterior of I. We then decompose I = I' UI” in
two subintervals, according to whether the path leaves I from the left or the right
(see Figure 6). The idea is that we can guarantee that most ground edges of I’ are

covered by long edges of the path, while we do not guarantee anything concerning
1.

I I
g P— T~
5 T4 1 Ty X3 r3 X1 T2 T4
II I// I// I/

FIGURE 6. In case the depicted path leaves I from the left, we let
I =1]o, %]]1 and I" = [[%, 1];. In case it leaves I from the right, we
let I' = [[%,1]]1 and I = [0, %]]1

Lemma 3.4. (Level 1 of recursion). If (3.16) holds and N is large enough,
then the following holds. For every interval I C Vi with |I| < N/4, either

(3.19) H{z € I:x is irregular}| > |I]/4

or there exist ®1 C En and a decomposition I = I' UI" of I into intervals with
disjoint interiors such that

(3.20) |®r| < N,

(3.21) every edge of @ is incident to at least one vertex of int(1);
(3.22) le| > N° forall e € ®r;

(3.23) [I"| < 3-111/4;

(3.24) {e € E°(I') : (e, ®r) = 0}| < 2N°H9.

Proof. We first note that, if I is small (say, |I| < N°*?), then we can set I’ = I and
®; = I" = @; then, (3.20), (3.21), (3.22), (3.23) and (3.24) are trivially satisfied.
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So let us assume that |I| > N°+9. We also assume that N is large enough that
13,200 = 4l and |[2,1]:] < 20 for any I with |1] > N7+9.

Suppose that (3.19) does not hold. Then, there exists a regular vertex z € [[%, %]]1;
since |I| < N/4, by the definition of regular there exists a path 7 from « to (int(I))®
of length at most N?. We let ®; denote the set of edges e in this path such that
le| > N?. (3.20) and (3.21) then trivially hold. In case 7 leaves int(I) from the left,
we let I’ = [0, 4]; and I" = [3,1]z; in case m leaves int(I) from the right, we let
I' =[2,1]; and I” = [0, 2];. Then, (3.23) holds.

Let e = {x,y} € E°(I') be a ground edge with (e, ®;) = 0. Then, there are two
possibilities:

e 7 traverses e. There can be no more than N edges for which this holds.

e 7 does not traverse e and there is some edge e/ = {2/, y'} with 1 < |¢/| < N°
so that 7 traverses ¢’ and ¢(e, {€’'}) = 1, that is, €’ covers e. The number
of edges for which this is true is no more than

1
§ : |6 | < NU+6.
e//:‘e//‘<N6,
T traverses e’

This proves (3.24). O

For Level 2, we again start with an interval I, which we re-label as Iy. We then
apply the following procedure. We try to decompose Iy = I}, U I/ as in Level 1; if
this is impossible (due to irregular vertices), we stop. Otherwise, we let I; = I/ and
try to decompose I = I U I again as in Level 1; if this is impossible, we stop, etc.,
continuing until we are either forced to stop because too many irregular vertices
make a decomposition impossible, or we reach a sufficiently small interval I,,.

In the statement below, the sets I'; C Exn and E; C E°(I) are the end products
of this recursive procedure. I'y is the set of all long edges obtained in successful
decompositions (that is, a union of sets of the form ®;, given by Lemma 3.4). E; is
the set of ground edges of I which end up not being covered by long edges of I's.
The alternatives in (3.29) thus express that either |E;| is small or there are at least
%|E 1| irregular vertices in I.

Lemma 3.5. (Level 2 of recursion). If (3.16) holds and N is large enough,
then the following holds. For every interval I C Vi with |[I| < N/4 there exist
I'; C En and E; C E°(I) such that

(3.25)  |I'7| < N°(log N)?;

(3.26)  every edge of Ty is incident to at least one vertex of int(I);

(3.27)  |e| = N? for all e € T'y;

(3.28)  9(e,Ty) =1 for all e € E°(I)\Er;

(3.29)  either |Er| < N°T2(log N)* or |{x € int(I) : = is irregular}| > |Ey|/5.
Proof. Denote Iy = I. In case we have

(3.30) [Io] > N°F(log N)? and |{z € int(Ip) : z is irregular}| < |Io|/4,

we take @7 C Ey, I}, I/ C Iy corresponding to Iy as in Lemma 3.4 and denote
I, = I}/ (in particular, |I| < 3|Io|/4). Next, if

|| > N°P(log N)? and |{z € int(I;) : 2 is irregular}| < |I|/4,

we take &y, C En, I1,I{ C I corresponding to I; as in Lemma 3.4 and denote
I, = I (in particular, |I2| < 3|I1]/4). We continue in this way, obtaining sets of



26 JEAN-CHRISTOPHE MOURRAT, DANIEL VALESIN

vertices Iy D I; D --- and sets of edges ®7,, ®r,,... until we reach the first index n
for which either

(3.31) 1I,] < N°*°(log N)?

or

(3.32) {z € int(I,) : z is irregular}| > |I,,|/4;

note that, since |I; 11| < 3|1;|/4 for each i, we must have n < (log N)? if N is large
enough.

Now, in case n = 0, then one of the conditions in (3.30) fails; in either case,
setting I'y = @ and Er = E°(I), it can be readily seen that (3.25), (3.26), (3.27),
(3.28) and (3.29) are all satisfied.

Assume n > 0. Let

n—1
P =Ut e, Br=E°(L)U (U fe € B°(I)) (e, @r,) = 0}> .
=0

Then, (3.25) holds because n < (log N)? (as already observed) and |®;,| < N9 for
each i (as guaranteed in (3.20)). Also, (3.26), (3.27) and (3.28) respectively follow
from (3.21), (3.22) and the definition of Ej.

Let us prove (3.29). We observe that

. n_l (3.24) s
(3.33) Br <L+ e € B°(I) s e, ®r) = 0} < |I| +2(n — YN+
N 1=0

< L] + 2N (log N)2.

Assume that (3.31) holds. Then, the above computation gives E; < Nt9(log N)3 +
2N+ (log N)? < Nt (log N)%, so we have (3.29) in this case.

Now assume that (3.31) does not hold and (3.32) holds. Since we then have
I,| > N°H(log N)? > 8N +%(log N)2, (3.33) gives |E;| < |I,|, and then

=10
4 7 57
O

. - . - (3:32) 1 5[L,| _ |
{z € int(I) : x is irregular}| > |{z € int([,) : = is irregular}| > —- >

ot

Lemma 3.6. (Level 3 of recursion). If (3.16) holds and N is large enough,
then there exist sets Ay C --- C A C En such that, for every j € {1,...,k}, we
have

(3.34) |Aj| <3N (log N)™,
(3.35) le| = N° for all e € A,

{e € EX : ¢(e, Ay) = 5}

3.36 o
(3:36) > N — (log N)» N9i+9 —10j|{x € Vi : @ is irregular}|.

Proof. We will do induction on j. To start the induction, we fix z1, 22, 23,24 € Vi
SO that, letting K() = ﬂO,;El]], K1 = [[.’El,ifg]], Kg = [[ifz,i’g]], Kg = Hifg,(f;d] and
K4 = [Z4, N —1], we have | Ko, |K1|, | K2|, | K3], | K4| < N/4. We then apply Lemma
3.5 to Ko, K1, Ko, K3 and K4. For : =0,1,2,3,4, let 'y, C Ex and E~'Ki be as in
that lemma; then set A; = U_ T'g,. Then, (3.34) and (3.35) with j = 1 respectively
follow from (3.25) and (3.27). By (3.28) we have

Y

4
{e€ B} iv(e, M) 2 1} > N =) | Bk,
=0
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furthermore, by (3.29), for each i € {0, 1,2, 3,4} we either have |Ex,| < N°o(log N)*
or {z € int(Kj;) : x is irregular}| > |Ek,|/5. Hence,

4
D EK] L5y jenossog vy < SN (log N)Y,
1=0
4
(3.37) > Bk |1y, Fre, |5 N7+ (1og N4} < 5{z € Viv : @ s frregular} .
1=0

This proves (3.36) with j = 1.
Now assume j < k and A; has been defined and satisfies (3.34), (3.35) and (3.36).
Let z9 < 21 < --- < z, denote the vertices that belong to the set

{0, Z1, T2, T3, Ta, N — 1} U{x € Vi : = is the extremity of some edge in A;}.

Also define the integer intervals I; = {z;_1,...,2;}, for i € {1,...,r}. Note that,
for any fixed 4, the value of (e, A;) is the same for all edges e contained in E°(I;).
We thus let Jp,...,Js be those intervals among I, ..., I, that satisfy

(3.38) (e, Aj) > j for all e € J;.
We have

(3.34) Ny
(3.39) s<r<2/A;] < 6N%(logN)¥,

(3.40) S0 =1 2 (e € B (e Ay) 3 )]
3.40 i=1

S

(3.36) o
> N — (log N)¥ N+ _10j|{z € Vi :  is irregular}|.
Now, for each i € {1,..., s} we apply Lemma 3.5 to J;, thus obtaining I';, C En
and By, C E°(J;). Let Aj11 = A; U (Uj_;T ;). We observe that, for each 1,

(3.41) I'yNA;=2.
Indeed, by construction no edge of A; is incident to vertices of int(J;), and by (3.26)

every edge of I';, is incident to at least one vertex of int(.J;).
By (3.27), all edges e € A1 satisfy |e| > N?; moreover,

Ajal =M1+ DTy,
i=1

(3.25),(3.34),(3.39) ‘ iy , iy )

< 3N°I(log N)* + 6N’ (log N)* - N°(log N)

< N"(j+1)(log N)3(j+1).

Hence the proof will be complete once we show that

{ee EX (e, Aja) > j + 1}

> N — (log N)?UTD NG+ _10(j 4+ 1)|{z € Vi : x is irregular}|.
Applying (3.28), (3.38) and (3.41) to each I'j,, we have

i€{l,...,s}, e € E°(J)\Ej, = (e, Ajr1) = (e, Aj) +¢(e,Ty) =5+ 1,

hence

(3.42)

S

{e € B :v(e,Ajn) 25 +1} =Y (Ii| —1—|Ey))
i=1

(3.40) L S,
> N — (log N)¥ N9+ —10j|{z € Vi : x is irregular}| — E |E;,
i=1
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We then conclude by bounding

S (3.39) _ )
> IE|- L(a, <notsognyty S ONY (log N)* - N7+ (log N)*
=1

< No’(j+1)+5(10gN)3j+4
and, similarly to (3.37),

S

Z'EJ'L

i=1

"L E, |>No+s(log NY1}) S 10/{z € Vy : x is irregular}|. O

Proof of Lemma 3.3. Recall that so far our only assumption concerning o was that
o > 1n; now, setting j = k in (3.36), we will choose the value of o that makes the
estimate in (3.36) the sharpest as N — oo.

In case p = oo, we simply take 0 = 7 and the desired result follows, as there are
no irregular vertices in this case. In case p € [1, 00), using (3.17) we obtain

{e € EY :¢(e, En) > k}| > N — (log N)** NF+0 — 10k N1~

We then set o = 3221=% g5 that we equate the two exponents of N:

k+p
p(1 —kn —9)
E+o6=1-— -n)=1-——".
o plo—n) ip
Note that o > n follows from our assumption that 6 < 1 — k»n. This completes the
proof. O

APPENDIX A. LARGE DEVIATION ESTIMATE

The purpose of this appendix is to prove the following large deviation result
concerning sums of i.i.d. random variables with stretched exponential tails. While
the result is classical, and can be deduced for instance from the more general results
of [19], we prefer to give a self-contained and short proof here for the reader’s
convenience.

Proposition A.1. Let v € (0,1], 8 > 0 and (X;)ien be i.i.d. non-negative random
variables satisfying Elexp(6X])] < co. For every m > 0, there exists ¢ > 0 such
that uniformly over N > 1,

N
P lZXi > (E[X1] +m) N] < exp(—cN7).

Proof. By a change of variables, it suffices to prove the result with § = 1. Let
X o XN, X e XY B[R],
and
en(A) =E [exp (AY&N))} .
We first show that there exists C' > 0 such that uniformly over A < N?~1/2 and N
sufficiently large,
(A1) N (N) <exp (CN?).
Since ¢’y (0) = 0, we have

on () <14 A2 sup ¢l
[0,A]
In order to prove (A.1), it thus suffices to show that there exists C' < co such that
uniformly over A < NY=1/2 and N sufficiently large,

(A2) PN < C.
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Clearly,
(A.3) E {)?1““] — S E[Xy] < o0,

N— 00

so in particular, sup, ‘IE [X{N)} ‘ < 0o. Hence,

PN\ <E _(Y(lN))Q exp (AXgN))}

<E _()?{m + 0)2 exp ()\ ()?fm + 0))]

<E[(X1+C) exp (A (N'TX] +0))]

where in the last line, we used the fact that for every = > 0, NI=727 > 2 AN. We
then obtain (A.2), and thus (A.1) (uniformly over A < N7~1/2), using the fact that
Elexp(X7)] < oo and the elementary observation sup,q 2 exp(z/2)/ exp(z) < cc.
In view of (A.3), we can choose N sufficiently large that
HEREp
For such a choice of N, we have

N
P> Xi > (B[X] —|—m)N] <PEAN:X; > N|+P
=1

iygm > (E[X,] +m) N}

<P[EAN:X; > N|+P

A m
ZYE ' N] :
4 2
=1
The integrability assumption and Chebyshev’s inequality ensure that

PEN : X; > N] <exp(—N"/2).
For the other term, Chebyshev’s inequality and (A.l) yield that for every A <

NY=1/2,
al N m Am
[ > i <o (e )]
Choosing A = N771/2 leads to the announced result when v < 1; otherwise, it
suffices to choose A > 0 sufficiently small and independent of N. O

Acknowledgments. We would like to thank Florent Cadoux (G2ELab, ERDF
Chair, Grenoble) for inspiring discussions on networks of electricity distribution,
and the two referees and the associate editor for their very useful comments on an
earlier version of this paper. We would also like to thank Emmanuel Jacob, Julia
Komjathy, and Remco van der Hofstad for helpful discussions.

REFERENCES

[1] D. Achlioptas and P. Siminelakis. Product measure approximation of symmetric graph prop-
erties, preprint, arXiv:1502.07787.

[2] W. Aiello, A. Bonato, C. Cooper, J. Janssen, and P. Pralat. A spatial web graph model with
local influence regions. Internet Math., 5(1-2):175-196, 2008.

[3] M. Aizenman, H. Kesten, and C. M. Newman. Uniqueness of the infinite cluster and continuity
of connectivity functions for short and long range percolation. Comm. Math. Phys., 111(4):505—
531, 1987.

[4] M. Aizenman and C. M. Newman. Discontinuity of the percolation density in one-dimensional
1/|z — y|? percolation models. Comm. Math. Phys., 107(4):611-647, 1986.

[5] D. J. Aldous. Optimal spatial transportation networks where link costs are sublinear in link
capacity. J. Stat. Mech., 2008(03):P03006, 2008.



30

[6]
7]
(8]
[9]
(10]
(11]
(12]
(13]
(14]
(15]

[16]
[17]

(18]

19]
20]
(21]
(22]
23]

[24]
(25]

(26]
27]
28]
29]
(30]
(31]
(32]

33]
(34]

(35]

(36]

(37]

(38]

JEAN-CHRISTOPHE MOURRAT, DANIEL VALESIN

D. J. Aldous and W. S. Kendall. Short-length routes in low-cost networks via Poisson line
patterns. Adv. in Appl. Probab., 40(1):1-21, 2008.

D. J. Aldous and J. Shun. Connected spatial networks over random points and a route-length
statistic. Statist. Sci., 25(3):275-288, 2010.

A.-L. Barabdsi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509—
512, 1999.

I. Benjamini and N. Berger. The diameter of long-range percolation clusters on finite cycles.
Random Structures Algorithms, 19(2):102-111, 2001.

M. Biskup. On the scaling of the chemical distance in long-range percolation models. Ann.
Probab., 32(4):2938-2977, 2004.

M. Biskup. Graph diameter in long-range percolation. Random Structures Algorithms,
39(2):210-227, 2011.

S. Chatterjee and P. Diaconis. Estimating and understanding exponential random graph
models. Ann. Statist., 41(5):2428-2461, 2013.

C. Cooper, A. Frieze, and P. Pralat. Some typical properties of the spatial preferred attachment
model. Internet Math., 10(1-2):116-136, 2014.

D. Coppersmith, D. Gamarnik, and M. Sviridenko. The diameter of a long-range percolation
graph. Random Structures Algorithms, 21(1):1-13, 2002.

M. Deijfen, R. van der Hofstad, and G. Hooghiemstra. Scale-free percolation. Ann. Inst. Henri
Poincaré Probab. Stat., 49(3):817-838, 2013.

J. Ding and A. Sly. Distances in critical long range percolation, preprint, arXiv:1303.3995.
A. D. Flaxman, A. M. Frieze, and J. Vera. A geometric preferential attachment model of
networks. Internet Math., 3(2):187-205, 2006.

A. Gandolfi, M. S. Keane, and C. M. Newman. Uniqueness of the infinite component in a
random graph with applications to percolation and spin glasses. Probab. Theory Related Fields,
92(4):511-527, 1992.

N. Gantert, K. Ramanan, and F. Rembart. Large deviations for weighted sums of stretched
exponential random variables. Electron. Commun. Probab., 19:no. 41, 14, 2014.

E. Jacob and P. Morters. Spatial preferential attachment networks: power laws and clustering
coefficients. Ann. Appl. Probab., 25(2):632-662, 2015.

E. Jacob and P. Moérters. Robustness of scale-free spatial networks. Ann. Probab., 45(3):1680—
1722, 2017.

J. Janssen, P. Pralat, and R. Wilson. Geometric graph properties of the spatial preferred
attachment model. Adv. in Appl. Math., 50(2):243-267, 2013.

J. Jordan. Degree sequences of geometric preferential attachment graphs. Adv. in Appl. Probab.,
42(2):319-330, 2010.

E. F. Keller. Revisiting “scale-free” networks. BioEssays, 27(10):1060-1068, 2005.

L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to understanding
the Internet’s router-level topology. ACM SIGCOMM Comp. Comm. Rev., 34(4):3-14, 2004.
R. Louf, P. Jensen, and M. Barthelemy. Emergence of hierarchy in cost-driven growth of
spatial networks. Proc. Natl. Acad. Sci. USA, 110(22):8824-8829, 2013.

H. Mengistu, J. Huizinga, J.-B. Mouret, and J. Clune. The evolutionary origins of hierarchy.
PLoS Comput. Biol., 12(6):€1004829, 2016.

T. Mountford and J.-C. Mourrat. Lyapunov exponents of random walks in small random
potential: the lower bound. Comm. Math. Phys., 323(3):1071-1120, 2013.

C. M. Newman and L. S. Schulman. One-dimensional 1/|j — i|® percolation models: the
existence of a transition for s < 2. Comm. Math. Phys., 104(4):547-571, 1986.

L. S. Schulman. Long range percolation in one dimension. J. Phys. A, 16(17):L639, 1983.

H. A. Simon. On a class of skew distribution functions. Biometrika, 42:425-440, 1955.

H. A. Simon. Some further notes on a class of skew distribution functions. Information and
Control, 3:80-88, 1960.

O. Sporns and R. Kétter. Motifs in brain networks. PLoS Biol., 2(11):e369, 2004.

O. Sporns and G. Tononi. Classes of network connectivity and dynamics. Complezity, 7(1):28—
38, 2001.

O. Sporns, G. Tononi, and G. M. Edelman. Connectivity and complexity: the relationship
between neuroanatomy and brain dynamics. Neural networks, 13(8):909-922, 2000.

O. Sporns, G. Tononi, and G. M. Edelman. Theoretical neuroanatomy: relating anatomical
and functional connectivity in graphs and cortical connection matrices. Cerebral cortex,
10(2):127-141, 2000.

R. van der Hofstad. Random graphs and complex networks. Available at http://www.win.tue.
nl/~rhofstad/NotesRGCN.html.

T. Verma, F. Russmann, N. Aratjo, J. Nagler, and H. Herrmann. Emergence of core-peripheries
in networks. Nature Commun., 7:10441, 2016.


http://www.win.tue.nl/~rhofstad/NotesRGCN.html
http://www.win.tue.nl/~rhofstad/NotesRGCN.html

SPATIAL GIBBS RANDOM GRAPHS 31

[39] G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr. JC Willis,
FRS. Philos. Trans. Roy. Soc. London Ser. B, 213:21-87, 1925.

(Jean-Christophe Mourrat) ECOLE NORMALE SUPERIEURE DE LyoN, CNRS, LyoN, FRANCE

(Daniel Valesin) UNIVERSITY OF GRONINGEN, NETHERLANDS



	1. Introduction
	2. Case gamma neq 1
	2.1. Lower bounds
	2.2. Upper bounds
	2.3. Conclusion

	3. Critical case
	3.1. Proofs of Proposition 3.1 and Theorem 1.2
	3.2. Proof of deterministic lemmas

	Appendix A. Large deviation estimate
	References

