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Abstract. We consider the model of a directed polymer pinned to a line of
i.i.d. random charges, and focus on the interior of the delocalized phase. We
first show that in this region, the partition function remains bounded. We
then prove that for almost every environment of charges, the probability that
the number of contact points in [0, n] exceeds c logn tends to 0 as n tends to
infinity. The proofs rely on recent results of [BGdH10, CdH10].

1. Introduction

Let τ = (τi)i∈N be a sequence such that τ0 = 0 and (τi+1−τi)i>0 are independent
and identically distributed random variables with values in N

∗ = {1, 2, . . .}. Let P
be the distribution of τ , E the associated expectation, and K(n) = P[τ1 = n]. We
assume that there exists α > 0 such that

(1.1)
logK(n)

logn
−−−−→
n→∞

−(1 + α).

As an example, one can think about the sequence τ as the sequence of arrival times
at 0 of a one-dimensional simple random walk (and in this case, α = 1/2). In a
slight abuse of notation, we will look also at the sequence τ as a set, and write for
instance n ∈ τ instead of ∃i : n = τi.

Let ω = (ωk)k∈N be independent and identically distributed random variables.
We write P for the law of ω, and E for the associated expectation. We will refer to
ω as the environment. We assume that the ωk are centred random variables, and
that they have exponential moments of all order. Let β > 0, h > 0, and n ∈ N

∗.
We consider the probability measure Pβ,h,ω

n (expectation Eβ,h,ω
n ) which is defined

as the following Gibbs transformation of the measure P :

dPβ,h,ω
n

dP
(τ) =

1

Zβ,h,ω
n

exp

(

n−1
∑

k=0

(βωk − h)1{k∈τ}

)

1{n∈τ}.

In the above definition, β can be thought of as the inverse temperature, h as the
disorder bias, and Zβ,h,ω

n is a normalization constant called the partition function,

Zβ,h,ω
n = E

[

exp

(

n−1
∑

k=0

(βωk − h)1{k∈τ}

)

1{n∈τ}

]

.

At the exponential scale, the asymptotic behaviour of the partition function is
captured by the free energy f(β, h) defined as

f(β, h) = lim
n→+∞

1

n
logZβ,h,ω

n .

Superadditivity of the partition function implies that this limit is well defined al-
most surely, and that it is deterministic (see for instance [G, Theorem 4.1]). As-
sumption (1.1) implies that f(β, h) > 0. It is intuitively clear that the free energy
can become strictly positive only if the set τ ∩ [0, n] is likely to contain many
points under the measure Pβ,h,ω

n . We thus say that we are in the localized phase
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if f(β, h) > 0, and in the delocalized phase otherwise. One can show [dH, Theo-
rem 11.3] that for every β > 0, there exists hc(β) > 0 such that

h < hc(β) ⇒ localized phase, i.e. f(β, h) > 0,
h > hc(β) ⇒ delocalized phase, i.e. f(β, h) = 0,

and moreover, the function β 7→ hc(β) is strictly increasing.

2. Statement of the main results

We focus here on the interior of the delocalized phase, that is to say when
h > hc(β). Note that, due to the strict monotonicity of the function hc(·), one sits
indeed in the interior of the delocalized phase if one fixes h = hc(β0) and considers
any inverse temperature β < β0.

By definition, the partition function is known to grow subexponentially in this
region. In [BS10, Remark p. 417], the authors ask whether the partition function
remains bounded there. We answer positively to this question, and can in fact be
slightly more precise.

Theorem 2.1. Let β > 0 and h > hc(β). For almost every environment, one has

+∞
∑

n=1

Zβ,h,ω
n < +∞.

Remark. This result implies that, in the interior of the delocalized phase, the

unconstrained (or free) partition function Zβ,h,ω
n,f is also almost surely bounded (in

fact, tends to 0) as n tends to infinity. Indeed, Zβ,h,ω
n,f is defined by

Zβ,h,ω
n,f = E

[

exp

(

n−1
∑

k=0

(βωk − h)1{k∈τ}

)]

,

which is equal to

+∞
∑

n′=n

E

[

exp

(

n−1
∑

k=0

(βωk − h)1{k∈τ}

)

; τ ∩ [n, n′] = {n′}

]

6

+∞
∑

n′=n

Zβ,h,ω
n′

a.s.
−−−−→
n→∞

0.

Our second result concerns the size of the set τ ∩ [0, n], that we may call the set
of contact points, under the measure Pβ,h,ω

n . Let us write En,N for the event that
|τ ∩ [0, n]| > N (where we write |A| for the cardinal of a set A).

Theorem 2.2. Let β > 0 and h > hc(β). For every ε > 0 and for almost every

environment, there exists Nε, Cε > 0 such that for any N > Nε and any n :

Pβ,h,ω
n (En,N ) 6

Cε

K(n)
e−N(h−hc(β)−ε).

In particular, for every constant c such that

c >
1 + α

h− hc(β)

and for almost every environment, one has

Pβ,h,ω
n (En,c logn) −−−−→

n→∞
0.

To my knowledge, results of this kind were known only under the averaged
measure PPβ,h,ω

n , and with some restrictions on the distribution of ω due to the
use of concentration arguments (see [GT05] or [G, Section 8.2]). In particular, in
the interior of the delocalized phase and for almost every environment, the polymer
intersects the pinning line less that the simple random walk does.
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It is worth comparing this result with the case when randomness of the medium
is absent, that is, when β = 0. In this context, the distribution of the number of
contact points of the polymer forms a tight sequence as n varies (see for instance
[dH, Theorem 7.3]). It is only natural to expect that a similar result holds true in
the disordered case as well.

Interestingly, boundedness of the number of contact points in the delocalized
phase was recently obtained for a specific model of pinning on a random interface
with long-range correlations in [BL11], even at criticality (h = hc(β)). In this work,
the specific structure of the environment enables the authors to identify the critical
point explicitly, a feature which makes the subsequent analysis more tractable.

3. Proofs

In this section, we present the proofs of Theorems 2.1 and 2.2. Although one
might think at first that such an approach cannot be of much help as far as the
delocalized phase is concerned, we will rely on recent results obtained in [BGdH10,
CdH10], where the authors develop a large deviations point of view of the problem.
Let us define

(3.2) F β,h,ω
N =

∑

0=l0<l1<···<lN

N−1
∏

i=0

K(li+1 − li)e
(βωli

−h).

Our results are based on the following fact, due to [CdH10], that holds both in the
delocalized and in the localized phases.

Lemma 3.1. For almost every environment, one has

lim sup
N→+∞

1

N
logF β,h,ω

N = hc(β)− h.

Proof of Lemma 3.1. Although this result is not stated as a proposition in [CdH10],
the authors give all the necessary elements to prove it. Indeed, we can start from
[CdH10, (3.11)], which reads

lim sup
N→+∞

1

N
logF β,h,ω

N = −h+ Sque(β; 1),

where Sque(β; z) is defined in [CdH10, (3.10)]. We then learn from [CdH10, (3.13)]
that

hc(β) = Sque(β; 1−),

so what remains to see is that

Sque(β; 1−) = Sque(β; 1).

The proof of this fact is first obtained assuming further that the support of the
distribution of ω0 is finite, see [CdH10, Lemma 3.2]. The general case, where
one assumes only finiteness of all exponential moments, is considered in [CdH10,
Section 3.3]. One can start by observing that, since z 7→ Sque(β, z) is increasing
(in the wide sense), one has Sque(β; 1−) 6 Sque(β; 1). On the other hand, it is
shown in step 1 of the proof of [CdH10, Lemma 3.3] that Sque(β; 1) 6 A(β), where
A(β) is defined in [CdH10, (3.21)]. Moreover, steps 2 to 4 of the proof of [CdH10,
Lemma 3.3] are devoted to the justification of the fact that A(β) 6 Sque(β; 1−). It
thus follows that Sque(β; 1) 6 Sque(β; 1−), which finishes the proof. �

Proof of Theorem 2.1. The proof is close to [CdH10, Section 3.2]. We can decom-
pose Zn the following way :

Zβ,h,ω
n =

+∞
∑

N=1

∑

0=l0<l1<···<lN=n

N−1
∏

i=0

K(li+1 − li)e
(βωli

−h).
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An interversion of sums then leads to

+∞
∑

n=1

Zβ,h,ω
n =

+∞
∑

N=1

F β,h,ω
N ,

and Lemma 3.1 ensures the almost sure convergence of the second series when
h > hc(β). �

For an event A, let us write Zβ,h,ω
n (A) for the quantity

E

[

exp

(

n−1
∑

k=0

(βωk − h)1{k∈τ}

)

1{n∈τ} ; A

]

.

In words, Zβ,h,ω
n (A) is a partition function in which one integrates with respect

to P only on the event A. In order to prove Theorem 2.2, we first give a refined
version of Theorem 2.1, which goes as follows.

Proposition 3.2. Let β > 0 and h > hc(β). For every ε > 0 and for almost every

environment, there exist Nε, Cε such that for any N > Nε :

+∞
∑

n=1

Zβ,h,ω
n (En,N ) 6 Cεe

−N(h−hc(β)−ε).

Proof. We can assume that ε < h− hc(β). Note that, for any n and N0,

Zβ,h,ω
n (En,N0

) =
+∞
∑

N=N0

∑

0=l0<l1<···<lN=n

N−1
∏

i=0

K(li+1 − li)e
(βωli

−h).

By an interversion of sums, we obtain that

+∞
∑

n=1

Zβ,h,ω
n (En,N0

) =

+∞
∑

N=N0

F β,h,ω
N .

By Lemma 3.1, there exists Nε such that for every N > Nε,

F β,h,ω
N 6 e−N(h−hc(β)−ε/2),

and as a consequence, for every N0 > Nε, one has

+∞
∑

n=1

Zβ,h,ω
n (En,N0

) 6

+∞
∑

N=N0

e−N(h−hc(β)−ε/2),

which implies the announced claim. �

Proof of Theorem 2.2. Note that

Pβ,h,ω(En,N ) =
Zβ,h,ω
n (En,N )

Zβ,h,ω
n

.

The numerator can be bounded from above using Proposition 3.2. For the denom-
inator, one can use the bound

Zβ,h,ω
n > K(n)eβω0−h,

which proves the desired result. �
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