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Abstract. Let (τx)x∈Zd be i.i.d. random variables with heavy (polynomial)
tails. Given a ∈ [0, 1], we consider the Markov process defined by the jump

rates ωx→y = τx
−(1−a)τy

a between two neighbours x and y in Z
d. We give

the asymptotic behaviour of the principal eigenvalue of the generator of this
process, with Dirichlet boundary condition. The prominent feature is a phase
transition that occurs at some threshold depending on the dimension.

1. Introduction

For each site x ∈ Z
d, let τx > 0 be a random variable, so that (τx)x∈Zd are

independent and identically distributed. We call τ = (τx)x∈Zd the environment,
and write its law P (and the corresponding expectation E). Fixing a ∈ [0, 1] and an
environment τ , we define the Markov process (Xt)t>0 by the following jump rates :

ωx→y =

∣
∣
∣
∣

τx
−(1−a)τy

a if ‖x− y‖ = 1,
0 otherwise.

We write Pτ
x for the law of the process starting from site x, and Eτ

x for the corre-
sponding expectation. The associated infinitesimal generator is :

Lf(x) =
∑

y:‖x−y‖=1

ωx→y(f(y) − f(x)).

The aim of this note is to investigate the behaviour of the principal eigenvalue of L
restricted to a large box. Define the box of size n by Bn = {−n, . . . , n}d, and Ln

the operator L restricted to this box, with Dirichlet boundary conditions. That is
to say Lnf = 1BnLf , defined for any function f : Z

d → R that vanishes outside
the box. Let λn be the smallest eigenvalue of −Ln. We write λ◦n for the eigenvalue
obtained in the particular case when a = 0.

We are particularly interested in the study of heavy tailed laws for the environ-
ment. A natural assumption (see the remark just after Theorem 1.2) is that the
tail probability P[τ0 > y], that we will write F (y), decays like a power of y as y
goes to infinity. We say that a function f varies regularly with index ρ at infinity,
and write f ∈ RVρ, if for all κ > 0, f(κx)/f(x) → κρ as x→ +∞ (see [BGT] for a
monograph on regular variation).
Assumption 1. There exists α > 0 such that F ∈ RV−α.

Roughly speaking, this assumption can be reformulated as

(1.1) P[τ0 > y] ≃
1

yα
(y → +∞),

although it is in fact more general than just assuming the equality (or equivalence)
in equation (1.1). Note that, for 0 < α < 2, τ0 belongs to the domain of attraction
of an α-stable law if and only if F ∈ RV−α (see [Fe2, Corollary XVII.5.2]).
Assumption 2. We will always assume that τ0 > 1, concentrating on “bad be-
haviours” at infinity.
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We need to introduce the generalized inverse of 1/F , defined by :

h(x) = inf{y : 1/F (y) > x}.

As F belongs to RV−α, one can see that h ∈ RV1/α (see for instance [Re, Proposition

0.8 (v)]). Loosely speaking, h(y) ≃ y1/α. We will recall later how h is related to
the asymptotic behaviour of maxima and sums of (τx) (see Proposition 2.1), but
let us first state and comment our main results. We stress that they hold for any
a ∈ [0, 1].

Theorem 1.1. For almost every environment, we have :

lim
n→∞

−
ln(λn)

ln(n)
=

∣
∣
∣
∣
∣
∣
∣
∣

max

(

2, 1 +
1

α

)

if d = 1,

max

(

2,
d

α

)

if d > 2.

For certain values of the parameters α and d, we are able to describe more
precisely the behaviour of λn.

Theorem 1.2. (1) If d > 2 and α > d/2, or if d = 1 and α > 1, then there

exist k1, k2 > 0 such that for almost every environment and n large enough :

k1

n2
6 λn 6

k2

n2
.

(2) If α < 1 and d 6= 2, then for any ε > 0, there exist η,M > 0 such that for

all n large enough :

P[η 6 anλn 6 M ] > 1 − ε,

where

an =

∣
∣
∣
∣

nh(n) if d = 1,
h(nd) if d > 3.

(3) Let an = ln(n)h(n2). If d = 2 and α < 1, then for any ε > 0, there exist

η,M > 0 such that for all n large enough :

P[η 6 anλ
◦
n 6 M ] > 1 − ε,

P[η 6 anλn 6 ln(n)M ] > 1 − ε.

Let us now give some heuristics about the behaviour of (Xt). If a = 0, the
walk is in fact a time-change of the simple random walk : arriving at some site
x, it waits an exponential time of mean τx before jumping to a neighbouring site
chosen uniformly. When a 6= 0, things get more complicated. Suppose that the
walk arrives at some deep trap, that is a site x where τx is very large. Compared
with the a = 0 case, the walk will leave site x faster. On the other hand, once on
a neighbouring site, it will come back to x with very high probability. These two
competing effects can compensate remarkably in the limit, and indeed our main
results are independent of a (as they also are in [BČ05]).

We propose to call (Xt)t>0 a random walk among random traps. It seems to
us that for its relative simplicity, it should be considered one of the basic types of
random walks in random environments to study, just as is the random walk among
random conductances. Although one could have the feeling that these two types
are basically the same, one attaching randomness to edges of the graph and the
other to sites, they exhibit very different behaviours. For instance, the reversible
measure is not the uniform one in the case of random traps (it gives weight τx to
site x). Also, if d > 2, the random walk in random conductances tends to avoid
visiting regions where conductance is very low (and where time spent to “get out”
may be high). On the other hand, when walking among random traps, say for
a = 0, the path is the same as for the simple random walk, and the walk is not
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inclined to avoid regions from which it takes a long time to get out. See [Al81] for
a nice discussion about this issue.

This type of walk gained interest when J.P. Bouchaud [Bo92] proposed it as a
phenomenological model to explain aging of glassy systems, and as a consequence,
what we call “random walk among random traps” is also known as Bouchaud’s trap

model. Later on, [RMB00] introduced the full model as presented here (including
the a ∈ [0, 1]), which allows them to get more diverse aging behaviours.

When E[τ0] is finite (in particular when α > 1), one can apply results of
[DFGW89] to prove that, under the averaged law, (Xt) is diffusive and converges
to Brownian motion after rescaling.

For a = 0, α < 1 and in dimension 1, [FIN02] proved that the process was sub-
diffusive, and obtained convergence of the rescaled process to a singular diffusion,
as well as aging. The results have been extended to general a in [BČ05]. Another
(also subdiffusive) scaling limit, called the fractional kinetics process, was identified
when a = 0, α < 1 and d > 2 in [BČ07]. We refer to [BČ06] for a review on the
subject.

To our knowledge, these were the only results available when this note was made
public. More recently, [BČ09] have shown that, for d > 3, the convergence towards
the fractional kinetics process holds for any a ∈ [0, 1] (see also [Mo09] for a different
proof of this result when d > 5). For a = 0, α < 1 and in dimension 1, [Fa09] have
now obtained a detailed description of the spectrum. Finally, for a = 0, α < 1 and
d > 2, [JLT09] have shown that, in the time scale of (λn)−1, the random walk on
Bn with periodic boundary rescales towards the K-process introduced in [FM08].

This note comes as a partial answer to a question of [BČ06], asking for the
“nature of the spectrum of the Markov chain close to its edge. Naturally, the long
time behaviour of Xt can be understood from the edge of the spectrum of the
generator L. This question deserves further study (see [BF05], [BF08] and also
[MB97]).”

Upper bounds on λn are obtained rather easily, using its variational charac-
terisation (see equation (1.2)), and then choosing appropriate test functions. An
exception should however be pointed out for the upper bound on λn in part (3)
of Theorem 1.2. While the upper bound can probably be improved to match the
lower bound if E[(τ0)

a] is finite, a complete answer remains unclear to us.
As far as lower bounds are concerned, a simple argument shows that it suffices

to consider the case when a = 0 (see inequality (1.3)). When the random variables
(τx) are not integrable, the matching lower bounds can be obtained using the fact
that the sum and the maximum of (τx)x∈Bn are of the same order of magnitude.
Finding the missing lower bounds when E[τ0] is finite is however more difficult.
Remarkably, the classical techniques exposed for instance in the review [SC97],
although giving the appropriate bounds in certain cases, did not enable us to con-
clude in general. We show in section 6 that the distinguished path method (see
e.g. [SC97, Theorem 3.2.3]), that proved efficient for instance in [FM06, Section 3]
for random walks among random conductances, is bound to give an extra 1 in the
exponent when d > 2 (for the one-dimensional case, [Ch, Section 3.7] proves that
the method is sharp, as can be checked directly in our context). In order to solve
the problem, we use the fact that (λn)−1 is comparable to

sup
x∈Bn

Eτ
x[Tn],

where Tn is the exit time from Bn (Proposition 4.1). Using the properties of
the Green function of the embedded discrete time random walk, one can see that
Eτ

0 [Tn] is typically of the order of n2. Loosely speaking, we show by a computation
of moments that for any ε > 0, the probability that the fluctuations of Eτ

0 [Tn]
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exceed nd/α+ε is o(n−d). This ensures that, for any ε > 0,

sup
x∈Bn

Eτ
x[Tn] 6 C(n2 + nd/α+ε),

which gives us sufficient information to derive the almost sure lower bounds of
Theorem 1.1 and part 1 of Theorem 1.2. We point out however that, as concerns
the precise asymptotics of Theorem 1.2, it leaves a gap for α ∈ [1, d/2].

We would also like to draw the reader’s attention to the fact that this method
gives little indication on how to extend the results to a conservative dynamics (for
instance, with periodic boundary conditions instead of Dirichlet).
Remark. A natural choice of (τx) from the statistical physics’ point of view is the
following : first choose independently for each site a random variable −Ex with law
exponential of parameter 1, and define τx to be exp(−βEx), where β represents
the inverse of the temperature. Then one can check that F ∈ RV−1/β , and the
irregularity that appears at β = 1 for d 6 2 and at β = 2/d for larger d can be
regarded as a phase transition (the anomalous behaviour occurring for β large, that
is for small temperature, or in our context, small α).

It may seem surprising that this new phase transition does not appear at the same
threshold than the diffusive/subdiffusive transition, which, as far as one knows,
occurs when α(= 1/β) = 1 in any dimension. The reason for this is the following :
although the principal eigenvalue will “feel” the very deepest traps of the box (of
order nd/α), the process started at the origin will exit the box after visiting only
some n2 sites, thus having seen only traps of order at most n2/α.

Lastly, we would like to mention that on the complete graph and for a = 0,
[BF05] got explicit formulas for the whole spectrum and managed to link them
with aging properties.

Apart from this introduction, the paper is divided into five sections. In section 2,
we recall some classical consequences of Assumption 1 concerning the asymptotic
behaviour of sums and maxima of (τx). We begin the analysis of the problem in
section 3 using the variational characterisation of the principal eigenvalue, which
gives bounds on λ◦n and λn that are sharp when α 6 1 or d = 1. In order to find
a good lower bound on λ◦n (easily extended to a lower bound on λn) when d > 2
and α > 1, we introduce in section 4 the embedded discrete time random walk.
When a = 0, it is the simple random walk, and the explicit knowledge of its Green
function enables us to conclude. In section 5, upper bounds for λn are computed.
Finally, we analyse the limitation of the distinguished path method in section 6.

Let us see how to deduce Theorem 1.1 from the rest of the paper. Regarding
lower bounds on λn, an elementary observation is that λn > λ◦n (see (1.3)). As a
consequence, part (2) of Proposition 3.3 gives an upper bound on the exponent of
the principal eigenvalue, that needs to be improved when d > 3 and α > 1. This is
done by Proposition 4.6. Now for the associated lower bounds on the exponent of
the principal eigenvalue, they come from Proposition 5.1 and part (2) of Proposition
2.1 if d = 1 ; from part (2) of Proposition 5.2 and Proposition 5.5 if d > 2.

Concerning part (1) of Theorem 1.2, if d = 1 and α > 1, the lower bound on λn

comes from part (3) of Proposition 3.3. If d > 2 and α > d/2, the lower bound is
given by part (2) of Proposition 4.6. In any case, Proposition 5.5 gives the desired
upper bound on λn.

Finally, for parts (2) and (3) of Theorem 1.2, part (1) of Proposition 3.3 gives
the desired result for λ◦n as well as a lower bound on λn. In dimension one, the
upper estimate on λn is given by Proposition 5.1 and part (4) of Proposition 2.1,
while if d > 2, it comes from part (1) of Proposition 5.2 together with part (3) of
Proposition 2.1.
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Notations. We write (·, ·) for the scalar product defined by :

(f, g) =
∑

x∈Zd

f(x)g(x)τx,

and L2(Bn) for the set of functions that vanish outside Bn (equipped with the
above scalar product). The operator Ln is self-adjoint in L2(Bn).

For two points x, y ∈ Z
d, we write x ∼ y when they are neighbours (that is,

when ‖x− y‖ = 1). We define the Dirichlet form associated to L :

E(f, g) = (−Lf, g) =
1

2

∑

x,y∈Z
d

x∼y

τa
x τ

a
y (f(y) − f(x))(g(y) − g(x)),

and E◦ the Dirichlet form obtained when a = 0. We have :

(1.2) λn = inf
f∈L2(Bn)

f 6=0

E(f, f)

(f, f)
.

Assumption 2 gives that E(f, f) > E◦(f, f), so it is clear that

(1.3) λn > λ◦n.

We further need to define the boundary of Bn, as ∂Bn = Bn+1 \Bn. If K is some
set, |K| stands for its cardinal.

The real number C > 0 represents a generic constant that need not be the same
from one occurrence to another.

2. Asymptotic behaviour of sums and maxima

In this section, we briefly recall some classical consequences of Assumption 1.
First of all, it implies that for any ε > 0 :

(2.1) F (y)yα+ε −−−−−→
y→+∞

+∞ and F (y)yα−ε −−−−−→
y→+∞

0,

and as a consequence, E[τβ
0 ] is finite for all β < α, infinite for all β > α (and may

be finite or infinite when β = α).
The following proposition describes the asymptotic behaviour of the sum and

the maximum of (τx) over the box Bn.

Proposition 2.1. (1) For any ε > 0 and almost every environment :

n−(max(d,d/α)+ε)
∑

x∈Bn

τx → 0 (n→ +∞).

(2) For any ε > 0 and almost every environment :

n−(max(d,d/α)−ε)
∑

x∈Bn

τx → +∞ (n→ +∞).

(3) There exists a random variable M∞ with values in (0,+∞) such that the

rescaled maxima converge in law to M∞ :

1

h(nd)
max
x∈Bn

τx →M∞ (n→ +∞).

(4) If α < 1, then there exists a random variable S∞ with values in (0,+∞)
such that the rescaled partial sums converge in law to S∞ :

1

h(nd)

∑

x∈Bn

τx → S∞ (n→ +∞).
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Proof. For the first statement, it is a consequence of the law of large numbers if
α > 1, otherwise it is an application of [Pe, Theorem 6.9]. For the second one, it
comes again from the law of large numbers if α > 1. Otherwise, observe that the
sum is larger than the maximum of its terms, and

P

[

max
x∈Bn

τx 6 Mnd/α−ε

]

= (1 − F (Mnd/α−ε))(2n+1)d

.

Using the properties of F (see (2.1)), we see that the latter is the general term of a
convergent series, and we can apply the Borel-Cantelli lemma. Now the convergence
of the rescaled maxima is given in [Fe2, Section VIII.8] or [Re, Proposition 1.11].
For the convergence of the partial sums, see [Fe2, Section XVII.5]. �

3. The variational formula

We will use here the variational characterisation of λ◦n :

(3.1) λ◦n = inf
f∈L2(Bn)

f 6=0

E◦(f, f)

(f, f)
.

We define the conductance between the origin and ∂Bn as

Cn = inf
{
E◦(f, f) | f ∈ L2(Bn), f(0) = 1

}
.

Noting that Bn is a finite set, one can see by a compactness argument that the
infimum is reached for some function Vn. The behaviours of Cn and λ◦n are related
in the following way.

Proposition 3.1. For any n and any environment, we have :

C2n
∑

x∈Bn
τx

6 λ◦n,

λ◦2n+1 6 λ◦2n 6
Cn

maxBn τ
.

Proof. Considering the homogeneity of the quotient in (3.1), we can restrict the
infimum to be taken over all f with ‖f‖∞ = 1. Let f be such a function, and x0 ∈
Bn such that |f(x0)| = 1. Possibly changing f to −f , we can assume f(x0) = 1.
Noting that the function g = f(· + x0) is in L2(B2n) and satisfies g(0) = 1, we
have :

E◦(f, f) = E◦(g, g) > C2n.

On the other hand, as ‖f‖∞ = 1, we have :

(f, f) 6
∑

x∈Bn

τx,

and these lead to the first desired inequality.
The fact that λ◦2n+1 6 λ◦2n is clear from (3.1). Now let x1 ∈ Bn be such that

maxBn τ = τx1
, and consider the function h = Vn(· − x1) ∈ L2(B2n). We get :

E◦(h, h) = E◦(Vn, Vn) = Cn.

But note that h(x1) = 1, therefore :

(h, h) > τx1
= max

Bn

τ,

and we get the second inequality. �

We now describe the asymptotic behaviour of Cn.
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Proposition 3.2. If d = 1, then :

Cn =
2

n+ 1
.

If d = 2, then there exist k1, k2 such that for all n :

k1

ln(n)
6 Cn 6

k2

ln(n)
.

If d > 3, then Cn converges to a strictly positive number.

Proof. We can regard Bn+1 as an electrical network (see [LP, Chapter 2]), with
each edge representing a resistance of value 1. One can see that Vn is harmonic on
every point that is not 0 nor a point of ∂Bn. Thus it coincides with the potential
on the electrical network, with the constraints that Vn(0) = 1 and Vn|∂Bn

= 0.
The number Cn is the effective conductance between 0 and ∂Bn. In dimension 1,
a direct computation gives the result. If d = 2, then we can use [LP, Proposition
2.14]. In larger dimensions, the simple random walk is transient, and therefore (see
[LP, Theorem 2.3]) Cn converges to a strictly positive number. �

From this, we can deduce the following.

Proposition 3.3. (1) If α < 1, then for any ε > 0, there exist η,M > 0 such

that for all n large enough :

P

[

η 6
h(nd)

Cn
λ◦n 6 M

]

> 1 − ε,

(2) For almost every environment, we have :

lim sup
n→∞

−
ln(λ◦n)

ln(n)
6

∣
∣
∣
∣
∣
∣
∣
∣

max

(

2, 1 +
1

α

)

if d = 1,

max

(

d,
d

α

)

if d > 2.

(3) If E[τ0] is finite, then for almost every environment and all n large enough :

λ◦n >
C2n

(2n+ 1)d(E[τ0] + 1)
.

Proof. The first part of the proposition is a consequence of Propositions 3.1, 3.2 and
parts (3) and (4) of Proposition 2.1. For the second part, use part (1) of Proposition
2.1 instead. The last part is an application of the law of large numbers. �

We recall from inequality (1.3) that λn > λ◦n. Hence, as far as lower bounds are
concerned, parts (2) and (3) of Theorem 1.2 are now obtained. However, part (1)
is proved only for d = 1, and Theorem 1.1 only for d 6 2 or α 6 1. The following
section provides the missing lower bounds.

4. Exit time upper bounds when a = 0

This section aims at finding good lower bounds for λn when d > 2 and α > 1.
To do so, we will use the exit times Tn from Bn :

Tn = inf{t > 0 : Xt /∈ Bn}.

The principal eigenvalue and the exit time from Bn are indeed related by the
following (general) result :

Proposition 4.1. For any environment τ , any n ∈ N and t > 0, we have

e−tλn 6 sup
x∈Bn

Pτ
x[Tn > t] 6

supx∈Bn
Eτ

x[Tn]

t
.
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Proof. Let ψn be the eigenfunction associated with the principal eigenvalue λn such
that supψn = 1.

Eτ
x[ψn(Xt)1{Tn>t}] = e−tλnψn(x).

Choosing x ∈ Bn such that ψn(x) = 1, we have :

Pτ
x[Tn > t] > Eτ

x[ψn(Xt)1{Tn>t}] = e−tλn .

The second inequality is Markov’s inequality. �

Our objective is to find a sharp upper bound for supx∈Bn
Eτ

x[Tn]. As noted in
inequality (1.3), finding a lower bound for λ◦n is sufficient. Therefore, we assume in
this section that a = 0, and also that d > 2.

We introduce the embedded discrete time random walk (Yn)n∈N, and the jump
instants (Jn)n∈N, so that

Jn 6 t < Jn+1 ⇒ Xt = Yn.

As we assumed here that a = 0, it is clear that conditionally on Yn = x, the time
Jn+1 − Jn spent by the walk at site x is an exponential variable of mean τx. Let
Gn(x, y) be the number of visits before exiting Bn at site y for the walk Y starting
at x :

T̂n = inf{k : Yk /∈ Bn} and Gn(x, y) = Eτ
x





T̂n−1∑

k=0

1{Yk=y}



 .

Note that Gn(x, y), as the expectation of a functional of Y , is non-random. As a
consequence of the above remark, the expected total time spent by the walk X at
site x before exiting Bn is τx times the number of visits of Y at site x. In other
words :

(4.1) Eτ
x[Tn] =

∑

y∈Bn

Gn(x, y)τy .

Roughly speaking, we will see that the expectation of this sum behaves like n2

(assuming α > 1), and that the probability to be far from the expectation by nd/α

is of order n−d. To estimate these fluctuations, our method will be to compute
moments after truncation and centring of the τx. To do so, the first thing we need
is to find convenient upper bounds for Gn(·, ·).

Proposition 4.2. (1) There exists C1 > 0 such that for any integer n :
∑

y∈Bn

Gn(0, y) 6 C1n
2.

(2) If d > 3, then there exists C2 > 0 such that for any integer n and any

x ∈ Z
d :

Gn(0, x) 6
C2

(1 + ‖x‖)d−2
.

(3) If d = 2, then there exists C3 > 0 such that for any integer n and any

x ∈ Z
d :

Gn(0, x) 6 C3 ln(n).

Proof. For the first part, note that

∑

y∈Bn

Gn(0, y) = Eτ
0





T̂n−1∑

k=0

1{Yk∈Bn}



 = Eτ
0 [T̂n].

As given for instance by [Fe1, Section XIV.3]), the expectation of the exit time of
the first coordinate of Y from {−n, . . . , n} is bounded by a constant times n2. It is

clear that this quantity is an upper bound for Eτ
0 [T̂n]. The second inequality is a
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consequence of [La, Theorem 1.5.4], while the last comes from [La, Theorem 1.6.6].
�

We begin by truncating and centring the random variables (τx). Let α′ < α

(remember that E[τα′

0 ] is finite). For convenience, we impose on α′ the additional
condition

(4.2) α′ 6 2 if d 6 3.

As we will see in the proof of Proposition 4.6, this restriction is of no consequence
for our purpose. We define the following truncation of τx :

τ̃x,n =

∣
∣
∣
∣

τx if τx 6 nd/α′

,
0 otherwise

(observe that with high probability, we have τx = τ̃x,n for every x ∈ Bn), and let
τx,n = τ̃x,n − E[τ̃x,n].

We proceed to show the following proposition, that roughly speaking states that
fluctuations of order nd/α′

of the exit time from 0 occur with probability smaller
than n−d.

Proposition 4.3. For any β > d/α′, there exist δ, C > 0 such that for all n :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

Gn(0, x)τx,n

∣
∣
∣
∣
∣
> nβ

]

6
C

nd+δ
.

Proof. Let m be an integer. We have :

E





(
∑

x∈Bn

Gn(0, x)τx,n

)2m




=
∑

x1,...,x2m

Gn(0, x1) · · ·Gn(0, x2m)E[τx1,n · · · τx2m,n]

=

m∑

k=1

∑

e1+···+ek=2m
ei>2

Ce1,...,ek

∑

y1,...,yk

yi 6=yj

k∏

i=1

Gn(0, yi)
eiE[τ ei

yi,n]

6 C(m)

m∑

k=1

∑

e1+···+ek=2m
ei>2

k∏

i=1

∑

x∈Bn

Gn(0, x)ei |E[τ ei
0,n]|

︸ ︷︷ ︸

=:Πn
e1,...,ek

,

(4.3)

where, to get the second equality, we chose to decompose x1, . . . , x2m the following
way : let k be the cardinal of {x1, . . . , x2m}. We have {x1, . . . , x2m} = {y1, . . . , yk}.
Then ei represents then number of occurrences of yi in x1, . . . , x2m. We then use the
fact that the random variables (τx,n)x∈Zd are independent to split the expectation
in product form. Note that as τx,n is a centred random variable, the cases when
ei = 1 for some i do not contribute to the sum, so it is enough to consider cases
when ei > 2 (and this implies k 6 m). It is a nice combinatorics exercise to check
that Ce1,...,ek

is the multinomial coefficient associated with (e1, . . . , ek) divided by
k!, but the important fact is that this term does not depend on n.

We will now determine the asymptotic behaviour of the Πn
e1,...,ek

. If d > 3, using
part (2) of Proposition 4.2, one knows that

∑

x∈Bn

Gn(0, x)ei 6 C
∑

x∈Bn

(1 + ‖x‖)−ei(d−2),
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which, by comparison with an integral, is bounded by :
∣
∣
∣
∣

C ln(n) if d > 4 or ei > 3,
Cn if d > 3.

On the other hand, |E[τ ei
0,n]| is bounded when n goes to infinity if ei 6 α′, and

otherwise

(4.4) |E[τ ei
0,n]| 6 E[|τ0,n|

(ei−α′)+α′

] 6 (nd/α′

)ei−α′

E[|τ 0,n|
α′

] 6 Cneid/α′−d.

We first treat the case d > 4. We choose m as the smallest integer larger than (or
equal to) α′/2. All the Πn

e1,...,ek
are bounded by C ln(n)m when n goes to infinity

except :

Πn
2m 6 C ln(n)n2md/α′−d.

It comes, using Markov’s inequality, that there exists C such that for any n :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

Gn(0, x)τx,n

∣
∣
∣
∣
∣
> nβ

]

6 Cn−d ln(n)mn2m(d/α′−β),

which proves the desired result.
When d = 3, remember from (4.2) that α′ 6 2. We choose m = 2 in (4.3) and

get :

Πn
2,2 6 Cn2n12/α′−6 and Πn

4 6 C ln(n)n12/α′−3,

and it comes that :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

Gn(0, x)τx

∣
∣
∣
∣
∣
> nβ

]

6 Cn−3 ln(n)n4(3/α′−β),

which proves the proposition, and we are left with the two-dimensional case. From
the estimates of Proposition 4.2, we know that

∑

x∈Bn

Gn(0, x)ei 6 (C3 ln(n))ei−1
∑

x∈Bn

Gn(0, x) 6 C ln(n)ein2,

from which we obtain that, provided e1 + · · · + ek = 2m :

Πn
e1,...,ek

6 C ln(n)2mn2k
k∏

i=1

|E[τ ei
0,n]|.

Recalling that (from equation (4.4) and the fact that α′ 6 2),

|E[τ ei
0,n]| 6 Cn2ei/α′−2,

we obtain, for any sequence e1, . . . , ek such that e1 + · · · + ek = 2m :

Πn
e1,...,ek

6 C ln(n)2mn4m/α′

.

Now we choose m large enough so that :
(

4

α′
− 2β

)

m < −2

and apply Markov’s inequality. �

The next step is to lift this estimate to the sum of Gn(0, x)τ̃x,n.

Proposition 4.4. Assuming that E[τ0] is finite, there exists M such that for any

β > d/α′, there exist δ, C > 0 such that for all n :

P

[
∑

x∈Bn

Gn(0, x)τ̃x,n > Mn2 + nβ

]

6
C

nd+δ
.
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Proof. Note that as E[τ̃x,n] 6 E[τ0], and using part (1) of Proposition 4.2 :
∑

x∈Bn

Gn(0, x)E[τ̃x,n] 6 C1E[τ0]n
2.

It comes that

P

[
∑

x∈Bn

Gn(0, x)τ̃x,n > C1E[τ0]n
2 + nβ

]

6 P

[
∑

x∈Bn

Gn(0, x)τx,n > nβ

]

,

on which we apply Proposition 4.3. �

We can now carry this result back to supx∈Bn
Eτ

x[Tn].

Proposition 4.5. Assuming that E[τ0] is finite, there exists M ′ such that for any

β > d/α′, almost every environment and n large enough :

sup
x∈Bn

Eτ
x[Tn] 6 nβ +M ′n2.

Proof. We first need to relate Eτ
x[Tn] with the estimates proved before (which con-

cern only Eτ
0 [Tn]). Let T x

n be the exit time from x+Bn. Since for any x ∈ Bn, we
have Bn ⊆ x + B2n, it comes that almost surely Tn 6 T x

2n, so Eτ
x[Tn] 6 Eτ

x[T x
2n],

the latter having same law as Eτ
0 [T2n] under P.

Let M ′ > 0 and let i be an integer. We consider :

(4.5) P

[

sup
n>2i

supx∈Bn
Eτ

x[Tn]

nβ +M ′n2
> 1

]

6

∞∑

j=i

P

[

sup
2j6n<2j+1

supx∈Bn
Eτ

x[T x
2n]

nβ +M ′n2
> 1

]

.

We bound the general term of this series by

P

[

sup
x∈B

2j+1

Eτ
x[T x

2j+2 ] > 2jβ +M ′22j

]

,

which we bound by Aj + |B2j+1 |A′
j , where :

(4.6) Aj = P

[

∃x ∈ B2j+2 : τx > 2(j+2)d/α′

]

,

A′
j = P




∑

x∈B
2j+2

Gn(0, x)τ̃x,2j+2 > 2jβ +M ′22j



 .

We first estimate Aj . Take α′′ such that α′ < α′′ < α. It comes from assumption 1
(see (2.1)) that for all y large enough :

P[τ0 > y] 6 y−α′′

.

One gets that for j large enough :

Aj 6 1 −
(

1 − 2−jdα′′/α′

)|B
2j+2 |

= 1 − exp
(

|B2j+2 |2−jdα′′/α′

(1 + o(1))
)

,

which is the general term of a convergent series.
Now for A′

j , using Proposition 4.4, we see that choosing M ′ = 16M , the term

|B2j+1 |A′
j is bounded by C2−jδ for some δ > 0. Therefore, the series in the right-

hand side of 4.5 converges (and tends to 0 when i goes to infinity), which proves
the proposition. �

We can now conclude :

Proposition 4.6. (1) If α > 1 and d/α > 2, then for almost every environ-

ment :

lim sup
n→∞

−
ln(λ◦n)

ln(n)
6
d

α
.
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(2) If d/α < 2, then there exists C such that for almost every environment and

all n large enough :

λ◦n >
C

n2
.

Proof. If d > 4, we can make α′ tend to α in Proposition 4.5, which, together with
Proposition 4.1, gives the desired result. When d ∈ {2, 3}, one needs to take care
of the additional restriction (4.2). If α 6 2, then one can make α′ tend to α, and
obtain the results. Otherwise, we are in the case when d/α < 2. As a consequence,
we can choose α′ = 2, and part (2) of the proposition still holds. �

5. Upper bounds on λn

We now give upper bounds on λn. Our method is clear from equation (1.2), that
we recall here :

λn = inf
f∈L2(Bn)

f 6=0

E(f, f)

(f, f)
.

Picking a function in L2(Bn) gives an upper bound, and the problem is to choose
the function well enough (i.e. looking more or less like the eigenfunction) to get a
sharp bound.

5.1. The one-dimensional case.

Proposition 5.1. We assume d = 1. There exists C > 0 such that for almost

every environment and all n large enough :

λn 6
C

n
∑

x∈Bn/4
τx
.

Proof. For a = 0, a “triangle function” that takes the value 0 on −(n + 1) and
(n + 1), the value 1 on 0 and is piecewise linear would do well. But for general a,
this function is not appropriate, and we will construct instead a function that looks
like it, but is constant around deep traps.

Let M > 0 be such that P[τ0 > M ] 6 1/8. Because of the law of large numbers,
one gets :

1

n
|{k ∈ {−n− 1, . . . , 0} : τk > M}|

a.s.
−−−−→
n→∞

1

8
.

Almost surely, for n large enough, the two following conditions are satisfied :

(5.1) |{k ∈ {−n− 1, . . . , 0} : τk > M}| 6
n

4
,

(5.2) |{k ∈ {0, . . . , n+ 1} : τk > M}| 6
n

4
.

Let us first construct the left part of our function : let l : −N → R be such that
l(k) = 0 for all k < −n, and for all k ∈ {−n, . . . , 0} :

l(k) − l(k − 1) =

∣
∣
∣
∣

0 if τk−1 > M or τk > M,
1/n otherwise.

The function l is made in such a way that for all k for which it makes sense :

(5.3) τa
k τ

a
k+1(l(k + 1) − l(k))2 6

M2a

n2
.

Moreover, when (5.1) is satisfied, there are at most half of the edges on which
the function is constant, so l(0) > 1/2. In this case, and as for any k we have
l(k) − l(k − 1) 6 1/n, it comes that l(k) > 1/4 when k > −n/4.
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We define in the same way a right part r : N → R such that r(k) = 0 for all
k > n, and for all k ∈ {n, . . . , 0} :

r(k) − r(k + 1) =

∣
∣
∣
∣

0 if τk > M or τk+1 > M,
1/n otherwise.

The function r satisfies the same small variation property as in (5.3). Similarly,
when (5.2) is satisfied, we have that r(0) > 1/2 and r(k) > 1/4 for all k 6 n/4.

Now we connect the two parts l and r preserving this small variation property.
Let m = min(l(0), r(0)). We define f : Z → R by

f(x) =

∣
∣
∣
∣

min(l(x),m) if x < 0,
min(r(x),m) otherwise.

We have therefore :

E(f, f) 6
2M2a

n
.

On the other hand, for n large enough, (5.1) and (5.2) are satisfied, and in this case
m > 1/2 and f(k) > 1/4 for all k such that −n/4 6 k 6 n/4. Thus :

(f, f) >
1

16

∑

−n/46k6n/4

τk,

and we finally obtain, for all n large enough :

λn 6
E(f, f)

(f, f)
6

32M2a

n
∑

x∈Bn/4
τx
.

�

5.2. Large dimension, anomalous behaviour. The results proved in this part
are in fact valid in any dimension and for any α > 0, but they are sharp only in
the regime given in the title, that is for d > 2 and 2α 6 d.

Proposition 5.2. (1) For any ε > 0, there exists M > 0 such that for all n
large enough :

P

[

λn max
Bn−1

τ 6 M

]

> 1 − ε.

(2) For any ε > 0 and almost every environment :

nd/α−ελn −−−−→
n→∞

0.

Proof. Let K be the set of first and second neighbours of 0, namely K = {x ∈ Z
d :

1 6 ‖x‖ 6 2}, and c the number of edges from a point of {x : ‖x‖ = 1} to a point of
{x : ‖x‖ = 2}. Write Mx = maxx+K τ . If we choose the function that takes value
1 on site x ∈ Bn−1 and its neighbours, and 0 elsewhere, namely :

f(z) =

∣
∣
∣
∣

1 if ‖z − x‖ 6 1,
0 otherwise,

then we see that for any x ∈ Bn−1 :

(5.4) λn 6
c(Mx)2a

τx
.

Let xn ∈ Bn−1 be such that τxn = maxBn−1
τ . We have :

λn 6
c(Mxn)2a

maxBn−1
τ
.

So we get :

P

[

λn max
Bn−1

τ > M

]

6 P
[
c(Mxn)2a > M

]
.
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Now recall that Mxn is the maximum over all neighbours and second neighbours of
xn, so it should look like taking the maximum over all neighbours and second neigh-
bours of, say, 0. More precisely, conditionally on maxBn−1

τ = τz for some fixed
z, the law of (τx)x∈Bn−1\{z} is invariant under permutation. Therefore, provided
z ∈ Bn−2 \K and conditionally on maxBn−1

τ = τz , the random variables Mz and
M0 have the same law. Summing over all z ∈ Bn−2 \K, we get that conditionally
on the event En that xn ∈ Bn−2 \K, the random variables M0 and Mxn have the
same law. We obtain :

P
[
c(Mxn)2a > M

]
6 P

[
c(M0)

2a > M
]
+ P [Ec

n] .

The law of xn being uniform in Bn−1, we have that P [Ec
n] goes to 0 when n goes

to infinity. First part of the theorem comes choosing M large enough.
We now turn to the second assertion of the proposition. Defining :

Mn = max
x∈Bn−1

τx
(Mx)2a

,

we will show that for any ε > 0 :

(5.5)
Mn

nd/α−ε

a.s.
−−−−→
n→∞

+∞,

which will prove the result via equation (5.4). There exists k > 0 such that
P[(Mx)2a > k] < 1/2. Thus (note that Mx and τx are independent) :

P

[
τx

(Mx)2a
> y

]

>
P[τx > ky]

2
=
F (ky)

2
.

Hence, for all K > 0 :

P[Mn 6 nd/α−εK] 6

(

1 −
F (kKnd/α−ε)

2

)(2n−1)d

,

and recalling that, as a consequence of assumption 1 (see (2.1)), for all β < α,
F (y) 6 y−β for all y large enough, one can see that the term on the right-hand side
of the former equality is the general term of a convergent series, and thus apply the
Borel-Cantelli lemma. �

5.3. Regular behaviour. In what follows our assumption will be that E[τa
0 ] is

finite. In particular, all results will be valid under the condition that E[τ0] is finite
(or if a = 0).

We write (ei)16i6d for the canonical base of R
d.

Proposition 5.3. Let f : [−1, 1]d → R be a continuous function. If E[τa
0 ] is finite,

then for all i ∈ {1, . . . , d} :

(5.6)
1

(2n+ 1)d

∑

x∈Bn

τa
x τ

a
x+ei

f(x/n)
a.s.

−−−−→
n→∞

E[τa
0 ]2
∫

[−1,1]d
f(x)dx.

Proof. If f is piecewise constant, then the limit (5.6) is proved by separating the
sum over Bn into two parts B′

n and B′′
n so that (τa

x τ
a
x+ei

)x∈B′

n
and (τa

x τ
a
x+ei

)x∈B′′

n

are two families of independent random variables, and then applying the law of
large numbers. For a continuous f , one can approximate uniformly f by piecewise
constant functions from above and below, and the result follows. �

For all f : [−1, 1]d → R and all integer n, we define the function fn : Z
d → R by

fn(x) = f(x/n) if x ∈ Bn, and fn(x) = 0 otherwise. Note that fn ∈ L2(Bn).
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Proposition 5.4. Let f : [−1, 1]d → R be a twice continuously differentiable func-

tion that takes value 0 on the boundary of [−1, 1]d. If E[τa
0 ] is finite, then :

n2

(2n)d
E(fn, fn)

a.s.

−−−−→
n→∞

E[τa
0 ]2
∫

[−1,1]d
‖∇f(x)‖2

2dx.

Recall the following equality :

E(fn, fn) =

d∑

i=1

∑

x∈Bn

τa
x τ

a
x+ei

(

f
(x

n

)

− f

(
x+ ei

n

))2

.

As we assumed f to be twice continuously differentiable, it comes that for all ε > 0
and n large enough :

∀x ∈ Bn : x+ ei ∈ Bn ⇒

∣
∣
∣
∣
∣

(

f
(x

n

)

− f

(
x+ ei

n

))2

−
1

n2

∂f

∂xi

(x

n

)2
∣
∣
∣
∣
∣
6

ε

n2
,

and note that if x ∈ Bn and x + ei /∈ Bn, then f(x/n) = f((x + ei)/n) = 0, so
this case does not contribute to the sum. The result follows using the previous
proposition.

Proposition 5.5. If E[τa
0 ] is finite, then there exists C such that almost surely, for

all n large enough :

λn 6
C

n2

nd

∑

x∈Bn/2
τx
.

Proof. Taking f(x) =
∏d

i=1 sin
(

πxi

2

)
in Proposition 5.4, we get that for almost

every environment :

E(fn, fn) ∼
dπ2

4

(2n)d

n2
E[τa

0 ]2 (n→ +∞).

On the other hand, if x ∈ Bn/2, then f(x) > 2−d/2, thus :

(fn, fn) > 2−d/2
∑

x∈Bn/2

τx,

therefore the proposition holds for any C > 23d/2−2dπ2
E[τa

0 ]2. �

6. The distinguished path method

We present here a more direct method to get a lower bound on λn (close to
the one presented e.g. in [SC97, Theorem 3.2.3], but adapted to treat the case of
Dirichlet boundary condition), and show that it does not provide a sharp estimate
when d > 2. Note that in dimension one, [Ch, Section 3.7] proves that this technique
is always sharp, and one can verify that it gives indeed the expected lower bound.
This method also proved efficient in larger dimension in [FM06, Section 3] in the
context of random walks among random conductances.

For all x ∈ Bn, we give ourselves a path γn(x) from some point of ∂Bn to x (that
apart from the starting point, visits only points in Bn). Let γn(x) = (x0, . . . , xl).
For an edge e, we note e ∈ γn(x) if e = (xi, xi+1) for some i, and in this case, we
write df(e) = f(xi+1) − f(xi), and Q(e) = τa

xiτa
xi+1 . Let En be the set of edges

that go from a point of Bn to a point of Bn ∪ ∂Bn. We give ourselves a weight
function Wn : En → (0,+∞). We define the Wn-length of a path γ as :

ln(γ) =
∑

e∈γ

1

Wn(e)
.
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Note that, as we assumed that τ > 1, we have that Q(e) > 1 (and there is equality
when a = 0). Using Cauchy-Schwarz inequality, we get :

f(x)2 =




∑

e∈γn(x)

df(e)





2

6
∑

e∈γn(x)

1

Wn(e)Q(e)

∑

e∈γn(x)

df(e)2Wn(e)Q(e)

6 ln(γn(x))
∑

e∈γn(x)

df(e)2Wn(e)Q(e)

∑

x∈Bn

f(x)2τx 6
∑

x∈Bn

ln(γn(x))τx
∑

e∈γn(x)

df(e)2Wn(e)Q(e)

6
∑

e∈En

df(e)2Q(e)Wn(e)
∑

x:e∈γn(x)

ln(γn(x))τx.

Note that

E(f, f) =
∑

e∈En

df(e)2Q(e),

so letting

Mn := max
e∈En

Wn(e)
∑

x:e∈γn(x)

ln(γn(x))τx,

we obtain the following lower bound on λn (similar to [SC97, Theorem 3.2.3]) :

λn >
1

Mn
.

Let us see that, however Wn and γn(x) are chosen, it cannot lead to a sharp bound
if d > 2 and α < d. Let z ∈ Bn/2 be such that τz is maximal. The site z is such

that τz ≃ nd/α and |γn(z)| > n/2. Now choose e ∈ γn(z) so that Wn(e) is maximal.
We have :

Mn >
∑

e′∈γn(z)

Wn(e)

Wn(e′)
τz > |γn(z)|τz & n1+d/α,

where we would have hoped to find nmax(2,d/α). So this method cannot give the
appropriate exponent if α < d.

Still, note that if one chooses Wn constant equal to 1, and the shortest paths
for (γn(x))x∈Bn , one can show using results of [BK65] that Mn is indeed of order
nmax(2,1+d/α), which gives an alternative proof of a lower bound for the principal
eigenvalue when α > d.
Acknowledgments. The author would like to thank his Ph.D. advisors, Pierre
Mathieu and Alejandro Ramı́rez, for many insightful discussions about this work as
well as detailed comments on earlier drafts, and Gérard Ben Arous for suggesting
this problem.
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