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ABSTRACT. We show global well-posedness of the dynamic ®* model in the
plane. The model is a non-linear stochastic PDE that can only be interpreted
in a “renormalised” sense. Solutions take values in suitable weighted Besov
spaces of negative regularity.
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1. INTRODUCTION

The aim of this paper is to show global-in-time well-posedness for the stochastic
quantisation equation

11) BX =AX — X% £ aX +€  onR, x R?
. X(()?) :X07

on the full space R? and in the probabilistically strong sense. Here ¢ denotes a
white noise over R x R2, a is a real parameter and X denotes a renormalised cubic
power. This cubic power is sometimes referred to as a “Wick power” or “normally
ordered power”, and sometimes written in the suggestive form X3 — 300X, where
“00” stands for a divergent constant that appears in the renormalisation procedure.
The initial condition X is assumed to take values in a certain Besov space of
negative regularity with weights.

Equation (1.1) describes the natural reversible dynamics for the Euclidean ®3
quantum field theory. It is given by a Gibbs measure on S’(R?) which is formally
proportional to

(1.2) exp (— /R2 EX:“: - ;X2]> dv(X),

where v is the law of a Gaussian free field. This measure was constructed and
investigated intensively in the seventies and eighties (see [GJ] and the references
therein). In 1981, Parisi and Wu [PW] proposed to construct solutions of (1.1) as a
means to obtain samples from (1.2) via an MCMC procedure. In this article, we
fully perform the construction of solutions of (1.1). In our companion article [MW],
we show that solutions of (1.1) on the two-dimensional torus arise as scaling limits
for the Glauber dynamics of a ferromagnetic Ising-Kac model near criticality.

Parisi and Wu’s article [PW] received a lot of attention over the years, and
the construction of solutions of “renormalised” SPDE has been a recurring theme
in the stochastic analysis literature. First results were due to Jona-Lasinio and
Mitter [JLM]. Using the Girsanov theorem, they constructed solutions of a modified
equation

(1.3) X = (~A+1) 77 (AX = X 4+ aX) + (-A+1)75¢
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for 5 < e < 1, on the two-dimensional torus. Note that (at least formally), this
equation also defines reversible dynamics with respect to the ®* measure (1.2).

In the early nineties, Albeverio and Réckner [AR] studied (1.1) using Dirichlet
forms. They could show that the Dirichlet form for (1.1) is closable, and thus
construct weak solutions of (1.1). Weak uniqueness for solutions on the torus
was shown in [RS]. In [MR], Mikulevicius and Rozovskii developed an alternative
approach and constructed martingale solutions of (1.3) on the torus for any value of
e € [0, 1), and showed uniqueness in law for € > 0. Uniqueness in law for solutions of
the original equation (1.1) on the full space remained open in all of these approaches.

A breakthrough result was obtained by da Prato and Debussche in [DPD]. They
considered (1.1) on the two-dimensional torus and showed short time existence
and uniqueness in the probabilistically strong sense, via a fixed point argument
in a suitable Besov space. Using the reversible measure (1.2), they also showed
non-explosion for almost every (with respect to this measure) initial datum.

Our argument builds on this result and extends the method developed in [DPD].
The strategy is similar in spirit to the one-dimensional construction performed in
[Iw]. Following [DPD], we first construct periodic solutions for a short time on a
torus of arbitrary size, using a fixed point argument. Deviating from [DPD], we
derive a priori estimates that are strong enough to imply non-explosion on the torus
for an arbitrary initial condition in a natural Besov space. We then show that, as the
torus grows larger, the family of solutions remains in a compact subset of a suitable
Besov space with polynomial weights. This implies the existence of solutions by
extracting a converging subsequence.

The proof of uniqueness comes with a twist. The nature of the equation does not
allow for a standard Gronwall argument in Besov spaces with polynomial weights.
Instead, we “unfold” the information of boundedness in such a space into a scale of
bounds in Besov spaces with (stretched) exponential weights. We then perform a
Gronwall-type argument using this infinite scale of bounds.

We stress that we do not expect to be able to construct local solutions of (1.1)
directly on the full space via a Picard iteration. On the full space, the lack of
decay of the stochastic terms forces us to work in spaces with weights, but the
non-linearity Y — Y2 is not expected to be locally Lipschitz in such spaces. In fact,
a construction of short time solutions using a Picard iteration could not make use
of the sign of the non-linear term —Y3, and we do not expect to have local in time
existence on the full space if the sign is reversed.

Recently, the three-dimensional version of (1.1) has received a lot of attention.
In [Ha], Hairer developed a theory of “regularity structures”. The construction
of solutions of the three dimensional version of (1.1) on the torus and for short
times was one of the key applications given in [Ha]. In [CC], Catellier and Chouk
presented another method to derive an equivalent result. Their argument is based
on the method of “paracontrolled distributions” which was put forward by Gubinelli,
Imkeller and Perkowski in [GIP]. Yet another method to construct short time
solutions of the three-dimensional version of (1.1), using the renormalisation group,
was proposed by Kuppiainen in [Ku]. Four dimensional versions of (1.1) and (1.2)
are not expected to exist [Ai].

The problem addressed in all of these works is somewhat orthogonal to the
problem discussed in this article. More precisely, all of these works develop methods
to understand the behaviour of a large class of stochastic equations (including (1.1))
on small scales. These methods apply to nonlinear stochastic equations satisfying
a certain scaling property (called subcriticality in [Ha]) which permits to view
the solution of the nonlinear equation as a perturbation of a linearised stochastic
equation. It is not expected that a single general theory can give global in time
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non-explosion results for all of these equations in finite or infinite volume; such
results will rather have to be obtained case by case. Yet, we hope that the present
article will serve as a first step towards proving global-in-time well-posedness for
the three-dimensional version of (1.1).

In [HL1] and in the forthcoming article [HL2], Hairer and Labbé obtain global
well-posedness for a parabolic Anderson model on all of R, x R? for d = 2,3. This
model is given by a renormalised version of the stochastic PDE

(1.4) Ou=Au+un,

where 7 is a white noise in space. To this end, they significantly extend the theory
of regularity structures to include weights, and they are able to replace some of the
L*>°-type assumptions from [Ha] by a more general L? structure. This part of their
work is similar in spirit to our treatment of LP-based Besov spaces with weights
below. But their method differs from ours in an important way: Hairer and Labbé
can directly view (1.4) as a fixed point problem for an operator which is globally
Lipschitz continuous on some (complicated) space. Their result thus follows by a
Picard iteration.

However, our uniqueness argument (see Section 9) seems related to the method
employed in [HL2]. Indeed, once the necessary a priori estimates are established,
our argument reduces to a uniqueness statement for the heat equation with irregular
potential, very much akin to (1.4).

1.1. Statement of the main results. Let ¢ be space-time white noise on Ry x R?,
and let a € R. We denote by Z be the solution of the stochastic heat equation

(1 5) 8tZ:AZ+§, on R+ XRQ,
’ Z(Ov) :X()a

and denote by Z%, Z'3 its Wick powers. These Wick powers can, for example, be
defined by approximation. Let p be a mollifying kernel, i.e. a compactly supported,
non-negative smooth function from R x R? to R with [ p = 1. For ¢ > 0, set

polt ) =045, 5)

Let Zs be the solution of (1.5) with £ replaced by the regularised noise {5 = £ * p;.
There exist constants ¢g, which diverge logarithmically as § goes to zero, such that

75— Z3—3¢sZs

converge to non-trivial limits, which we denote by Z* and Z*3*. Such a construction
is given, for example, in [DPD, Ha]. Below, in Section 5 (see (5.42)) we give an
alternative, more direct construction of Z:% and Z**. In particular, in Theorem 5.4
and Corollary 5.10, we show that for every initial condition X in a suitable weighted
Besov space, the Z"™ can be realised as random continuous (in time) functions
taking values in a weighed Besov space of negative regularity.

Motivated by [DPD], we then say that X solves the equation (1.1) if X =Y + Z,
where Y solves

(1.6) oY =AY + (Y, Z,22%,Z%),  on Ry x R?,
' Y (0,-) =0,
with
(1.7) U(Y,2,22,28) = -v® -3vY%2Z —-3vZ2® — 2B L a(Y + 2).

Equation (1.6) can be motivated by approximation — if X solves the non-linear
equation (1.1) with the noise term & replaced by its regularisation &; and if the
massive term a X is replaced by the renormalised term (a+3cs) X5, then Y5 = X5—Z;
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solves the regularised version of (1.6). See Remark 1.4 below and also [MW, Sec. 3]
for a much more detailed discussion.

It turns out that Y is a continuous (in time) function taking values in a Besov
space of sufficient positive regularity. Hence, the non-linear terms in (1.7) can be
interpreted through multiplicative inequalities in these spaces. We interpret (1.6) in
the mild sense, i.e. we say that Y solves (1.6) if for every ¢ > 0,

t
(1.8) Y= [ a2, ds
0

where Z = (Z,Z%,7Z3). Our main result states that there exists exactly one
solution of (1.6) taking values in some weighted Besov space Bg;gc. In short, the

space ﬁggo is defined analogously to the usual Besov space with regularity index /3
and lower indices p, 0o, except that the integration is taken against a weight of the

form (1 + |2|2)=7/2 (see (4.3) for a precise definition).

Theorem 1.1 (Existence and uniqueness of solutions). Let § <2, 0 > 2, a > 0 be
sufficiently small and p < oo be sufficiently large. Let Xy € ng‘i;g, Z be the solution
of (1.5), and Z'*,Z3 denote its Wick powers. With probability one, there exists a

unique Y € C(Ry,B7 ) solving (1.6).

e
p/9,00

Remark 1.2. As explained above, one of the key steps in the construction of solutions
on the full space is to show global-in-time existence and uniqueness for solutions
on the torus, for arbitrary initial condition in a natural Besov space of negative
regularity. This improves on the result from [DPD] where non-explosion is only
shown for almost every (with respect to the invariant measure) initial datum. This
result is stated in Theorem 6.1.

Remark 1.3. We expect that our method of proof can be modified to imply that
(I X¢]l g=a.e )e>0 is a tight family of random variables. By the Krylov-Bogolyubov
p/9,00

method, this would give a dynamic construction of a ®* measure formally given
by (1.2). (For some values of the parameter a, there are several Gibbs measures
formally given by (1.2), see [GJS].)

Remark 1.4. As in [Ha], our solution X could be obtained as the limit of an
approximation procedure with diverging constants: Let £5 = £ x ps be the regularised
white noise defined above. For any é > 0, let X5 be the solution of the equation

0 Xs = AXs5 — (Xg — 3¢5 X5) + aXs + &5,
XE(Oa ) = XO-

The solution X could be defined as the limit of X5 as d goes to zero. Solutions
constructed in this way coincide with the solutions we construct here, and the
proof of this fact is fully within the scope of the method presented here — indeed,
essentially only some §-dependent bounds on Z and its Wick powers in Section 5
would have to be added (see Remark 5.8 for a discussion). However, this analysis is
not too different from the calculations performed in [Hal, and in order to keep the
length of the paper within reason, we refrain from giving this construction.

Remark 1.5. As in [DPD], one could replace the term — X by any Wick polynomial
of odd degree with negative leading coefficient.

1.2. Organisation of the paper. The first half of the paper is devoted to exposing
some properties of different scales of weighted Besov spaces. Weighted Besov
spaces have already been studied extensively, see in particular [ET, Chapter 4], [Tr,
Chapter 6] and references therein. Since the precise results that we need are difficult
to locate in the literature, and for the reader’s convenience, we have chosen to make
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our paper essentially self-contained. Our presentation essentially follows that of
[BCD], with non-trivial adjustments due to the presence of weights. In Section 2, we
provide some preliminary results about functions with compactly supported Fourier
transform and Gevrey classes. In Section 3, we develop all the necessary properties
of weighted Besov spaces in the case of a stretched exponential weight. We conclude
the discussion of weighted Besov spaces in Section 4, by indicating how our results
change for different choices of weights.

The actual construction of solutions of (1.1) is performed in the remaining sections.
In Section 5, we recall some probabilistic preliminaries, and give a construction
of solutions of the stochastic heat equation (1.5) and its Wick powers in different
weighted Besov spaces. In Section 6, we show global-in-time well-posedness for (1.6)
in the periodic case. As stated above, we use the strategy developed in [DPD] to
construct solutions for a short time, and then derive a priori bounds that are strong
enough to show non-explosion for every initial datum in a Besov space of periodic
distributions. In Section 7, we extend these a priori bounds to the more general
case of solutions on the plane. These bounds imply that solutions of (1.6) on tori of
diverging size remain in a compact subset of a weighted Besov space. In Section 8,
we show that any limiting point is a mild solution of (1.6). Uniqueness is shown in
Section 9.

Finally, some standard calculations for Gevrey functions are collected in Appen-
dix A for the reader’s convenience.

1.3. Notation. We denote by Supp f the support of the function f, by B(0,r) the
open Euclidean ball of radius r. For p € [1,00], we write LP for the usual space
LP(R%,dx), whose norm we denote by || - [|z». The space of infinitely differentiable
functions with compact support is denoted by C°. For I = N or NU {—1} and
q € [1, 00|, we let

1/q
|(un)nerllea = (Z |un|q> )

nel
with the usual understanding as a supremum when ¢ = co. We let

q . 3 _
(1.9) 00 = { (ualner : Julles < 0 and. Tim u, =0}

(Note that this differs from the usual definition of the space £? only when ¢ = oo;
our definition makes the space separable in every case.)

We denote by S the Schwartz space of smooth functions with rapid decay at
infinity, and we denote the dual space of Schwartz distributions by &’. We write
Ff or f for the Fourier transform of f, which is defined by

FHO) = F(Q) = / e £ () da

for f € L', and can be extended to any f € S’ by duality. We also write .# ! f for
the inverse Fourier transform, which, for f € L', takes the form

FQ) = g [ @

Acknowledgements. HW was supported by an EPSRC First Grant.

2. FUNCTIONS WITH COMPACTLY SUPPORTED FOURIER TRANSFORM

The goal of this section is to show that a function that has a compactly supported
Fourier transform satisfies several regularity properties. For instance, for p > g,
the LP norm of such a function is controlled by its L? norm, with a constant that
depends only on the location of the support of the Fourier transform.
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While such results are classical for usual LP spaces, our subsequent analysis
requires that we extend these regularity results to weighted spaces.

Three scales of weights will be used in this paper: stretched exponential weights,
polynomial weights, and “flat” weights on finite cubes for periodic functions. We
could possibly have come up with a general framework that contains these three
scales as particular cases. However, we find it clearer to focus first on the case of
stretched exponential weights, which is the most delicate. We will then indicate
why the argument carries over with only notational change to the other cases.

2.1. Gevrey classes. We begin with a brief reminder on Gevrey classes (see also
[Ro, Chapter 1]).

Definition 2.1. The Gevrey class of index 6 > 1, denoted by G?, is the set of
infinitely differentiable functions f : R? — R satisfying

for every compact K, there exists C' < oo such that for every n € N¢,
sup [0 f| < CMH ()’

where n! stands for ni!---ng! and |n| = ny + --- +ng. We let G? be the set of
compactly supported functions in G?.

Gevrey classes interpolate between analytic functions (f = 1) and C'* functions.
They are stable under addition, multiplication and differentiation. (Stability under
multiplication is given by Proposition A.1 of the appendix; the other stability
properties are easier to check.) We have

Ggl={0} & 0=1

In order to show that G is non trivial for # > 1 (following [Ro, Example 1.4.9]), we
can first show that for k = 1/(0 — 1), the function

¢:{R - R

x = exp(—z7 ") 1,50

belongs to G, and then observe that for any > 0, the function

<I>~{ RY - R
N z=(21,...,2q) H?Zl(b(r—i-xi)qﬁ(r—xi)

belongs to G?. For a given compact K C R?, one can then construct a function in
G? that is constant equal to 1 on K and vanishes outside of a given neighbourhood
of K. Indeed, it suffices to take the convolution of an indicator function with @ (for
a suitable choice of ) and renormalise by ||®||L:.

We will shortly introduce function spaces with weights that decay roughly as
e~ 12I” (Ja| = oc) for some & € (0,1). Functions in G? will help us counter-balance
the presence of these weights thanks to the following property (which we will in fact
use in the “reverse” direction, to construct functions with fast decay at infinity with
prescribed Fourier transform in G?).

Proposition 2.2 (Decay of the Fourier transform). If f € G?, then there exists
¢ >0 and C < oo such that

(2.1) £ < Cemel”.

The proof is recalled in the appendix, see Proposition A.2.



GLOBAL WELL-POSEDNESS OF THE DYNAMIC &* MODEL IN THE PLANE 7

2.2. Young and Bernstein inequalities. A key tool in the derivation of the
regularity results we alluded to is Young’s inequality. Our starting point is a version
thereof that allows for the presence of weights.

Definition 2.3. Let v,w : R — R,. We say that w is v-moderate if for every
z,y € RY,

22) w(e +y) < v(yuw(y).
Theorem 2.4 (Weighted Young inequality). Let w be v-moderate. For every
r,p,q € [1,00] satisfying

1 1 1
(2.3) SHl==4-

r p q

and every measurable functions f,g: R — R,

1(f *9)

o < |[follze lgwllze.

Proof. We observe that

1 *l(@) /\fl Ylgl(z — y)w(z) dy

/\fl Ylgl(z — )o()w(z — y) dy

< [(f]0) * (Iglw)] (2)-

The result then follows from the classical Young inequality, see e.g. [BCD, Lemma 1.4].
O

We let
7l = VT+ o

be a smoothened version of the norm |- |. Naturally, |- |. is no longer a norm, but it
still satisfies the triangle inequality, since

o+ yl2 <1+ |2 + [yl + 20l ly] <2+ ol + |y1* + 2lolulyle = (2] + [yls)*

Definition 2.5. Throughout the paper,

(2.4) we fix 6 € (0,1) and 0 € (1,1/6).
We define
(2.5) wy(2) = e (ueR),

and let L2 be the space LP(R?, w),(z) dz). We denote by (-, -), the scalar product
in L2.
o

(Since ¢ is kept fixed throughout, we choose to leave the dependence on ¢ implicit
in the notation; the number § will come into play shortly.) We impose from now on
that > 0. Note that

(2.6) W =exppu(jyld — |z +y[0)

<expp (|l +yls +l2fs)* — |z +yl2) < expplzl,

since we assume § < 1. Hence, the weight w,, is w_,-moderate.
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Lemma 2.6 (Scaling property). Let ¢ € G%, ¢y = ¢(-/\) and gn = F~'¢x. For
every p € [1,00] and po > 0, there exists C < oo such that uniformly over A\ > 1
and pi < pio,

loallzr | < X,

where p’ € [1,00] is the conjugate exponent of p, that is, 1/p+ 1/p' = 1.

Proof. Since gy = A%g;()\-), the result is clear if p = co. Otherwise, a change of
scale gives

_ 2/\°
”g’\Hifu — )\ 1)/|91|p(17) TETRN T

By Proposition 2.2, the latter integral is bounded uniformly over u < po and
A>1. O

Remark 2.7. Similarly, for every v > 0, we have ||| - |7 g>\||Lp < NP

Lemma 2.8 (Bernstein’s lemma). Let B be a ball. For every po > 0, k =
(ki,...,kq) € NY and p > q € [1,+00|, there exists C < oo such that for every
< o and A =1,

SupfCAB = [0 flly < CAFFIG3) Ifllze, (k= ka4 -+ k).

Remark 2.9. Here and in the two lemmas below, we have not been precise concerning
the range of allowed functions f. We will only use the lemma for functions belonging
to the Schwartz space S of smooth functions with rapid decay at infinity, so we
will prove the result in this setting. It is straightforward to generalise the result
to Schwartz distributions (i.e. elements of §’). This is not the most general class
one can think of, since there are functions in qu /p that fail to be intepretable as
Schwartz distributions (due to a fast growth at infinity). The main issue then is
on the interpretation of f when f € Lq a/p does not belong to §’. We prefer to not

delve into this question (but note that if fe L/ a/p
as an element of the dual of G? by Proposition 2.2).

then one can make sense of f

Proof of Lemma 2.8. We show the result for finite p and ¢, the adaptation for the
remaining cases being transparent. Let ¢ € GY be such that ¢ = 1 on B, and let
ox = ¢(-/\). We observe that

f=77"1 (f%) =g * [,
where gy = .Z ¢y = gy (). Writing g(k) = (0%g1)x = A(0%g1)(\), we have

O f = Ak g o .
By Theorem 2.4,

k k 1
AR Fll e = 11(g5 % Hywl/Pllee < gl w Pl | f wl/?) L

1
= 11987 Wl e,

where r is such that
1 1 1
(2.7) I+-=>+4-.
p r q

1/17”

Since ||g§\k) = ||g§\k) HLZ,”/,,’ the result follows by Lemma 2.6 and (2.7) once

we notice that gi ) = 9% gy is the (inverse) Fourier transform of a function in G¢. 0
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2.3. Effect of the heat flow. We now derive two results that quantify the regu-
larizing and continuity properties of the heat semi-group.

Lemma 2.10 (Smoothing of the heat flow). Let C be an annulus (i.e. a set of the
form {r < |z| < R} for some 0 < r < R) and py > 0. There exists ¢ > 0 and
C < oo such that for every p € [1,400], < po, t =0 and X > 1,

SuppfCAC = [ flln < Ce | f L.

Proof of Lemma 2.10. We show the result for finite p, the adaptation to p = oo
being straightforward (and a classical result since the weights no longer matter in
this case). Let ¢ € G? be such that ¢ = 1 on C and with support in an annulus, and
let ¢ = ¢(-/N\). We observe that

e2f =T (Fore ) = grinf.

where

male) = gz [ ac

¢ ) 2
= (Qw)d/emw'%’(@) e A qg.

Let us write
) _ 2
Baale) = [ e o0) e g
so that gx+(z) = (2m)~9A? g, ,(Az). By Proposition A.3 of the appendix,

|§/\,t('r)| S Ce—ckzt—dz‘l/g.
By Theorem 2.4,

1
e Fllg = ll(gne * £ wi/P oo < lgrsw? o[£,

and moreover,

1 )2 _ 1/6 )
||g)\,tw7/;f||L1 < Ce cA t)\d/e c|Az| €'u|$‘*/pd$

a2 _ 1/6 5
< Ce t/e el gulz /A /b 4y

(A1)
< ce*cﬂt/efc\zl“eemmi/pdm

The integral is bounded uniformly over u < pg, so the result is proved. O

Lemma 2.11 (time regularity of the heat flow). Let B be a ball and pg > 0. There
exists C' < 0o such that for every p € [1,400], p < po, t =0 and A > 1,

SuppfCAB = [[(1—e)fllp < CUEN AL)||flLz.
Proof. Lemma 2.10 makes it clear that showing
(2.8) (1 =) flle < CEA? (| fllLy
is sufficient. Let ¢ € G¢ be such that ¢ = 1 on B. As before, we can write
(1- etA)f =gat* [,

but this time with
d

onile) = g [ SO0 =P,
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which we can in turn decompose as gy :(z) = (2m)"9\? g, ,(Az) for

Brale) = [ o)1 - e NP ag.
A minor variation of the proof of Proposition A.3 shows that
Faa(@)] < CtxPel

from which (2.8) follows as in the proof of Lemma 2.10. O

3. WEIGHTED BESOV SPACES

We now introduce weighted Besov spaces, and use the results of the preceding
section to deduce several important properties of these spaces. We will study how
they relate to each other via continuous (or compact) embeddings and interpolations,
their duality properties, the smoothing effect of the heat flow. Besides, a fundamental
feature of Besov spaces for our purpose is their multiplicative structure: one can
extend the multiplication (f,g) — fg to a continuous map on suitable Besov spaces.
In large measure, our results parallel those for unweighted Besov spaces (and our
arguments are inspired by those of [BCD, Chapter 2]), although the proofs often
become more subtle.

3.1. Definition, continuous embeddings and interpolation. For future refer-
ence, let us define the annulus

(3.1) C* = B(0,8/3) \ B(0,3/4).

It is straightforward to adapt the proof of [BCD, Proposition 2.10] (using Propo-
sition A.1) to show that there exist y,x € GY taking values in [0, 1] and such
that

(3.2) Supp ¥ € B(0,4/3),

(3.3) Supp x C C*,
—+o0

(3.4) V¢ eRY, RO+ x(¢/2f) =1.
k=0

We use this dyadic partition of unity to decompose any Z?-periodic function f € C>
as a sum of functions with localized spectrum. More precisely, we let

(3.5) X-1=X; xk=x(-/2%) (k>0),
and for k£ > —1 integer,
6uf =77 (). S =00
i<k
(where the sum runs over j > —1), so that at least formally, S, f — f as k tends to
infinity. For any « € R, 4 > 0, p,q € [1,+0o0] and f € C°, we define

C

(3.6) £l = li (2ak5kf||L,ﬁ>q]q _ H(Qak(skf”Lﬁ)k>_l

k=—1

3

0a

with the usual interpretation as a supremum for ¢ = oco. The Besov space B!
consists of the completion of C¢® with respect to this norm. We denote by Bg’;? the
space obtained in the same way but with L replaced by the “flat” space LP.
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Remark 3.1. We depart from the habit of defining By} as the space of distributions
for which || f|| sz is finite. Our definition coincides with the usual one as soon as
both p and ¢ are finite, but yields a strictly smaller space when at least one of
these indices is co. There are several advantages to this different definition. First,
it slightly simplifies the proofs of some estimates, by letting us show the estimate
for functions in Cg° and then using a density argument. It also ensures that the
Besov spaces are separable, which has a number of advantages when considering
probability measures thereon. But perhaps the most important reason is related
to the presence of weights. As was already alluded to in Remark 2.9, there is no
canonical embedding of B/* into the space S’ of Schwartz distributions, because
elements of B)/* are allowed to grow too fast at infinity. On the other hand, one
can check that elements of By /' define linear forms on C2°. Yet, our definition
of || fllgay+ does not make sense as it stands for general linear forms on Cg°. We
believe that it is possible to overcome this problem by making use of results such as
Proposition 2.2, and carry this construction on a less standard space of distributions
(we think of the dual of the space of functions whose Fourier transform belongs to
G with a suitable topology). However, we find our approach technically simpler.

In the definition, we are using implicitly the fact that || f]| e 1s finite for every
f € Cg°; this can easily be checked. Before doing so, we introduce the notation

(3.7) mw=F 0w,  n=10,
so that for k > 0, n;, = 2kdn(2k.).
Lemma 3.2. Let a € R and p,q € [1,00]. If f € C°, then ||f|[po is finite.

Proof. Observe that for k > 0,

50 (x) = 2+ / F)n@* (@ — ) dy.

The Fourier transform of n vanishes in a neighbourhood of the origin. Hence, for
every positive integer n, the function 7, := (—A)~"7 is well-defined and in L!, and
moreover,

(38) Gif(@) =207 [ 7 (3) (24~ ) .
By the (unweighted) Young inequality,
(3.9) 18k fllze S 25412 [(=A)" £l o

In particular, for any given « € R, the sequence (||0xf||r»)ren decays faster than
27k as k tends to infinity. O

Remark 3.3. If a7 < ag, then uniformly over u,p,q,

(3.10) 1l S I Flsga e,

where here and throughout, we understand that the inequality above holds for every
J € Byzt. Indeed, this is clear if f € C2°, and then we argue by density. Similarly,
if q1 P q2, then

(3.11) Ifllsg e < Ifllsg

P.a1 praz’
while if p; < p2, then thee exists C' < oo such that uniformly over «, p # 0 and g,

1 1

Bot, S le%(ﬁ_a) Il fll e -

r2,9

(3.12) /]
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Remark 3.4. Since

£z
(3~13) HfskaLﬁ < le,q’
it follows that for every g < «,
—+oo —
9(a—p)
||f||3§:f = Z QBkH(skaLﬁ < m”f”z%;};ﬁ

k=-1

Hence, for every ¢,q’ € [1,00], we have ||f||zo.u < [|fl|sgy uniformly over p.
P,q

Remark 3.5. The space Bg:‘f is continuously embedded in Lf. Indeed,
—+o0
Ny < D2 U6k flley = 11F g0
k=—1

Remark 3.6. Conversely, L is continuously embedded in Bg;go. Indeed, by Theo-
rem 2.4,

g, = sop 1Sl < s e, 17y

with sup ||nk|lz: < oo by Lemma 2.6. Moreover, for each given pg, the inequality
—H
holds uniformly over p < -

We also have

Proposition 3.7 (Besov embedding). Let a < 8 € R and p = r € [1,00] be such

that
ﬁaer(ll),
r.op

and let po > 0. There exists C < 0o such that for every q € [1,00] and p < po,
1 fllsg < Ol gy
Proof. It suffices to show the result for f € C°. By Lemma 2.8,
kd(L1—-1
10 flly < 25G=5) loxfller
from which the result follows. O
Another notable consequence of Bernstein’s lemma is the following.

Proposition 3.8 (Effect of derivatives). Let « € R, k = (k1,...,kq) € N¢, p,q €
[1,00] and g > 0. There exists C < oo such that for every p < o,

(3.14) 10" Fll et < Cllf gy (K] = ka4 )

Remark 3.9. We have not given a meaning to 9% f for a general f € Bk, But

once (3.14) is established for arbitrary f € C°, we can define OF f € B&;‘kl’“ for
any f € Byl by means of an approximating sequence in Cg°, and (3.14) is then
automatically satisfied for every f € By /.

Proof of Proposition 3.8. As for Proposition 3.7, the result is a direct consequence
of Lemma 2.8, since the latter ensures that

160" )ll e = 10* (Gl S 216 f |l s -

‘We now turn to interpolation inequalities between Besov spaces.
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Proposition 3.10 (Interpolation inequalities). Let o, a1 € R, po, qo,p1,q1 € [1, 0]
and v € [0,1]. Defining o = (1 — v)ap + vaq and p,q € [1, 00| such that
1 1—-v v 1 1—v v
= — and - = —,
p Po b1 q q0 Q1

we have

1—v v
1 lsge < Nfllgaon [1f [l e -
P.q Bpo‘qo BPIJH

Proof. By Holder’s inequality,
1Al = 17 Mg < WFN s 110
hence,

1—v v
2760 e < (2810 S g ) (2760 g )
and the result follows by another application of Hélder’s inequality. O

3.2. Effect of the heat flow. The smoothing effect of the heat flow, as measured
in Besov spaces, takes the following form.

Proposition 3.11 (Smoothing of the heat flow in Besov spaces). Let a > 8 € R,
o >0 and p,q € [1,00]. There exists C < oo such that uniformly over u < po and

t>0,
B—a
=l

e fllagy < C't

Proof. Since A acts by multiplication in Fourier space, we have d (etA f) =
e'® (6, f). By Lemma 2.10,

o2k
e (@) Iz S e llonflzr,

SO

B—«a a—=B _ 2k
276 (2 F) oy, S 7 [(122) 55 e | 2701 | g

The term between square brackets is bounded uniformly over ¢ and k. Taking the
£ norm of both sides of the inequality, we get the result. O

Proposition 3.12 (Time regularity of the heat flow in Besov spaces). Leta < f € R
be such that 8 —a < 2, pup > 0 and p,q € [1,00]. There exists C < oo such that
uniformly over p < po and t > 0,

B—a
10— ) g < O 7l gy

Proof. By Lemma 2.11,
28165 ((1 =€) f) llog S 2°% (2°% A1) 10k £l e

a—F3
2

(#2%) 7 (@22 A1) | 2710k f -

B—a

St

The result follows since the term between square brackets is bounded uniformly over
t and k. (]
Remark 3.13. By the same reasoning, we obtain that if f € By}, then t — etAf
is continuous in ByK. Indeed, it suffices to check the continuity at time 0. By
Lemma 2.11, uniformly over k,

10 (1 =€) f) ez < 10w fllez
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and for every k, the left-hand side above tends to 0 as ¢ tends to 0. If f € Bg,’é‘,
then this ensures that

0= )l = | (2% 0 (1= ) 1))

since 2°%||65, f || .» - 0 even when g = oo, see (1.9) and Remark 3.1.
P k—oo

— 0,

0a k—oc0

k>—1

3.3. Multiplicative structure. The following lemma provides a convenient way to
check whether a function belongs to a Besov space. We refer to [BCD, Lemma 2.69]
for a proof (which is an application of Young’s inequality).

Lemma 3.14 (Series criterion I). Let o € R, p,q € [1,00] and let C be an annulus.
There exists C < 0o such that the following holds uniformly over p. If (fr)ken is a
sequence of functions in S such that
Supp fk c2f¢  and (2O‘k||fk||Lp) €,
"/ keN
then

“+oo
P Y ey md ey <0 (24050), |
k=0 )

Remark 3.15. Let i/ € GY be supported in an annulus, and 7}, = 2~y/(2*.). By the
same reasoning, for every a € R and p, ¢ € [1, 0], there exists C' < oo such that

(2l fllnz)

In particular, up to an equivalence of norms, the definition of Besov spaces does not
depend on the choice of the functions y and .

< CO|lfllsay-

keN|| g

If the support of the Fourier transforms are only localized in balls instead of
annuli, we get the same result provided that o > 0 (see [BCD, Lemma 2.84]).

Lemma 3.16 (Series criterion II). Let a > 0, p,q € [1,00] and let B be a ball.
There exists C < oo such that the following holds uniformly over p. If (fx)ken s a
sequence of functions in S such that
Supp fr € 2¥B  and (2ak|\fk||L”> €,
"/ keN
then

+oo
Fm S e By and Ul < (2*1Ad)
k=0

keN|| g

For f,g € C2°, we introduce the paraproduct
fog= Y 0;fog=>_ Sk1f g,

j<k—1 k
and the product remainder (or resonant term)

fog= Y 6f by

li—kI<1

and we write f © g = g © f. We have the Bony decomposition
(3.15) fo=reg+fog+fogy.

The goal is to extend the notion of the product fg to elements f and g of suitable
Besov spaces, by showing that each of the terms in this decomposition has a natural
extension. Here are the key estimates.
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Theorem 3.17 (Paraproduct estimates). (1) Let o, a1, € R and p,p1,p2,q €
[1,00] be such that

1 1 1
a; #£0, a=(ag A0)+ay and = =—+ —,
p p1 P2
where we write a; A0 = min(ay,0). The mapping (f,g) — f & g (defined for
fig € C°) can be extended to a continuous bilinear map from BY1:E x BY2:H o

P1,00 P2,q
Bytt, Moreover, there exists C' < oo such that uniformly over p,

(3.16) If©gllsgy < Clflipere lgllpgzs-

p1,00 pr2,49
(2) Let aq,as € R be such that o := a1 + as > 0, and let p,p1,p2,q be as above.
The mapping (f,9) — f © g can be extended to a continuous bilinear map from
Bouk x Ba2:k to BYE - Moreover, there exists C' < oo such that uniformly over p,

P1,00 P2,9 D,q 7
1f ©glsge < Clfllpgr e ll9llpgzs-

p1,00 P2,9

Proof. Let f,g € C°, and let C = B(0,2/3) 4+ C*, where C* was defined in (3.1).
One can check that C is an annulus. By (3.2-3.3), for k > 0, the Fourier spectrum
of S,_1f 6xg is contained in 2*C. (The term indexed by k = —1 is null.) By

Lemma 3.14, in order to estimate || f © g[|s», we need to bound

keN

H(QakHSk—lf'5k9HLﬁ>

i
By Hoélder’s inequality,
(3.17) 1Sk-1f Segllzy < 1Skosfllzon 1okgll e,

while by definition, _
1 fllzr <27 [ fllggr e,

p1,00

so that

k—2 k—2
1Sk-1fllzz < D W65 flem < D0 27" I f lggawe S 27 8| fllgone
j=—1 j=—1
and thus

1Sk-1f drglly S 27 % fllggr I8kgll e

P1,90
Multiplying both sides by 2°* and taking the ¢¢ norm, we obtain (3.16).

For f ® g, we only know that for some ball B, if |j — k| < 1, then the Fourier
spectrum of d; f 6xg is contained in 2 B. We must thus rather use Lemma 3.16
instead of Lemma 3.14. The proof remains the same, except that we need to impose
a> 0. O

Remark 3.18. We can also distribute the weights unevenly between the two terms
in the right-hand side of (3.16). Indeed, if v1, 9 > 0 are such that

1 141 1%0]

p B p1 1727
then

(3.18) 1£gll e = I fwp/Pr guwrz/P2 e < fllzr, lgllzes

vip vou
by Hoélder’s inequality. Using this inequality in (3.17), we see that we can replace
the right-hand side of (3.16) by

Clifllsgr e lgllsgz e

p1,00 r2,:9

if desired, provided that p; = vy and ps = vou satisfy

(3.19) E_f, R
p P1 p2
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Theorem 3.17 can be turned into multiplicative inequalities, which will play a
central role in our analysis. We treat separately the cases of positive and negative
regularity.

Corollary 3.19 (Multiplicative inequality I). Let o > 0, p,q € [1,00], v € [0, 1],
and pg > 0. There exists C' < oo such that for every p < po, if

d d
/31:04+(1*V)];, 52:OZ+VE, p=vp, pz=(1-v)u

and if p1,pa € [1,00] are defined by

1 1 1-—
(3.20) — =Y ad == V7
pr P p2 p

then the mapping (f,g) — fg can be extended to a continuous linear map from

Bk, x Byok, to Bk, and moreover,

1fallsge < Cllfllsge, l9llsg

P1,9 P2,9

< C | lgpger Nlglggn v

Proof. The first inequality follows from the decomposition (3.15) and Theorem 3.17
with a; = as = a. The second one follows from Proposition 3.7. [l

Remark 3.20. If we assume instead that

1 1 1
+ and £ =H /lz,
p

P pop
then by Remark 3.18, we also have

I fglles < CllFllgen llgllsems.

r1,:9 pr2,49

Corollary 3.21 (Multiplicative inequality IT). Let « < 0 < 3 be such that a+8 > 0,
p,q € [1,00], v € [0,1] and pg > 0. There exists C < 0o such that for every p < o,
if

/ d d
Oé:a+(]_7]/)5, B:ﬂ+’/;7 H1 =V, II/LQZ(]‘*I/)ILL7
and if p1,p2 € [1,00] are defined by (3.20), then the mapping (f,g) — fg can be
extended to a continuous linear map from Byt X Bgé’fq to Bylt, and moreover,
(3:21) 1£9llsse < Cllfllsge gl goe < C2 N fll gornn 191 go e -

r2,9 pP,q p,q

r1,9

Proof. We get from Theorem 3.17 that

P, " P1,9

1f @ gllszy < 1F © gllason < 1 g, Noll sy
and the same estimate holds for f ® ¢ instead of f © g. Moreover,

o, < a, .
17 @ gllsgy < 1 gy, Nolggye

p.a ™ P1,9

These estimates lead to the first inequality. The second one follows as before using
Proposition 3.7. (]

Remark 3.22. If we assume instead that
1 1 1
i % _ M T M2

and ,
P1 D2

P p P
then by Remark 3.18, we also have

1 Follszy < CllSlmsps gl o

r1,:9
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3.4. Duality. Recall that (-,-), denotes the scalar product in L?.

Proposition 3.23 (duality). Let o € [0,1) and po € R. There exists C' < 0o such
that the following holds. Let p,q € [1,00], p' and ¢’ be their respective conjugate
exponents, and p < po. The mapping (f,g) — (f,9)u (deﬁned for f,g € C)

extends uniquely to a continuous bilinear form on Byl x B ' , , and moreover,
(322 (290l < C 1 sz gl
Proof. Tt suffices to show that for every f,g € C
(3.23) S 160, 519)ul S 1 gt N9l
ki>—1 v

We decompose the proof into three steps.

Step 1. Let C denote the annulus B(0,10/3) \ B(0,1/12). Let ¢ € G? be such that
#(0) = 0 and ¢ = 1 on the annulus C, let ¢5, = ¢(-/2%) and let ¢, = .F 1 (¢1). In
this step, we show that for every [ > —1 and every k > [ + 2,

(3.20) (501.519), / 51 b1g (1, % )

By Parseval’s identity,

@) (01 £, 519), / 5l (50 + ) / 5ef(C1) 819(Go) T(G1 — () G G

For [ > 0, the integrand on the right-hand side is zero unless ¢; € 2*C* and ¢, € 2!C*,
where we recall that C* was defined in (3.1). Since we assume that k > [ + 2, the
integrand being non-zero implies that ¢; — (, € 2¥C. This conclusion remains valid
when [ = —1. Hence, multiplying the integrand by ¢x ({1 — (2) does not change the
value of the integral, and using Parseval’s identity again, we obtain (3.24).

Step 2. Let o' € (o, 1). We now show that
(3.25) ‘wﬂ * qvbk‘ <27k,

By a change of variables,

we @) = [wue =0t dy = [, (o - ) )y

Since ¢(0) = 0, we have fqg =0, and thus

wordnle) = [ (w2 ) - o) dlo) dy

Recall that by Proposition 2.2, ng( )< =’ for some ¢ > 0, and that
Y

e
wy (@ — 2’6) ( Yy )

Sw_, (= ).
wy(z) 2k
We first analyse the integral over |y| > 2!0, where Iy > 0 will be chosen later, and
decompose it as the union of 2! < |y| < 2“‘1, I > lp. We obtain

(3.26) ‘/ywo (wn (= - 2%) ~ w,(@)) dly) dy
400

Swy(z) Z 2% exp (2u25(l+1*k) — c2l/9> .
1=lo
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The summand in the sum above is bounded by
exp (2u25l — 2 i 10g(2)) ,

so if we choose Iy to be the smallest integer such that 2/ > k2%, then the sum in the
right-hand side of (3.26) tends to 0 super-exponentially fast as k tends to infinity.
In order to show (3.25), it thus suffices to show that

/y|<2k29 (w“ <x B 2%) - wu(x)) o(y) dy

By the definition of w,, we have |w,(z — 2) — w,(z)| < |z|w,(z) uniformly over
r € R% and z such that |z| < 1. The left-hand side of (3.27) is thus bounded by a
constant times

(3.27) <27k, (2).

26 .
o ) 131

with [|¢||z1 < oo, so the proof of (3.25) is complete.

Step 3. Combining the results of the two previous steps and Holder’s inequality, we
obtain that for every [ > —1 and every k > [ + 2,

(6t 1g) < 272 / 100 f b1g] w,

(3.28) <2 0n S Ny gl -

For any k and [, we also have |(6x.f,019)u| < |0k f[ Lz [|0:19]] -, so for any k and I,
we have

(3:29) |61, 19)ul £ 27 161 S, 1Gugll -

Let us write ug = 1;@_12_0“’f 10,9 v = 2_(0“/_0‘)"“‘, and u % v for the convolu-

’
P
Ly,

tion of the sequences u and v (indexed by Z). By Holder’s inequality,
S IGkf gl S 3 2y 3 2 gl 20D

kl>—1 k>—1 I>-1

(2% 13 flez)

=

N

[ 0] g -
0a

By the standard Young inequality for sequences, ||u*v|,s < |lull,o [|v],, and
[lv]| 1 < o0, so we obtain (3.23). O

Remark 3.24. Although this will not be used below, note that one can spread the
weights unevenly in (3.22) if desired. Using the modified Hélder inequality (3.18) in
(3.28) shows that for py, pa > 0 such that
= & + &/2’
p p
one has

(£, 9)ul < C N fllgm

Pl
p,q
3.5. Besov and Sobolev norms. We now show that for every « € (0, 1), one can

estimate the Besov norm || - [|ge. in terms of || f[|Ly and [V f]|L1.

Proposition 3.25 (Estimate in terms of Vf). Let a € (0,1) and po > 0. There
exists C' < 0o such that for every p < po,

CHfllsey < AN IV AT, + 10z
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Remark 3.26. In particular, there exists C' < oo such that
O NS llsey < IV ey + 111

Proof of Proposition 3.25. It suffices to prove the result for f € C%°. For £ > 0, we
define the projectors

Pf= Y. &f and  Prf= Y &f,

—1<k<e k>0+1
so that f =P,f + Pj‘ f, and by the triangle inequality,

1fllsee < 1Pefllsey + 1Pz ]
For the first term, recalling (3.7), we get

[Pefllsey = > 2okl = > 2l x fllry

au
81,1

—1<k<L —1<k<e
(3.30) < Y0 2l Iy S 20 1y,
—1<k<e

where we used Theorem 2.4 (Young’s inequality) and then Lemma 2.6. On the other
hand, using the fact that for k£ > 0, the function 7 has vanishing integral, we get

”PZJ_f”Bi'l” = Z 2ka||5kaLfL
k>f+1
= gke () (f(z —y) — f(z)) dy| e I do
2o ] [ )i
< 2ka27k 21@ |f($—y)—f($)| 7u|z\id du .
k;rl /le| ynk(y)l(/ﬂw |yl ‘ x) Y
By (2.6),

/f(x —y)e Mz’ gy < enlvll fliz,

and as a consequence,
flea—y)— flx)| _,u0
[ etym( [ DI it gy ay <o 2 i, 1,
lyl>1 Re Yl »
with || |2F - |Mellr <1 by Remark 2.7. Moreover, for all z,y € R,

|f(z—y) -
|yl

f(z)] :ﬁ /Olvf(gg—ty)-ydt’

1
< /O IV f (@ — ty)] dt,

so using that || [2% - ||l <1,

k [z —y) = F@)] s 1
/y<12 ym( [ L e ) dy <9

To sum up, we have shown that

(3.31)
1PEFlspy S 30 250D (Ifllny + 19712 ) S 2D (Il + 1V )
k>(+1
and thus

Pl £ 2017y + 27 (1l + 19 fllzy)
The result then follows by optimizing over /. O
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3.6. Compact embedding. Finally, we prove a compactness embedding between
Besov spaces. An efficient way to proceed is to show that it follows from a similar
result in unweighted Besov spaces. We first need to “project” onto unweighted
spaces.

Proposition 3.27 (Projection on unweighted Besov spaces). Let o € R, p,q €
[1,00] and ¢ € C. The mapping f — ¢f extends to a continuous linear map from
BYH to BEY,

P.q P.q
Proof. The proof is similar to that of Corollaries 3.19 and 3.21. We need a modifi-

cation of Theorem 3.17 that allows the destination space to be unweighted.
Recall the definition of 7 and (nx)k>0 in (3.7). By Proposition 2.2,

[nl(z) S eI

Let M be such that the support of ¢ is contained in [—M /2, M/2]¢. Since for every
k>0,

1/0

Sro(x) = 2+ / B2 — y)) dy

with ¢ compactly supported, we obtain that for every k > 1 and |x| > M (redefining
¢ to be smaller),

(3.32) 6| (x) < 24 0e 2,
and thus for every |z| > M,

1Skl (2) < 3 19,6l(2) < el

j<k

1/60

By Lemma 3.2, we also know that ||Si¢|/r~ is bounded uniformly over k. Hence,
we can mimic the proof of Theorem 3.17 but with (3.17) replaced by

1Sk-1¢ Ok fllze S 10k fllze,
where the implicit constant is uniform over k. We thus obtain that the mapping
[+ ¢© f extends to a continuous linear map from B} to Bf,‘;g. Similarly, for
every 3 € R,
1Sk-1.f Sller S 277*(|Sk-1 £l Lz,

where we used (3.32) and the fact, ensured by Lemma 3.2, that ||6,¢|| -~ < 27°F
(and where the implicit constants depend on ). Hence, for every 8 € R, the mapping
[+ [ © ¢ extends to a continuous linear map from B} to B;‘;ﬁ 0. Moreover, the
same conclusion also holds for the mapping f — ¢ ® f, so the proof is complete. [

We will also need the following result.

Lemma 3.28 (Besov norms on large scales). Let ¢ € C°, and for m > 1, let

Om = &(-/m). For every a €R, p,q € [1,00] and p > 0, we have

Sup ||| g < oo.
m2>1

Moreover, if the support of ¢ is contained in an annulus and p # oo, then

|émllpgs ——— 0.
9 m—00

Proof. The identity ||¢m| L = ||¢||L> is obvious, and for p < oo we have
|mllzz = / |6(/m) [P wu(z)dz < |6z / w(z)dz
Rd Rd

and in particular, the left-hand side is bounded uniformly over m. Similarly, for
any multi-index k € N%, we have [|0%¢p, || L = —5[|0%¢|| L, so that ||8k¢m||L5 is
bounded uniformly over m.



GLOBAL WELL-POSEDNESS OF THE DYNAMIC &* MODEL IN THE PLANE 21

If in addition, p < oo and the support of ¢ does not intersect B(0,¢) (for some
e > 0), we get in the same way that

1
||ak¢m||Lf; < W”&c?ﬂh% /$|>Em wy(x)de — 0.

By (3.8), Proposition 2.2 and Theorem 2.4, we have

10k bl S 252 (=A) bl 2,

and we thus obtain the announced results. O

Proposition 3.29 (Compact embedding). Let a > o' € R, p,q € [1,00] with
p # 00, and p' > p > 0. The embedding By} C By ;" is compact.
Proof. Let (fn)nen be a sequence that is bounded in Byf. We wish to find a
subsequence that converges in Bg:l’“/.
Let ¢ € Cg° be such that
¢ =1on B(0,1), ¢ =0 outside of B(0,2),

let ¢, = @(-/m), a1 < « and py > p. For every fixed m, up to extracting
a subsequence (which we keep denoting by (f,) for convenience), there exists
fm e 33)11,0 such that

|8 = £l gor0 ——0.
D, n—oo

Indeed, this follows from Lemma 3.27 and [BCD, Theorem 2.94]. In particular, we
have f(™) € By and

lémfn = F™lgorm ——0.

The convergence along a subsequence holds for any given m, and thus up to a
diagonal extraction, it holds for every m simultaneously. By the boundedness
assumption on the sequence (f,,) and the multiplicative inequalities (Corollaries 3.19
and 3.21),

15 gaos = Tn [6mSallsgy S I6mlan limsup | fullsg S [9mlass:

for some & and fi > 0 depending only on a1, «, ¢ and 1. By Lemma 3.28, ||¢m||8a,lg
is bounded uniformly over m, so that the same holds for || £™)|| BoLH

It is clear that for m < k, the distributions ™) and f®*) coincide on B(0,m).
In particular, for m < k,

P = 0 = (1= ) (£ = 1),

Letting as < a7 and ps > p1, we can use the multiplicative inequalities to obtain,
for every m < k,

£ = f B geae S N1 = Sl gz 1F™ = F P germ S N1 = Sl gz
P, p,1 P, p,1

for some @ and 7z > 0 depending only on «aq, ag, 1 and ps (where we used the fact
that || £ || o1 s uniformly bounded in the last step). By Lemma 3.28, it follows
P

that the sequence (f(™)) is a Cauchy sequence in BS2#2, and thus converges to

p,1
some f € B,3"*. We have the diagram

d)mfn — f(m)

n—r oo

4 L (m—o0)

fn — fa

n— oo
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where every convergence holds in ng’” 2 and the bottom horizontal arrow is the
convergence we want to show. This convergence is proved by observing that the
convergence of ¢, f, to f, as m tends to infinity is uniform in n. Indeed, it suffices
to observe that

1 = Smfallgezre S I1 = mllgzz [ fnllszyms S UL = dmllgaz,

and to use again the fact that |1 — ¢ | ;=7 — 0 as m tends to infinity. O
p,1

4. OTHER SCALES OF WEIGHTS

We now indicate how the above results carry over to polynomial weights, and to
flat weights on cubes for periodic functions. Throughout the paper, when we refer to
a result of Section 3 in the context of polynomial weights or in the periodic context,
it is understood that the result is adapted according to the rules we now explain.
In the previous sections, we were careful to give estimates that hold uniformly
over pu < po, for some given pg. Such uniformity will only be used for exponential
weights, so the reader may leave this aspect aside.

4.1. Polynomial weights. For o0 € R, we let
(4.1) Wy (z) = |27,
and write E{,’ for the space LP(R?, W, (x)dx). From now on, we will always assume
that o > 0. It is clear that
W (T +y)
Wo (y)

and w_, is dominated by w_1. Moreover, the weight w,, is integrable if and only
if o > d. In Section 2, there is only one place where we assumed the weight to
be integrable (that is, u # 0), namely in (3.12). We simply need to replace the
assumption that pu # 0 by the assumption that o > d. That is, if 0 > d and p; < po,
then there exists C' < oo such that

(4'2) ”ngsldq < C”f”ggzaqv

which is the analogue of (3.12). All the other estimates of Section 2 are valid for

Szl = w0,

every o > 0 if one replaces L by E@ throughout. As an example, the conclusion of
Lemma 2.8 becomes

Supp f CAB = 04 fll=, < CAMHGT) ),
7 oq/p

For any o € R, 0 > 0, p,q € [1,+00] and f € C°, we define

(43) £l = | (24 0us 1),

271 L4q

The Besov space gg’f is the completion of C¢° with respect to this norm. The
results of Section 3 then follow seamlessly, simply replacing By} by l?;‘;;’ throughout.
As an example, the conclusion of Proposition 3.7 becomes

1 g S 1FlIgoeern-

There is one more place where we used the property that the weight is integrable,
namely in Subsection 3.6 on the compactness embedding (in Lemma 3.28). Again,
we simply need to add the requirement that o > d to obtain the result for polynomial
weights. Explicitly, the compactness embedding becomes:

Proposition 4.1 (Compact embedding). Let o > o/ € R, p,q € [1, 00] with p # o0

and o' > o > d. The embedding A;‘,’f c B’

b1 is compact.
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4.2. Flat weights on cubes. We will also need to use Besov spaces that are
tailored for the periodic setting. One natural option would be to base the definition
of these Besov spaces on discrete Fourier series (those adapted to the torus under
consideration). We choose a slightly different route here: we prefer to view functions
on the torus as periodic functions on the full space, and to use the continuous Fourier
transform of these functions instead. The latter approach has two advantages. First,
the construction is closer to what was done for the weighted Besov spaces above, so
the extension of the previous results to these spaces is more transparent. Secondly,
we will build solutions on the full space as limits of solutions on increasingly large
tori, so viewing functions on a torus as periodic functions on the full space is more
natural for our later purpose.

We say that a function f : R? — R is M-periodic if for every z € MZ?, we have
f(z++) = f. We write ]ii’w for the LP space of M-periodic functions equipped with
the Lebesgue measure on [—M /2, M/2]¢, and || - ”55’\4 for the associated norm. We

note that if f,¢: R — R are measurable functions with f being M-periodic, then
for 7, p,q as in Theorem 2.4, we have

1f*glzy <Clflzs lonlze

where
g = > g(-+y).
yeM7Z4
From this modified form of Young’s inequality, one can then proceed as before, since
the functions we consider are rapidly decreasing to 0 at infinity. For instance, the
analogue of Lemma 2.8 reads: if f is an M-periodic function with Supp f C AB,
then HkaHI:;& < O MG =3) Hin?u' In short, since the weight is now flat, its

powers are trivial and the inequalities simplify. For every M-periodic function
f € C>, we define

/]

7

_ - ak -
BoM H(2 16k f 122 B

1)1@—1

and let Bf,‘,’l;w be the completion of the set of M-periodic functions in C*° with
respect to the norm || - || ga.ar. Section 3 then carries over with obvious changes. For
p,q

instance, for a, 3, p and r as in Proposition 3.7, we have || f||go.s < C||f]|go.nr.
p,q ™q

5. THE STOCHASTIC HEAT EQUATION AND ITS WICK POWERS

Now that the necessary facts about weighted Besov spaces are established, the
remaining sections are devoted to the actual construction of the solution of the
stochastic quantisation equation (1.1). In this section, we provide some probabilistic
preliminaries and perform the construction of solution of the stochastic heat equation
and its Wick powers in a weighted Besov space.

We start by recalling the definition of a space-time white noise . Formally, £ is
a centred Gaussian distribution on R x R? with covariance

(5.1) EE(t,2) E(t,2") = 6(t — t') 8%(x — 2')
where §(-) denotes the Dirac delta function and 6%(-) is the Dirac delta function over

R<. Of course, (5.1) does not make sense as it stands, but it can be made rigorous
easily, by integrating against a test function ¢: R x R? — R and postulating that

(5.2) E () = |9l 72mxra) -

Definition 5.1. Space-time white noise is a family of centred Gaussian random
variables {£(¢), ¢ € L2(R x R?)}, such that (5.2) holds.
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The existence of space-time white noise in the sense of Definition 5.1 on some
probability space (2, F,P) follows immediately from the Kolmogorov extension
theorem. Furthermore, the mapping ¢ — &£(¢) is automatically linear on H :=
L?(R x R?) (in the sense that for every ¢, ¢o we have almost surely &(¢1) +&(¢o) =
&(¢1 + ¢2)). Below, we will often use the somewhat formal notation

€)= [ oles).

although ¢ is almost surely not a measure. In particular, for a given ¢ € L%(R x R%),
the random variable £(¢) is only defined outside of a set of measure zero, and a
priori this set depends on the choice of ¢.

We will need a periodised (in space) white noise, defined on the same probability
space. For every M > 0 and ¢ € S(R x R?), we set

(53 En0) = | 02)6u(dz) = €lom)

where

(5.4) Om(t,x) =1 _a ara(x) Z o(t,xr+y) .

yEMZ4

)

For every ¢ € S(R x R?), we have
o € L*(R x RY) |

so that (5.3) makes sense. Furthermore, for every ¢ with support contained in
R x [f%, %]d, we have £(¢) = €r1(¢) almost surely.

From now on, we assume that F is the completion of the sigma-algebra generated
by {&(¢): ¢ € H}. Under this assumption, it is well-known that we have the

orthogonal decomposition

L*(Q,F,P)=PH" ,

k>0

where #(®) denotes the k-th homogeneous Wiener chaos. More precisely, H(®) = R,
HD = {£(¢): ¢ € H}, and for every k > 2, we have

HE = {1(9): ¢ € HOwt ]

Here H®=m* denotes the set of square integrable, symmetric kernels ¢: (R x R%)* —
R, and I; denotes the k-fold iterated stochastic integral (see [Nu, Sec 1.1.1 and
1.1.2]). Below we will often use the notation

I(¢) = /(]R v d(z1,- .5 28)E(d21) ... E(dzg) -

Let us recall that for every kernel ¢ € H®¥=* we have the following isometry

]E(/(RXRd)qu(zl,...,zk)f(dzl) E(d))

(5.5) = k‘!/ H(z1,. .y 2)2dzy ... day,
(RxR4)k

We also recall Nelson’s estimate (see [Nu, Sec. 1.4.3]), which states that for every
k> 1and p > 2, there exists a C}, such that for every X € HE),

(5.6) (EIX[P)? < Cpp EX? .

Below we will also need the following Kolmogorov lemma. Recall that according
to (37)5 for k = _17 we have N = 9_1Xk:-
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Lemma 5.2. Let (t,¢) — Z(t,6) be a map from R x L}(R?) — L2(Q, F,P) which
is linear and continuous in ¢. Assume that for somep > 1, a € R and k > % and

all T > 0, there exists a function K7 € L>=(R?), such that for all k > —1, z € R?
and s,t € [-T,T],
(5.7) E|Z(t, mi(- — 2))|P < Kp(z)P 2757

<

(5:8) E|Z(t, k(- — ) = Z(s,mu(- — )P < Kp(a)? 27 MOt — 5|2

Then there exists a random distribution Z which takes values in C(R, [3\3;;") for any
o < a—k and o > 2, and which satisfies for allt € R and ¢ € S(RY)

(5.9) Z(t,¢) = (Z(t), ¢) almost surely.

Furthermore, for every T > 0, we have

(5.10) E sup ||Z(t,)|%. . < C(T,a,a’,p)/ Ko (z)? W, (z)de .

—T<t<T By.p Re

We stated this lemma in the case of polynomial weights, but the same statement

holds if w, is replaced by another integrable weight, e.g. stretched exponential. In

particular, the following modification of Lemma 5.2 follows by the same method,
and we omit the proof.

Lemma 5.3. Let Z satisfy the assumptions (5.7) and (5.8) of Lemma 5.2. If in
addition, Z has the property that for some fized M > 0 and all t € R, ¢ € S(R?)
and z € M7,

(5.11) Z(t, ) =Z(t, (- — 2)) almost surely,

then Z takes values in the Besov space Bﬁ;;M of periodic functions and

(5.12) E sup [ZO)|7. . < C(T,a,a’,p)/ Ko(x) dz
—T<t<T By.p [~ Mja

Proof of Lemma 5.2. For fixed k > —1 and t € R, we start by defining a random
function Z(t, ) which will play the role of §;Z(t, ). The natural definition would be
(5.13) Zp(t,x) = Z(t, (- — x)) .
Unfortunately, Z(t,n,(- — «)) is only defined outside of a set of measure zero which
depends on x (and t), so that it is not clear if (5.13) can be made sense of for
all = simultaneously. We circumvent this problem by the following trick (which is
motivated by the Shannon sampling theorem [Me, Section 1.4]). Set e, = 5245,
and let X3 € S(R?) be real valued, symmetric, such that X} is constantly equal to
1 on the annulus B(0,2%8)\ B(0,2"2), and such Y} vanishes outside the annulus
B(0,2815)\ B(0,2%2) (for k = —1 we assume that {_; is 1 on the ball B(0, %) and
vanishes outside of B(0, §)). Finally, define 7, = % ~* Xx.
For z € ;,Z%, we define Zj(t,z) as in (5.13), and for z € R?\ £,Z%, we set
(5.14) Zy(t,x) = > hZi(ty) k(z —y) -
yEepZ
As 7, is a Schwartz function and the assumption (5.7) implies that e.g.
Yo e+l Zulty) < o0
yEEkZd’

almost surely, it follows that (5.14) defines a smooth random function on a set of
measure 1. Furthermore, we have for k > 0

(5.15) Supp F (Zk(t,-)) C 3(0,2’“%6) \B(O,Zkg) :
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and Suppf(Z,l(t,~)) C B(0, %) Next, we set Z(t) = 2,971 Zi(t,-). Equation
(5.15) implies that this sum converges almost surely when tested against a test
function with smooth and compactly supported Fourier transform. In the estimates
below, we show that Z is a well-defined random distribution.

We claim that for fixed z € R?, Z satisfies (5.9), at least if ¢ has Fourier transform

in Cg°. Indeed, we have for such ¢

2.0 = X @00 = ¥ Y e [ Zutninte - o).

k>—1 k=2—1yeepZ?

As a next step, we use the fact that both 7, and 7, have a Fourier transform
sEpported in the annulus B(0,2%18)\ B(0,2"2) which implies for our choice of &y
that

Z elne(y — ) (k= o(y)) = /Rd me(y — ) (T * 0(y)) dy = (),

YyEeg 74

where the convergence takes place in L2(R?). Hence, by continuity of Z(,-) we can
conclude that

(Z(t),0) = > Z(t,6x0) = Z(t,¢) .

k>—1

In particular, this implies that for every z, (5.13) holds almost surely.
Now we can estimate for ¢ € [T, T

BIZu(t, )2, = [ B2t o)l @ (o)de
- Rd

:/ E|Z(t, mi (- — 2))P G0 (2)de < 275 [ Kop(2)? @, (2)de .
R4 Rd

This bound in conjunction with (5.15) and the series criterion, Lemma 3.14, implies
that for o/ < a

EIZ(t%,, = 3 2P E|Zu(t, )2, < Cla,o’.p) /R Kr(2)? @ (z) de .

E>—1

In particular, almost surely Z is indeed a well-defined distribution in B\g;;". Fur-
thermore, the assumption that ¢ has compactly supported and smooth Fourier
transform can be removed from (5.9) and can be replaced by ¢ € S.

In the same way, we can bound for s,t € [-T, T

BIZu(t) = Zuls ), = [ B2 = ) = Zsiul- = ) (o)

o

< |t — s|P2Remmr [ Ko (2)P @y (x)da .
R4
So after summing over k, the (gsual) Kolmogorov criterion permits to pass to a
modification of the process ¢t — Z(¢t) which satisfies (5.9) and (5.10). O

With these preliminary results in hand, we can start the construction of the
solution of the stochastic heat equation and its Wick powers in weighted Besov
spaces, in the case when d = 2. The space-time white noise £ does not satisfy
the conditions of Lemma 5.2, and indeed it can only be realised as a space-time
distribution, and not as a continuous function in time taking values in a space of
distributions.
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However, we do not need to perform this construction. Instead, we start directly
by analysing the properties of the solution of the stochastic heat equation

{ L =AZ+E, on R, x R?,

(5.16) 20.)=0.

There are many equivalent ways to interpret this equation. We choose to simply
postulate Duhamel’s principle, and to define for every ¢ € L?(R?) and every t > 0

(517) 2.0) = [ [ (K= =) elan ).

Here K denotes the standard Gaussian heat kernel, i.e. for ¢t > 0 and z € R?

1 jz?
K(t7x) = rﬂexp(— Tt) .

We also define Zj;, the solution of the equation with periodised noise, as in (5.17)
with £ replaced by £js. Furthermore, for any n € N, we define the Wick powers

Z:n:(t,(ﬁ)
(5.18) —/([0 A ¢,HK —y;)) &(dry,dyr) ... E(drn,dy,) ,

and as before Z7% is defined by replacing every occurrence of £ in (5.18) by &ar.

Theorem 5.4. For every M > 1 and every integer n > 1 , there exist modifications
Z™ and Z7% (in the sense of Lemma 5.2) of ™ and Z;.

For every T >0, « >0 and p > %, there exists a constant C = C(T,p,a) such
that for all M > 1 and o > 2,

(5.19) B sup 2701, <C [ @o(e)ds.
0<t<T By

(5.20) E sup ||Zi%(t) Hp_ag C/ Wy (T
0<t<T By

Furthermore, Z3% is M -periodic and

(5.21) E sup HZ: (t )||p ot SCOM? .

Finally, we have

(5.22) E sup |[|[Z™(t) - ZF )% . <CM?*~7 .
ot<T Byp’

Throughout the proof of Theorem 5.4 (including the two lemmas at the end), we
use the following conventions: for x > 0, we set log, () = log(z) V 0. Furthermore,
we set
inf{|z +y|; y € MZ?*} if M < o0,
|| if M = cc.

Sometimes it is convenient to write Zi)' = Z'™.

|z|ar =

Proof. Equation (5.5) and polarisation show that for any n, ¢, ¢ € S(R?), t1,ts >
0, and for any M € [1, c0], we have

E(Zy7 (t1), #1)(Z3f (t2), ¢2) =
n!/ ¢($1)¢($2)(%M(t17t2;9€1 — xz))n dz; dzs .
R2 JR2
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For M = oo, the generalised covariance in the last expression is given by

t1 Aty
Hoo(t1,to; 21 — x2) = / K(t; —ryxy — 2) K(ta — ryxe — 2) drdz
RQ

1 t1+t2 1 _ 2
(77@1 el )dé,

P Y]

5.23
( ) 87T [t1—ta| £

while for finite 0 < M < oo, we get

1 [tz w1 — 2 — y|?
(5.24)  JHu(t,t2y21 —22) = 87r/ 7 > o ( B T> a-
|t1 ta| yEMTZ?2

Pointwise bounds on the kernels %}, are derived in Lemma 5.5 below.
From the bounds provided in Lemma 5.5 we get for any k > —1 any = € R?, an
t<Tandfor1 < M <

EJZi7 (b (- — ) > = E|Z{5 (¢ i)
B n'/2/ k(1) (22) (A (£t 21 — 22))" dy day
R

(5.31)
NTn/ / k(21 nk(xz)(1+log+(|x1—x2|M)) drqdzs .
R2 JR2

The integral involving the kernel 1 poses no problems, because the 7, are uniformly
bounded in L. We split the integral over the logarithmic kernel into an integral
over {|z1], |z2| < 2} and an integral over the remaining part of R? x R2. For the
first integral, we get for k > 0

/ / k(21)nk(22) log, (|21 — xﬂ;j)”dxldxg
lo1 | <AL Jza|<

S /]R2 /Rz 770(351)770(x2)(10g+(|g;1 o a:2|71) + klog@))n dzy dwo
(5.25) Sn (LK)

Here we have used the fact that n(-) = 2%#1y(2%-). The integral in the second line
converges because 7 is a Schwartz function.
The integral over R? x R? \ {|z1],|z2| < &} can then easily be seen to be

uniformly bounded in k and M using the decay of the 7. More precisely, one uses

the fact that for k¥ > 0 and any m > 2 we have ni(z) = 2%n(2Fz) <, W

The integral in the case k = —1 can easily be checked to converge as well. Hence,
summarising these calculations and applying Nelson’s estimate (5.6) for any p > 2,
we get uniformly over t < T, x € R?, M € [1,00] and k > —1

(5.26) E[Z{; (t,m(- = 2))P Srynp 1+ K[ Z
In the same way, for 0 < t1,t2 < T we have for M € [1, 0]
E|Z3 (tr (- — ) = Zi7 (t2, mw (- — )2
=n! /R? /R2 N (@1)nk(72) Ly (t1, t2, 71 — 72) dog dag
where the kernel 2" satisfies for 0 < A < 1
D5 (t1,ta, 1) = (A (t1,t1,2))" + (Has(ta, ta, )" — 2( At t2,2))"

(5:31)(5:32) |¢, _ | .
STon W(1+10g+(|$|1\41) .



GLOBAL WELL-POSEDNESS OF THE DYNAMIC &* MODEL IN THE PLANE 29

Then performing a similar calculation to (5.25) using the fact that ng(-) = 22Fny(2%-)

and that 79 is a Schwartz function, as well as Nelson’s estimate, we get
BIZ™ (tr, me (- — @) — 27 (t2, me (- — )P
(5.27) Sranap It — o F 2P [k

p(n 1)

The bounds (5.26) and (5.27) permit to invoke Lemma 5.2 (and Lemma 5.3) to
conclude that (5.19), (5.20), and (5.21) hold.

We proceed to bound the difference %y} := Zyj — Z™. Unlike the preceding
calculation, we need to make use of the decay of the weight in an essential way.
Indeed, for |z| > 42 we simply bound

E|Zyr (tnie(- — )P
. . 529 np
(5.28) Sp BIZy7 @ (- — o) [P + E[Z7(E k(- — 2) [P Senp 1+ K2

and in the same way
(5.29)
o N p (52D oy
E| 237 (tr (- = @) = Zif (to, e (- = 2)) |7 Sranop [t — to| = 2752 (k|

Hence, for such z the difference 2 satisfies the bounds required to apply Lemma 5.2
for a function K that does not depend on z. If |z| < % we write

E|Zxr (tne(- —
—n'/ / e (w1)nk(w2) By (tx — 21, 2 — x2) doy dag .
rR2 JR2
The kernel appearing in this expression is given by
Hy(t; 71, 72)
= (A (t,t, 21 — 332))n + (St t,z1 — xz))n — 2(«%/M,oo(t;$1,$2))n )

where

p(n—1)
Z

L%/MOO t xl,mg

(5.30) = // K{t—ra—xz—2)K{t—r,—2z—y)drdz.
yEMZz [ 1\4 1\4]2
Estimates for the kernel J,00 are collected in Lemma 5.6. These bounds yield for
|z —21], |2 — 22| < & and any m > 1

EETON 1

|%Zr\”4(t;m — T, T — x2)| Stom (1 4+1og (|21 — 22| 1) 1)W .

We get

/ / k(T () 2y (6 x — 21,2 — 22) dag dxe
|z1|< 2L Sz |<

M
16

16

Stom W/ / M (21) 0k (22) (1 +log g (|2 — w2 ~1)" 1) day day
R2 JR2

(5. 25) )
If one of the z; satisfies |z;| > W, we can use the fact that the 7 are rescaled
Schwartz functions to get the same polynomial decay of arbitrary order in M also in



30 JEAN-CHRISTOPHE MOURRAT, HENDRIK WEBER

the integral over the rest of R?. Applying Nelson’s estimate once more and merging
with (5.28) we get

E|Zy7 (¢, (- = )P Sranp (L+ k) Kz () |

where Kr(z) =1 for |z > 3 and Kp(z) < M 2™ else. Interpolating this bound
with (5.29), it is easy to obtain a similar bound for the time increments. Hence we
can conclude by observing that for any m large enough,

Kr(z) @, (z)dz <,y M—2mF2 —|—/ Wy (x)dr g M7,
M

R2 ‘ﬂ?ﬁ

d

Lemma 5.5. Let ) be defined by (5 23) and (5.24). Then for every T > 0 we
get uniformly for v € R? and 0 < t1,to < T and M € [1,00]
(5.31) o (1, t2;2) < C(T) (1 +log, (|2[3/)) -
Furthermore, for any X\ € (0,1] and 0 < t1,to < T
ty — o]
(5.32) | Har(t1, b1 2) — Hay (b, by )| < C(T, A)1|$2|
M
Proof. We first show (5.31). For M < oo, we can assume without loss of generality
that the infimum inf{|z + y|: y € MZ?} is realised for y = 0 which implies that

|z] < \[
Then the term corresponding to y = 0 in (5.24) can be bounded by

1 ti+t2 1 |(E|2
— —exp|—— | df
87T |t1—t2‘ e ( 4€ )
2T 2 1
1 || 1 1 12 1

< - de < - ——)dl - d/

N/O g0 (-~ ) /OzeXp< 1) +/1 ‘

Sr1+logy (J=[71).

This calculation already shows the desired bound (5.31) in the case M = oco. For
M < oo for z = |z + y| we use the bound

1 it |22 Trp e \m ™
— = ) ar s, 7(—) Al <, —— |
8 |t1,t2‘eeXp( 4@) ~ /0 ANEE ~m T m

valid for every m > 0. To bound the sum over y # 0 in (5.24) we choose an m > 1

and obtain

1 t1+t2 1 |l‘ _ y|2

— - - — )/

87T \tl—t2| £ Z eXp( 4€ )

yeMZ2\{0}
1 1 2m
Smr D g Sma D Sma M
yeMz2\{0} yeMz2\{0}

Here we have made use of the fact that |z| < % implies that |z +y| > (1 — %)|y|

for all y € MZ2. Hence, (5.31) is established.
To see (5.32) we can again assume without loss of generality that in the case
M < oo we have |z|p = |x| and hence |z| < %M We get for any M € [1,00)

xr + 2
(5.33) | (b1, b ) — A (b, bos / exp (%)dﬂ
Ilulz EM 72
Here the intervals I; and I3 are given by
I :[O, |t1 — t2|] and Iy = [tl + t2,2t1]+
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with the convention [a, b] = [a,b] if @ < b and [a,b]; = [b, a] else. In particular, we
have |I;| = |Iz| = |t; — t2] and both intervals are contained in [0, 277]. In the case
M = oo the sum in (5.33) has to be replaced by the single term corresponding to
y=0.

For each term in (5.33) we get, setting z = z+y and choosing m > 0 appropriately

1 2 1/ ¢ \m t; — to|™mN
/ fexp(ﬁ)déim/ (os) 4 <y M2 12"
nun t 40 nun £ \|2| |z|>™

For the term involving y = 0 we choose m = A € (0,1] in this bound. As above
this already establishes (5.32) in the case M = co. For M < oo we use an arbitrary
m > 1 to bound the terms for y # 0. We then obtain, using as above that

2 +yl > (11— )yl

1 x + y|? 1
/ Z exp (%)dé Sm,T |t1 — tQ‘ Z HW
LUl yeMmz2\{o} Y

St |t — to| M2

So, (5.32) follows as well. O

yeMZ2\{0}

Lemma 5.6. Let #s o be defined by (5.30) and Ao, Har by (5.23), (5.24). For
0<t<T,1<M< oo and xy, x5 € R? with |x1], |2s| < % we have

(5.34) Koot T1,0) < O(T)(1 + log, (|1 — a2 1) .

Furthermore, under the same assumptions on t, M, x1, x5 we have for every m > 1
1

(5.35) |J£/M7oo(t;x1,x2) — Koo (t, t; w1 — 372)‘ < C(T, m)w ,
1

(536) ‘%N[,m(t;ml,l‘g) - Ji/M(t,t; T, — :L‘Q)| < C(T, m)W .

Proof. We start by establishing (5.34). The term in (5.30) corresponding to y = 0
can be bounded easily

t
// K({t—rxg —ax9—2)K({t—r,—2)drdz
0 =4 H
(5.31)
S Hoo(t,tywr —22) St (1+1og, (Jzg — x2|_1) ,

where in the last inequality we have used the fact that |z1], |zo| < 4 implies
that |z1 — 22|y = |x1 — 22|. For the remaining terms we use the fact that for
z e [—4, 22 and y € MZ?\ {0} we have |z +y| > |y| — || = (1 - %Hy\ We
obtain for every m > 1

(5.37)

1 t—r \m (t—r)m-t
Kt 12— 1) Sn (e et
Z ( r z y)N Z t—r |Z+y|2 ~ M2m
yEMZ2\{0} yEMZ2\{0}

which implies that

¢
E // Kit—rx1—xo—2)K({t—r,—2z—y)drdz
0 J[—-M& M2

yeMZ2\ {0} ¥
1 t
(5.38) <m W/ /2(15 — )" K (t -1 — w0 — 2) drdz S
0o Jr

So, (5.34) follows.

1
M2m °
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To see (5.35) we write
To0 (21, T2) — Hoo(t, 621 — T2)

// Kit—ra —xs—2)K({t—r,—z—y)drdz
[_77

yGMW\{O}

// o K{t—raz —a9—2)K({t—r,—2)drdz.
RA[-5, 5]

We have already seen above in (5.38) that the first term on the right hand side
is bounded by ]v12m) for any m > 1. For the second term, our assumption

|z1], |z2| < @ (which implies that [z — 22| < &) enters, because it implies that

for any z ¢ [—4L 2] and for m > 1 we have
1 M? 1 t—r\m
. P
(t=m a1 — Z)Nt—reXp 16(t—7r)/ ~" t—r\ M2
Therefore, we can conclude that

t
// K(t—rax —axs—2)K({t—7r,—2)drdz
0 Jre\- 4 Y2
< 1 ‘ m—1 < 1
~m W o - (t — 7") K(t -, _Z)dr dz ~m,T W 5

and (5.35) is established.
Finally, in a similar way we get

%Moo t; 1‘1,332) fM(t t; 1 —332)

//, K{t—ra—22—2)— Ku(t—r 2 — 22 — 2))

M
ERR Ak
(5.39) X Kp(t —r,—z) drdz .
We use once more the fact that |z; + za| < T and argue as in (5.37) to see that
uniformly over z € [—2L, 212 we have

1 t—r\m
|K(tfr,:171fngz)fKM(tfr,xlfosz§mt_r( MT)

So that after integrating out the remaining kernel Ky, in (5.39) we get the bound
(5.36). O

It remains to treat the case of non-zero initial condition Xy for (5.16). We will
need the following lemma only in the case d = 2, but as it causes no extra effort, we
state and prove it for arbitrary spatial dimension.

Lemma 5.7. Let |a] <1, 1<p< oo and o > 2. Fm:XEB;‘,’Z‘,’. For every M > 1
there exists an M -periodic distribution X € ngM such that for every test function
¢ with compact support contained in B(0, %), we have

(5.40) (Xnm,0) = (X, 9).
Furthermore, the Xp; are bounded in 5;‘;;’ uniformly in M and converge to X in
every space By for & < a and 6 > o.
Proof. Let ¢ € Cg° be such that
¢=1on B(0,1/4), ¢ =0 outside of B(0,1/3),
and let ¢pr = ¢(-/M). We define
Xu = duX.
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By Lemma 3.28 and the multiplicative inequality, X is well-defined as an element

of Bz‘f 5 » and moreover,

sup HXMHE\Q,U < o0.
M>1 p,p

Since X is supported in B(0, M/3), we can define the M-periodic distribution

> Xu(-—a).

z€EMZ4

This distribution satisfies (5.40). We now show that

sup [| X[ oo < 00

M1 PP
(It will be clear that the proof can be adapted to yield that for every M, X, is in
Be:M.) We start by writing, for any k > —1 and M > 1,

0 Xy = 5k-X](\iIn) + 5k-X](\?Iut),
where

X = S S Xl — 2wl 2),

272
2EMZA
S X = Z Sk X (- —2)(1— 1w aya(-—2)) -
2EMZA

For 6kX1(\i[n), we get

6 X, = 3 /|5kXM 2= )" 1t ay0(@ — 2) iy ()

2€M7Z4

:/ o |5kXM )| Z W (T + 2) dz

35 )¢ z€MZ4
For z € [- 2, )4, we can write
1 1
W (z + 2) = Wo(z) + — < W, () + —
0( ) U( ) Z |JU+Z|§3N U( ) Z |Z|U
zeM74 zeMz? zeM7*
z#0 z#0
5 ’II)O-(JT) + M_o- )
where we have used that fact that uniformly over M > 1, z € [, )4 and
0 # z € MZ%, we have |z| < |z + z|. Observing that uniformly over M > 1 and
ze[-4, 4 we have w,(z) > M7, we can conclude that
D (x4 2) S ()
zEMZ2

and hence ||5kX(m)Hp ||5kXM||p

In order to treat 6kX ut) , we recall that 6, X = np x Xar, where 1, = 22kn (2k.)
and n € §. Formally,

~ ~ xr — - ~ R
|0k X e[ (z) = /nk(x —)Xm = / % Pam X W,
and arguing by density, we obtain by Proposition 3.23 that

5 Tul(o) < | E =, M‘

. HXMH[S\g;

P»P
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Since n € S, it is straightforward to check (using for instance (3.9)) that for any I,
there exists C' < oo such that uniformly over M > 1 and |z| > M,

C
|6kXM|( ) |2k |lH MH a,o .

This bound allows to give a uniform bound on 6kX](\fIUt) (x). We can assume without

loss of generality that x € [f%, %)d and write
out) C
X = Y 0 Xu@ S Wl Y g
2eMZ zeMz4
z#0 z#0

S ||XM||§S’Y;27MM7Z :

Integrating the p-th power of this uniform bound against ., we obtain the desired

bound on ||6kX(°ut)|| 0 and hence the uniform in M bound on HXMHp . The
P P

fact that || Xar|| o < 00 follows by the same arguments.

To see the convergence of X5, to X as M tends to inﬁnity7 we only need to recall
that by Proposition 3.29 and (3.11), the embedding of B”‘ 7 into BO‘ % is compact,
and that every accumulation point is identified to be X by (5.40). (]

For M > 1 and every integer n > 1, let Z"™ and Zi; be the modifications
constructed in Theorem 5.4 (we drop the tildes for notational convenience). We
define

V(t) =e”tX, Var(t) = e Xor

where Xg.ps is the periodic distribution constructed from X, as in Lemma 5.7. We
also define

log(t~1 .
/ K ’I” .’1? d = Og( ), C]\/[(t) :/ / KM(T,J})2 dz.
v w2 8T v I Y

It is easy to see that uniformly in ¢ € [0, 1],

25 1 _a2
(5.41) |e(t) = enr(8)] < ANKLaF2(0,1)xm2) < (;) ue
where 1j; is used as a shorthand for the indicator function of the set {(¢,2): = ¢
A,

Finally, we set
(542) ZY =2, =Z2(t) +V (1),

ZF = (Z%(t) — c(t)) + 2Z(OV (t) + V(2)?

Z% = (Z%(t) = 3c()Z(t)) + 3(Z%(t) — c(t))V(t) + 3Z()V>(t) + V(2)*
and we define Zth, Zt2M, Zt3M by replacing all the distributions Z, Z*%*, 73,V and
¢ by Zar, 2%, 25 Vi, e in the definitions above.

Remark 5.8. As in Section 1.1, let £5 = &* ps be a regularised space-time white noise,
and let Zs be the solution of the stochastic heat equation (5.16) with £ replaced by
&s. For every positive 8, Zs is a smooth function, and hence arbitrary powers of it

can be defined without ambiguity. For each ¢ > 0 and = € R?, the random variable
Zs(t,x) is Gaussian, centred and with variance

EZ;(t,2)* =t5(t) = | K1 gxpe * p5||%2(RxR2)'

For every t > 0, this number diverges logarithmically as ¢ tends to 0, and the time
dependence reflects the fact that we chose to work with homogenous initial datum,
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rather than with a process in equilibrium. Our processes Z, Z2, Z3 arise as limits as
6 — 0 of the Wick powers with respect to this covariance structure, i.e.

Zs — Z, 73 —5(t) — 7%, Z3 - 3¢cs5(1)Zs — 7% .
However, in order to be consistent with [DPD, Ha, MW] we prefer to work with
processes that arise as limits of an approximation scheme with time-independent
renormalisation constant. If we set
¢s = 5(1) = 1K1 1)xr> * p5 1|72 @ xr2)»
then
z§ —¢5 and Z‘;’ — 3csZs

still converge. The numbers ¢(¢) in the definition (5.42) correspond to the limit of
¢s — ¢5(1) as  goes to zero.

We summarise the results of this section in the following corollaries. The second
integrability index of the weighted Besov spaces will not be important, and from
now on we will always choose it as co. The first corollary will be used as input in
the construction of the periodic solutions on a torus, see Section 6.

Corollary 5.9. Fiz O <a<landT >0, 0 > 2 and p > 1. We assume that
X € B;géa.
Then forn=1,2,3, a:d—&—% and o > a we have for every 1 < M < oo

(5.43) E sup t™~ 1)O"’HZ || o <00
0<t<T 80

Proof. First we observe that for M < oo the bound (5.21) implies for all n

E sup [IZ57 (g anr <00

Itx

Indeed, we can chose & = § and p = % V p to get

B

E swp [Z @15 oo < (B sup |ZEO1% o)
00,00 0<t<T

i<

=ik

~

Prop.3.7,(3.11) _
< (IE sup ||Z}\’}I:(7f)||%,(i ) < 00.
0<t<T .
We get for any 5 > —

Prop. 3.11 7‘17” _atB
WVar@llgso S & | Kol gmosr S 5 1 Xonrlg,

Lem. 5.7 7(17“3
St [ Xoll

~

N

a@,
,00

B,
Furthermore, (5.41) implies that ¢y (2) < 1+ (log(t™!) v 0) uniformly over ¢ €
[0,T]. The desired bound (5.43) then follows from the multiplicative inequality,

Corollary 3.21. O

The following corollary will be used together with the a priori bounds of Section 7,
to show the convergence (along a subsequence) of the periodised solutions when M
goes to infinity (see Section 8).

Corollary 5.10. Fizx0<a <1,T >0,0 > 2, p > 3, and assume that Xy € B;g‘o"’.
For every o > « and & > o, with probability one, there exists a sequence (My)y
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going to infinity such that forn =1,2,3,

sup sup t(n_1)a'||zgfj(4k||g_a,a <00,
kE 0<t<T 2 o

/ . . . .
lim sup t~Y|zim — Zinllg-ara = 0.
k— oo 0<t<T ’ L.

n

Proof. By (5.19) and (5.22), with probability one, there exists a sequence (M)
going to infinity and such that for n = 1,2, 3,

sup sup [|Zy7 (t)]| 5-a.s < 00,
k <T p

<isS >

Jimsup [[Z7(8) = Zi (1) 5-e.0
—00 0KtLT 2

n’

=0.

Furthermore, according to (5.41), we have
ev(t) S1+ (log(t™ 1) v0),

lim  sup |ear(t) —c(t)] =0,
M — o0 0<t<T

where the implicit constant in the first inequality is uniform in M. Finally, Lemma 5.7
and Proposition 3.11 imply that

o

_a=
IVa(@®llgy e St

lim  sup 57 [Var(t) = V(D) e =0,
p,00 M~>(x>0<t<T D,

3
oo

where the first inequality is valid for any v > —a and the second for v > —a’.

This bound and the multiplicative inequalities in Corollaries 3.19 and 3.21 imply
that for any o’/ > a and v > —a in the first inequality and for o/’ > o/ and v > —ao’
in the second inequality, we get for n = 1,2, 3 that

Vi @Olg,e St

_ (=1 +y+4na
2

(n=1)a’’ (n—1) !
lim sup ¢ V() = VI (®)llge =0
M—)Ooogth P

n

We can always choose o' such that O‘”; ¢ < . Then the desired bound follows

from another application of the multiplicative inequality, Corollary 3.21, using at
several places the fact that according to (3.11) decreasing the integrability index p
only makes a Besov norm weaker. O

6. CONSTRUCTION OF SOLUTIONS ON THE TORUS

The aim of this section is to show existence and uniqueness of global solutions of
(1.6) in the periodic case.

Since for the most part, the index ¢ in E’a»qM will not play an important role in
our analysis, we introduce the slightly lighter notation

(6.1) By =Byl
Let 0 < a < o < 1/3 (that we think of as being small), § € (1,2) (that we think
of as being close to 2) and T > 0. For Z = (7,2, Z®) in the set
C([0,7], BXM) x C((0, 7], BLM) x €((0,T], B,
we write

o 2 o 3
(62) 2]z = sup (||zt||B;Q‘M VA2 et V£ ||z§>\|g;a,M)

tx
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(recall that a Vb stands for the maximum between a and b). We let Q;Oﬁ/[ be the set of
Z such that this norm is finite. For Y € C([0,T],B%M), Z = (2,2, 2®)) ¢ M
and t < T, we write

(6.3) U(Y,, Z,) =Y —3Y2Z, — 3V, 2% — 72 + a(Y, + Z,).

The multiplicative inequalities imply that U(Y;, Z,) is well-defined for every ¢ > 0
(it actually suffices that Y belong to C([0,T], B2 M) for some o/’ > a). For a given
Yy € BEM and T > 0, we wish to solve

{ Y =AY +U(Y,Z)  on[0,T] x R,

(6.4) Y(0,) = Y,

which we interpret in the mild form. That is, we say that Y solves (6.4) if Y €
C([0,T], B%M) and if for every t < T,

t
Y, = Y, +/ =AW (Y,, Z,) ds.
0

We let
(6.5) St (Yo, 2)
be the set of solutions of (6.4).

The goal of this section is to prove the following global existence and uniqueness
result for (6.4).

Theorem 6.1 (global existence and uniqueness on the torus). For every B €
(1,2), the following holds for 0 < a < o' sufficiently small. Let T > 0, M > 0,
Z=(2,Z®,203) ¢ ZM and Yy € BEM . There exists exactly one solution of
equation (6.4) over the time interval [0,T]. In other words, the set STM (Yy, Z) is
a singleton.

We start by proving the following local existence result.

Theorem 6.2 (local existence and uniqueness on the torus). Let p € [1,00) be such
that

' 1
(6.6) a+5+3<o/+p><1,

2

let Z=(2,Z2?,2®) ¢ ZM and K > 0. There exists T* (depending on ||Z|| 5
and K ) such that for every Yy € BEM satisfying ”YOHifu < K, equation (6.4) has

ezactly one solution over the time interval [0,7* A T]. In other words, the set
ST ATM (Y, 7) is a singleton.

Remark 6.3. The condition on ', 8 and p displayed in (6.6) can be improved. Note
that it suffices to assume ' to be sufficiently small to ensure that a p € [1, 00) exists
that satisfies (6.6).

Proof of Theorem 6.2. An important aspect of the theorem is that we want T* to
depend on Yj only through the bound K on || Yy ir - In order to achieve this, we
split the construction of a solution into two steps. In the first step, we construct a
mild solution using only the information that Yy € Iifw; the price to pay for this is
that the solution will be defined in a larger space than anticipated. In the second
step, we show using the additional information that Yy € B&M that the solution
thus constructed belongs to C([0, 7*], B%M). Finally, we argue about uniqueness in
a third step.
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Step 1. In view of (6.6), we can choose o' > o’ such that

2 1
a +6+3<a”+) < 1.
2 D

We construct a solution of (6.4) in C((0,T*], B2 M) by a fixed point argument. Let
~ be such that

1"
e ;6+3y<1.

1
(6.7) v>ao" 4+~ and
D
For notational convenience, we assume that 7' > 1. For any 7" < 1, we define the
norm
1Yl = sup 7|Vl garrnr
0<t<T* b

tx

and the ball
By ={Y €C((0,T), B& ™M) : |Y||lr- <1}
For Y € SBr+, we let

t
(6.8) MY (1) = DY, +/ I8 U(Y,, Z,)ds  (t < T™).
0

Our aim is to show that for T* small enough, the operator .#p« is a contraction from
Pr« into itself. To begin with, it is clear that for every t, .#r-Y (t) is M-periodic.
We now argue that for T* sufficiently small, .#r« maps Br+ into itself. (The
periodic versions of) Propositions 3.7 and 3.11 ensure that

_ L”_;'_l _ L”+l
€2 Yol g0 S Nt Yoll wrigon 5854 Wollggar < o5 8 ol

p
where we used Remark 3.6 in the last step. From this, one can check that t s e!2Y)
is in C((0, T, B M), and moreover,
A
lle = Yollr-

can be made arbitrarily small by taking T* small enough (in terms of K) since
o’ 1
Concerning the integral term in (6.8), we observe that by the multiplicative
inequalities (and the trivial embedding of Besov spaces B&M as o varies),

(6.9) N9V, Z,)ll gor S IVallgaras + Vel Garrar 1 25 goons

2
B2
el g |22 et + 128 g + [¥allgarss + 1 Zoll oo
Moreover, since || Z|| 5 is finite (see (6.2)), if Y € %+, then
(Ve Z) g S 5757 572 5777 5720 £ 570,

since we assume that v > o’/ > o/. As a consequence, using Proposition 3.11 again,

t 1"
] S [ O Z) e ds
0 .

t
/ =AY (Y, Z,) ds

0 B M
(aga’) t "
S / (t—s)"* s 3ds
0
< tlfa”ffi'y’

~

where in the last step we used the fact that o’ < 1 and that by (6.7), we have 3y < 1.
Using (6.7) once more and 3 > 1, we see that 1 — o’ — 2y >2 -3 —a” — 67 > 0,
so that the right-hand side above multiplied by ¢7 tends to 0 as ¢ tends to 0. The
fact that the process t — fof (=AW (Y, Z,)ds taking values in B%M is continuous
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poses no additional difficulty. Hence, we have shown that the || - | «-norm of this
process can be made arbitrarily small provided that we choose T* small enough.

This concludes the proof that for T* sufficiently small, the operator .#7+ maps
PBr+ into itself. The contraction property then follows along similar lines.

Step 2. We now take the solution Y € C((0,77], B2 M) constructed in Step 1 and
show that it actually belongs to C([0, T*], B2M). Recall that

t
Y, = 'Y, +/ A Y(Y,, Z,) ds,
0

and that we already know that
Yl gorrar < 0.

By Remark 3.13, the function ¢ — e!2Y; belongs to C([0,7*], B2M). Similarly to
what was done in the previous step, we can estimate

t t
/ e(tfs)A\IJ(YwZS) ds < / (t_3)7#||\I/(YS’ZS)HB;Q,M ds
O O

¢
< / (t— 5)7#573”’ ds
0

+8
< 151—‘3‘7—377

~

B

since we have O‘—JQFB < 1 and 3y < 1. The continuity of ¢ — fg (=92 (Y, Z,)ds in
E’&NI at any point in (0, 7*] follows along the same lines. The continuity at time 0
follows from the fact that (recall (6.7) and «a < o)

a+p

+3y <1

Step 3. For T* as defined by Step 1, let YV, Y € STM(Yy, Z). We wish to show
that Y =Y. Since Y, Y € C([0,T], B%M), it follows from the reasoning in Step 1
that one can find 7** < T™* depending only on

sup [Villgor  and  sup |¥illgon

<T* <T*
such that both Y and Y belong to &rps«. Since T** < T*, the argument in Step 1
ensures that .#p«« is a contraction from %Br«« into itself. As a consequence, Y and
Y coincide on [0, 7**]. We can then iterate the reasoning (keeping the same T**)
and thus guarantee that Y and Y coincide on the whole interval [0, 7*]. (Note that
this argument is easily adapted to show the uniqueness part of Theorem 6.1.) O

In order to upgrade the local existence result to a global one, we need a control
of the L%, norm of the solution. We recall that we denote by ST:M (Y, Z) the set
of solutions to (6.4).

Theorem 6.4 (A priori estimate on the torus). Let p be an even positive integer
such that

' 1
(6.10) o(p+2) <1 and O‘;ﬁ+3<a’+)<17
P

let T >0, M >0 and Z € ZM. There exists C < oo such that if Y € ST M (Yy, Z)
for some T* < T, then

sup ||Yillzr < ||Yoll7e + C.
s IWilzg, < %oz,
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At a formal level, the idea for proving this a priori bound consists in testing

equation (6.4) against Y?~!, which leads to a useful identity concerning 6t||Yt||%p .

M

The rigorous derivation will need several preliminary steps, starting with a time
regularity estimate.

Proposition 6.5 (Time regularity of solutions). Let Y € ST:M(Yy, Z) , and assume
that (6.10) holds for some p. For every k < /2, Y is k-Hdlder continuous as a
function from [0,T] to L53.

Proof. We show Hoélder regularity of Y at time 0, the adaptation to arbitrary times
in [0, T being straightforward. For conciseness, we write

(6.11) V= V(Ys, Z,).

By definition of the notion of solution, we have

t
Y; = €'Y, —|—/ =92y, ds.
0
The fact that t + €'Yy is xk-Holder continuous as a function [0,7] — f/j’v‘} is a
consequence of Proposition 3.12 (and Remarks 3.4 and 3.5) and of the fact that
Yo € BLM. For the time integral, we use (6.9) again (but with the additional
information that Y € C([0,T], B%M)) to obtain that

(6.12) 19| goor S 572,
so that
¢ ¢
‘ / (=980, ds < / (t— )Wyl gan ds
0 BLM 0 °°
t ’
< / (t—s) s 2 ds
0
(aia) $1-38a"
The result follows since 1 — 3o/ > /2 by (6.10). O

We denote by (-, -),, the scalar product in L3,.

Remark 6.6. By Proposition 3.23, for every v € R, the mapping (f,g) — (f, 9)
extends to a continuous bilinear form on BLM x l;'l_ Y’M, and thus also on BLM x

B;OV“‘E’M for every ¢ > 0 by Remarks 3.3 and 3.4. In particular, by Lemma 3.2,
we see that for every a € R and M-periodic ¢ € C*°, the mapping f — (f,¢),,
extends to a continuous linear form on B3LM.

Proposition 6.7 (A mild solution is a weak solution). IfY € STM(Yy, Z), then
for every ¢ € BLM and t < T,

(613)  (Yid)y — (Yo, @)y = / = (VY Vé)ay + (0 (Ve Z,), 8)y] ds.

Proof. Step 1. Recall our notation (6.11). We first show that for every M-periodic
peC®andt<T,

(6.14) (Vi 6)ar — (Yo O)ay = / (Ve AG)yy + (o 8),] ds.

Since Y is a mild solution of (6.4),

t t s
/ (Y, Ad) ds:/ <68AYO+/ e(s_“)A\I/udu,Aq§> ds.
0 0 0 M
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Observe that for every s > 0,

<6SAYba A¢>M = <A65AY03 ¢>M = 89 <65AYE)7 ¢>M )
so that

t
/0 (e3Y0, A0, ds = (¢3Y0, ), — (Yo, d)yy

Similarly, we compute
t s t et
//Ae(s_“)A\I/ududs //Ae(s_“m\lludsdu
0o Jo 0 Ju
t
- / (et=WA _1d)¥,, du.

0

Combining the two, we obtain

t
/0 <65AY0,A¢)>M ds

t t
= <etAYO + / e(tiu)A\Ilu dua ¢)> - / <\Ilua ¢>M du — <Y0, ¢>M )
0 M 0

which is (6.14).
Step 2. We now conclude the proof. First, the mapping f — (Vf,V¢),, is

continuous over B&M | so we have (Y, A¢) v = —(VY,V¢),,. Hence, for every
¢ € C=(R?),

(Vi ) ar — (Yo 8)ar = /0 = (VY2 V6)pr + (4 8) ] ds.

It then suffices to argue by density using (6.12), Proposition 3.8 and Remark 6.6. O

We are now ready to derive a rigorous version of the identity on 9;||Y; ng alluded
M

to before.

Proposition 6.8 (Testing against Y7 '). Let Y € ST.M(Yy, Z). For every even
positive integer p such that (6.10) holds,

1 ! _ -
s, =1l ) = [ o= (TR, (), ] s

Remark 6.9. We could of course extend Proposition 6.7 to allow for functions ¢
that depend smoothly on time. This would bring about the additional term

t
(6.15) /0 (Yo, 055} ds.

However, since ¢t — Ytp*1 is only Hoélder continuous in time (see Proposition 6.5),
it is not clear a priori how to make sense of (6.15) for ¢ = YP~!. In essence, the
argument below consists in noticing that we can make sense of Young integrals
when both the integrand and the integrator are Holder continuous for an exponent
strictly above 1/2.

Proof of Proposition 6.8. We begin by observing that, for any 0 <u < v < T,
Yoll2, — 1Yl = (Y, Y2~ —(Y,, YP!
Yl = 1¥allz, = (Yo, Y20, = (Y, Y2 )

—1 —1 —1 -1
= (YY) — (Y YE ) o (VoY - )

M

M )
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so by Proposition 6.7,

T R (I

= [T )+ (), )
For any subdivision t = (¢, ..., t,) such that 0 =ty < --- < ¢, = t, we thus have
1¥il, — Yl - () =)

where we used the shorthand notation

n—1

6@) = Z <}/ti+17}/t 4:11 - Yp 1>M7

=0

SE L esorty, ez, a

Since t — Y} is a continuous function from [0, T]~to B&M with 8 > 1, in particular
t — VY, is a continuous function from [0,T] to L3S by Proposition 3.8. Using also
(6.12), one can check that as the subdivision gets finer and finer,

2 -1
) — / VYS, YP7°VY, > <\I/S, YP >M} ds.
We now argue that as the subdivision ¢ gets finer and finer,
p—1 P P
(6.16) S(t) — == (1%l ~ %ol )
Note that
(6.17) YO =Y = (Y, - Y)Y+ YY),

We show that the contribution of each term in the sum above is asymptotically the
same as the contribution of the first one. For instance with the last term,

2 -2
<5/t1+17 (}/t'H»l - )/tz))/tirl >M - <Y;5i+17 (Y;fwrl - Y;L)YZ) >M
= <(Y;51‘+1 _}/;:i)2’y'ti+l(yp 3 : +Y’ti)73)>M

tit1

Since t — Y; is bounded in 171\’4, an application of Hélder’s inequality leads to

2 -2
‘<Yti+1’ (Yt”l - Y, )YIL)‘Fl >M B <Y;577+1’ (Ytiﬂ - Y}Z)Yfz >M‘

= ‘<Y;fi+1 (Y;]Zi?) + Y;sf;?))? (Y;fzdrl - Y;:l)2>M) rg ||}/ti+1

z+1_t |2

for some k > 1/2, see Proposition 6.5. We can argue similarly for the other terms in
the sum (6.17). This estimate implies that as the subdivision ¢ gets finer and finer,
the difference between &(t) and

n—1

(6'18) Z <Yt1+17 ( )Y1:+12(Yt7+1 - Ytl)>M

=0

tends to 0. The same argument also shows that the difference between

)
L,

n—1

Il — 1ol =3 (eI, = IYs,

i=0
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and

n—1

i=0
tends to 0. Since the quantity in (6.18) is (p — 1)/p times that in (6.19), these two
observations imply (6.16). O

Proof of Theorem 6.4. Recall that ¥ (Y, Z,) is defined as a sum of terms, see (6.3).
If we decompose it as ¥(Yy, Z,) = —Y2 + V/(Y,,Z,), we can then rewrite the
identity of Proposition 6.8 as

0:20) (il — vl )+ | t -1

Y22 Y, |

+HYFF g | ds

Ly,
t

_ / —1

_/0 (V'(Ys,2,),YP),, ds.

We will now show that the integrand on the right-hand side is controlled by the
integrand on the left-hand side. For notational convenience, we write

- 2
As = HY;’ * VY.l HpM . Be= YR
Decomposing ¥’ as a sum of terms, we see that the first term we need to estimate
is (Y2 Z,,YP~1),, = (YP*!, Z,),,. By Proposition 3.23, we have
(P4, 2003, S V2 gt 1 Zell v

By Proposition 3.25, we get

1Y o e S ||Yf“||}?j IYEVYallg: + 1YV g -
and by the Cauchy-Schwarz inequality,

Y2 VY3, < IYE2 VYl VE72)z,, = Al B,

ptl
p+2

Moreover, Jensen’s inequality implies that ||[YP+!|] i1 < B2 (where the implicit

constant depends on M). Using also the fact that sup,cr || Zs|| 53—« < 00, We get

(020 (v, 2, | 5 A% BETOTE g

This term is controlled by an arbitrarily small constant times (A, + Bs). Indeed,

we observe that since
o o p+1
— — 1l—a)—— ) <1,
2 " (2 * a)p+2>

one can define exponents 3 < 1,72 < 1 such that
o 1 [« p—i—l)
— Ft— =+l —-a)— ) =1,
21 2 (2 ( )p+2

and Young’s inequality (the one for products, not for convolutions!) implies that

(Y, Z4),,| S AT+ B + Bﬁ%.

Since sup,»o(—z +27) < oo for any v < 1, it is clear that the right-hand side above

is bounded by 15(As + B;) plus a universal constant.
Estimating the other terms coming from ¥’ is similar. For instance, the sec-

ond term we need to estimate is <YSZ5(,.2)7 YSI’_1> = <YSP, Z§2)> . By the same
M M
reasoning,
2 2
(2,23 | S IV2lgpr 12250,
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with
IVllgen S IVZIVYilzy, + V2N,

S AP + 1Yl
1——2_ 1——2_
5 AsBs p+2 +Bs p+2

1— 1 1— L1 1——=2_
S As p+2 + Bs p+2 + Bs p+2’
where for simplicity, we used Remark 3.26 instead of the full strength of Propo-
sition 3.25 in the first line, and then the Cauchy-Schwarz, Jensen and Young
inequalities. Since ||Z|| z#u is finite (see (6.2)), we have ||Z§2)||B_Q,M Ss7@
thus

’
, and

(1.2 | (4 4 517 ol o
M
Observing that sup,~o(—z + az”) S a7, we obtain that

(6.22) _As+Bs KY;’, z®)

‘ < g—a'(p+2).
10 ~

M
Similarly,

’

1 1——=2_ 1——2_ 1——3_ _
‘<Yf 7Z§3)> ‘< A PP 4By T4 By T s
Ml )

so that

As+ B . /
9 _As*Ds ’<yp—1, Z<s>> ‘ < g—a'(p+2)
(6.23) L2 (v z®) | s
The contribution of the term a(Y + Z) can be similarly controlled by A and B, with

no divergence for small s. In short, we have shown that

1 t,
~(IV:lB, = [IYol%, ) </ o' (p+2) 4.
p(H tlze —IYollz: ) S = $

The integral on the right-hand side is finite since o/(p + 2) < 1, so the proof is
complete. O

Proof of Theorem 6.1. We assume that o' is sufficiently small that there exists a
positive integer such that (6.10) holds. In order to construct a global solution, we
take T™ from Theorem 6.2 according to the a priori bound on the ﬂfw norm of the
solution provided by Theorem 6.4, and then simply glue together local solutions
until the time interval [0, T] is covered. Uniqueness was already obtained in Step 3
of Theorem 6.2. O

7. A PRIORI ESTIMATES

The goal of this section is to derive strong a priori estimates on solutions of (1.6).
This will enable us to show that “periodised” solutions of (1.6) constructed in the
previous section all belong to suitable compact subsets of polynomially weighted
Besov spaces.

Our setting bears similarities with that of the previous section. One main
difference with what was done before is that we will work with polynomially
weighted Besov spaces instead of “periodised” ones. We assume throughout that
o > d = 2, and introduce the slightly lighter notation

~ ~
B*7 .— B*O
p : p,o0”
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Let0<a<a <1/6, € (1,2), T>0and p>1. For Z=(Z,Z?,Z®) in the
set
C([0, T, B5,77) x C((0,T], By,7) x C((0,T], B, ),

we write

7.1 Z|| 5 = Zillaao V2P | pne V2N ZP s )

@) zlg = s (12l v 120 g0 v 12 g
We let 5'2’?; be the set of Z such that this norm is finite. For Y € C([O,T},ggz;a),
Z=(2,7%,20) c 5’”;; and t < T, we write

(7.2) U, =0V, Z,) =Y —3Y2Z, —3v,Z% — 29 4 a(Y, + 2,).

The multiplicative inequalities imply that U(Y;, Z,) is well-defined for every ¢ > 0,
since we assume p > 1. Since we will ultimately only be interested in solutions
with Yy = 0, we take advantage of this simplification right away and only consider
solutions of
(7.3) 0Y =AY +U(Y, Z) on [0,7] x R?,
’ Y (0,-) =0.

Again, we will interpret this equation in the mild form. More precisely, we write
Y e SA’;;;U(Z) ifY e C([O,T],Bgz’f) and if for every ¢t < T,

t
Ytz/ =AY (Y,, Z,) ds.
0

We will assume throughout that

p is an even positive integer such that

o+
2

(7.4) o (p+2)<3/4 and + 30’ < 1.

Our strategy parallels that of the previous section in that, informally, we want to
multiply (7.3) by Y?~1 and integrate to get information on atHYtHA In order to
carry the argument rigorously, we first need to assert that solutlons of (7.3) have
sufficient time regularity.

Proposition 7.1 (Time regularity of solutions). Let Z € Q/‘”g\(; and k < /2. If
Y e ,SA'z))TI;U(Z), then Y is k-Hélder continuous as a function from [0,T) to LE.

The proof makes use of the following simple consequence of the multiplicative
inequalities, which will be used again later on.

Lemma 7.2 (Estimating ). Let & > a. There exists C < oo such that

CHw(Ys, Z,) < Vsl + 1Ys11% g 1 Zsllg, o

50
By

+1¥sllgs - 123 g + IIZ Dlgzee +1Yellzs

I

S LA P

Proof. Recalling the decomposition of ¥ in (7.2), we begin by observing that, due

to Remark 3.6,

¥ollg o S MY N5 = 1Yal2,-

We proceed to estimate
Y3 Zsll g S IV N5 125 o

3

2

S Yol - o 125l 00
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where we used Corollary 3.21 in the first step and Corollary 3.19 in the second one.
Similarly,

Vs 2P 5 0r S Vel 1225 e
P 2p

By
— @)
S Wollgyr 1725, 0
where we used Remark 3.3 [or (4.2)] in the last step. For the same reasons,

1252 + Yo+ Zilig er S 127 Igsmn + 1Yollgy + 12605500

Bo % ~
r

O

Proof of Proposition 7.1. As before, we only discuss Holder regularity at time 0. By
Lemma 7.2 and since Z € 23, and Y € C([0, T7, Bgz’f) (with 8 > 1), we have

!’
< 57204

R,
B ~
P

(7.5) Wl ae = 1W(Ys, Z,)]]

(where the implicit constant depends on Y and Z). Hence, by Proposition 3.11,

t t
/ =20, ds < / (t— )"V 5 aods
0 0 P

~

«,o
BP

¢
< /(t—s)*as*%‘ ds
0

< t1—3a’

since o/ > a. The conclusion then follows by Remark 3.5 since 1 — 3a’ > 3/2 by
(7.4). 0

Remark 7.3. As the proof reveals, the index of Holder regularity in Proposition 7.1
could be improved (for instance, one can choose x = (3/2). We prefer to stick to
the present version, because it corresponds to the general statement with initial
condition Yy € ggf (compare with Proposition 6.5).

The fact that mild solutions are weak solutions remains valid in the present
context (the proof being the same as that of the first step of Proposition 6.7). We
denote by (-, -) the scalar product in the unweighted L? space.

Proposition 7.4 (A mild solution is a weak solution). If Z € @; andY € %‘7 (2),
then for every ¢ € C° and t < T,

(7.6) (Yo ) = / (Ve M) + (U(Ya, Z,), 6)] ds.

This can be upgraded to the following statement. We denote by (-, ), the
scalar product in L2, which can be extended to distributions outside of L2 through
Proposition 3.23.

Proposition 7.5 (Weights and more general test functions). There exists C' such
that the following holds. For every Z € 23, Y € :S'\g;;g (Z) and ¢ € B;}U (with p' the
conjugate exponent of p),

@7 (Vg = / (VY. Vo)y + (U(Ys, Z.), 6)] ds + Ere(d),

where the error term satisfies

(7.8) Err(t)] < C / (IVYal. [6])s ds.
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Proof. We first argue that (7.7) holds for smooth, compactly supported ¢, and then
conclude by density.

Step 1. For any ¢ € C°,
(Ys, Ag) = =(VY, Vo)
in the sense of distributions. In fact, since Y € C([O,T],gng) with 8 > 1, in

particular VY; belongs to Egp (in the sense that each coordinate of VY belongs to
this space, see Proposition 3.8) and the right-hand side above can be interpreted as
a space integral. We apply Proposition 7.4 with ¢w, as a test function [recall that
W, was defined in (4.1)]. We observe that the gradient of this function is

(Vo) - ”V('|') b5
%.,Cj_/

We have established (7.7) for ¢ € C2° and with
t

(7.9) Err(t) :/ (VY,Go)y ds.
0

Step 2. We now conclude by density. In view of Proposition 3.8, we have VY &
c(lo, 17, ng_l’”) (in the sense that each coordinate of VY belongs to this space).
Hence, for smooth, compactly supported ¢ and b,

t
| VY 90), = (VY. V81| ds £ V6 = Vallgr-ne S 16— dlgss
0 P!’ 1 P!’ 1

by Propositions 3.23 and 3.8, where p” is the conjugate exponent of 3p. Similarly,
we infer from (7.5) that

t
/0 ’(qjmd))(r - (\I]sa(b)a‘ ds 5 ||¢ - (bHé\a/f’l

The other terms can be treated similarly (using also the fact that G is uniformly
bounded). Since a < 1,2 — 3 < 1 and p” < p/, we can use Remark 3.3 [cf. also
(4.2)] and obtain by density that for every ¢ € BZI,ZU,

(Yo, d)o = / —(VY., V6), + (T, ),] ds + Err(t)

with Err(t) given by (7.9). The bound (7.8) follows from the fact that G is bounded.
O

Proposition 7.6 (Testing against Y1), Recall that we assume (7.4). There exists
C < oo such that if Z € 23, and Y € g?,Tp’U(Z), then

1 t
S, = / [—(p = )(VY., YP2VYL), + (W(Ys, 2,),Y2),] ds + Erry (1),
o 0

with .
|Errp(t)] < O/ (IVYsl, [Y4|P71)s ds.
0

Proof. We first check that we can use Proposition 7.5 with ¢ = Y}? ! for a fixed t,
that is, we check that Y} e B;}J, where p’ is the conjugate exponent of p. By the
multiplicative inequality (Corollary 3.19),
-1 -1 -1
Y2 g SIS = IVl

(p—1)p’
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Since Y; € [3\5"’ and 8 > 1, we have indeed Ytp_1 S 173’;1)}0. As a consequence, we can
proceed as in the beginning of the proof of Proposition 6.8, i.e. write

||Yv||%p - ”YuH%p - (vava_l - Yf_l)o = (vayqf_l)a - (Yu’Yf_l)m

and then use Proposition 7.5 to obtain that for any subdivision ¢ = (¢, ..., t,) with
Ozt(]g"'gtn:tv

Y12, = Yo, — (t) = (t) + Ta(t) + Err(t),

where
n—1
6(1) = Z(thi-uvyz i1 Yp 1)
i=0
tit1
Z/ (VYs, V(YP™H), ds,
—1 ptig
=3 [ s
—o Jt
and

|Err(t) cz/ (VY |Y:, P71, ds.

By Proposition 3.8, the function ¢ — VY; belongs to C([0,T], B\gp—l,a). Moreover,
a direct adaptation of the argument at the beginning of this proof shows that
t+— Y~ belongs to C([0,T], B;}U), and as a consequence, the function ¢ — VY™

belongs to C([0,T], gg;a)_ By Proposition 3.23 (and since § > 1), this suffices to
ensure that as the subdivision ¢ gets finer and finer,

() = - /Ot(VYs, VYF)eds,

and similarly,

tit1
Z/ (WY1, 1Y,

Now, using (7.5) and the fact that ¢ — ¥, is in C((O T],g;a’a), together with

the fact already seen that t — Y~ is in C([0, T, B ,0), we obtain that as the
subdivision gets finer and finer,

t
2@)_)/ (\1’37}<¢p_1)0d5
0

There remains to check that as the subdivision t gets finer and finer,

t
- )Uds—>/ (VY] [VaP~ 1), ds.
0

p—1 P p )
S(t) = = (I, ~ %ol )

The proof is the same as that of the similar statement (6.16) in the proof of
Proposition 6.8. We only need to verify that the function ¢ — Y; is xk-Holder
continuous as a function from [0, T to Zg7 for some x > 1/2. This is guaranteed by
Proposition 7.1. O
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Proposition 7.7 (A priori estimate in L2). Recall that we assume (7.4). For
every K < oo, there exists C' < oo such that if Z € 25, satisfies |Z| 5, < K,
3p

Y e %”(Z) and t < T, then
t
(7.10) ”Y;H%g +/0 ||y;pf2|vy;|2”2é ds < C.

Proof. As in the proof of Theorem 6.4, the starting point is to decompose ¥ (Y5, Z,)
into —Y? + ¥/, so that the identity derived in Proposition 7.6 becomes

1 i _
1) Sl + [ o= pERvRg, + v, ] as

t
s / (W, Y21 + COVYLl Y1) ] ds,
0

We write
A, = ‘

— 2
veR vl Be= IR,
o

We will now show that the integrand in the right-hand side of (7.11) is bounded
by a linear combination of terms of the form C||Z ||Z§>U 5772 A3 BY*. We will then

3p
summarize all the terms into Table 1, analyse the value of the exponents 71, ...,74,
and conclude. The integrand in the right-hand side of (7.11) is a sum of two terms.
We begin with the second one:

(IVYL|, [YalP ) < AL2 HYSPH%/I2 < AL/2 pp/2(e+)

by the Cauchy-Schwarz and Hélder’s inequalities. This estimate is reported on the
first line of Table 1.

We now move to the study of (., YP~1),. We decompose ¥’ into a sum of
terms that we will analyse in turn:

U =327 -3yZ® — 720 1 47 + aY.

(V220 Y2 | = [0, 20| S 1V7 g 1Z,l0r
P,

where we used Proposition 3.23 for the inequality, and where p” is the conjugate
exponent of 3p. On the one hand,

120 <1121 5.

Byoe
On the other hand, we would like to use Proposition 3.25 to estimate || Y| ..o -

p!’ 1
Compared with the proof of Theorem 6.4, a new difficulty appears since Proposi-
tion 3.25 gives an estimate of the norm in Besov spaces with lower indices equal to 1,

while we have p” > 1 here. We solve this difficulty by appealing to an interpolation
inequality, for which we now introduce some notation. Let

p+2 p+2
7.12 = — d =— 0,1
(712 = md v=EER e,
so that
1 1-v v
7.13 — = —.

Note that 1 — v > 1/3, while a < 1/4 since we assume o < o’ and (p + 2)a’ < 1.
Hence, there exists oy < 0 such that
3(1-v)

(7.14) a= T—i—ual.
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The interpolation inequality (Proposition 3.10) now reads
||Ysp+1|\g - ||Yp+1||w,/4 . ||Yp+1\|”

al o

Since a; < 0, by Remarks 3.4 and 3.6,

pt+l
Y24 e SNV gy = BET,
while by Proposition 3.25,
3/4 1/4
Y2 i goraa S IYZIVYIEL YL + V2,
1,1 o o o

By the Cauchy-Schwarz inequality,
I¥219Yilll;, < VAB..

while by Holder’s inequality,
pt1
> iz, < B

~

To sum up, we have shown that

@y

34 1ptl pt1\ 1V
|(Y2Z, P \<||Z|| ~ B ViR <A838 P2 4B 2)

3(1—v) 30— V)+p+1 1+3v

Slzllg, s Ba 7S

+ HZHQ% Bsm

We summarize this computation by two lines of Table 1.
We now turn to the evaluation of

(2. Y7 0| S W2l 126250
where p denotes the conjugate exponent of 2p. We first note that
||~
1257 gsor < 11211 55

<7

We then prepare the ground for the adequate 1nterpolation inequality by setting

. p+2 . p+2
g=—— and v=——,
p 4p
so that L
1 1-v v
p 1 G
Since 1 — 7 > 1/2 and a < 1/4, there exists &; < 0 such that
1-v
o= +rvag,
and the interpolation inequality is
¥lger < ||Y”||A1/2a IIYpll"alla~
p,1 q,
We have .
Y2 gor.e S BE,
q

while for simplicity, we can now use Proposition 3.25 in the form given by Re-
mark 3.26:
¥2Ng20 S IVETIVYilllg, + V27, -

The estimation is completed by the following two observations:

Y2 9Yalllg, < (/A VT,
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T Y2 ¥3 V4 1—7v3—7a
(VY| IYs[P" ") 0 0 i =) =
1 0 0 B =
R e N . &
1 o 0 25 o
’(Z§3)7 yr1), 1 2 LZ 5;; L7 > m
1 2d 0 e o
(Yo, Y1), 0 0 0 s p%

TaBLE 1. Each term in the first column is bounded by a sum of
terms of the form C HZ”E} 5772 A7 B+ for the values of 71, ..., 74

3p
displayed on the corresponding lines. Recall that v, v, 7 € (0, 1).

_p_
I¥2lz, S BIT.

~
o

To sum up, we have shown the estimate

(V.23 vP ),

;P _r o \ 7
SNzl g, s B (a2 5T 4 g
3p

which is summarized on the corresponding two lines of Table 1.
The same analysis can be performed for

(2,777,

by setting
SPE2 2
p—1 3p
so that
1 1-v 7w
voo1 g

and proceeding as before. This leads to the estimate

’ 7=t _pr—1_ p—1 1-v
(0.2, | <120 5, 5 BU (A;/Q I +B;+2) ,
3p

which we report again in Table 1. The same argument also leads to
L pezl (o el p—1\ 177
(Zs, Y 1)o| S 121l 5, B:" (As/ By +B§+2) ,

whose contribution can be absorbed into that of the previous term (so we do not
report it in the table). Finally, we have

v

(Vo Y2 = V25, < BT,

and we have finished to fill the table.
In order to conclude the proof, we have to show how to control a term of the form
Clz ||:;?U s772 AY2 BY* by the terms A; and Bs that appear on the left-hand side
3p
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of (7.11). We note first that we always have 5 := v3 + 74 < 1. Moreover, Young’s
inequality for products ensures that

AY BY* < AT + BJ.

Finally, we observe that sup,q(—z + arY) < aT= , and as a consequence,
ey crzy, o a5 iz, )
10 24 S s~ = &.’,;% S ’

and similarly with A, replaced by B;. Hence, it follows from (7.11) that

t t ==
i, + [ iy, s X[ (1, o) as
o T 3p

where the sum is over all v1,7v2,5 = 73 + 74 described in Table 1. In order for the
integral to be finite, we need to ensure that v9 < 1 —#4 in all cases. This is granted
by the assumption that o/ (p + 2) < 3/4 (the critical case being the third line from
the bottom in the table). O

We now upgrade the Zg estimate to an estimate on a Besov norm of the solution.
We do it in two steps: in the proposition below, we derive a time-averaged estimate.

Proposition 7.8 (Weak a priori estimate in Besov spaces). Let p > 4 be an even
positive integer such that (7.4) holds, and let & be such that

1
(7.15) a<a<a+—-.
p

For every K < oo, there exists C < oo such that if Z € 5’})\‘; satisfies ||Z||_@% <K
andY € §§;;U(Z), then

T
/O (he ||f;a/1g ds < C.
Proof. Let v=2/(p—1) € (0,1). Since pa < ap+1 < o/(p+2) +1 < 2, we have
& < v. Hence, there exists oy < 0 and o € (0, 1) such that
a=(1-v)ag+va.

By the definition of v, we also have

3 1—-v v
Ja— + —.
p p 1
By the interpolation inequality (Proposition 3.10),
(7.16) Yillge. < <Yz groe Vsl

Since ag < 0, Remark 3.6 and Proposition 7.7 ensure that
(7.17) Ysllgoor S 1¥sllgn S

(where the implicit constant depends in particular on K). Moreover, by Remark 3.4
and Proposition 3.25 (which we only use in the weaker form provided by Remark 3.26
here), we have

”YSH@:M’ S ”YSH/L\}, + HVY HLI ~ ||Y ”Lz + ||VY ”Lz

Using Proposition 7.7 with p = 2 (noting that (7.4) is clearly satisfied for p = 2),
we obtain that

t
(718) | il s s
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Combining (7.16), (7.17) and (7.18), we arrive at

/ |\Y||‘i/” ds <1,
p/~3

which is the announced result. O

‘We now conclude with a pointwise-in-time estimate of the Besov norm of solutions.

Proposition 7.9 (Strong a priori estimate in Besov spaces). Let p > 10 be an even
positive integer such that (7.4) holds, and assume furthermore that

p—1 a+p

Nl
(7.19) P

< 1.

For every K < oo, there exists C < oo such that if Z € Q/‘g\‘; satisfies ||ZHQ% <K
3p

andY € §§;U(Z), then
sup [Vl g0 < C.

<T

Proof. Let & € (o, + 1/p]. Recall from Lemma 7.2 that
||\I/SH£3’\7/(;“ S ||Y9||3 + ||Y ||2a 4 ||Z ||B a s+ ||Y HBa g ||Z Z)HB a °
+ ||Z(3)|| —oo + [ YVallgeo + ||Z sllgee

From the definition of || Z| », in (7.1) and Remark 3.3 [or (4.2)], it follows that
3p

3 52 !
.15 5 (005 + 57 ) (121, +1).
/3 P
so that

(7.20) Wl e (IIY e 5 )

(where the implicit constant depends in particular on K). By the definition of
Y €55,7(2),

¢
Y; :/ =AY ds,
0
so by Proposition 3.11 and (7.20),

t
a+p _ ’
Willgsy S [ (-9 (|Ys||§;\§/,g+s ) s

t
51+/ (t— ) V]S
0 p/B

since # +2a’ < 1 by (7.4). By Holder’s inequality, since we assume
1 a+p

<1,

it follows that the remaining integral is smaller than a constant times

t 3/(p—1)
( A ds) ,
0 Bp/3

so Proposition 7.8 enables us to conclude. O
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Remark 7.10. Informally, we started from

multiplied by Y?~! and integrated to get an estimate on the L? norm, which we
then upgraded to obtain Proposition 7.9. A similar strategy enables to find an a
priori estimate on the modulus of continuity of the solutions. Indeed, for any fixed
5 € [0,T], we write an equation for Y; :=V; — Y, (s <t < T), test it against Ytp_l,
and proceed as before. We obtain that under the assumptions of Proposition 7.9,
the set

{Y €55,7(2), |12l 7, < K}

is a family of uniformly equicontinuous functions in C([0, 77, B\g /g)

8. CONSTRUCTION OF SOLUTIONS IN THE PLANE

Theorem 8.1 (Existence of solutions in the plane). Let T > 0, f < 2, a > 0
be sufficiently small, p be sufficiently large, and o > 2. Let Xy € ggpa’o, and let
Z =(Z,Z%,Z%) be as in (5.42) (that is, Z is the solution of (1.5), and Z*™ are
its Wick powers). With probability one, there exists Y € C([0,T], gf/’g) solving (1.6).

Proof. Recall that we denote the periodic approximations of Z by
Z~;M = (Zu, Z,2M7 Z,SM)
By Corollary 5.9, for any o/ > « and every integer M > 1, the quantity

o +& :2: 2(o/+i) :3:
0 (1200 oo VOB NZE oo v TN ZE )

oo oo

is finite almost surely. For o + % <a + % sufficiently small, Theorem 6.1 ensures
that there exists Y..ps € C([0,T], B2M) such that

t
(8.1) nwzfémmwnmLMM&
0

In particular, Y..ps € C([0,T], Eg’ﬂ),
We further impose that p > 3* be sufficiently large that

p—1p

— =<1,

p—4 2
and then 0 < a < o sufficiently small that (7.4) and (7.19) hold. We learn from
Corollary 5.10 that with probability one, there exists a subsequence (My )y tending
to infinity and such that

sup ||Z.. =, < 00.
kp ||— s My, ”2;3;,
By Proposition 7.9, it thus follows that with probability one,
(8'2) Sup Sup ||Yt;MkH§B,U < oQ.
E t<T »/9
By Remark 7.10, with probability one, (Y..as, )x is a family of uniformly equicontin-
uous functions in C([0, 77, Bg/";). By Proposition 3.29 (or Proposition 4.1), for every

o’ > o, we can thus extract a subsequence that converges uniformly in C([0, T, gg /g,)

to some Y; and moreover, Y € C([0,T], Ef/‘g’) It then suffices to pass to the limit in
(8.1) to obtain (1.8), using the fact ensured by Corollary 5.10 that for n = 1,2, 3,
with probability one, supy<,<q t~ D 1Zi5r, — Zi™ | g=ar o’ 0. O

n
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9. UNIQUENESS OF SOLUTIONS IN THE PLANE

Consider the parabolic Anderson problem

9.1) oY =AY + WY (on [0,T] x R?),
’ Y(Ov ) = Oa

interpreted in the mild sense:

t
(92) Yt = / e(tfs)A(WsYS) dS

0
We want to find sufficient conditions on W and Y to guarantee that Y = 0.

Theorem 9.1 (Uniqueness for the parabolic Anderson problem). Assume that there
exists K < oo, p>=1, puop >0 and a,a’,b € (0,00) such that for every p < upo and
t< T,

(9.3) Wil e < Kt 7.

Let Y be a solution of (9.1) such that for some C' < 0o, & > « and ¢ < 0o, it holds
for every p < pg and t < T that

(94) [Vilag.r < Ch.
If
i1
(9.5) CrO Ll hc1 and O‘+a+ o <1,
2 p 2
then'Y = 0.

Remark 9.2. The constant ¢ does not appear in the condition (9.5). This is a
manifestation of the fact that (9.4) can be somewhat weakened if desired, as the
reader can easily check from the proof.

The proof relies on the following estimate.

Proposition 9.3 (Recursive estimate). Let & > o, p > 1, a >0 and p > 0. There
exists C' > 0 such that for everyn > 1,

t
00 Wil <€ [ (=753 [Wllgom Vel . e
where
12 14
9.7 SR i —
(9.7) = e " 1)e

Proof. Note that
L u(l 1 ) H pn 1
(

(p/2)2ne  p\n® (n+1)* pn+1)*  p  pm+1)
It thus follows from Remark 3.22 that
<
98) VYol e  IWellgn 1920 e
We now observe that
t
Yill oot < [ 192V, s
Bp " 0 Bp "
t
s -9 WY g ds
0
t Oé o
5/ (t—s) 2 o ds,
0
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where we used Proposition 3.11 in the second step, and Proposition 3.7 in the third.

The conclusion follows by (9.8). O
We now prepare for a Gronwall-type argument via the following lemma.

Lemma 9.4 (Tterated integrals). Let v1,v2 = 0 be such that v1 +72 < 1, and define
recursively

Io(t) =1,

Iny1(t) = /0 (t—s) s 72 1,(s)ds (n e N).

For every 4 > v1 and T < oo, there exists C < 0o such that uniformly over n € N
andt < T,

(9.9) I(t) < Ot

Proof. Let v =71 + 2 and, for n € N|
1
Jn = / (1- u)J“uwar"(l*V) du.
0

We first show by induction on n that
n—1
(9.10) I(t) = (1=7) H Ty
k=0

The case n = 0 is trivial (we understand the product as being 1). For n € N, a
change of variables gives

1
I1(t) = tl_'y/ (1 —w) ™M u™7 I, (tu) du,
0

so (9.10) implies the same statement with n replaced by n + 1.
In order to conclude, it suffices to show that there exists C' < oo such that for
every n sufficiently large,

1-m
(9.11) Jn <C <log"> .

n
We consider n sufficiently large that —y2 + n(1 — ) > 0. For any ¢ € [0,1), we can
decompose the integral defining J,, along fol_g + fll—s and obtain that

In <e (1 - 5)772“’(177) + (1 — )" tet .

Choosing ¢ = ¢(logn)/n for some constant ¢ gives an upper bound that is asymp-
totically equivalent to

v 1—y
( n ) ln—c(l—v)_i_(l_,yl)—l (clogn) 1.
clogn n

It then suffices to fix ¢ sufficiently large to obtain (9.11), and thus conclude the

proof. O
Proof of Theorem 9.1. In view of (9.5), there exists a > 0 such that
at+a 1
12 1 b<1-— - —.
(9.12) (I1+a)b< 5 ,

We fix p = po. By Proposition 9.3 and the assumption in (9.3), there exists C' > 0
such that for every n > 1,

t _
. <Cu;"/(t*8)_ B )
0

P

2] S,
T(nF1D?
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where 11,, is as in (9.7). We define v, = 2% + %, Y2 =/, and I,,(¢) as in Lemma 9.4
[note that v1 + 2 < 1 by (9.5)]. By mductlon, we obtain

—b
n
(9.13) [¥ellggn < C (kﬂluk> In(®) S0 Il o e
As n tends to infinity, we have
ap
Hn ~ ma

so in particular (for some possibly larger C' < o0),

n —b
<H Nk) < C«n(n!)(1+a)b.
k=1

In view of (9.12), we can define 4 such that 3 <5 < 1 and
(9.14) (14abh<1—7.
By Lemma 9.4 and (9.4), the right-hand side of (9.13) is thus bounded by
. (n!)(l-i-a)b (n 4 1),1 c
C -
(nh)t=7 7
This quantity tends to 0 with n by (9.14), so ||YtHBp&,u =0 for every t < T, and thus
Y =0. O

Theorem 9.5 (Uniqueness of solutions). Let T > 0, 8 < 2, 0 > 2, a > 0 be
sufficiently small, and p be sufficiently large (depending on o). Let Xy € g;a’g,
and let Z = (Z,Z%,Z*%) be as in (5.42) (that is, Z is the solution of (1.5), and
Z are its Wick powers). With probability one, if Y)Y (2) € C([O,T],li@") are
two solutions of (1.6), then Y1) =y (),

Proof. The process Y := Y™ — Y@ golves

t
Y, = / e(tis)A WY, dS,
0

where
W=—-W)?2_yWy®@ _(y@)2 _3(v® 4 y@)z 322 4.
We verify that for suitable choices of parameters, the conditions of Theorem 9.1 are

satisfied. Observe that S
sup P e Hel? S [,
N

and as a consequence,
sup | - llzz S llge
w 5

(9.15) Sup PN g S - ligssen-

Since the solutions Y, V() are in C([0, T7, [5’\5"’) we get that for some ¢ < oo,

sup sup p¢ ||Y,5H35u < oo a.s..
0<t<T <o

By Remark 3.3 and up to a redefinition of ¢, we also have that for every a < §,

sup sup u° ||Yt||3w <o as.
0<t<T <o

By Corollary 5.10, with probability one,

su Zilloao v Z2 QU) < 00.
s (1200 v 12715,
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By the multiplicative inequalities, it follows that with probability one,

sup ||,
0<t<T

oo < OO
Ig

Using (9.15), we see that for any given b > 0 and 0 < a < o/, we can choose p
sufficiently large that

sup sup u’ ta/”WtHBfa,# < 0.
0T p<pio v/2

The conclusion thus follows from Theorem 9.1. O

APPENDIX A. GEVREY CLASSES

We begin by recalling two classical facts about Gevrey classes: first, the stability
of G under multiplication; second, that the Fourier transform of a function in
GY has fast decay at infinity. We then prove a third result that was needed in
Subsection 2.3, whose proof is in large measure a combination of the proofs of these
two more classical facts.

Proposition A.1 (Stability under multiplication). For every 6 > 1, the Gevrey
class G is stable under multiplication.

Proof. Let f,g € G%, and let K be a compact subset of RY. There exists C' < oo
such that for every € K and n € N9,

0" fl(2) , 10"gl(x) < I ()

We have
n
(f9) mg (m) romg,
where we use the multi-index notation (:@) = ﬁ'),m, The number of m’s such

that |m| < |n| is ('"‘jd), so it suffices to show that on K,

m
On K, the left-hand side above is bounded by

O (n — m)!m)0 1,
and since (n — m)!'m! < n!, the proof is complete. O

Proposition A.2 (Decay of the Fourier transform). If f € GY, then there eists
c¢> 0 and C < oo such that

(A1) Q)] < Ced™.
Proof. Tt suffices to show that (A.1) holds uniformly over |¢| > 1. For any n € N4,

writing (" = ({"* - - (¢, we observe that

RO = 157F(0)] < / 07 £ < I (1),

where we used the fact that f is compactly supported and in G% in the last step.
As a consequence, for every positive integer m, letting M = [m/60| (the integer part
of m/0) and M = M + 1, we have

mso (5 2D AT g 3 () (3T 7\ | f M1 \0
Q1< IPTIAQI < T (1 + -+ 16l 1F(O] < ML AT

(we use C as a generic constant whose value can change from an inequality to
another). One can then check that the right-hand side above is bounded by

CMAL(JN) < OMHALOM ¢ omtLyym,
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We have thus shown that uniformly over |(| > 1 and m,

A Cm \™
for<e () -
Since

400 (C|C|1/9)m

1/6 A - = (Ccm)m
e“TF (O] = Z |f(<)|<OZT
m=0 m=0 ’

and m! > (m/e)™, it suffices to choose ¢ > 0 sufficiently small that cCe < 1 to
obtain the result. g

m!

Proposition A.3 (Exponential decay). Let ¢ € G be supported in an annulus C,
and let

9u(x) = / e () e 4 dc.
There exists C < 0o and ¢ > 0 such that uniformly over x € R? and t > 0,
Gula)] < Cemt el
Proof. 1t suffices to show that there exists C' < oo and ¢ > 0 such that uniformly
over ( € C and n € N%,
(A.2) o" (e_tmz) < CMFL(plylemet,
Indeed, given this, the proof of Proposition A.1 shows that uniformly over (,

an ((b(g) e—t|§|2) < Cv|n|—‘,—1(n!)9€—ct7

and then we can repeat the proof of Proposition A.2 to obtain the result.
We now show that (A.2) holds with § = 1. Let us write f(y) = e and

g(¢) = —|¢|>. By Fa4 di Bruno’s formula, for n € N and 1 < iy,...,i, < d,
T (190 = X 1) T g0
- YAt = g T o 9)
6(1‘,1 o '5@” rell Ber erB 54%
where II is the set of partitions of {1,...,n}. Because of the form of g, the term

indexed by B in the last product is zero unless |B| < 2. Tt thus suffices to focus on
showing that

> 70D (g(o))| < CH e,

where the sum runs over partitions = whose constituents have at most two elements.
Moreover, £ (y) = tI™le¥ and there are

n!
m1! mg! 2me

partitions of {1,...,n} by m; singletons and ms sets of 2 elements (m; + 2mq = n).
Let r € (0,2) be such that |¢|* < r = ¢ ¢ C. It suffices to check that
n! mi+mo —tr [n|4+1 ) —ct
(A3) Z Wt 1 2e < C n.e .
mi+2mo=n
Since 2V = Zivzo (JZ), we have (m1 + ma)! < 2™7%™2 m,Imy!, and thus, for

m1 + 2my = n,
1 tm1+m2 < on tm1+m2 _ é n (tr/2)m1+7R2 < é ne”/z.
m1!mo! (m1 + ms)! r (m1 4+ ma2)! r

This implies (A.3) (with ¢ = r/2), and thus concludes the proof. O
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