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Preface

Many microscopic models lead to partial differential equations with rapidly oscil-
lating coefficients. A particular example, which is the main focus of this book, is
the scalar, uniformly elliptic equation

-v-(a(z)vu) = f,

where the interest is in the behavior of the solutions on length scales much larger
than the unit scale (the microscopic scale on which the coefficients are varying).
The coefficients are assumed to be valued in the positive definite matrices, and may
be periodic, almost periodic, or stationary random fields. Such equations arise in a
variety of contexts such as heat conduction and electromagnetism in heterogeneous
materials, or through their connection with stochastic processes.

To emphasize the highly heterogeneous nature of the problem, it is customary
to introduce a parameter 0 < £ << 1 to represent the ratio of the microscopic and
macroscopic scales. The equation is then rescaled as

v (a(z) V)= £,

with the problem reformulated as that of determining the asymptotic behavior
of uf, subject to appropriate boundary conditions, as € — 0.

It has been known since the early 1980s that, under very general assumptions,
the solution uf of the heterogeneous equation converges in L? to the solution u of
a constant-coefficient equation

-v-(avu) = f.

We call this the homogenized equation and the coefficients the homogenized or
effective coefficients. The matrix a will depend on the coefficients a (+) in a very
complicated fashion: there is no simple formula for a except in dimension d =1
and some special situations in d = 2. However, if one is willing to perform the
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computational work of approximating the homogenized coefficients and to tolerate
the error in replacing u® by u, then there is a potentially huge payoff to be gained
in terms of a reduction of the complexity of the problem. Indeed, up to a change
of variables, the homogenized equation is simply the Poisson equation, which can
be numerically computed in linear time and memory and is obviously independent
of € > 0. In contrast, the cost of computing the solution to the heterogeneous
equation explodes as € becomes small, and can be considered out of reach.

There is a vast and rich mathematical literature on homogenization developed in
the last forty years and already many good expositions on the topic (see for instance
the books [5, 22, 27, 33, 34, 74, 80, 105, 113]). Most of these works are focused
on qualitative results, such as proving the existence of a homogenized equation
which characterizes the limit as € - 0 of solutions. The need to develop efficient
methods for determining a and for estimating the error in the homogenization
approximation (e.g., |uf—u|z2) motivates the development of a quantitative theory
of homogenization. However, until recently, nearly all of the quantitative results
were confined to the rather restrictive case of periodic coefficients. The main reason
for this is that quantitative homogenization estimates in the periodic case are vastly
simpler to prove than under essentially any other hypothesis (even the almost
periodic case). Indeed, the problem can be essentially reduced to one on the torus
and compactness arguments then yield optimal estimates. In other words, in the
periodic setting, the typical arguments of qualitative homogenization theory can
be made quantitative in a relatively straightforward way.

This book is concerned with the quantitative theory of homogenization for
nonperiodic coefficient fields, focusing on the case in which a(z) is a stationary
random field satisfying quantitative ergodicity assumptions. This is a topic which
has undergone a rapid development since its birth at the beginning of this decade,
with new results and more precise estimates coming at an ever accelerating pace.
Very recently, there has been a convergence toward a common philosophy and set
of core ideas, which have resulted in a complete and optimal theory. The purpose
of this book is to give this theory a complete and self-contained presentation.

We have written it with several purposes and audiences in mind. Experts
on the topic will find new results as well as arguments which have been greatly
simplified compared to the previous state of the literature. Researchers interested
in stochastic homogenization will hopefully find a useful reference to the main
results in the field and a roadmap to the literature. Our approach to certain
topics, such as the construction of the Gaussian free field or the relation between
Sobolev norms and the heat kernel, could be of independent interest to certain
segments of the probability and analysis communities. We have written the book
with newcomers to homogenization in mind and, most of all, graduate students and
young researchers. In particular, we expect that readers with a basic knowledge of
probability and analysis, but perhaps without expertise in elliptic regularity, the
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Gaussian free field, negative and fractional Sobolev spaces, etc, should not have
difficulty following the flow of the book. These topics are introduced as they arise
and are developed in a mostly self-contained way.

Before we give a summary of the topics we cover and the approach we take, let
us briefly recall the historical and mathematical context. In the case of stationary
random coefficients, there were very beautiful, soft arguments given independently in
the early 1980s by Kozlov [81], Papanicolaou and Varadhan [104] and Yurinskii [119]
which give proofs of qualitative homogenization under very general hypotheses. A
few years later, Dal Maso and Modica [35, 36| extended these results to nonlinear
equations using variational arguments inspired by I'-convergence. Each of the
proofs in these papers relies in some way on an application of the ergodic theorem
applied to the gradient (or energy density) of certain solutions of the heterogeneous
equation. In order to obtain a convergence rate for the limit given by the ergodic
theorem, it is necessary to verify quantitative ergodic conditions on the underlying
random sequence or field. It is therefore necessary and natural to impose such a
condition on the coefficient field a(x). However, even under the strongest of mixing
assumptions (such as the finite range of dependence assumption we work with for
most of this book), one faces the difficulty of transferring the quantitative ergodic
information contained in these strong mixing properties from the coefficients to
the solutions, since the ergodic theorem is applied to the latter. This is difficult
because, of course, the solutions depend on the coefficient field in a very complicated,
nonlinear and nonlocal way.

Gloria and Otto [65, 66] were the first to address this difficulty in a satisfactory
way in the case of coefficient fields that can be represented as functions of countably
many independent random variables. They used an idea from statistical mechanics,
previously introduced in the context of homogenization by Naddaf and Spencer [99],
of viewing the solutions as functions of these independent random variables and
applying certain general concentration inequalities such as the Efron-Stein or
logarithmic Sobolev inequalities. If one can quantify the dependence of the solutions
on a resampling of each independent random variable, then these inequalities
immediately give bounds on the fluctuations of solutions. Gloria and Otto used
this method to derive estimates on the first-order correctors which are optimal in
terms of the ratio of length scales (although not optimal in terms of stochastic
integrability).

The point of view developed in this book is different and originates in works of
Armstrong and Smart [15], Armstrong and Mourrat [13], and the authors [11, 12].
Rather than study solutions of the equation directly, the main idea is to focus on
certain energy quantities, which allow us to implement a progressive coarsening
of the coefficient field and capture the behavior of solutions on large—but finite—
length scales. The approach can thus be compared with renormalization group
arguments in theoretical physics. The core of the argument is to establish that on
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large scales, these energy quantities are in fact essentially local, additive functions
of the coefficient field. It is then straightforward to optimally transfer the mixing
properties of the coefficients to the energy quantities and then to the solutions.

The quantitative analysis of the energy quantities is the focus of the first part
of the book. After a first introductory chapter, the strategy naturally breaks into
several distinct steps:

e Obtaining an algebraic rate of convergence for the homogenization limits,
using the subadditive and convex analytic structure endowed by the vari-
ational formulation of the equation (Chapter 2). Here the emphasis is on
obtaining estimates with optimal stochastic integrability, while the exponent
representing the scaling of the error is suboptimal.

e Establishing a large-scale regularity theory: it turns out that solutions of
an equation with stationary random coefficients are much more regular
than one can show from the usual elliptic regularity for equations with
measurable coefficients (Chapter 3). We prove this by showing that the extra
regularity is inherited from the homogenized equation by approximation,
using a Campanato-type iteration and the quantitative homogenization results
obtained in the previous chapter.

e Implementing a modification of the renormalization scheme of Chapter 2,
with the major additional ingredient of the large-scale regularity theory, to
improve the convergence of the energy quantities to the optimal rate predicted
by the scaling of the central limit theorem. Consequently, deriving optimal
quantitative estimates for the first-order correctors (Chapter 4).

e Characterizing the fluctuations of the energy quantities by proving conver-
gence to white noise and consequently obtaining the scaling limit of the
first-order correctors to a modified Gaussian free field (Chapter 5).

e Combining the optimal estimates on the first-order correctors with classical
arguments from homogenization theory to obtain optimal estimates on the
homogenization error, and the two-scale expansion, for Dirichlet and Neumann
boundary value problems (Chapter 6).

These six chapters represent, in our view, the essential part of the theory.
The first four chapters should be read consecutively (Sections 3.5 and 3.6 can be
skipped), while the Chapters 5 and 6 are independent of each other.

Chapter 7 complements the regularity theory of Chapter 3 by developing local
and global gradient LP estimates (2 < p < o0) of Calderén-Zygmund-type for
equations with right-hand side. Using these estimates, in Section 7.3 we extend
the results of Chapter 6 by proving optimal quantitative bounds on the error of
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the two-scale expansion in WP-type norms. Except for the last section, which
requires the optimal bounds on the first-order correctors proved in Chapter 4, this
chapter can be read after Chapter 3.

Chapter 8 extends the analysis to the time-dependent parabolic equation
Owu—V-avu = 0.

The main focus is on obtaining a suboptimal error estimate for the Cauchy-Dirichlet
problem and a parabolic version of the large-scale regularity theory. Here the
coefficients a(z) depend only on space, and the arguments in the chapter rely on
the estimates on first-order correctors obtained in Chapters 2 and 3 in addition
to some relatively routine deterministic arguments. In Chapter 8 we also prove
decay estimates on the elliptic and parabolic Green functions as well as on their
derivatives, homogenization error and two-scale expansions.

In Chapter 9, we study the decay, as t — oo, of the solution u(t,z) of the
parabolic initial-value problem

Ou—-v-(avu) =0 in (0,00) x RY,
U(O, ) =V-g on Rda

where g is a bounded, stationary random field with a unit range of dependence.
We show that the solution u decays to zero at the same rate as one has in the case
a =Id. Asan application, we upgrade the quantitative homogenization estimates for
the parabolic and elliptic Green functions to the optimal scaling (see Theorem 9.11
and Corollary 9.12).

In Chapter 10, we show how the variational methods in this book can be adapted
to non-self adjoint operators, in other words, linear equations with nonsymmetric
coefficients. In Chapter 11 we give a generalization to the case of nonlinear equations.
In particular, in both of these chapters we give a full generalization of the results
of Chapters 1 and 2 to these settings as well as the large-scale C%! estimate of
Chapter 3.

This version of the manuscript is essentially complete and, except for small
changes and corrections and a modest expansion of Chapter 9, we expect to publish
it in close to its present form.

We would like to thank several of our colleagues and students for their helpful
comments, suggestions, and corrections: Alexandre Bordas, Sanchit Chaturvedi,
Paul Dario, Sam Ferguson, Chenlin Gu, Jan Kristensen, Jules Pertinand, Christophe
Prange, Armin Schikorra, Charlie Smart, Tom Spencer, Stephan Wojtowytsch, Wei
Wu and Ofer Zeitouni. We particularly thank Antti Hannukainen for his help with
the numerical computations that generated Figure 5.3. SA was partially supported
by NSF Grant DMS-1700329. TK was partially supported by the Academy of
Finland and he thanks Giuseppe Mingione for the invitation to give a graduate
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course at the University of Parma. JCM was partially supported by the ANR grant
LSD (ANR-15-CE40-0020-03).

There is no doubt that small mistakes and typos remain in the manuscript,
and so we encourage readers to send any they may find, as well as any comments,
suggestions and criticisms, by email. Until the manuscript is complete, we will
keep the latest version on our webpages. After it is published as a book, we will
also maintain a list of typos and misprints found after publication.

Scott Armstrong, New York
Tuomo Kuusi, Helsinki
Jean-Christophe Mourrat, Paris



Assumptions and examples

We state here the assumptions which are in force throughout most of the book,
and present some concrete examples of coefficient fields satisfying them.

Assumptions
Except where specifically indicated otherwise, the following standing assumptions
are in force throughout the book.

We fix a constant A > 1 called the ellipticity constant, and a dimension d > 2.

We let Q2 denote the set of all measurable maps a(-) from R¢ into the set of
symmetric d x d matrices, denoted by R&<¢, which satisfy the uniform ellipticity
and boundedness condition

€] <& a(z)E <A, VEeRe (0.1)
That is,

0:= {a t a is a Lebesgue measurable map from R? to R&¢ satisfying (0.1)}.
(0.2)
The entries of an element a € () are written as a;;, 4,7 € {1,...,d}.

We endow 2 with a family of o-algebras {F;} indexed by the family of Borel
subsets U ¢ R?, defined by

Fu = the o-algebra generated by the following family:

{av—> fRd a;;(z)p(x)de : pe C2(U), i,j€ {1,...,d}}_ (0.3)

The largest of these o-algebras is denoted F := Fra. For each y € R?, we let
T, : € = Q be the action of translation by ¥,

(Tya) (v) = a(z +y), (0.4)

X1
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and extend this to elements of F by defining T,F := {T,a : a€ E}.

Except where indicated otherwise, we assume throughout the book that P is a
probability measure on the measurable space (2, F) satisfying the following two
important assumptions:

e Stationarity with respect to Z-translations:

PoT,=P for every z € Z%. (0.5)

e Unit range of dependence:

Fu and Fy are P-independent for every pair U,V ¢ R¢

0.6
of Borel subsets satisfying dist(U, V') > 1. (0.6)

We denote the expectation with respect to P by E. That is, if X : Q - R is an
F-measurable random variable, we write

E[X] = [Q X(a)dP(a). (0.7)

While all random objects we study in this text are functions of a € {2, we do not
typically display this dependence explicitly in our notation. We rather use the
symbol a or a(x) to denote the canonical coefficient field with law P.

Examples satisfying the assumptions

The simplest way to construct explicit examples satisfying the assumptions of
uniform ellipticity (0.1), stationarity (0.5) and (0.6) is by means of a “random
checkerboard” structure: we pave the space by unit-sized cubes and color each
cube either white or black independently at random. Each color is then associated
with a particular value of the diffusivity matrix. More precisely, let (b(z2)),eza be
independent random variables such that for every z € Z4,

PI(=) = 0] = B[b(:) = 1] = 5,

and fix two matrices ag,a; belonging to the set

{@eRad : vEeR?, [¢ff <& BE<ALEL). (0.8)

sym
We can then define a random field z — a(x) satisfying (0.1) and with a law
satisfying (0.5) and (0.6) by setting, for every z € Z¢ and x € z + [—%, %)d,

a(x) = ab(z).
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Figure 1 A piece of a sample of a random checkerboard. The conductivity matrix is
equal to ag in the black region, and a; in the white region.

This example is illustrated on Figure 1. It can be generalized as follows: we
give ourselves a family (a(z)),cze of independent and identically distributed (i.i.d.)

random variables taking values in the set (0.8), and then extend the field z —» a(z)

1

d
by setting, for every z € Z¢ and x € z + [—%, 5) ,

a(z) = a(z).

Another class of examples can be constructed using homogeneous Poisson point
processes. We recall that a Poisson point process on a measurable space (E, &)
with (non-atomic, o-finite) intensity measure p is a random subset II of E such
that the following properties hold (see also [79]):

e For every measurable set A € £, the number of points in II n A, which we
denote by N(A), follows a Poisson law of mean p(A);

e For every pairwise disjoint measurable sets Ay,..., A, € £, the random vari-
ables N(A;), ..., N(Ay) are independent.

Let IT be a Poisson point process on R¢ with intensity measure given by a multiple
of the Lebesgue measure. Fixing two matrices ag,a; belonging to the set (0.8), we
may define a random field z — a(z) by setting, for every x € R¢

1
if dist(z, 1) < =,
a(r)={"°0 "W (,11) <5 (0.9)

a; otherwise.
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Figure 2 A sample of the coefficient field defined in (0.9) by the Poisson point cloud.
The matrix a is equal to ag in the black region and to a; in the white region.

This example is illustrated on Figure 2. More complicated examples can be
constructed using richer point processes. For instance, in the construction above,
each point of II imposes the value of a(z) in a centered ball of radius 1/2; we may
wish to construct examples where this radius itself is random. In order to do so, let
A >0, let u denote a probability measure on [O, %] (the law of the random radius),
and let IT be a Poisson point process on R? x R with intensity measure \dz ® p
(where dz denotes the Lebesgue measure on R?). We then set, for every = € R,

{ao if there exists (z,r) €Il such that |z - z| < r,
a(x) :=

a; otherwise.

Minor variants of this example allow for instance to replace balls by random shapes,
to allow the conductivity matrix to take more than two values, etc. See Figure 3
for an example.

Yet another class of examples can be obtained by defining the coefficient field
x ~ a(x) as a local function of a white noise field. We refer to Definition 5.1 and
Proposition 5.9 for the definition and construction of white noise. For instance,
given a scalar white noise W, we may fix a smooth function ¢ € C*(R?) with
support in By, a smooth function F' from R¢ into the set (0.8), and define

a(x) =F((W=x*¢)(x)). (0.10)
See Figure 4 for a representation of the scalar field x —» (W x ¢)(x).
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*
- * v,

Figure 3 This coefficient field is sampled from the same distribution as in Figure 2,
except that the balls have been replaced by random shapes.
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Figure 4 The figure represents the convolution of white noise with a smooth function of
compact support, using a color scale. This scalar field can be used to construct a matrix
field z — a(x) satisfying our assumptions, see (0.10).



Frequently asked questions

Where is the independence assumption used?

The unit range of dependence assumption (0.6) is obviously very important, and
to avoid diluting its power we use it sparingly. We list here all the places in the
book where it is invoked:

The proof of Proposition 1.3 (which is made redundant by the following one).

The proof of Lemma 2.10 (and the generalizations of this lemma appearing in
Chapters 10 and 11). This lemma lies at the heart of the iteration argument in
Chapter 2, as it is here that we obtain our first estimate on the correspondence
between spatial averages of gradients and fluxes of solutions. Notice that
the proof does not use the full strength of the independence assumption, it
actually requires only a very weak assumption of correlation decay.

The last step of the proof of Theorem 2.4 (and the generalizations of this
theorem appearing in Chapters 10 and 11). Here independence is used
very strongly to obtain homogenization estimates with optimal stochastic
integrability.

The proof of Proposition 4.12 in Section 4.5, where we control the fluctuations
of the quantity J; inside the bootstrap argument.

The proof of Proposition 4.27 in Section 4.7, where we prove sharper bounds
on the first-order correctors in dimension d = 2.

In Section 5.4, where we prove the central limit theorem for the quantity .J;.
This can be considered a refinement of Proposition 4.12.

In Section 9.1 in the proofs of Lemmas 9.7 and 9.10.

In particular, all of the results of Chapters 2 and 3 are obtained with only two very
straightforward applications of independence.

xvi
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Can the independence assumption be relaxed?

Yes. One of the advantages of the approach presented in this book is that the
independence assumption is applied only to sums of local random variables. Any
reasonable decorrelation condition or mixing-type assumption will give estimates
regarding the stochastic cancellations of sums of local random variables (indeed,
this is essentially a tautology). Therefore, while the statements of the theorems
may need to be modified for weaker assumptions (for instance, the strong stochastic
integrability results we obtain under a finite range of dependence assumption may
have to be weakened), the proofs will only require straightforward adaptations.
In fact, since we have only used independence in a handful of places in the text,
enumerated above, it is not a daunting task to perform these adaptations. This
is in contrast to alternative approaches in quantitative stochastic homogenization
which use nonlinear concentration inequalities and therefore are much less robust
to changes in the hypotheses.

The reason for formalizing the results under the strongest possible mixing
assumption (finite range of dependence) rather than attempting write a very
general result is, therefore, not due to a limitation of the arguments. It is simply
because we favor clarity of exposition over generality.

Can the uniform ellipticity assumption be relaxed?

One of the principles of this book is that one should avoid using small-scale or
pointwise properties of the solutions or of the equation and focus rather on large-
scale, averaged information. In particular, especially in the first part of the book,
we concentrate on the energy quantities v, v* and J; which can be thought of as
“coarsened coefficients” in analogy to a renormalization scheme (see Remark 2.3).
The arguments we use adhere to this philosophy rather strictly. In particular, they
are adaptable to situations in which the matrix a(z) is not necessarily uniformly
positive definite, provided we have some quantitative information regarding the
law of its condition number. This is because such assumptions can be translated
into quantitative information about J; which suffices to run the renormalization
arguments of Chapter 2. A demonstration of the robustness of these methods can
also be found in [9], which adapted Chapters 2 and 3 of this manuscript to obtain
the first quantitative homogenization results on supercritical percolation clusters
(a particularly extreme example of a degenerate environment).

Do the results in this book apply to elliptic systems?

Since the notation for elliptic systems is a bit distracting, we have decided to
use scalar notation. However, throughout most of the book, we use exclusively
arguments which also work for systems of equations (satisfying the uniform ellipticity
assumption). The only exceptions are the last two sections of Chapter 8 and
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Chapter 9, where we do use some scalar estimates (the De Giorgi-Nash L* bound
and variations) which make it easier to work with Green functions. In particular,
we claim that all of the statements and proofs appearing in this book, with the
exception of those appearing in those two chapters, can be adapted to the case of
elliptic systems with easy and straightforward modifications to the notation.

This book is written for equations in the continuum. Do the arguments
apply to finite difference equations on Z97?

The techniques developed in the book are robust to the underlying structure of the
environment on the microscopic scale. What is the important is that the “geometry’
of the macroscopic medium is like that of R? in the sense that certain functional
inequalities (such as the Sobolev inequality) hold on large scales. In the case
that R¢ is replaced by Z¢, the modifications are relatively straightforward: besides
changes to the notation, there is just the slight detail that the boundary of a large
cube has a nonzero volume, which creates an additional error term in Chapter 2
causing no harm. If one has a more complicated microstructure like a random
graph, such as a supercritical Bernoulli percolation cluster, it is necessary to first
establish the “geometric regularity” of the graph in the sense that Sobolev-type
inequalities hold on large scales. The techniques described in this book can then
be readily applied: see [9].

)

Can I find a simple proof of qualitative homogenization somewhere here?

The arguments in Chapter 1 only need to be slightly modified in order to obtain
a more general qualitative homogenization result valid in the case that the unit
range of dependence assumption is relaxed to mere ergodicity. In other words, in
place of (0.6) we assume instead that

if AeF satisfies T,A = A for all z € Z4, then P[A] € {0,1}. (0.11)

In fact, the only argument that needs to be modified is the proof of Proposition 1.3,
since it is the only place in the chapter where independence is used. Moreover, that
argument is essentially a proof of the subadditive ergodic theorem in the special
case of the unit range of dependence assumption (0.6). In the general ergodic
case (0.11), one can simply directly apply the subadditive ergodic theorem (see for
instance [3|) to obtain, in place of (1.29), the estimate

P[limsup la(Od0,) -a| = O] =1.

n—oo

The rest of the arguments in that chapter are deterministic and imply that the
random variable £’(¢) in Theorem 1.12 satisfies P [limsup,_,&’(¢) =0] = 1.
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What do we learn about reversible diffusions in random environments?

Just as we learn about Brownian motion from properties of harmonic functions
(and conversely), the study of divergence-form operators gives us information
about the associated diffusion processes. To start with, De Giorgi-Nash-Aronson
estimates recalled in (E.7) and Proposition E.3 can be used together with the
classical Kolmogorov extension and continuity theorems (see [23, Theorem 36.2]
and [108, Theorem 1.2.1]) to define these stochastic processes. Denoting by P2 the
probability law of the diffusion process starting from x € R%, and by (X (t))s0 the
canonical process, we have by construction that, for every a € {2, Borel measurable
set AcR? and (t,z) € (0,00) x RY,

P2[X, ¢ A] = fA P(t,z,y) dy, (0.12)

where P(t,x,y) is the parabolic Green function defined in Proposition E.1. The
statement . ) -
for every x e RY,  t2P(t,0,t21) ta—s> P(1,0,x),

where P is the parabolic Green function for the homogenized operator, can thus
be interpreted as a (quenched) local central limit theorem for the diffusion process.
Seen in this light, Theorem 8.17 gives us a first quantitative version of this local
central limit theorem. The much more precise Theorem 9.11 gives an optimal rate
of convergence for this statement, and can thus be interpreted as analogous to the
classical Berry-Esseen result on the rate of convergence in the central limit theorem
for sums of independent random variables (see [106, Theorem 5.5|).



Notation

Sets and Euclidean space

The set of nonnegative integers is denoted by N := {0,1,2,...}. The set of real
numbers is written R. When we write R™ we implicitly assume that m € N~ {0}.
For each x,y € R™, the scalar product of  and y is denoted by x -y, their tensor
product by z ® y and the Euclidean norm on R™ is |-|. The canonical basis of
R™ is written as {ej1,...,e,}. We let B denote the Borel o—algebra on R™. A
domain is an open connected subset of R™. The notions of C** domain and
Lipschitz domain are defined in Definition B.1. The boundary of U ¢ R™ is denoted
by OU and its closure by U. The open ball of radius r > 0 centered at z € R™
is B.(z) :=={yeR™ : |x—y| <r}. The distance from a point to a set V ¢ R™ is
written dist(x, V) :=inf {|z —y| : ye V'}. For r >0 and U € R™, we define

Upi={xeU : dist(x,0U) >r} and U":={xeR™ :dist(z,U)<r}. (0.13)

For A >0, we set AU = {\x : x e U}. If m,n e N~ {0}, the set of m x n matrices
with real entries is denoted by R™". We typically denote an element of R™*"
by a boldfaced latin letter, such as m, and its entries by (m;;). The subset of

R™™ of symmetric matrices is written R and the set of n-by-n skew-symmetric

matrices is R . The identity matrix is denoted Id. If r,s € R then we write
rvs:=max{r,s} and r A s := min{r, s}. We also denote r, :=rv0 and r_ := —=(rA0).

We use triadic cubes throughout the book. For each m € N, we denote
1, 1. \¢
O, = [ -=3™,=3™| c R4 0.14
(-33m33") (0.14)

Observe that, for each n € N with n < m, the cube O,, can be partitioned (up to a set
of zero Lebesgue measure) into exactly 3%(m=") subcubes which are Z?-translations
of O,, namely {z+0, : z€3"Zn0O,,}.

XX
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Calculus

If UcR?and f:U — R, we denote the partial derivatives of f by 0,.f or simply
0; f, which unless otherwise indicated, is understood in the sense of distributions.
The gradient of f is denoted by Vf := (01 f,...,04f). The Hessian of f is denoted

.....

..........

A vector field on U ¢ R?, typically denoted by a boldfaced latin letter, is a
function f : U - R4, The divergence of f is V-f = Y4, 9, f;, where the (f;) are the
entries of f, i.e., £ =(f1,... f4).

Holder and Lebesgue spaces

For k € Nu {0}, the set of functions f: U — R which are k times continuously
differentiable in the classical sense is denoted by C*(U). We denote by C*(U)
the collections of C*(U) functions with compact support in U. For k € N and
« € (0,1], we denote the classical Holder spaces by C*<(U), which are the functions
u € CF(U) for which the norm

k
[t tnery = 32 50D 9" 0(@)] + [V5] .
n=0 zeU

is finite, where []co.a(pry is the seminorm defined by

u(z) —u(y)
U 0. = su e
[ ]007 @) ﬂc,yeUE#y |x - y|a

For every Borel set U € B, we denote by |U| the Lebesgue measure of U. For
an integrable function f:U — R, we may denote the integral of f in a compact

notation by
Lf:[]f(x)dx

For U € R? and p € [1,00], we denote by LP(U) the Lebesgue space on U with
exponent p, that is, the set of measurable functions f:U — R satisfying

||f||Lp(U) = ([] |f|p); < 00.

The vector space of functions on U which belong to L?(V') whenever V' is bounded
and V c U is denoted by L (U). If |U| < oo and f € L'(U), then we write

loc
freqils
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The average of a function f e L'(U) on U is also sometimes denoted by

(f)U:][(;f-

To make it easier to keep track of scalings, we very often work with rescaled versions
of LP norms: for every pe[1,00) and f e LP(U), we set

= (£177) =10 Sl

For convenience, we may also use the notation |f|r~w) = [f|re~@w). If X is a
Banach space, then LP(U; X') denotes the set of measurable functions f: U - X
such that z — | f(x)|y € LP(U). We denote the corresponding norm by | f| 1, y.x)-
By abuse of notation, we will sometimes write f € LP(U) if f: U - R™ is a vector
field such that |f| € LP(U) and denote |f[ ey = |f|rwrmy = |Ifl|Lry. For
feLP(RY) and g e L' (R?) with |+ =1, we denote the convolution of f and g by

(F=9)@) = [ @ =y)g(y)dy.

Special functions

For p € R4, we denote the affine function with slope p passing through the origin by
ly(x):=p- .

Unless otherwise indicated, ¢ € C°(R?) denotes the standard mollifier

B {cd exp (—(1-|z[*)™") if 2] <1,

0.15
0 if |z| > 1, (0.15)

with the multiplicative constant c¢; chosen so that fRdC = 1. We denote, for § >0,

x
Go(x) = 07% (5) : (0.16)
The standard heat kernel is denoted by
_d |z|?
O(t,z):= (4nt) 2 -——
(t.) = (4mt) F exp (-5

and define, for each z €e R4 and r > 0,
P, (2)=®(r*,z-2) and D, :=Pg,.

We also denote by Py the set of real polynomials on R¢ of order at most k.
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Sobolev and fractional Sobolev spaces

For k € N and p € [1,00], we denote by W#P(U) the classical Sobolev space,
see Definition B.2 in Appendix B. The corresponding norm is |- \]Wk,p(U). For
a € (0,00) \ N, the space W*P(U) is the fractional Sobolev space introduced
in Definition B.3, with norm ||y, For a € (0,00), we denote by Wy (U)
the closure of C°(U) in WaP(U). We also use the shorthand notation

HYU) =W*(U) and H§U):=W*(U) (0.17)

with corresponding norms |- | ya iy = |- lywaw -
As for LP spaces, it is useful to work with normalized and scale-invariant versions

of the Sobolev norms. We define the rescaled W*?(U) norm of a function u €
WEr(U) by

k j— .
lelwrowy = Z{;|U|]dk [v7ul ooy -
iz
Observe that
Hu (j)Hwk;P(AU) = )‘_k Huuw’w((]) . (0.18)

We also set |uf g1y = |ufyr12(). We use the notation Wi (U) and Hy (U) for
the spaces defined analogously to L (U).

loc

Negative Sobolev spaces

For o € (0,00), p € [1,00] and p’ := z% the Holder conjugate exponent of p, the
space W-P(U) is the space of distributions u such that the following norm is
finite:

I sup{ fU w : veCE=(U), [olyerw) <1}. (0.19)

We also set H-*(U) := W-*2(U). For p > 1, the space W-*P(U) is the space dual
to W' (U), and we have

T =sup{ fU w : v e WP (1), ||u||Wa,p,(U)<1}. (0.20)

We refer to Definition B.4 and Remark B.5 for details. The rescaled W-or(U)
norm is defined by

fullw-orey =sup{ £ uv + 0 eCEO), Polyory <1} (020

We also set |- | g1y = | - [ w-12¢)- These rescaled norms behave under dilations
in the following way: B

[ () yer iy = A Ttll-ep oy - (0.22)



XX1v Notation

Note that we have abused notation in (0.19)-(0.20), denoting by [, uv the
duality pairing between u and v. In other words, “ [, uv” denotes the duality
pairing that is normalized in such a way that if u,v € C>(U), then the notation
agrees with the usual integral. In (0.21), we understand that £, uv = |U[! [, uv.

It is sometimes useful to consider the slightly different space H-1(U) which is
the dual space to H!(U). We denote its (rescaled) norm by

Jull g1y = sup{]{]uv cve HYU) and [v] 1 < 1}. (0.23)
It is evident that H-1(U) ¢ H-}(U) and that we have
] - L) S ||U||H Ly (0.24)

Solenoidal and potential fields

We let L2, (