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Preface

Many microscopic models lead to partial differential equations with rapidly oscil-
lating coefficients. A particular example, which is the main focus of this book, is
the scalar, uniformly elliptic equation

−∇ ⋅ (a(x)∇u) = f,
where the interest is in the behavior of the solutions on length scales much larger
than the unit scale (the microscopic scale on which the coefficients are varying).
The coefficients are assumed to be valued in the positive definite matrices, and may
be periodic, almost periodic, or stationary random fields. Such equations arise in a
variety of contexts such as heat conduction and electromagnetism in heterogeneous
materials, or through their connection with stochastic processes.

To emphasize the highly heterogeneous nature of the problem, it is customary
to introduce a parameter 0 < ε≪ 1 to represent the ratio of the microscopic and
macroscopic scales. The equation is then rescaled as

−∇ ⋅ (a (x
ε
)∇uε) = f,

with the problem reformulated as that of determining the asymptotic behavior
of uε, subject to appropriate boundary conditions, as ε→ 0.

It has been known since the early 1980s that, under very general assumptions,
the solution uε of the heterogeneous equation converges in L2 to the solution u of
a constant-coefficient equation

−∇ ⋅ (a∇u) = f.
We call this the homogenized equation and the coefficients the homogenized or
effective coefficients. The matrix a will depend on the coefficients a (⋅) in a very
complicated fashion: there is no simple formula for a except in dimension d = 1
and some special situations in d = 2. However, if one is willing to perform the

v
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computational work of approximating the homogenized coefficients and to tolerate
the error in replacing uε by u, then there is a potentially huge payoff to be gained
in terms of a reduction of the complexity of the problem. Indeed, up to a change
of variables, the homogenized equation is simply the Poisson equation, which can
be numerically computed in linear time and memory and is obviously independent
of ε > 0. In contrast, the cost of computing the solution to the heterogeneous
equation explodes as ε becomes small, and can be considered out of reach.

There is a vast and rich mathematical literature on homogenization developed in
the last forty years and already many good expositions on the topic (see for instance
the books [5, 22, 27, 33, 34, 74, 80, 105, 113]). Most of these works are focused
on qualitative results, such as proving the existence of a homogenized equation
which characterizes the limit as ε→ 0 of solutions. The need to develop efficient
methods for determining a and for estimating the error in the homogenization
approximation (e.g., ∥uε −u∥L2) motivates the development of a quantitative theory
of homogenization. However, until recently, nearly all of the quantitative results
were confined to the rather restrictive case of periodic coefficients. The main reason
for this is that quantitative homogenization estimates in the periodic case are vastly
simpler to prove than under essentially any other hypothesis (even the almost
periodic case). Indeed, the problem can be essentially reduced to one on the torus
and compactness arguments then yield optimal estimates. In other words, in the
periodic setting, the typical arguments of qualitative homogenization theory can
be made quantitative in a relatively straightforward way.

This book is concerned with the quantitative theory of homogenization for
nonperiodic coefficient fields, focusing on the case in which a(x) is a stationary
random field satisfying quantitative ergodicity assumptions. This is a topic which
has undergone a rapid development since its birth at the beginning of this decade,
with new results and more precise estimates coming at an ever accelerating pace.
Very recently, there has been a convergence toward a common philosophy and set
of core ideas, which have resulted in a complete and optimal theory. The purpose
of this book is to give this theory a complete and self-contained presentation.

We have written it with several purposes and audiences in mind. Experts
on the topic will find new results as well as arguments which have been greatly
simplified compared to the previous state of the literature. Researchers interested
in stochastic homogenization will hopefully find a useful reference to the main
results in the field and a roadmap to the literature. Our approach to certain
topics, such as the construction of the Gaussian free field or the relation between
Sobolev norms and the heat kernel, could be of independent interest to certain
segments of the probability and analysis communities. We have written the book
with newcomers to homogenization in mind and, most of all, graduate students and
young researchers. In particular, we expect that readers with a basic knowledge of
probability and analysis, but perhaps without expertise in elliptic regularity, the
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Gaussian free field, negative and fractional Sobolev spaces, etc, should not have
difficulty following the flow of the book. These topics are introduced as they arise
and are developed in a mostly self-contained way.

Before we give a summary of the topics we cover and the approach we take, let
us briefly recall the historical and mathematical context. In the case of stationary
random coefficients, there were very beautiful, soft arguments given independently in
the early 1980s by Kozlov [81], Papanicolaou and Varadhan [104] and Yurinskĭı [119]
which give proofs of qualitative homogenization under very general hypotheses. A
few years later, Dal Maso and Modica [35, 36] extended these results to nonlinear
equations using variational arguments inspired by Γ-convergence. Each of the
proofs in these papers relies in some way on an application of the ergodic theorem
applied to the gradient (or energy density) of certain solutions of the heterogeneous
equation. In order to obtain a convergence rate for the limit given by the ergodic
theorem, it is necessary to verify quantitative ergodic conditions on the underlying
random sequence or field. It is therefore necessary and natural to impose such a
condition on the coefficient field a(x). However, even under the strongest of mixing
assumptions (such as the finite range of dependence assumption we work with for
most of this book), one faces the difficulty of transferring the quantitative ergodic
information contained in these strong mixing properties from the coefficients to
the solutions, since the ergodic theorem is applied to the latter. This is difficult
because, of course, the solutions depend on the coefficient field in a very complicated,
nonlinear and nonlocal way.

Gloria and Otto [65, 66] were the first to address this difficulty in a satisfactory
way in the case of coefficient fields that can be represented as functions of countably
many independent random variables. They used an idea from statistical mechanics,
previously introduced in the context of homogenization by Naddaf and Spencer [99],
of viewing the solutions as functions of these independent random variables and
applying certain general concentration inequalities such as the Efron-Stein or
logarithmic Sobolev inequalities. If one can quantify the dependence of the solutions
on a resampling of each independent random variable, then these inequalities
immediately give bounds on the fluctuations of solutions. Gloria and Otto used
this method to derive estimates on the first-order correctors which are optimal in
terms of the ratio of length scales (although not optimal in terms of stochastic
integrability).

The point of view developed in this book is different and originates in works of
Armstrong and Smart [15], Armstrong and Mourrat [13], and the authors [11, 12].
Rather than study solutions of the equation directly, the main idea is to focus on
certain energy quantities, which allow us to implement a progressive coarsening
of the coefficient field and capture the behavior of solutions on large—but finite—
length scales. The approach can thus be compared with renormalization group
arguments in theoretical physics. The core of the argument is to establish that on
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large scales, these energy quantities are in fact essentially local, additive functions
of the coefficient field. It is then straightforward to optimally transfer the mixing
properties of the coefficients to the energy quantities and then to the solutions.

The quantitative analysis of the energy quantities is the focus of the first part
of the book. After a first introductory chapter, the strategy naturally breaks into
several distinct steps:

• Obtaining an algebraic rate of convergence for the homogenization limits,
using the subadditive and convex analytic structure endowed by the vari-
ational formulation of the equation (Chapter 2). Here the emphasis is on
obtaining estimates with optimal stochastic integrability, while the exponent
representing the scaling of the error is suboptimal.

• Establishing a large-scale regularity theory: it turns out that solutions of
an equation with stationary random coefficients are much more regular
than one can show from the usual elliptic regularity for equations with
measurable coefficients (Chapter 3). We prove this by showing that the extra
regularity is inherited from the homogenized equation by approximation,
using a Campanato-type iteration and the quantitative homogenization results
obtained in the previous chapter.

• Implementing a modification of the renormalization scheme of Chapter 2,
with the major additional ingredient of the large-scale regularity theory, to
improve the convergence of the energy quantities to the optimal rate predicted
by the scaling of the central limit theorem. Consequently, deriving optimal
quantitative estimates for the first-order correctors (Chapter 4).

• Characterizing the fluctuations of the energy quantities by proving conver-
gence to white noise and consequently obtaining the scaling limit of the
first-order correctors to a modified Gaussian free field (Chapter 5).

• Combining the optimal estimates on the first-order correctors with classical
arguments from homogenization theory to obtain optimal estimates on the
homogenization error, and the two-scale expansion, for Dirichlet and Neumann
boundary value problems (Chapter 6).

These six chapters represent, in our view, the essential part of the theory.
The first four chapters should be read consecutively (Sections 3.5 and 3.6 can be
skipped), while the Chapters 5 and 6 are independent of each other.

Chapter 7 complements the regularity theory of Chapter 3 by developing local
and global gradient Lp estimates (2 < p < ∞) of Calderón-Zygmund-type for
equations with right-hand side. Using these estimates, in Section 7.3 we extend
the results of Chapter 6 by proving optimal quantitative bounds on the error of
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the two-scale expansion in W 1,p-type norms. Except for the last section, which
requires the optimal bounds on the first-order correctors proved in Chapter 4, this
chapter can be read after Chapter 3.

Chapter 8 extends the analysis to the time-dependent parabolic equation

∂tu −∇ ⋅ a∇u = 0.

The main focus is on obtaining a suboptimal error estimate for the Cauchy-Dirichlet
problem and a parabolic version of the large-scale regularity theory. Here the
coefficients a(x) depend only on space, and the arguments in the chapter rely on
the estimates on first-order correctors obtained in Chapters 2 and 3 in addition
to some relatively routine deterministic arguments. In Chapter 8 we also prove
decay estimates on the elliptic and parabolic Green functions as well as on their
derivatives, homogenization error and two-scale expansions.

In Chapter 9, we study the decay, as t → ∞, of the solution u(t, x) of the
parabolic initial-value problem

{∂tu −∇ ⋅ (a∇u) = 0 in (0,∞) ×Rd,

u(0, ⋅) = ∇ ⋅ g on Rd,

where g is a bounded, stationary random field with a unit range of dependence.
We show that the solution u decays to zero at the same rate as one has in the case
a = Id. As an application, we upgrade the quantitative homogenization estimates for
the parabolic and elliptic Green functions to the optimal scaling (see Theorem 9.11
and Corollary 9.12).

In Chapter 10, we show how the variational methods in this book can be adapted
to non-self adjoint operators, in other words, linear equations with nonsymmetric
coefficients. In Chapter 11 we give a generalization to the case of nonlinear equations.
In particular, in both of these chapters we give a full generalization of the results
of Chapters 1 and 2 to these settings as well as the large-scale C0,1 estimate of
Chapter 3.

This version of the manuscript is essentially complete and, except for small
changes and corrections and a modest expansion of Chapter 9, we expect to publish
it in close to its present form.

We would like to thank several of our colleagues and students for their helpful
comments, suggestions, and corrections: Alexandre Bordas, Sanchit Chaturvedi,
Paul Dario, Sam Ferguson, Chenlin Gu, Jan Kristensen, Jules Pertinand, Christophe
Prange, Armin Schikorra, Charlie Smart, Tom Spencer, Stephan Wojtowytsch, Wei
Wu and Ofer Zeitouni. We particularly thank Antti Hannukainen for his help with
the numerical computations that generated Figure 5.3. SA was partially supported
by NSF Grant DMS-1700329. TK was partially supported by the Academy of
Finland and he thanks Giuseppe Mingione for the invitation to give a graduate
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course at the University of Parma. JCM was partially supported by the ANR grant
LSD (ANR-15-CE40-0020-03).

There is no doubt that small mistakes and typos remain in the manuscript,
and so we encourage readers to send any they may find, as well as any comments,
suggestions and criticisms, by email. Until the manuscript is complete, we will
keep the latest version on our webpages. After it is published as a book, we will
also maintain a list of typos and misprints found after publication.

Scott Armstrong, New York
Tuomo Kuusi, Helsinki

Jean-Christophe Mourrat, Paris



Assumptions and examples

We state here the assumptions which are in force throughout most of the book,
and present some concrete examples of coefficient fields satisfying them.

Assumptions

Except where specifically indicated otherwise, the following standing assumptions
are in force throughout the book.

We fix a constant Λ > 1 called the ellipticity constant, and a dimension d ⩾ 2.
We let Ω denote the set of all measurable maps a(⋅) from Rd into the set of

symmetric d × d matrices, denoted by Rd×d
sym, which satisfy the uniform ellipticity

and boundedness condition

∣ξ∣2 ⩽ ξ ⋅ a(x)ξ ⩽ Λ ∣ξ∣2 , ∀ξ ∈ Rd. (0.1)

That is,

Ω ∶= {a ∶ a is a Lebesgue measurable map from Rd to Rd×d
sym satisfying (0.1)} .

(0.2)
The entries of an element a ∈ Ω are written as aij, i, j ∈ {1, . . . , d}.

We endow Ω with a family of σ-algebras {FU} indexed by the family of Borel
subsets U ⊆ Rd, defined by

FU ∶= the σ-algebra generated by the following family:

{a↦ ∫
Rd

aij(x)ϕ(x)dx ∶ ϕ ∈ C∞
c (U), i, j ∈ {1, . . . , d}} . (0.3)

The largest of these σ-algebras is denoted F ∶= FRd . For each y ∈ Rd, we let
Ty ∶ Ω→ Ω be the action of translation by y,

(Tya) (x) ∶= a(x + y), (0.4)

xi
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and extend this to elements of F by defining TyE ∶= {Tya ∶ a ∈ E}.
Except where indicated otherwise, we assume throughout the book that P is a

probability measure on the measurable space (Ω,F) satisfying the following two
important assumptions:

• Stationarity with respect to Zd-translations:

P ○ Tz = P for every z ∈ Zd. (0.5)

• Unit range of dependence:

FU and FV are P-independent for every pair U,V ⊆ Rd

of Borel subsets satisfying dist(U,V ) ⩾ 1.
(0.6)

We denote the expectation with respect to P by E. That is, if X ∶ Ω → R is anF -measurable random variable, we write

E [X] ∶= ∫
Ω
X(a)dP(a). (0.7)

While all random objects we study in this text are functions of a ∈ Ω, we do not
typically display this dependence explicitly in our notation. We rather use the
symbol a or a(x) to denote the canonical coefficient field with law P.

Examples satisfying the assumptions

The simplest way to construct explicit examples satisfying the assumptions of
uniform ellipticity (0.1), stationarity (0.5) and (0.6) is by means of a “random
checkerboard” structure: we pave the space by unit-sized cubes and color each
cube either white or black independently at random. Each color is then associated
with a particular value of the diffusivity matrix. More precisely, let (b(z))z∈Zd be
independent random variables such that for every z ∈ Zd,

P[b(z) = 0] = P[b(z) = 1] = 1

2
,

and fix two matrices a0,a1 belonging to the set

{ã ∈ Rd×d
sym ∶ ∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ ãξ ⩽ Λ ∣ξ∣2} . (0.8)

We can then define a random field x ↦ a(x) satisfying (0.1) and with a law
satisfying (0.5) and (0.6) by setting, for every z ∈ Zd and x ∈ z + [−1

2 ,
1
2
)d,

a(x) = ab(z).
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Figure 1 A piece of a sample of a random checkerboard. The conductivity matrix is
equal to a0 in the black region, and a1 in the white region.

This example is illustrated on Figure 1. It can be generalized as follows: we
give ourselves a family (a(z))z∈Zd of independent and identically distributed (i.i.d.)
random variables taking values in the set (0.8), and then extend the field z ↦ a(z)
by setting, for every z ∈ Zd and x ∈ z + [−1

2 ,
1
2
)d,

a(x) ∶= a(z).
Another class of examples can be constructed using homogeneous Poisson point

processes. We recall that a Poisson point process on a measurable space (E,E)
with (non-atomic, σ-finite) intensity measure µ is a random subset Π of E such
that the following properties hold (see also [79]):

• For every measurable set A ∈ E , the number of points in Π ∩A, which we
denote by N(A), follows a Poisson law of mean µ(A);

• For every pairwise disjoint measurable sets A1, . . . ,Ak ∈ E , the random vari-
ables N(A1), . . . , N(Ak) are independent.

Let Π be a Poisson point process on Rd with intensity measure given by a multiple
of the Lebesgue measure. Fixing two matrices a0,a1 belonging to the set (0.8), we
may define a random field x↦ a(x) by setting, for every x ∈ Rd,

a(x) ∶= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0 if dist(x,Π) ⩽ 1

2
,

a1 otherwise.
(0.9)
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Figure 2 A sample of the coefficient field defined in (0.9) by the Poisson point cloud.
The matrix a is equal to a0 in the black region and to a1 in the white region.

This example is illustrated on Figure 2. More complicated examples can be
constructed using richer point processes. For instance, in the construction above,
each point of Π imposes the value of a(x) in a centered ball of radius 1/2; we may
wish to construct examples where this radius itself is random. In order to do so, let
λ > 0, let µ denote a probability measure on [0, 1

2
] (the law of the random radius),

and let Π be a Poisson point process on Rd ×R with intensity measure λdx ⊗ µ
(where dx denotes the Lebesgue measure on Rd). We then set, for every x ∈ Rd,

a(x) ∶= {a0 if there exists (z, r) ∈ Π such that ∣x − z∣ ⩽ r,
a1 otherwise.

Minor variants of this example allow for instance to replace balls by random shapes,
to allow the conductivity matrix to take more than two values, etc. See Figure 3
for an example.

Yet another class of examples can be obtained by defining the coefficient field
x↦ a(x) as a local function of a white noise field. We refer to Definition 5.1 and
Proposition 5.9 for the definition and construction of white noise. For instance,
given a scalar white noise W, we may fix a smooth function φ ∈ C∞

c (Rd) with
support in B1/2, a smooth function F from Rd into the set (0.8), and define

a(x) = F ((W ∗ φ)(x)). (0.10)

See Figure 4 for a representation of the scalar field x↦ (W ∗ φ)(x).



Assumptions and examples xv

Figure 3 This coefficient field is sampled from the same distribution as in Figure 2,
except that the balls have been replaced by random shapes.

Figure 4 The figure represents the convolution of white noise with a smooth function of
compact support, using a color scale. This scalar field can be used to construct a matrix
field x↦ a(x) satisfying our assumptions, see (0.10).



Frequently asked questions

Where is the independence assumption used?

The unit range of dependence assumption (0.6) is obviously very important, and
to avoid diluting its power we use it sparingly. We list here all the places in the
book where it is invoked:

• The proof of Proposition 1.3 (which is made redundant by the following one).

• The proof of Lemma 2.10 (and the generalizations of this lemma appearing in
Chapters 10 and 11). This lemma lies at the heart of the iteration argument in
Chapter 2, as it is here that we obtain our first estimate on the correspondence
between spatial averages of gradients and fluxes of solutions. Notice that
the proof does not use the full strength of the independence assumption, it
actually requires only a very weak assumption of correlation decay.

• The last step of the proof of Theorem 2.4 (and the generalizations of this
theorem appearing in Chapters 10 and 11). Here independence is used
very strongly to obtain homogenization estimates with optimal stochastic
integrability.

• The proof of Proposition 4.12 in Section 4.5, where we control the fluctuations
of the quantity J1 inside the bootstrap argument.

• The proof of Proposition 4.27 in Section 4.7, where we prove sharper bounds
on the first-order correctors in dimension d = 2.

• In Section 5.4, where we prove the central limit theorem for the quantity J1.
This can be considered a refinement of Proposition 4.12.

• In Section 9.1 in the proofs of Lemmas 9.7 and 9.10.

In particular, all of the results of Chapters 2 and 3 are obtained with only two very
straightforward applications of independence.

xvi
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Can the independence assumption be relaxed?

Yes. One of the advantages of the approach presented in this book is that the
independence assumption is applied only to sums of local random variables. Any
reasonable decorrelation condition or mixing-type assumption will give estimates
regarding the stochastic cancellations of sums of local random variables (indeed,
this is essentially a tautology). Therefore, while the statements of the theorems
may need to be modified for weaker assumptions (for instance, the strong stochastic
integrability results we obtain under a finite range of dependence assumption may
have to be weakened), the proofs will only require straightforward adaptations.
In fact, since we have only used independence in a handful of places in the text,
enumerated above, it is not a daunting task to perform these adaptations. This
is in contrast to alternative approaches in quantitative stochastic homogenization
which use nonlinear concentration inequalities and therefore are much less robust
to changes in the hypotheses.

The reason for formalizing the results under the strongest possible mixing
assumption (finite range of dependence) rather than attempting write a very
general result is, therefore, not due to a limitation of the arguments. It is simply
because we favor clarity of exposition over generality.

Can the uniform ellipticity assumption be relaxed?

One of the principles of this book is that one should avoid using small-scale or
pointwise properties of the solutions or of the equation and focus rather on large-
scale, averaged information. In particular, especially in the first part of the book,
we concentrate on the energy quantities ν, ν∗ and J1 which can be thought of as
“coarsened coefficients” in analogy to a renormalization scheme (see Remark 2.3).
The arguments we use adhere to this philosophy rather strictly. In particular, they
are adaptable to situations in which the matrix a(x) is not necessarily uniformly
positive definite, provided we have some quantitative information regarding the
law of its condition number. This is because such assumptions can be translated
into quantitative information about J1 which suffices to run the renormalization
arguments of Chapter 2. A demonstration of the robustness of these methods can
also be found in [9], which adapted Chapters 2 and 3 of this manuscript to obtain
the first quantitative homogenization results on supercritical percolation clusters
(a particularly extreme example of a degenerate environment).

Do the results in this book apply to elliptic systems?

Since the notation for elliptic systems is a bit distracting, we have decided to
use scalar notation. However, throughout most of the book, we use exclusively
arguments which also work for systems of equations (satisfying the uniform ellipticity
assumption). The only exceptions are the last two sections of Chapter 8 and
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Chapter 9, where we do use some scalar estimates (the De Giorgi-Nash L∞ bound
and variations) which make it easier to work with Green functions. In particular,
we claim that all of the statements and proofs appearing in this book, with the
exception of those appearing in those two chapters, can be adapted to the case of
elliptic systems with easy and straightforward modifications to the notation.

This book is written for equations in the continuum. Do the arguments
apply to finite difference equations on Zd?

The techniques developed in the book are robust to the underlying structure of the
environment on the microscopic scale. What is the important is that the “geometry”
of the macroscopic medium is like that of Rd in the sense that certain functional
inequalities (such as the Sobolev inequality) hold on large scales. In the case
that Rd is replaced by Zd, the modifications are relatively straightforward: besides
changes to the notation, there is just the slight detail that the boundary of a large
cube has a nonzero volume, which creates an additional error term in Chapter 2
causing no harm. If one has a more complicated microstructure like a random
graph, such as a supercritical Bernoulli percolation cluster, it is necessary to first
establish the “geometric regularity” of the graph in the sense that Sobolev-type
inequalities hold on large scales. The techniques described in this book can then
be readily applied: see [9].

Can I find a simple proof of qualitative homogenization somewhere here?

The arguments in Chapter 1 only need to be slightly modified in order to obtain
a more general qualitative homogenization result valid in the case that the unit
range of dependence assumption is relaxed to mere ergodicity. In other words, in
place of (0.6) we assume instead that

if A ∈ F satisfies TzA = A for all z ∈ Zd, then P [A] ∈ {0,1}. (0.11)

In fact, the only argument that needs to be modified is the proof of Proposition 1.3,
since it is the only place in the chapter where independence is used. Moreover, that
argument is essentially a proof of the subadditive ergodic theorem in the special
case of the unit range of dependence assumption (0.6). In the general ergodic
case (0.11), one can simply directly apply the subadditive ergodic theorem (see for
instance [3]) to obtain, in place of (1.29), the estimate

P [lim sup
n→∞

∣a(◻n) − a∣ = 0] = 1.

The rest of the arguments in that chapter are deterministic and imply that the
random variable E ′(ε) in Theorem 1.12 satisfies P [lim supε→0 E ′(ε) = 0] = 1.
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What do we learn about reversible diffusions in random environments?

Just as we learn about Brownian motion from properties of harmonic functions
(and conversely), the study of divergence-form operators gives us information
about the associated diffusion processes. To start with, De Giorgi-Nash-Aronson
estimates recalled in (E.7) and Proposition E.3 can be used together with the
classical Kolmogorov extension and continuity theorems (see [23, Theorem 36.2]
and [108, Theorem I.2.1]) to define these stochastic processes. Denoting by Pa

x the
probability law of the diffusion process starting from x ∈ Rd, and by (X(t))t⩾0 the
canonical process, we have by construction that, for every a ∈ Ω, Borel measurable
set A ⊆ Rd and (t, x) ∈ (0,∞) ×Rd,

Pa
x [Xt ∈ A] = ∫

A
P (t, x, y)dy, (0.12)

where P (t, x, y) is the parabolic Green function defined in Proposition E.1. The
statement

for every x ∈ Rd, t
d
2P (t,0, t 12x) a.s.ÐÐ→

t→∞
P (1,0, x),

where P is the parabolic Green function for the homogenized operator, can thus
be interpreted as a (quenched) local central limit theorem for the diffusion process.
Seen in this light, Theorem 8.17 gives us a first quantitative version of this local
central limit theorem. The much more precise Theorem 9.11 gives an optimal rate
of convergence for this statement, and can thus be interpreted as analogous to the
classical Berry-Esseen result on the rate of convergence in the central limit theorem
for sums of independent random variables (see [106, Theorem 5.5]).
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Sets and Euclidean space

The set of nonnegative integers is denoted by N ∶= {0,1,2, . . .}. The set of real
numbers is written R. When we write Rm we implicitly assume that m ∈ N ∖ {0}.
For each x, y ∈ Rm, the scalar product of x and y is denoted by x ⋅ y, their tensor
product by x ⊗ y and the Euclidean norm on Rm is ∣ ⋅ ∣. The canonical basis of
Rm is written as {e1, . . . , em}. We let B denote the Borel σ–algebra on Rm. A
domain is an open connected subset of Rm. The notions of Ck,α domain and
Lipschitz domain are defined in Definition B.1. The boundary of U ⊆ Rm is denoted
by ∂U and its closure by U . The open ball of radius r > 0 centered at x ∈ Rm

is Br(x) ∶= {y ∈ Rm ∶ ∣x − y∣ < r}. The distance from a point to a set V ⊆ Rm is
written dist(x,V ) ∶= inf {∣x − y∣ ∶ y ∈ V }. For r > 0 and U ⊆ Rm, we define

Ur ∶= {x ∈ U ∶ dist(x, ∂U) > r} and U r ∶= {x ∈ Rm ∶ dist(x,U) < r} . (0.13)

For λ > 0, we set λU ∶= {λx ∶ x ∈ U}. If m,n ∈ N ∖ {0}, the set of m × n matrices
with real entries is denoted by Rm×n. We typically denote an element of Rm×n

by a boldfaced latin letter, such as m, and its entries by (mij). The subset of
Rn×n of symmetric matrices is written Rn×n

sym and the set of n-by-n skew-symmetric
matrices is Rn×n

skew. The identity matrix is denoted Id. If r, s ∈ R then we write
r∨s ∶= max{r, s} and r∧s ∶= min{r, s}. We also denote r+ ∶= r∨0 and r− ∶= −(r∧0).

We use triadic cubes throughout the book. For each m ∈ N, we denote

◻m ∶= (−1

2
3m,

1

2
3m)d ⊆ Rd. (0.14)

Observe that, for each n ∈ N with n ⩽m, the cube ◻m can be partitioned (up to a set
of zero Lebesgue measure) into exactly 3d(m−n) subcubes which are Zd-translations
of ◻n, namely {z +◻n ∶ z ∈ 3nZd ∩◻m}.

xx
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Calculus

If U ⊆ Rd and f ∶ U → R, we denote the partial derivatives of f by ∂xif or simply
∂if , which unless otherwise indicated, is understood in the sense of distributions.
The gradient of f is denoted by ∇f ∶= (∂1f, . . . , ∂df). The Hessian of f is denoted
by ∇2f ∶= (∂i∂jf)i,j∈{1,...,d}, and higher derivatives are denoted similarly:

∇kf ∶= (∂i1⋯∂ikf)i1,...,ik∈{1,...,d}

A vector field on U ⊆ Rd, typically denoted by a boldfaced latin letter, is a
function f ∶ U → Rd. The divergence of f is ∇ ⋅ f = ∑d

k=1 ∂ifi, where the (fi) are the
entries of f , i.e., f = (f1, . . . fd).
Hölder and Lebesgue spaces

For k ∈ N ∪ {∞}, the set of functions f ∶ U → R which are k times continuously
differentiable in the classical sense is denoted by Ck(U). We denote by Ck

c (U)
the collections of Ck(U) functions with compact support in U . For k ∈ N and
α ∈ (0, 1], we denote the classical Hölder spaces by Ck,α(U), which are the functions
u ∈ Ck(U) for which the norm

∥u∥Ck,α(U) ∶= k∑
n=0

sup
x∈U

∣∇nu(x)∣ + [∇ku]
C0,α(U)

is finite, where [ ⋅ ]C0,α(U) is the seminorm defined by

[u]C0,α(U) ∶= sup
x,y∈U,x≠y

∣u(x) − u(y)∣∣x − y∣α .

For every Borel set U ∈ B, we denote by ∣U ∣ the Lebesgue measure of U . For
an integrable function f ∶ U → R, we may denote the integral of f in a compact
notation by

∫
U
f ∶= ∫

U
f(x)dx.

For U ⊆ Rd and p ∈ [1,∞], we denote by Lp(U) the Lebesgue space on U with
exponent p, that is, the set of measurable functions f ∶ U → R satisfying

∥f∥Lp(U) ∶= (∫
U
∣f ∣p) 1

p < ∞.
The vector space of functions on U which belong to Lp(V ) whenever V is bounded
and V ⊆ U is denoted by Lploc(U). If ∣U ∣ < ∞ and f ∈ L1(U), then we write

⨏
U
f ∶= 1∣U ∣ ∫U f.
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The average of a function f ∈ L1(U) on U is also sometimes denoted by

(f)U ∶= ⨏
U
f.

To make it easier to keep track of scalings, we very often work with rescaled versions
of Lp norms: for every p ∈ [1,∞) and f ∈ Lp(U), we set

∥f∥Lp(U) ∶= (⨏
U
∣f ∣p) 1

p = ∣U ∣− 1
p ∥f∥Lp(U) .

For convenience, we may also use the notation ∥f∥L∞(U) ∶= ∥f∥L∞(U). If X is a
Banach space, then Lp(U ;X) denotes the set of measurable functions f ∶ U →X
such that x↦ ∥f(x)∥X ∈ Lp(U). We denote the corresponding norm by ∥f∥Lp(U ;X).
By abuse of notation, we will sometimes write f ∈ Lp(U) if f ∶ U → Rm is a vector
field such that ∣f ∣ ∈ Lp(U) and denote ∥f∥Lp(U) ∶= ∥f∥Lp(U ;Rm) = ∥∣f ∣∥Lp(U). For
f ∈ Lp(Rd) and g ∈ Lp′(Rd) with 1

p + 1
p′ = 1, we denote the convolution of f and g by

(f ∗ g)(x) ∶= ∫
Rd
f(x − y)g(y)dy.

Special functions

For p ∈ Rd, we denote the affine function with slope p passing through the origin by

`p(x) ∶= p ⋅ x.
Unless otherwise indicated, ζ ∈ C∞

c (Rd) denotes the standard mollifier

ζ(x) ∶= {cd exp (−(1 − ∣x∣2)−1) if ∣x∣ < 1,

0 if ∣x∣ ⩾ 1,
(0.15)

with the multiplicative constant cd chosen so that ∫Rd ζ = 1. We denote, for δ > 0,

ζδ(x) ∶= δ−dζ (x
δ
) . (0.16)

The standard heat kernel is denoted by

Φ(t, x) ∶= (4πt)− d2 exp(−∣x∣2
4t

)
and define, for each z ∈ Rd and r > 0,

Φz,r(x) ∶= Φ(r2, x − z) and Φr ∶= Φ0,r.

We also denote by Pk the set of real polynomials on Rd of order at most k.
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Sobolev and fractional Sobolev spaces

For k ∈ N and p ∈ [1,∞], we denote by W k,p(U) the classical Sobolev space,
see Definition B.2 in Appendix B. The corresponding norm is ∥ ⋅ ∥Wk,p(U). For
α ∈ (0,∞) ∖ N, the space Wα,p(U) is the fractional Sobolev space introduced
in Definition B.3, with norm ∥ ⋅ ∥Wα,p(U). For α ∈ (0,∞), we denote by Wα,p

0 (U)
the closure of C∞

c (U) in Wα,p(U). We also use the shorthand notation

Hα(U) ∶=Wα,2(U) and Hα
0 (U) ∶=Wα,2

0 (U) (0.17)

with corresponding norms ∥ ⋅ ∥Hα(U) = ∥ ⋅ ∥Wα,p(U).
As for Lp spaces, it is useful to work with normalized and scale-invariant versions

of the Sobolev norms. We define the rescaled W k,p(U) norm of a function u ∈
W k,p(U) by

∥u∥Wk,p(U) ∶= k∑
j=0

∣U ∣ j−kd ∥∇ju∥
Lp(U) .

Observe that ∥u ( ⋅
λ
)∥
Wk,p(λU) = λ−k ∥u∥Wk,p(U) . (0.18)

We also set ∥u∥H1(U) ∶= ∥u∥W 1,2(U). We use the notation Wα,p
loc (U) and Hα

loc(U) for
the spaces defined analogously to Lploc(U).
Negative Sobolev spaces

For α ∈ (0,∞), p ∈ [1,∞] and p′ ∶= p
p−1 the Hölder conjugate exponent of p, the

space W −α,p(U) is the space of distributions u such that the following norm is
finite: ∥u∥W−α,p(U) ∶= sup{∫

U
uv ∶ v ∈ C∞

c (U), ∥v∥Wα,p′(U) ⩽ 1} . (0.19)

We also set H−α(U) ∶=W −α,2(U). For p > 1, the space W −α,p(U) is the space dual
to Wα,p′

0 (U), and we have

∥u∥W−α,p(U) = sup{∫
U
uv ∶ v ∈Wα,p′

0 (U), ∥v∥Wα,p′(U) ⩽ 1} . (0.20)

We refer to Definition B.4 and Remark B.5 for details. The rescaled W −α,p(U)
norm is defined by

∥u∥W−α,p(U) ∶= sup{⨏
U
uv ∶ v ∈ C∞

c (U), ∥v∥Wα,p′(U) ⩽ 1} . (0.21)

We also set ∥ ⋅ ∥H−1(U) = ∥ ⋅ ∥W−1,2(U). These rescaled norms behave under dilations
in the following way:

∥u ( ⋅
λ
)∥
W−α,p(λU) = λα ∥u∥W−α,p(U) . (0.22)
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Note that we have abused notation in (0.19)-(0.20), denoting by ∫U uv the
duality pairing between u and v. In other words, “∫U uv” denotes the duality
pairing that is normalized in such a way that if u, v ∈ C∞

c (U), then the notation
agrees with the usual integral. In (0.21), we understand that ⨏U uv = ∣U ∣−1 ∫U uv.

It is sometimes useful to consider the slightly different space Ĥ−1(U) which is
the dual space to H1(U). We denote its (rescaled) norm by

∥u∥Ĥ−1(U) ∶= sup{⨏
U
uv ∶ v ∈H1(U) and ∥v∥H1(U) ⩽ 1} . (0.23)

It is evident that Ĥ−1(U) ⊆H−1(U) and that we have

∥u∥H−1(U) ⩽ ∥u∥Ĥ−1(U). (0.24)

Solenoidal and potential fields

We let L2
pot(U) and L2

sol(U) denote the closed subspaces of L2(U ;Rd) consisting
respectively of potential (gradient) and solenoidal (divergence-free) vector fields.
These are defined by

L2
pot(U) ∶= {∇u ∶ u ∈H1(U)} (0.25)

and
L2

sol(U) ∶= {g ∈ L2(U ;Rd) ∶ ∇ ⋅ g = 0} . (0.26)

Here we interpret the condition ∇ ⋅ g = 0 in the sense of distributions. In this case,
it is equivalent to the condition

∀φ ∈H1
0(U), ∫

U
g ⋅ ∇φ = 0.

We can also make sense of the condition ∇ ⋅ g = 0 if the entries of the vector field g
are distributions by restricting the condition above to φ ∈ C∞

c (U). We also set

L2
pot,0(U) ∶= {∇u ∶ u ∈H1

0(U)} (0.27)

and
L2

sol,0(U) ∶= {g ∈ L2(U ;Rd) ∶ ∀φ ∈H1(U), ∫
U
g ⋅ ∇φ = 0} . (0.28)

Notice that from these definitions we immediately have the Helmholtz-Hodge
orthogonal decompositions

L2(U ;Rd) = L2
pot,0(U) ⊕L2

sol(U) = L2
pot(U) ⊕L2

sol,0(U), (0.29)

which is understood with respect to the usual inner product on L2(U ;Rd). Finally,
we denote

L2
pot, loc(U) ∶= {∇u ∶ u ∈H1

loc(U)}
and

L2
sol, loc(U) ∶= {g ∈ L2

loc(U ;Rd) ∶ ∇ ⋅ g = 0} .
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The probability space

As explained previously in the assumptions section, except where explicitely indi-
cated to the contrary, (Ω,F) refers to the pair defined in (0.2) and (0.3) which is
endowed by the probability measure P satisfying the assumptions (0.5) and (0.6).
The constants Λ ⩾ 1 and d ∈ N in the definition of Ω (i.e., the ellipticity constant
and the dimension) are fixed throughout the book.

A random element on a measurable space (G,G) is an F–measurable map X ∶
Ω→ G. If G is also a topological space and we do not specify G, it is understood
to be the Borel σ-algebra. In the case that G = R or G = Rm, we say respectively
that X is a random variable or vector. If G is a function space on Rd, then we
typically say that X is a random field. If X is a random element taking values
in a topological vector space, then we define E [X] to be the expectation with
respect to P via the formula (0.7). Any usage of the expression “almost surely,”
also abbreviated “a.s.” or “P–a.s.,” is understood to be interpreted with respect
to P. For example, if {X,X1,X2, . . .}n∈N is a sequence of random variables, then
we may write either “Xn →X as n→∞, P–a.s.,” or

Xn
a.s.ÐÐ→
n→∞

X

in place of the statement P [lim supn→∞ ∣Xn −X ∣ = 0] = 1.
We denote by a the canonical element of Ω which we consider to be a random

field by identifying it with the identity map a↦ a. Therefore, all random elements
can be considered as functions of a and conversely, any object which we can define
as a function of a in an F–measurable way. Since this will be the case of nearly
every object in the entire book, we typically do not display the dependence on a
explicitly.

We note that this convention is in contrast to the usual one made in the
literature on stochastic homogenization, where it is more customary to let (Ω,F)
be an abstract probability space, denote a typical element of Ω by ω, and consider
the coefficient field a = a(x,ω) to be a matrix-valued mapping on Rd ×Ω. The ω
then appears everywhere in the notation, since all objects are functions of ω,
which in our opinion makes the notation unnecessarily heavy without bringing any
additional clarity. We hope that, for readers who find this notation more familiar,
it is nevertheless obvious that it is equivalent to ours via the identification of the
abstract Ω with our Ω by the map ω ↦ a(⋅, ω).
Solutions of the PDE

Given a coefficient field a ∈ Ω and an open subset U ⊆ Rd, the set of weak solutions
of the equation −∇ ⋅ (a∇u) = 0 in U
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is denoted by A(U) ∶= {u ∈H1
loc(U) ∶ a∇u ∈ L2

sol, loc(U)} . (0.30)

We sometimes display the spatial dependence by writing

−∇ ⋅ (a(x)∇u) = 0.

This is to distinguish it from the equation we obtain by introducing a small
parameter ε > 0 and rescaling, which we also consider, namely

−∇ ⋅ (a (x
ε
)∇u) = 0.

Notice that these are random equations and A(U) is a random linear vector space
since of course it depends on the coefficient field a. Throughout the book, a is the
homogenized matrix defined in Definition 1.2. We denote the set of solutions of
the homogenized equation in U by

A(U) ∶= {u ∈H1
loc(U) ∶ a∇u ∈ L2

sol, loc(U)} .
For each k ∈ N, we denote by Ak and Ak the subspaces of A(Rd) and A(Rd),
respectively, which grow like o (∣x∣k+1) as measured in the L2 norm:

Ak ∶= {u ∈ A(Rd) ∶ lim sup
r→∞

r−(k+1) ∥u∥L2(Br) = 0} (0.31)

and Ak ∶= {u ∈ A(Rd) ∶ lim sup
r→∞

r−(k+1) ∥u∥L2(Br) = 0} . (0.32)

The Os(⋅) notation

Throughout the book, we use the following notation to control the size of random
variables: for every random variable X and s, θ ∈ (0,∞), we write

X ⩽ Os(θ) (0.33)

to denote the statement
E [exp ((θ−1X+)s)] ⩽ 2. (0.34)

We likewise write

X ⩽ Y +Os(θ) ⇐⇒ X − Y ⩽ Os(θ)
and

X = Y +Os(θ) ⇐⇒ X − Y ⩽ Os(θ) and Y −X ⩽ Os(θ).
This notation allows us to write bounds for random variables conveniently, in the
spirit of the standard “big-O” notation it evokes, enabling us to compress many
computations that would otherwise take many lines to write. The basic properties
of this notation are collected in Appendix A.
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Convention for the constants C

Throughout, the symbols c and C denote positive constants which may vary from
line to line, or even between multiple occurrences in the same line, provided the
dependence of these constants is clear from the context. Usually, we use C for large
constants (those we expect to belong to [1,∞)) and c for small constants (those we
expect to belong to (0,1]). When we wish to explicitly declare the dependence of
C and c on the various parameters, we do so using parentheses (⋯). For example,
the phrase “there exists C(p, d,Λ) < ∞ such that...” is short for “there exists a
constant C ∈ [1,∞), depending on p, d and Λ, such that...” We use the same
convention for other symbols when it does not cause confusion, for instance the
small positive exponents α appearing in Chapter 2.





Chapter 1

Introduction and qualitative theory

We start this chapter by giving an informal introduction to the problem studied in
this book. A key role is played by a subadditive quantity, denoted by ν(U, p), which
is the energy per unit volume of the solution of the Dirichlet problem in a bounded
Lipschitz domain U ⊆ Rd with affine boundary data with slope p ∈ Rd. We give
a simple argument to show that ν(U, p) converges in L1(Ω,P) to a deterministic
limit if U is a cube with side length growing to infinity. Then, using entirely
deterministic arguments, we show that this limit contains enough information to
give a qualitative homogenization result for quite general Dirichlet boundary value
problems. Along the way, we build some intuition for the problem and have a first
encounter with some ideas playing a central role in the rest of the book.

1.1 A brief and informal introduction to homogenization

The main focus of this book is the study of the elliptic equation

−∇ ⋅ (a(x)∇u) = f in U, (1.1)

where U ⊆ Rd is a bounded Lipschitz domain. We assume throughout that x↦ a(x)
is a random vector field taking values in the space of symmetric matrices and
satisfying the assumptions (0.1) to (0.6), namely uniform ellipticity, stationarity
with respect to Zd-translations, and unit range of dependence. Our goal is to
describe the large-scale behavior of solutions of (1.1).

In dimension d = 1, the solution uε of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ ⋅ (a (x

ε
)∇uε) = 0 in (0,1),

uε(0) = 0,

uε(1) = 1

1
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can be written explicitly as

uε(x) =m−1
ε ∫ x

0
a−1 (y

ε
) dy where mε ∶= ∫ 1

0
a−1 (y

ε
) dy.

One can then verify using the ergodic theorem (which in this case can be reduced
to the law of large numbers for sums of independent random variables) that,
almost surely (henceforth abbreviated “a.s.”), the solution uε converges to the linear
function x↦ x in L2(0, 1) as ε→ 0. Moreover, observing once again by the ergodic
theorem, or law of large numbers, that

mε →m0 ∶= E [∫ 1

0
a−1(y)dy] a.s. as ε→ 0,

we also obtain the weak convergences in L2(0,1) of

∇uε ⇀ 1 = ∇u and a ( ⋅
ε
)∇uε ⇀m−1

0 =m−1
0 ∇u a.s. as ε→ 0.

Note that we do not expect these limits to hold in the (strong) topology of L2(0, 1):
see Figure 1.2. It is natural to define the homogenized coefficients a so that the
flux a ( ⋅

ε
)∇uε of the heterogeneous solution weakly converges to the flux of the

homogenized solution. This leads us to define

a ∶=m−1
0 = E [∫ 1

0
a−1(y)dy]−1

. (1.2)

In other words, a is the harmonic mean of a. This definition is also consistent with
the convergence of the energy

1

2 ∫
1

0
∇uε(x) ⋅ a (x

ε
)∇uε(x)dx→ 1

2 ∫
1

0
∇u(x) ⋅ a∇u(x)dx a.s. as ε→ 0.

In dimensions d ⩾ 2, one still expects that the randomness of the coefficient
field averages out, in the sense that there exists a homogenized matrix a such that
the solution uε of −∇ ⋅ (a (x

ε
)∇uε) = 0 in U (1.3)

with suitable boundary condition converges to the solution u of

−∇ ⋅ (a∇u) = 0 in U (1.4)

with the same boundary condition. However, there will be no longer any simple
formula such as (1.2) for the homogenized matrix. Indeed, in dimension d ⩾ 2, the
flux can circumvent regions of small conductivity which are surrounded by regions
of high conductivity, and thus a must incorporate subtle geometric information
about the law of the coefficient field. To make this point clear, consider the example
displayed on Figure 1.1.
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Figure 1.1 If this image is a sample of a composite material which is a good conductor
in embedded thin (black) fibers and a good insulator in the (white) ambient material,
then the effective conductivity will be larger in the e2 direction than the e1 direction. In
particular, in this situation we have a(x) = a(x)Id at every point x, yet a is not a scalar
matrix. This shows us that in d ⩾ 2 we should not expect to find a simple formula for a
which extends (1.2) for d = 1.

Since there is no explicit formula for a in dimension d ⩾ 2, we need to identify
quantities which will allow us to track the progressive homogenization of the
equation (1.1) as we move to larger and larger scales. Before doing so, we first
argue that understanding the homogenization phenomenon for simple domains
such as balls or cubes, and with affine boundary condition, should be sufficient; it
should be possible to deduce homogenization results for more complicated domains
and boundary conditions (and possibly non-zero right-hand side) a posteriori. The
idea is that, since the solution of the homogeneous equation is smooth, it will be
well-approximated by an affine function on scales smaller than the macroscopic
scale. On scales intermediate between the microscopic and macroscopic scales, the
behavior of the solution of the equation with rapidly oscillating coefficients should
thus already be typical of homogenization, while tracking an essentially affine
function. In other words, for uε and u the solutions to (1.3) and (1.4) respectively,
with the same boundary condition, we expect that for z ∈ U and for scales r such
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Figure 1.2 The red and blue curves represent the solutions of equations (1.3) and (1.4)
respectively; the rectangle at the bottom is a (schematic) close-up of the rectangle on top.
On mesoscopic scales, the blue curve is essentially affine, and the red curve is close to the
solution to a Dirichlet problem with affine boundary condition (with slope given by the
local gradient of the homogeneous solution).

that ε≪ r ≪ 1,

∥∇uε −∇ũε,z,r∥L2(Br(z)) ≪ 1, (1.5)

where ũε,z,r solves

{ −∇ ⋅ (a (x
ε
)∇ũε,z,r) = 0 in Br(z),

ũε,z,r(x) = ∇u(z) ⋅ x on ∂Br(z). (1.6)

See Figure 1.2 for a cartoon visualization of this idea.

These considerations motivate us to focus on understanding the homogenization
of problems such as (1.6), that is, Dirichlet problems on simple domains with affine
boundary data. The approach taken up here is inspired by earlier work of Dal
Maso and Modica [35, 36], who introduced, for every p ∈ Rd (and for more general
nonlinear equations), the quantity

ν(U, p) ∶= inf
v∈`p+H1

0(U)
⨏
U

1

2
∇v ⋅ a∇v,
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where `p denotes the affine function x↦ p ⋅ x. Note that the minimizer v(⋅, U, p) in
the definition of ν is the solution of the Dirichlet problem

{ −∇ ⋅ (a∇v(⋅, U, p)) = 0 in U,
v(⋅, U, p) = `p on ∂U,

which should be compared with (1.6). The first key observation of Dal Maso
and Modica is that ν(⋅, p) is subadditive1: if the domain U is partitioned into
subdomains U1, . . . , Uk, up to a Lebesgue null set, then

ν(U, p) ⩽ k∑
i=1

∣Ui∣∣U ∣ ν(Ui, p).
Indeed, the minimizers for each ν(Ui, p) can be glued together to create a minimizer
candidate for the minimization problem in the definition of ν(U, p). The true
minimizer cannot have more energy, which yields the claimed inequality. By an
appropriate version of the ergodic theorem (found for instance in [3]), we deduce
the convergence

ν((−r, r)d, p) a.s.ÐÐ→
r→∞

1

2
p ⋅ ap.

That the limit can be written in the form above is a consequence of the fact that
p↦ ν(U, p) is a quadratic form; we take this limit as the definition of the effective
matrix a. Dal Maso and Modica then observed (even in a more general, nonlinear
setting) that this convergence suffices to imply qualitative homogenization.

In this chapter, we will carry out the program suggested in the previous para-
graph and set the stage for the rest of the book. In particular, in Theorem 1.12 we
will obtain a fairly general (although at this stage, still only qualitative) homoge-
nization result for Dirichlet problems. We begin in the next two sections with a
proof of the convergence of the quantity ν(U, p).
1.2 The subadditive quantity ν and its basic properties

In this section, we review the basic properties of the quantity ν(U, p) introduced in
the previous section, which is defined for each bounded Lipschitz domain U ⊆ Rd

and p ∈ Rd by

ν(U, p) ∶= inf
v∈`p+H1

0(U)
⨏
U

1

2
∇v ⋅ a∇v = inf

w∈H1
0(U)

⨏
U

1

2
(p +∇w) ⋅ a (p +∇w) . (1.7)

1Note that our use of the term subadditive is not standard: it is usually the unnormalized
quantity U ↦ ∣U ∣ν(U, p) which is called subadditive.
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Recall that `p(x) ∶= p ⋅ x is the affine function of slope p. We denote the (unique)
minimizer of the optimization problem in the definition of ν(U, p) by

v(⋅, U, p) ∶= unique v ∈ `p +H1
0(U) minimizing ⨏

U

1

2
∇v ⋅ a∇v. (1.8)

The uniqueness of the minimizer is immediate from the uniform convexity of the
integral functional, which is recalled in Step 1 of the proof of Lemma 1.1 below. The
existence of a minimizer follows from the weak lower semicontinuity of the integral
functional (cf. [46, Chapter 8]), a standard fact from the calculus of variations, the
proof of which we do not give here.

The quantity ν(U, p) is the energy (per unit volume) of its minimizer v(⋅, U, p)
which, as we will see below, is the solution of the Dirichlet problem

{ −∇ ⋅ (a(x)∇u) = 0 in U,
u = `p on ∂U.

We next explore some basic properties of ν(U, p).
Lemma 1.1 (Basic properties of ν). Fix a bounded Lipschitz domain U ⊆ Rd. The
quantity ν(U, p) and its minimizer v(⋅, U, p) satisfy the following properties:

• Representation as quadratic form. The mapping p ↦ ν(U, p) is a positive
quadratic form, that is, there exists a symmetric matrix a(U) such that

Id ⩽ a(U) ⩽ ΛId (1.9)

and
ν(U, p) = 1

2
p ⋅ a(U)p. (1.10)

• Subadditivity. Let U1, . . . , UN ⊆ U be bounded Lipschitz domains that form a
partition of U , in the sense that Ui ∩Uj = ∅ if i ≠ j and

∣U ∖ N⋃
i=1

Ui∣ = 0.

Then, for every p ∈ Rd,

ν(U, p) ⩽ N∑
i=1

∣Ui∣∣U ∣ ν(Ui, p). (1.11)

• First variation. For each p ∈ Rd, the function v(⋅, U, p) is characterized as the
unique solution of the Dirichlet problem

{ −∇ ⋅ (a∇v) = 0 in U,
v = `p on ∂U.

(1.12)
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The precise interpretation of (1.12) is

v solves (1.12) ⇐⇒ v ∈ `p +H1
0(U) and ∀w ∈H1

0(U), ⨏
U
∇w ⋅ a∇v = 0.

• Quadratic response. For every w ∈ `p +H1
0(U),

1

2 ⨏U ∣∇w −∇v(⋅, U, p)∣2 ⩽ ⨏
U

1

2
∇w ⋅ a∇w − ν(U, p) ⩽ Λ

2 ⨏U ∣∇w −∇v(⋅, U, p)∣2 .
(1.13)

Proof. Step 1. We first derive the first variation of the minimization problem in
the definition of ν. We write v ∶= v(⋅, U, p) for short. Fix w ∈ H1

0(U), t ∈ R and
compare the energy of ṽt ∶= v + tw to the energy of v:

⨏
U

1

2
∇v ⋅ a∇v = ν(U, p) ⩽ ⨏

U

1

2
∇ṽt ⋅ a∇ṽt

= ⨏
U

1

2
∇v ⋅ a∇v + 2t⨏

U

1

2
∇w ⋅ a∇v + t2⨏

U

1

2
∇w ⋅ a∇w.

Rearranging this and dividing by t, we get

⨏
U
∇w ⋅ a∇v ⩾ −1

2
t⨏

U
∇w ⋅ a∇w.

Sending t→ 0 gives

⨏
U
∇w ⋅ a∇v ⩾ 0.

Applying this inequality with both w and −w, we deduce that, for every w ∈H1
0(U),

⨏
U
∇w ⋅ a∇v = 0.

This confirms that v is a solution of (1.12). To see it is the unique solution, we
assume that v̂ is another solution and test the equation for v and for v̂ with v − v̂
and subtract the results to obtain

⨏
U

1

2
∣∇v −∇v̂∣2 ⩽ ⨏

U

1

2
(∇v −∇v̂) ⋅ a (∇v −∇v̂) = 0.

Step 2. We show that

1

2
∣p∣2 ⩽ ν(U, p) ⩽ Λ

2
∣p∣2. (1.14)

The upper bound is immediate from testing the definition of ν(U, p) with `p:

ν(U, p) ⩽ ⨏
U

1

2
∇`p ⋅ a∇`p = ⨏

U

1

2
p ⋅ ap ⩽ Λ

2
∣p∣2.
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The lower bound comes from Jensen’s inequality: for every w ∈H1
0(U),

⨏
U

1

2
(p +∇w) ⋅ a(p +∇w) ⩾ ⨏

U

1

2
∣p +∇w∣2 ⩾ 1

2
∣p + ⨏

U
∇w∣2 = 1

2
∣p∣2.

Taking the infimum over w ∈H1
0(U) yields the lower bound of (1.14).

Step 3. We show that ν(U, ⋅) is a positive quadratic form as in (1.10) satisfying
bounds in (1.9). Observe first that a consequence of the characterization (1.12) of
the minimizer v(⋅, U, p) is that

p↦ v(⋅, U, p) is a linear map from Rd to H1(U). (1.15)

Indeed, the formulation (1.12) makes linearity immediate. Moreover, since

ν(U, p) = ⨏
U

1

2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p) (1.16)

we deduce that
p↦ ν(U, p) is a quadratic form. (1.17)

That is, there exists a symmetric matrix a(U) ∈ Rd×d as in (1.10). The inequalities
in (1.14) can thus be rewritten as

1

2
∣p∣2 ⩽ 1

2
p ⋅ a(U)p ⩽ Λ

2
∣p∣2,

which gives (1.9).
Step 4. We next prove (1.13), the quadratic response of the energy around the

minimizer. This is an easy consequence of the first variation: in fact, we essentially
proved it already in Step 1.

We fix w ∈ `p +H1
0(U) and compute

⨏
U

1

2
∇w ⋅ a∇w − ν(U, p) = ⨏

U

1

2
∇w ⋅ a∇w − ⨏

U

1

2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p)

= ⨏
U

1

2
(∇w −∇v(⋅, U, p)) ⋅ a (∇w −∇v(⋅, U, p))

+ ⨏
U
(∇w −∇v(⋅, U, p)) ⋅ a∇v(⋅, U, p).

Noting that w − v ∈ H1
0(U), we see that the last term on the right side of the

previous display is zero, by the first variation. Thus

⨏
U

1

2
∇w ⋅ a∇w − ν(U, p) = ⨏

U

1

2
(∇w −∇v(⋅, U, p)) ⋅ a (∇w −∇v(⋅, U, p)) ,

which is a more precise version of (1.13).
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Step 5. The proof of subadditivity. We glue together the minimizers v(⋅, Ui, p)
of ν in the subdomains Ui and compare the energy of the result to v(⋅, U, p). We
first need to argue that the function defined by

ṽ(x) ∶= v(x,Ui, p), x ∈ Ui, (1.18)

belongs to `p +H1
0(U). To see this, we observe that each v(⋅, Ui, p) can be approxi-

mated in H1 by the sum of `p and a C∞ function with compact support in Ui. We
can glue these functions together to get a smooth function in `p +H1

0(U) which
clearly approximates ṽ in H1(U). Therefore ṽ ∈ `p +H1

0(U). This allows us to test
the definition of ν(U, p) with ṽ and yields

ν(U, p) ⩽ ⨏
U

1

2
∇ṽ ⋅ a∇ṽ = 1∣U ∣

N∑
i=1
∫
Ui

1

2
∇ṽ ⋅ a∇ṽ

= 1∣U ∣
N∑
i=1

∣Ui∣ ⨏
Ui

1

2
∇v(⋅, Ui, p) ⋅ a∇v(⋅, Ui, p)

= N∑
i=1

∣Ui∣∣U ∣ ν(Ui, p).
This completes the proof of (1.11) and therefore of the lemma.

For future reference, however, let us continue by recording the slightly more
precise estimate that the argument for (1.11) gives us. The above computation can
be rewritten as

N∑
i=1

∣Ui∣∣U ∣ ν(Ui, p) − ν(U, p) = ⨏U 1

2
∇ṽ ⋅ a∇ṽ − ν(U, p).

Quadratic response thus implies

1

2 ⨏U ∣∇v(⋅, U, p) − ∇ṽ∣2 ⩽ N∑
i=1

∣Ui∣∣U ∣ ν(Ui, p)−ν(U, p) ⩽ Λ

2 ⨏U ∣∇v(⋅, U, p) − ∇ṽ∣2 . (1.19)
This can be written as

1

2

N∑
i=1

∣Ui∣∣U ∣ ⨏Ui ∣∇v(⋅, U, p) − ∇v(⋅, Ui, p)∣2
⩽ N∑
i=1

∣Ui∣∣U ∣ ν(Ui, p) − ν(U, p) ⩽ Λ

2

N∑
i=1

∣Ui∣∣U ∣ ⨏Ui ∣∇v(⋅, U, p) − ∇v(⋅, Ui, p)∣2 . (1.20)

In other words, the strictness of the subadditivity inequality is proportional to the
weighted average of the L2 differences between ∇v(⋅, U, p) and ∇v(⋅, Ui, p) in the
subdomains Ui.
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1.3 Convergence of the subadditive quantity

In order to study the convergence of ν(U, p) as the domain U becomes large, it is
convenient to work with the family of triadic cubes {x +◻n ∶ n ∈ N, x ∈ Zd} defined
in (0.14). Recall that for each n ∈ N with n ⩽ m, up to a set of zero Lebesgue
measure, the cube ◻m can be partitioned into exactly 3d(m−n) subcubes which are
Zd-translations of ◻n, namely {z +◻n ∶ z ∈ 3nZd ∩◻m}.

An immediate consequence of subadditivity and stationarity is the monotonicity
of E [ν(◻m, p)]: for every m ∈ N and p ∈ Rd,

E [ν(◻m+1, p)] ⩽ E [ν(◻m, p)] . (1.21)

To see this, we first apply the subadditivity property with respect to the partition{z +◻m ∶ z ∈ {−3m,0,3m}d} of ◻m+1 into its 3d largest triadic subcubes, to get

ν(◻m+1, p) ⩽ ∑
z∈{−3m,0,3m}d

∣z +◻m∣∣◻m+1∣ ν(z +◻m, p) = 3−d ∑
z∈{−3m,0,3m}d

ν(z +◻m, p).
Stationarity tells us that, for every z ∈ Zd, the law of ν(z + ◻m, p) is the same
as the law of ν(◻m, p). Thus they have the same expectation, and so taking the
expectation of the previous display gives

E [ν(◻m+1, p)] ⩽ 3−d ∑
z∈{−3m,0,3m}d

E [ν(z +◻m, p)] = E [ν(◻m, p)] ,
which is (1.21).

Therefore, for each p ∈ Rd, the sequence {E [ν(◻m, p)]}m∈N is bounded by (1.14)
and nonincreasing by (1.21). It therefore has a limit, which we denote by

ν(p) ∶= lim
m→∞

E [ν(◻m, p)] = inf
m∈N

E [ν(◻m, p)] . (1.22)

In Lemma 1.1 we found (cf. (1.10)) that

p↦ ν(U, p) is quadratic. (1.23)

It follows that p↦ E [ν(U, p)] is also quadratic, and hence

p↦ ν(p) is quadratic.

It is clear in view of (1.9), (1.10) and (1.22) that we have

1

2
∣p∣2 ⩽ ν(p) ⩽ Λ

2
∣p∣2. (1.24)

The deterministic object ν allows us to identify the homogenized coefficients and
motivates the following definition.
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Definition 1.2 (Homogenized coefficients a). We denote by a ∈ Rd×d the unique
symmetric matrix satisfying

∀p ∈ Rd, ν(p) = 1

2
p ⋅ ap.

We call a the homogenized coefficients. By (1.24), we see that a is a positive
definite matrix and satisfies the bounds

Id ⩽ a ⩽ ΛId. (1.25)

Exercise 1.1. Show that if the coefficient field a is isotropic in law in the sense
that P is invariant under any linear isometry which maps the union of the coordinate
axes to itself, then a is a multiple of the identity matrix.

Exercise 1.2. The Voigt-Reiss bounds for the effective coefficients assert that

E [∫◻0

a−1(x)dx]−1 ⩽ a ⩽ E [∫◻0

a(x)dx] . (1.26)

Show that the second inequality of (1.26) follows from our definitions of ν and a,
stationarity and the subadditivity of ν. (See Exercise 2.1 for the other inequality.)

Exercise 1.3. Assume that, for some ρ ∈ (0,1],
∥a − Id∥L∞(Rd) ⩽ ρ, P–a.s.

Using the inequalities of (1.26), show that, for a constant C(d,Λ) < ∞,

∣a −E [∫◻0

a(x)dx]∣ ⩽ Cρ2.

In other words, the homogenized matrix coincides with the average of the coefficients
at first order in the regime of small ellipticity contrast.

We show in the next proposition that, using the independence assumption, we
can upgrade the limit (1.22) from convergence of the expectations to convergence
in L1(Ω,P). That is, we prove that, for each p ∈ Rd,

E [∣ν(◻n, p) − ν(p)∣] → 0 as n→∞.
In the process, we will try to extract as much quantitative information about the
rate of this limit as we are able to at this stage. For this purpose, we introduce the
modulus ω which governs the rate of the limit (1.22), uniformly in p ∈ B1:

ω(n) ∶= sup
p∈B1

(E [ν(◻n, p)] − ν(p)) , n ∈ N. (1.27)
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Since we have taken a supremum over p ∈ B1, to ensure that ω(n) → 0 we need
an argument. For this it suffices to note that, since p ↦ E [ν(◻n, p)] − ν(p) is
a quadratic form with corresponding matrix E [a(◻n)] − a which is nonnegative
by (1.22), there are constants C(d) < ∞ such that

ω(n) ⩽ C ∣E [a(◻n)] − a∣ ⩽ C d∑
i=1

∣E [ν(◻n, ei)] − ν(ei)∣ → 0 as n→∞.
Notice also that ω(n) is nonincreasing in n.

In order to apply the independence assumption, we require the observation that

ν(U, p) is F(U)–measurable. (1.28)

This is immediate from the definition of ν(U, p) since the latter depends only on p
and the restriction of the coefficient field a to U . That is, ν(U, p) is a local quantity.

Proposition 1.3. There exists C(d,Λ) < ∞ such that, for every m ∈ N,
E [∣a(◻m) − a∣] ⩽ C3−

d
4
m +Cω (⌈m

2
⌉) . (1.29)

Proof. This argument is a simpler variant of the one in the proof of the subadditive
ergodic theorem (we are thinking of the version proved in [3]). Compared to
the latter, the assumptions here are stronger (finite range of dependence instead
of a more abstract ergodicity assumption) and we prove less (convergence in L1

versus almost sure convergence). The idea is relatively simple: if we wait until
the expectations have almost converged, then the subadditivity inequality will be
almost sharp (at least in expectation). That is, we will have almost additivity in
expectation. On the other hand, for sums of independent random variables, it is of
course very easy to show improvement in the scaling of the variance.

To begin the argument, we fix p ∈ B1, m ∈ N and choose a mesoscopic scale
given by n ∈ N with n <m.

Step 1. We show that there exists C(d,Λ) < ∞ such that

E [(ν(◻m, p) −E [ν(◻n, p)])2
+] ⩽ C3−d(m−n), (1.30)

where we write x+ = max(x,0). Using the subadditivity of ν with respect to the
partition {z +◻n ∶ z ∈ 3nZd ∩◻m} of ◻m into triadic subcubes of size 3n, we get

ν(◻m, p) ⩽ 3−d(m−n) ∑
z∈3nZd∩◻m

ν(z +◻n, p).
Thus

(ν(◻m, p) −E [ν(◻n, p)])2
+ ⩽ ⎛⎝3−d(m−n) ∑

z∈3nZd∩◻m
ν(z +◻n, p) −E [ν(◻n, p)]⎞⎠

2

+

.
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By stationarity, we have that

E
⎡⎢⎢⎢⎢⎣
⎛⎝3−d(m−n) ∑

z∈3nZd∩◻m
ν(z +◻n, p) −E [ν(◻n, p)]⎞⎠

2

+

⎤⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎢⎣
⎛⎝3−d(m−n) ∑

z∈3nZd∩◻m
ν(z +◻n, p) −E

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

ν(z +◻n, p)⎤⎥⎥⎥⎥⎦
⎞⎠

2

+

⎤⎥⎥⎥⎥⎥⎦
⩽ var

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

ν(z +◻n, p)⎤⎥⎥⎥⎥⎦= 3−2d(m−n) ∑
z,z′∈3nZd∩◻m

cov [ν(z +◻n, p), ν(z′ +◻n, p)] .
By the unit range of dependence assumption and (1.28), we have that

dist(z +◻n, z′ +◻n) ⩾ 1 Ô⇒ cov [ν(z +◻n, p), ν(z′ +◻n, p)] = 0.

Each subcube z +◻n has at most 3d − 1 neighboring subcubes, those which satisfy
dist(z+◻n, z′+◻n) < 1. There are 3d(m−n) subcubes in ◻m, which means that there
are at most C3d(m−n) pairs of neighboring subcubes. For neighboring subcubes, we
give up and use Hölder’s inequality to estimate the covariance, which gives

cov [ν(z +◻n, p), ν(z′ +◻n, p)] ⩽ (var [ν(z +◻n, p)] ⋅ var [ν(z′ +◻n, p)]) 1
2

= var [ν(◻n, p)] ⩽ C,
where in the last line we used (1.14). Putting all this together, we obtain

∑
z,z′∈3nZd∩◻m

cov [ν(z +◻n, p), ν(z′ +◻n, p)] ⩽ C3d(m−n).

Combining this result with the previous displays above, we get (1.30).
Step 2. We now use (1.30) to obtain convergence in L1(Ω,P). Observe that, by

the triangle inequality, the fact that ∣r∣ = 2r+−r for any r ∈ R, the monotonicity (1.21)
of E [ν(◻m, p)] and Hölder’s inequality, we get, for every m,n ∈ N with n <m,

E [∣ν(◻m, p) − ν(p)∣] ⩽ E [∣ν(◻m, p) −E [ν(◻m, p)]∣] + ω(m)= 2E [(ν(◻m, p) −E [ν(◻m, p)])+] + ω(m)⩽ 2E [(ν(◻m, p) −E [ν(◻n, p)])+] + ω(m) + 2ω(n)
⩽ 2E [(ν(◻m, p) −E [ν(◻n, p)])2

+] 1
2 + ω(m) + 2ω(n)

⩽ C3−
d
2
(m−n) + 3ω(n).

The crude choice of the mesoscale n ∶= ⌈m
2
⌉ gives us

E [∣ν(◻m, p) − ν(p)∣] ⩽ C3−
d
4
m +Cω (⌈m

2
⌉) . (1.31)

In view of (1.11), taking the supremum over p ∈ B1 yields the proposition.
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The previous argument gives more information than the limit ν(◻n, p) → ν(p)
in L1(Ω,P). Namely, it provides an explicit, quantitative convergence rate for the
limit, up to the knowledge of the speed of convergence of the expectations in (1.22).
This motivates us to estimate the modulus ω(n). Unfortunately, the qualitative
argument for the limit (1.22), which was a one-line soft argument based on the
monotonicity of E [ν(◻n, p)] in n, does not tell us how to obtain a quantitative
rate of convergence. The task of estimating ω turns out to be rather more subtle
and will be undertaken in Chapter 2.

We next demonstrate the convergence of the minimizers v(⋅,◻m, p) to the affine
function `p in L2(◻m). For qualitative convergence, what we should expect is that
the L2(◻m) norm of the difference v(⋅,◻m, p)−`p is much smaller than the L2(◻m)
norm of `p itself, which is ≍ 3m∣p∣. In other words, we should show that, in some
appropriate sense,

3−m ∥v(⋅,◻m, p) − `p∥L2(◻m) → 0 as m→∞.
For now, we will prove this convergence in L1(Ω,P) with an explicit rate depending
only on the modulus ω.

Proposition 1.4. There exists C(d,Λ) > 0 such that, for every m ∈ N and p ∈ B1,

E [3−2m ∥v(⋅,◻m, p) − `p∥2
L2(◻m)] ⩽ C3−

m
4 +Cω (⌈m

2
⌉) . (1.32)

Proof. Let us first summarize the rough idea underlying the argument. By quadratic
response, the expected squared L2 difference of the gradients of the minimizer
v(⋅,◻m, p) and the function obtained by gluing the minimizers v(⋅, z + ◻n, p) for
z ∈ 3nZd ∩◻m is controlled by the difference in their expected energies. We have
encountered this fact already in (1.19). With the help of the Poincaré inequality,
this tells us that the L2 difference between these functions is appropriately small.
But because the glued function is equal to the affine function `p on the boundary
of each subcube, it cannot deviate much from `p when viewed from the larger scale.
In other words, because we can use the Poincaré inequality in each smaller subcube,
we gain from the scaling of the constant in the Poincaré inequality.

Fix m ∈ N and p ∈ B1. We denote, for every n ∈ N with n <m,

Zn ∶= 3nZd ∩◻m (1.33)

so that {z +◻n ∶ z ∈ Zn} is a partition of ◻m.
Step 1. We show that, for every n ∈ N with n <m, we have

3−2m ∥v(⋅,◻m, p) − `p∥2
L2(◻m)

⩽ C32(n−m) + C∣Zn∣ ∑z∈Zn (ν(z +◻n, p) − ν(◻m, p)) . (1.34)
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Let ṽ be the function defined in (1.18) for the partition {z +◻n ∶ z ∈ 3nZd ∩◻m}
of ◻m. That is, ṽ ∈ `p +H1

0(◻m) satisfies

ṽ = v(⋅, z +◻n, p) in z +◻n.
By the triangle inequality and the Poincaré inequality,

∥v(⋅,◻m, p) − `p∥2
L2(◻m) ⩽ 2 ∥v(⋅,◻m, p) − ṽ∥2

L2(◻m) + 2 ∥ṽ − `p∥2
L2(◻m)⩽ C32m ∥∇v(⋅,◻m, p) − ∇ṽ∥2

L2(◻m) + 2 ∥ṽ − `p∥2
L2(◻m) .

Applying the first inequality of (1.19) to the partition Zn of ◻m yields

∥∇v(⋅,◻m, p) − ∇ṽ∥2
L2(◻m) ⩽ 2∣Zn∣ ∑z∈Zn (ν(z +◻n, p) − ν(◻m, p)) . (1.35)

Meanwhile, it is clear from (1.14), (1.16) and ∣p∣ ⩽ 1 that

∥ṽ − `p∥2
L2(◻m) = 1∣Zn∣ ∑z∈Zn ∥v(⋅, z +◻n, p) − `p∥2

L2(z+◻n)

⩽ C∣Zn∣ ∑z∈Zn (32n ∥∇v(⋅, z +◻n, p) − p∥2
L2(z+◻n))

⩽ C∣Zn∣ ∑z∈Zn 32n (∥∇v(⋅, z +◻n, p)∥2
L2(z+◻n) + ∣p∣2) ⩽ C32n.

Combining the above yields (1.34).
Step 2. The conclusion. Taking the expectation of (1.34) and using stationarity,

we obtain, for any m,n ∈ N with n <m,

E [3−2m ∥v(⋅,◻m, p) − `p∥2
L2(◻m)] ⩽ C32(n−m) +CE [ν(◻n, p) − ν(◻m, p)] .

Taking n ∶= ⌈m
2
⌉ and using (1.21), we obtain

E [3−2m ∥v(⋅,◻m, p) − `p∥2
L2(◻m)] ⩽ C3−m +C3−

d
8
m +Cω (⌈m

2
⌉) .

This yields (1.32).

The previous proposition can be seen as an L2 estimate for the error in homog-
enization for the Dirichlet problem in a cube with affine boundary data. To see
this, set εm ∶= 3−m and notice that the function

wm(x) ∶= εmv ( x

εm
,◻m, p)
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is the solution of the Dirichlet problem

⎧⎪⎪⎨⎪⎪⎩
−∇ ⋅ (a ( ⋅

εm
)∇wm) = 0 in ◻0,

wm = `p on ∂◻0.

Obviously, the solution of

{ −∇ ⋅ (a∇whom) = 0 in ◻0,

whom = `p on ∂◻0,

is the function whom = `p. Moreover, notice by changing variables that

∥wm − `p∥L2(◻0) = 3−m ∥v(⋅,◻m, p) − `p∥L2(◻m) .

Therefore the limit (1.32) shows homogenization in L2(◻0) along a subsequence
of ε’s for this specific Dirichlet problem. One may consider this demonstration to be
“cheating” because it provides no evidence that we have chosen the correct a (any
choice of a will give the same solution of the Dirichlet problem with affine boundary
data). This is a valid objection, but evidence that a has been chosen correctly
and that the quantity ν(U, p) is capturing information about the homogenization
process will be given in the next section. Recall that we encountered a similar
phenomenon in the one dimensional case when deciding how the homogenized
coefficients should be defined: see (1.2) and the discussion there.

1.4 Weak convergence of gradients and fluxes

In the previous section, we proved the convergence in L1(Ω,P) of the limits

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⨏◻m 1

2
∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p) → 1

2
p ⋅ ap,

3−2m⨏◻m ∣v(⋅,◻m, p) − `p∣2 → 0
as m→∞. (1.36)

We also showed that an explicit quantitative bound for the modulus ω(m) for the
limit (1.22) would give us a rate of convergence for these limits as well. In this
section, we push this analysis a bit further by proving some more precise results in
the same spirit. We are particularly interested in obtaining results which quantify
(up to bounds on ω) of the following weak limits:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2
∇v(3m⋅,◻m, p) ⋅ a(3m⋅)∇v(3m⋅,◻m, p) ⇀ 1

2
p ⋅ ap,

a (3m⋅)∇v(3m⋅,◻m, p) ⇀ ap,∇v(3m⋅,◻m, p) ⇀ p,

as m→∞. (1.37)
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That is, we want to address the weak convergence of the energy density, flux,
and gradient of the rescaled minimizers x ↦ 3−mv(3mx,◻m, p). Notice that the
limits (1.37) are more precise than (1.36), in the sense that the former implies the
latter. Moreover, while one may first be tempted to focus on the L2 convergence of
solutions, the structure of the problem in fact gives much more direct access to
information on the gradients, fluxes and energies of solutions, and it is therefore more
efficient to focus our attention on the weak convergence of these quantities, and to
derive the L2 convergence of solutions a posteriori. In other words, homogenization
is about the weak convergence of gradients, fluxes and energy densities of solutions.
Other convergence results are just consequences of these, but not the main point.

As in the previous section, our desire is to train ourselves for future chapters
by obtaining some crude quantitative bound for the limits (1.37) in terms of ω(m).
But what is the right way to quantify weak convergence? While there are many
ways to do it and the “right” way may depend on the context, one very natural
choice is to use a negative Sobolev norm like H−1. We continue with an informal
discussion around this point before getting into the analysis of proving (1.37).

Let us say that we have a bounded sequence of functions {fm}m∈N ⊆ L2(U)
which weakly converges to some f ∈ L2(U). This means that

∀g ∈ L2(U), lim
m→∞

∣⨏
U
(fm − f)g∣ = 0.

If we want to quantify weak convergence, then we obviously have to quantify this
limit. Now, if this limit is uniform over ∥g∥L2(U) ⩽ 1 then we have another name for
this, which is strong convergence in L2(U), and then perhaps we should quantify
this instead! Therefore it makes sense to assume we are in a situation in which
convergence does not happen uniformly in g. Yet, we hope that the convergence
rate depends in some natural way on g: perhaps we can get a uniform convergence
rate for all smooth g with some derivatives under control. To be more concrete,
perhaps we can hope that the limit is uniform over the set of g’s with unit H1

norm? This leads us to consider trying to prove a convergence rate for

sup{∣⨏
U
(fm − f)g∣ ∶ g ∈H1(U), ∥g∥H1(U) ⩽ 1} = ∥fm − f∥Ĥ−1(U) .

We thus see that the Ĥ−1(U) norm (defined in (0.23)) appears in a very natural
way (and that other choices are possible as well). If we succeed, we will get an
explicit convergence rate for any given g ∈ L2(U) in terms of how well g can be
approximated by an H1(U) function. Indeed, for every M > 0 and h ∈H1(U) with∥h∥H1(U) ⩽M ,

∣⨏
U
(fm − f)g∣ ⩽ ∣⨏

U
(fm − f)h∣ + ∣⨏

U
(fm − f)(g − h)∣

⩽M ∥fm − f∥Ĥ−1(U) + ∥fm − f∥L2(U) ∥g − h∥L2(U) .
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Thus, for any g ∈ L2(U) and M > 0,

∣⨏
U
(fm − f)g∣

⩽M ∥fm − f∥Ĥ−1(U) + sup
m∈N

(∥fm∥L2(U) + ∥f∥L2(U)) inf
∥h∥H1(U)⩽M

∥g − h∥L2(U) .

We can then optimize over the parameter M to make the right side as small as
possible (the choice of M will naturally depend on how well g can be approximated
by H1(U) functions).

Exercise 1.4. Assuming that the sequence {fm}m∈N ⊆ L2(U) is uniformly bounded,
show that

fm ⇀ 0 weakly in L2(U) ⇐⇒ ∥fm∥Ĥ−1(U) → 0.

The above discussion motivates the following result, which we split into a pair
of propositions. We define, for each m ∈ N, the random variable

E(m) ∶= ⎛⎝
m∑
n=0

3n−m ( 1∣Zn∣ ∑z∈Zn ∣a(z +◻n) − a∣)
1
2⎞⎠

2

. (1.38)

This random variable monitors the convergence of the subadditive quantities ν on
the mesoscale grid {z +◻n ∶ z ∈ Zn} of subcubes of ◻m, for every p ∈ Rd.

Proposition 1.5. There exists C(d,Λ) < ∞ such that, for every m ∈ N and p ∈ B1,

3−2m ∥∇v(⋅,◻m, p) − p∥2
Ĥ−1(◻m) + 3−2m ∥a∇v(⋅,◻m, p) − ap∥2

Ĥ−1(◻m)⩽ C3−2m +CE(m). (1.39)

Proposition 1.6. There exists C(d,Λ) < ∞ such that, for every m ∈ N,
E [E(m)] ⩽ C3−(

d
4
∧1)m +C m∑

n=0

3n−mω (⌈n
2
⌉) . (1.40)

In particular, E [E(m)] → 0 as m→∞.

We could have chosen to state these two propositions as one and hidden the
random variable E(m) inside the proof. The reasons for splitting it like this are
threefold: (i) it better reveals the structure of the proof, which comes in two very
independent pieces; (ii) the random variable E(m) will appear on the right side of
several other interesting estimates below; (iii) the bound for E(m) in (1.40) has
very weak stochastic integrability (only L1(Ω,P)) and will be replaced by a much
stronger, more explicit bound in the next chapter.
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The random variable E(m) may be compared to the right side of (1.34), and
the proof of Proposition 1.6 is actually a simple exercise. We postpone it to later
in the section and focus first on the proof of Proposition 1.5, which is a purely
deterministic argument that does not use the stochastic structure of the problem.

We begin by presenting a functional inequality which gives an estimate of
the Ĥ−1(◻m) norm of an L2(◻m) function in terms of its spatial averages on all
triadic subcubes of ◻m. In some sense, this result is just a better formalization
of the “crude” separation of scales arguments from the previous section, where we
used only one mesoscale n. Here we will use all the scales, rather than just one.
Since we need to use this argument many times in the following chapters, we take
care to state a more refined version of it here.

Proposition 1.7 (Multiscale Poincaré inequality). Fix m ∈ N and, for each n ∈ N
with n ⩽m, define Zn ∶= 3nZd ∩◻m. There exists a constant C(d) < ∞ such that,
for every f ∈ L2(◻m),

∥f∥Ĥ−1(◻m) ⩽ C ∥f∥L2(◻m) +C m−1∑
n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(f)y+◻n ∣2)
1
2

. (1.41)

Proof. In view of the definition of the normalized Ĥ−1 norm given in (0.23), we
consider a function g ∈H1(◻m) such that

3−2m ∣(g)◻m ∣2 + ∥∇g∥2
L2(◻m) ⩽ 1

and aim to control ⨏◻m fg. We may assume without loss of generality that (g)◻m = 0.
Indeed, this follows from the inequalities

∣⨏◻m fg∣ ⩽ ∣⨏◻m f ⋅ (g − (g)◻m)∣ + ∣(g)◻m ∣ ∣(f)◻m ∣
and

∣(g)◻m ∣ ∣(f)◻m ∣ ⩽ 3m ∣(f)◻m ∣ ⩽ C3m−1 (∣Zm−1∣−1 ∑
y∈Zm−1

∣(f)y+◻m−1
∣2)

1
2

.

Now, observe that, for every n ∈ {0, . . . ,m − 1} and z ∈ Zn+1, we have

∫
z+◻n+1

f ⋅ (g − (g)z+◻n+1) = ∑
y∈Zn∩(z+◻n+1)

∫
y+◻n

f ⋅ (g − (g)y+◻n)
+ ∣◻n∣ ∑

y∈Zn∩(z+◻n+1)
((g)y+◻n − (g)z+◻n+1) ⋅ (f)y+◻n .
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Summing over z ∈ Zn+1 and using Hölder’s inequality, we get

∑
z∈Zn+1

∫
z+◻n+1

f ⋅ (g − (g)z+◻n+1) ⩽ ∑
y∈Zn

∫
y+◻n

f ⋅ (g − (g)y+◻n)
+ ∣◻n∣⎛⎝ ∑

z∈Zn+1
y∈Zn∩(z+◻n+1)

∣(g)y+◻n − (g)z+◻n+1 ∣2 ⎞⎠
1
2 ( ∑

y∈Zn
∣(f)y+◻n ∣2)

1
2

.

By the Jensen and Poincaré inequalities, for each z ∈ Zn+1,

∑
y∈Zn∩(z+◻n+1)

∣(g)y+◻n − (g)z+◻n+1 ∣2 = ∑
y∈Zn∩(z+◻n+1)

∣⨏
y+◻n

(g − (g)z+◻n+1)∣2
⩽ ∑
y∈Zn∩(z+◻n+1)

⨏
y+◻n

∣g − (g)z+◻n+1 ∣2
= 3d⨏

z+◻n+1
∣g − (g)z+◻n+1 ∣2

⩽ C32n⨏
z+◻n+1

∣∇g∣2 .
Since ∥∇g∥L2(◻m) ⩽ 1 and ∣Zn∣ = ∣◻m∣/∣◻n∣, combining the last two displays yields

∑
z∈Zn+1

∫
z+◻n+1

f ⋅ (g − (g)z+◻n+1)
⩽ ∑
y∈Zn

∫
y+◻n

f ⋅ (g − (g)y+◻n) +C ∣◻m∣3n (∣Zn∣−1 ∑
y∈Zn

∣(f)y+◻n ∣2)
1
2

.

Iterating this inequality and using that (g)◻m = 0, we get

∫◻m fg ⩽ ∑z∈Z0

∫
z+◻0

f ⋅ (g − (g)z+◻0
) +C ∣◻m∣ m−1∑

n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(f)y+◻n ∣2)
1
2

.

By the Poincaré inequality,

∑
z∈Z0

∫
z+◻0

∣g − (g)z+◻0 ∣2 ⩽ C ∫◻m ∣∇g∣2 = C ∣◻m∣.
Hence, by Hölder’s inequality,

∫◻m fg ⩽ C ∣◻m∣ 12 (∫◻m ∣f ∣2) 1
2 +C ∣◻m∣ m−1∑

n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(f)y+◻n ∣2)
1
2

.

Dividing by ∣◻m∣ and taking the supremum over all such g yields the result.
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We coined the previous proposition the “multiscale Poincaré inequality” without
explanation. Let us give one here. The usual Poincaré inequality for the cube ◻m
states that there exists a constant C(d) < ∞ such that, for every u ∈H1(◻m),

∥u − (u)◻m∥
L2(◻m) ⩽ C3m ∥∇u∥L2(◻m) . (1.42)

We can see that the scaling of the factor 3m is sharp by considering any nonconstant
affine function. However, we may wonder if we can do better for a function whose
gradient exhibits large-scale cancellations. Applying the previous inequality to
f = ∇u gives us the bound

∥∇u∥Ĥ−1(◻m) ⩽ C ∥∇u∥L2(◻m) +C m−1∑
n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(∇u)y+◻n ∣2)
1
2

.

If ∇u is “canceling itself out” in the sense that its spatial averages on large scale
triadic subcubes are much smaller than the size of the gradient itself, then the right
side of the previous inequality will be much smaller than that of (1.42), because
we pay only a factor 3n, for each triadic scale n <m, against the spatial average
of ∇u, not its absolute size in L2. Moreover, while this gives us an estimate of
the Ĥ−1(◻m) norm of ∇u, the latter actually bounds the L2(◻m) oscillation of u
itself. This is the content of the next lemma.

Lemma 1.8. There exists a C(d) < ∞ such that, for every m ∈ N and u ∈H1(◻m),
∥u − (u)◻m∥

L2(◻m) ⩽ C∥∇u∥Ĥ−1(◻m) (1.43)

and, similarly, for every v ∈H1
0(◻m),

∥v∥L2(◻m) ⩽ C∥∇v∥Ĥ−1(◻m). (1.44)

We will very often use Proposition 1.7 and Lemma 1.8 in combination, and
therefore state the combined estimate as an immediate corollary.

Corollary 1.9. There exists a constant C(d) < ∞ such that for every m ∈ N and
u ∈H1(◻m),

∥u − (u)◻m∥L2(◻m) ⩽ C ∥∇u∥L2(◻m) +C m∑
n=0

3n (∣Zn∣−1 ∑
y∈Zn

∣(∇u)y+◻n ∣2)
1
2

. (1.45)

Proof of Lemma 1.8. We start with the proof of the first estimate (1.43). We may
assume that (u)◻m = 0. Let w ∈H1(◻m) be the unique (up to an additive constant)
solution of the Neumann boundary-value problem

{ −∆w = u in ◻m,
n ⋅ ∇w = 0 on ∂◻m. (1.46)
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By Lemma B.19, we have w ∈H2(◻m) and, for some C(d) < ∞,

∥∇2w∥
L2(◻m) ⩽ C ∥u∥L2(◻m) . (1.47)

In order to estimate ∣(∇w)◻m ∣, we fix

p = (∇w)◻m∣(∇w)◻m ∣ ∈ B1

and test the equation (1.46) against the affine function x↦ p ⋅ x to obtain

∣(∇w)◻m ∣ = ⨏◻m p ⋅ ∇w = ⨏◻m u(x)p ⋅ xdx ⩽ C3m∥u∥L2(◻m).

Testing the equation (1.46) with u ∈H1(◻m) and using (1.47) yields

∥u∥2
L2(◻m) = ⨏◻m u2 = ⨏◻m ∇u ⋅ ∇w

⩽ ∥∇u∥Ĥ−1(◻m) (3−2m ∣(∇w)◻m ∣2 + ∥∇∇w∥2
L2(◻m)) 1

2

⩽ C ∥∇u∥Ĥ−1(◻m) ∥u∥L2(◻m) ,

which completes the proof of (1.43).
The second estimate (1.44) is a consequence of (1.43) and the following estimate:

for every v ∈H1
0(◻m), ∣(v)(◻m)∣ ⩽ C ∥∇v∥Ĥ−1(◻m) .

To see this, fix a unit direction e and let f denote the vector field f(x) = (e ⋅ x)e so
that ∇ ⋅ f = 1 and the components fi of f belong to H1(◻m) and satisfy the bound∥fi∥H1(◻m) ⩽ C. Then we find that

∣(u)U ∣ = ∣⨏
U
∇u ⋅ f ∣ ⩽ C ∥∇u∥Ĥ−1(◻m) .

This completes the proof.

We are now ready to give the proof of Proposition 1.5.

Proof of Proposition 1.5. Step 1. We fix p ∈ B1, m ∈ N and denote v ∶= v(⋅,◻m, p).
We estimate the difference between ∇v and p in Ĥ−1(◻m) by mimicking the proof
of Proposition 1.4. Let Zn be denoted by (1.33). By the multiscale Poincaré
inequality (Proposition 1.7),

∥∇v − p∥2
Ĥ−1(◻m) ⩽ C ∥∇v − p∥2

L2(◻m) +C ⎛⎝
m−1∑
n=0

3n ( 1∣Zn∣ ∑z∈Zn ∣(∇v − p)z+◻n ∣
2)

1
2⎞⎠

2

.
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The first term on the right side is estimated easily by (1.14) and (1.16):

∥∇v − p∥2
L2(◻m) ⩽ 2 ∥∇v∥2

L2(◻m) + 2∣p∣2 ⩽ C ∣p∣2 ⩽ C. (1.48)

To estimate the expectation of the second term, we fix n ∈ N and let ṽn be the
function ṽ described in Step 1 of the proof of Proposition 1.4 which is obtained by
gluing the minimizers v(⋅, z + ◻n, p) for z ∈ 3nZd ∩ ◻m. Using that (∇ṽn)z+◻n = p
for every z ∈ 3nZd ∩◻m, we obtain from Jensen’s inequality that

1∣Zn∣ ∑z∈Zn ∣(∇v)z+◻n − p∣
2 ⩽ ∥∇v(⋅,◻m, p) − ∇ṽn∥2

L2(◻m) .

According to (1.35), we have

∥∇v(⋅,◻m, p) − ∇ṽ∥2
L2(◻m) ⩽ 2∣Zn∣ ∑z∈Zn (ν(z +◻n, p) − ν(◻m, p)) .

Thus
1∣Zn∣ ∑z∈Zn ∣(∇v)z+◻n − p∣

2 ⩽ 2∣Zn∣ ∑z∈Zn (ν(z +◻n, p) − ν(◻m, p)) .
Combining the above displays yields

3−2m ∥∇v − p∥2
Ĥ−1(◻m) ⩽ C3−2m +CE(m). (1.49)

This completes the proof of the estimate for the first term on the left side of (1.39).
The proof of the H−1 estimate for the fluxes is the focus of the next three steps.

We begin with an identity which gives a relationship between the spatial average of
the flux of the minimizer v(⋅, U, p) and the gradient of the quantity ν(U, p). This
is a first encounter with an important idea that will reappear in later chapters.

Step 2. We show that, for every bounded Lipschitz domain U ⊆ Rd and p ∈ Rd,

⨏
U
a∇v(⋅, U, p) = a(U)p. (1.50)

By the definition of a(U) in (1.10), we have, for every p ∈ Rd,

⨏
U
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p) = p ⋅ a(U)p.

By polarization, we deduce that for every p, q ∈ Rd,

q ⋅ a(U)p = 1

4
((p + q) ⋅ a(U)(p + q) − (p − q) ⋅ a(U)(p − q))

= ⨏
U
∇v(⋅, U, q) ⋅ a∇v(⋅, U, p).
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By the first variation (i.e., using that v(⋅, U, p) is a weak solution of the equation
(1.12) and testing it with v(⋅, U, q) − `q ∈H1

0(U)), we obtain that

q ⋅ a(U)p = ⨏
U
q ⋅ a∇v(⋅, U, p),

and thus (1.50) holds.
Step 3. We argue that, for every n ∈ N,

sup
p∈B1

∣⨏◻n a∇v(⋅,◻n, p) − ap∣2 ⩽ C sup
p∈B1

∣ν(◻n, p) − ν(p)∣ . (1.51)

By (1.50), we have

∣⨏◻n a∇v(⋅,◻n, p) − ap∣ = ∣a(U)p − ap∣ ,
and moreover, by (1.9) and (1.25),

sup
p∈B1

∣(a(U) − a)p∣2 ⩽ C sup
p∈B1

∣1
2
p ⋅ (a(U) − a)p∣ = C sup

p∈B1

∣ν(◻n, p) − ν(p)∣ .
Combining these two displays yields (1.51).

Step 4. We complete the proof of (1.39). We once again fix p ∈ B1 and denote
v ∶= v(⋅,◻m, p). By the multiscale Poincaré inequality,

∥a∇v − ap∥2
Ĥ−1(◻m)

⩽ C ∥a∇v − ap∥2
L2(◻m) +C ⎛⎝

m−1∑
n=0

3n ( 1∣Zn∣ ∑z∈Zn ∣(a∇v − ap)z+◻n ∣2)
1
2⎞⎠

2

. (1.52)

By the triangle inequality,

1∣Zn∣ ∑z∈Zn ∣(a∇v − ap)z+◻n ∣2
⩽ 2∣Zn∣ ∑z∈Zn (∥a∇v − a∇v(⋅, z +◻n, p)∥2

L2(z+◻n) + ∣⨏
z+◻n

a∇v(⋅, z +◻n, p) − ap∣2) .
Arguing as in Step 1, we obtain the bounds

∥a∇v − ap∥2
L2(◻m) ⩽ C,

and

1∣Zn∣ ∑z∈Zn ∥a∇v − a∇v(⋅, z +◻n, p)∥2
L2(z+◻n) ⩽ C∣Zn∣ ∑z∈Zn ∣ν(z +◻n, p) − ν(◻m, p)∣ .
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The previous display and (1.51) yield

1∣Zn∣ ∑z∈Zn (∥a∇v − a∇v(⋅, z +◻n, p)∥2
L2(z+◻n) + ∣⨏

z+◻n
a∇v(⋅, z +◻n, p) − ap∣2)

⩽ C 1∣Zn∣ ∑z∈Zn (∣ν(z +◻n, p) − ν(◻m, p)∣ + sup
e∈B1

∣ν(z +◻n, e) − ν(e)∣) .
Combining the above, we obtain

∥a∇v − ap∥2
Ĥ−1(◻m)

⩽ C +C32mE(m) +C ⎛⎝
m∑
n=0

3n ( 1∣Zn∣ ∑z∈Zn sup
e∈B1

∣ν(z +◻n, e) − ν(e)∣) 1
2⎞⎠

2

⩽ C +C32mE(m).
This completes the proof of (1.39).

We now give the proof of Proposition 1.6.

Proof of Proposition 1.6. By Hölder’s inequality,

E(m) ⩽ C m∑
n=0

3n−m
1∣Zn∣ ∑z∈Zn ∣a(z +◻n) − a∣ . (1.53)

Taking the expectation of both sides and using stationarity and (1.29), we find that

E [E(m)] ⩽ C m∑
n=0

3n−m (3−
d
4
n +Cω (⌈n

2
⌉))

⩽ C3−(
d
4
∧1)m +C m∑

n=0

3n−mω (⌈n
2
⌉) .

To see that E [E(m)] → 0 as m→∞, observe that we can estimate the right side
of (1.40) crudely by

m∑
n=0

3n−mω(n) ⩽ C ⌈m
2
⌉∑

n=0

3n−m + m−1∑
n=⌈m

2
⌉
(3−

d
4
n +Cω (⌈n

2
⌉))

⩽ C3−
m
2 +C3−

d
8
m +Cω (⌈m

4
⌉) → 0 as m→∞.

We next present a W −2,q(◻m) estimate which quantifies the weak convergence
of the energy densities of v(⋅,◻m, p). Note that the energy density is a priori only
an L1(◻m) function and L1 embeds into W −2,q for every q ∈ [1, d

d−1
) by Sobolev

embedding and duality. Therefore it is natural to quantify weak convergence in L1

by strong convergence in W −2,q for this range of q. The fact that we can obtain
q > 1 is not very important here: in the next section we will just use q = 1 to
make the statement simpler. Also observe that we can get an estimate in W −1,1, if
desired, by interpolating between W −2,1 and L1.
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Proposition 1.10. Suppose that q ∈ [1, d
d−1

). There exists C(q, d,Λ) < ∞ such
that, for every m ∈ N and p ∈ B1,

3−2m ∥1
2∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p) − 1

2p ⋅ ap∥W−2,q(◻m) ⩽ C3−2m +CE(m). (1.54)

Proposition 1.10 is an immediate consequence of Proposition 1.5, Lemma 1.8,
and the following quantitative version of the so-called “div-curl lemma” of Murat-
Tartar (cf. [113, Chapter 7]). Recall that L2

sol(U) is the space of L2 solenoidal vector
fields on U defined in (0.26); the negative Sobolev norms are defined in (0.19).

Lemma 1.11 (Div-curl lemma). Suppose that q ∈ [1, d
d−1

). Let u1, u2 ∈H1(U) and
g1,g2 ∈ L2

sol(U). Then there exists C(U, q, d) < ∞ such that

∥∇u1 ⋅ g1 −∇u2 ⋅ g2∥W−2,q(U)⩽ C (∥∇u1∥L2(U) ∥g1 − g2∥H−1(U) + ∥g2∥L2(U) ∥u1 − u2∥L2(U)) . (1.55)

Proof. We may assume that (u1)U = (u2)U = 0. Fix q ∈ [1, d
d−1

). Let p ∶= q′ and
observe that p ∈ (d,∞]. Select ϕ ∈W 2,p

0 (U) and compute

∫
U
ϕ (∇u1 ⋅ g1 −∇u2 ⋅ g2) = −∫

U
∇ϕ ⋅ (u1g1 − u2g2)

= −∫
U
∇ϕ ⋅ (u1(g1 − g2) + (u1 − u2) ⋅ g2) .

Thus

∣∫
U
ϕ (∇u1 ⋅ g1 −∇u2 ⋅ g2)∣

⩽ ∥u1∇ϕ∥H1(U) ∥g1 − g2∥H−1(U) + ∥g2∇ϕ∥L2(U) ∥u1 − u2∥L2(U) .

Using the Hölder and Sobolev-Poincaré inequalities, we estimate

∥u1∇ϕ∥H1(U) ⩽ C (∥∇u1∇ϕ∥L2(U) + ∥u1∇∇ϕ∥L2(U))
⩽ C (∥∇ϕ∥L∞(U) ∥∇u1∥L2(U) + ∥∇∇ϕ∥Lp(U) ∥u1∥

L
2p
p−2 (U)

)
⩽ C ∥∇∇ϕ∥Lp(U) ∥∇u1∥L2(U) ,

where we used p > d for the first term, and 2p
p−2 < 2d

d−2 for the second term. Similarly,

∥g2∇ϕ∥L2(U) ⩽ ∥g2∥L2(U) ∥∇ϕ∥L∞(U) ⩽ ∥g2∥L2(U) ∥∇∇ϕ∥Lp(U) .

Combining the above, we deduce that

∣∫
U
ϕ (∇u1 ⋅ g1 −∇u2 ⋅ g2)∣

⩽ C ∥∇∇ϕ∥Lp(U) (∥∇u1∥L2(U) ∥g1 − g2∥H−1(U) + ∥g2∥L2(U) ∥u1 − u2∥L2(U)) .
Taking the supremum over ϕ ∈W 2,p

0 (U) completes the proof.
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1.5 Homogenization of the Dirichlet problem

The purpose of this section is to prove an estimate of the homogenization error for
a quite general class of Dirichlet problems. The statement is given in Theorem 1.12,
below, which is the culmination of the theory developed in this chapter. Similarly
to the previous section, the estimate is stated in terms of the convergence of
the subadditive quantity ν in triadic cubes and gives a rate of homogenization
in L1(Ω,P) which essentially depends on the modulus ω(m) defined in (1.27).
While we do not estimate ω(m) explicitly until the next chapter, the estimate in
Theorem 1.12 suffices to yield a qualitative homogenization result.

It is with an eye toward an important future application of the result here (see
Chapter 3) that we allow for relatively rough boundary conditions. We therefore
consider the Dirichlet problem in Lipschitz domains with boundary data slightly
better than H1(U), namely in W 1,2+δ(U) for some δ > 0. For the same reason,
we also provide an error estimate whose random part is uniform in the boundary
condition. The argument presented here will not lead to sharp error estimates,
even for smooth boundary conditions, but it foreshadows similar arguments in
Chapter 6 which do yield sharp estimates.

We follow very natural and by-now standard arguments introduced in periodic
homogenization in the 1970s and 80s, which use the first-order correctors. The
argument here can be compared for instance to those of [22, Chapter 1.5.5] or of [4,
Theorem 2.6]. A central idea in homogenization theory is that one can reduce more
complicated problems—such as obtaining the convergence of the Dirichlet problem
for general boundary data—to simpler ones, like the construction of “affine-like”
solutions. (We have already informally discussed this idea, see the paragraph
containing (1.6).)

This reduction is sometimes called the oscillating test function method and
the affine-like solutions which are usually used in the argument are called the
(first-order) correctors. However, the particular choice of “affine-like solution” is not
very important and since we have not yet introduced the first-order correctors (this
will wait until Section 3.4), their role is played by the “finite-volume correctors”
defined for each n ∈ N and e ∈ Rd by

φn,e(x) ∶= v(x,◻n, e) − e ⋅ x. (1.56)

In other words, φn,e is the difference of the solution of the Dirichlet problem in ◻n
with boundary data `e(x) ∶= e ⋅ x and the affine function `e itself.

The forthcoming argument consists of deriving estimates for the homogenization
error for a general Dirichlet problem in terms of the following quantity: for each
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ε ∈ (0,1), we choose m ∶= ⌊∣log ε∣ / log 3⌋ ∈ N so that ε ∈ [3−m,3−m+1) and then set

E ′(ε) ∶= d∑
k=1

(ε ∥φm,ek ( ⋅
ε
)∥
L2(ε◻m) + ∥a ( ⋅

ε
) (ek +∇φm,ek ( ⋅

ε
)) − aek∥H−1(ε◻m))2

.

(1.57)
Notice that this quantity measures: (i) how flat (affine-like) the functions x ↦
e ⋅x+φe(x) are, and (ii) the rate at which their fluxes are weakly converging to the
homogenized flux. Also observe that it is just a rescaled version of the quantity
estimated in Proposition 1.5. Indeed, the latter result and Lemma 1.8 imply that

E ′(ε) ⩽ C (ε2 + E(m)) , for m = ⌊∣log ε∣ / log 3⌋ . (1.58)

In order to avoid confusion coming from the rescaling of the H−1 norm in the
application of Proposition 1.5, we recall from (0.22) that, if we take a distribution f ∈
H−1(◻m) and we rescale it by setting fε(x) ∶= f (x

ε
), then

∥fε∥H−1(ε◻m) = ε ∥f∥H−1(◻m) ,

and similarly with Ĥ−1 in place of H−1.
The main result of this section is the following theorem, which in view of the

above discussion provides a direct link between the convergence of the subadditive
quantity ν and the error in homogenization of the Dirichlet problem.

Theorem 1.12. Fix δ > 0, a bounded Lipschitz domain U ⊆ ◻0, ε ∈ (0,1] and
f ∈W 1,2+δ(U). Let m ∈ N be such that 3m−1 < ε−1 ⩽ 3m, and let uε, u ∈ f +H1

0(U)
respectively denote the solutions of the Dirichlet problems

{ −∇ ⋅ (a (x
ε
)∇uε) = 0 in U,

uε = f on ∂U,
and { −∇ ⋅ (a∇u) = 0 in U,

u = f on ∂U.
(1.59)

There exist β(δ, d,Λ) > 0 and C(δ,U, d,Λ) < ∞ such that for every r ∈ (0,1),
∥uε − u∥L2(U) + ∥∇uε −∇u∥Ĥ−1(U) + ∥a ( ⋅

ε
)∇uε − a∇u∥

Ĥ−1(U)

⩽ C ∥∇f∥L2+δ(U) (rβ + 1

r3+d/2E ′(ε) 1
2) , (1.60)

and

∥1
2∇uε ⋅ a ( ⋅

ε
)∇uε − 1

2∇u ⋅ a∇u∥W−2,1(U) ⩽ C ∥∇f∥2
L2+δ(U) (rβ + 1

r3+d/2E ′(ε) 1
2) .

Proof. The idea of the proof is to compare uε to the function

wε(x) ∶= u(x) + εζr(x) d∑
k=1

∂ku(x)φm,ek (xε) .
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where ζr ∈ C∞
c (U) is a smooth cutoff function satisfying, for every k ∈ N,

0 ⩽ ζr ⩽ 1, ζr = 1 in U2r, ζr ≡ 0 in U ∖Ur, ∣∇kζr∣ ⩽ C(k, d,U)r−k. (1.61)

Recall from (0.13) that Ur ∶= {x ∈ U ∶ dist(x, ∂U) > r}. The purpose of ζr is to
cut off a boundary layer with the thickness r > 0, which is a given parameter.
The function wε is a primitive version of the two-scale expansion of u. The
plan is to plug wε into the equation for uε and estimate the error. This will
allow us to get an estimate on ∥uε −wε∥H1(U). Separately, we make direct estimates
of ∥∇wε −∇u∥Ĥ−1(U) and ∥a ( ⋅

ε
)∇wε − a∇u∥

Ĥ−1(U) and then conclude by the triangle
inequality.

Notice that if the cutoff function ζr was not present and the gradient of u were
constant (i.e., u is affine), then wε would be an exact solution of the equation for
uε. Therefore all of the error terms will involve ζr (which is only active in the
boundary layer U ∖U2r, a set of small measure that will be “Höldered away”) and
higher derivatives of u.

Since m is fixed throughout, we drop the dependence of φm,ej on m and
henceforth just write φej .

Step 0. Before we begin the proof, we record some standard estimates for
constant-coefficient equations which are needed. First, we need the pointwise
interior estimates for a-harmonic functions (cf. (3.7) in Chapter 3) which give us,
for every k ∈ N, the existence of a constant C(d, k,Λ) < ∞ such that

∥∇ku∥
L∞(Ur)

⩽ C

rk+d/2
∥u − (u)U∥L2(U) ⩽ C

rk+d/2
∥f∥H1(U) . (1.62)

The second estimate we need is the Meyers estimate: there exists δ0(d,Λ) > 0 and
C(U,d,Λ) < ∞ such that, if δ ∈ [0, δ0], then

∥∇u∥L2+δ(U) ⩽ C ∥∇f∥L2+δ(U) . (1.63)

This estimate is proved in Appendix C, see Theorem C.7. We may assume without
loss of generality that the exponent δ in the assumption of the theorem belongs
to the interval (0, δ0], so that (1.63) is in force. The only way (1.63) enters the
proof is that it allows us to estimate the L2 norm of ∇u in the boundary layer. By
Hölder’s inequality, we have:

∥∇u∥L2(U∖U2r) ⩽ C ∣U ∖U2r∣ δ
4+2δ ∥∇u∥L2+δ(U) ⩽ Cr δ

4+2δ ∥∇f∥L2+δ(U) . (1.64)

Finally, we make one reduction, which is to notice that without loss of generality
we may suppose that (f)U = 0. Otherwise we may subtract (f)U from each of the
functions uε, u and f . By the Poincaré inequality, this gives us the bound

∥f∥H1(U) ⩽ C∥∇f∥L2(U) ⩽ C∥∇f∥L2+δ(U).
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Step 1. We show that

∥∇ ⋅ (a ( ⋅
ε
)∇wε − a∇u)∥

Ĥ−1(U) ⩽ C ∥∇f∥L2+δ(U) (r δ
4+2δ + 1

r3+d/2E ′(ε) 1
2) . (1.65)

We compute first the gradient of wε:

∇wε = ∇u + ζr d∑
j=1

∇φej ( ⋅
ε
)∂ju + ε d∑

j=1

φej ( ⋅
ε
)∇(ζr∂ju)

= d∑
j=1

(ζr∂ju (ej +∇φej ( ⋅
ε
)) + (1 − ζr)∂juej + εφej ( ⋅

ε
)∇(ζr∂ju)) .

By the definition of φej , we have that

ej +∇φej ( ⋅
ε
) = ∇v ( ⋅

ε ,◻m, ej) ,
and thus, since v ( ⋅

ε ,◻m, ej) is a weak solution, we have in the weak sense the
identity

∇ ⋅ (a ( ⋅
ε
)∇wε) = d∑

j=1

∇(ζr∂ju) ⋅ a ( ⋅
ε
) (ej +∇φej ( ⋅

ε
))

+ ∇ ⋅ (a ( ⋅
ε
)((1 − ζr)∇u + ε d∑

j=1

φej ( ⋅
ε
)∇(ζr∂ju))) .

On the other hand, since u is a-harmonic,

∇(ζr∂ju) ⋅ aej = ∇ ⋅ (ζra∇u) = −∇ ⋅ ((1 − ζr)a∇u) ,
and hence, in the weak sense,

∇ ⋅ (a ( ⋅
ε
)∇wε) = d∑

j=1

∇(ζr∂ju) ⋅ (a ( ⋅
ε
) (ej +∇φej ( ⋅

ε
)) − aej)

+ ∇ ⋅ ((1 − ζr) (a ( ⋅
ε
) − a)∇u) + ∇ ⋅ (ε d∑

j=1

φej ( ⋅
ε
)a ( ⋅

ε
)∇(ζr∂ju)) .

It follows that

∥∇ ⋅ (a ( ⋅
ε
)∇wε − a∇u)∥

Ĥ−1(U)

⩽ d∑
j=1

∥∇(ζr∂ju)∥W 1,∞(U) ∥a ( ⋅
ε
) (ej +∇φej ( ⋅

ε
)) − aej∥Ĥ−1(ε◻m)

+ ∥(1 − ζr) (a ( ⋅
ε
) − a)∇u∥

L2(U)

+ d∑
j=1

∥εφej ( ⋅
ε
)a ( ⋅

ε
)∇(ζr∂ju)∥L2(U)

=∶ T1 + T2 + T3.



1.5 Homogenization of the Dirichlet problem 31

To bound the terms on the right, observe first that, by (1.61) and (1.62),

∥∇(ζr∂ju)∥W 1,∞(U) ⩽ C

r3+d/2 ∥f∥H1(U) , (1.66)

and hence, by Hölder’s inequality and the definition of E ′(ε),
T1 + T3 ⩽ C

r3+d/2 ∥f∥H1(U) E ′(ε) 1
2 .

For the second term T2, we use (1.64) and the fact that 1 − ζr is supported in
U ∖U2r to get, again by Hölder’s inequality,

T2 ⩽ C ∥∇u∥L2(U∖U2r) ⩽ C ∣U ∖U2r∣ δ
4+2δ ∥∇u∥L2+δ(U) ⩽ Cr δ

4+2δ ∥∇f∥L2+δ(U) .

Combining the estimates for T1, T2, and T3 finishes the proof of (1.65).
Step 2. We next deduce that

∥uε −wε∥H1(U) ⩽ C ∥∇f∥L2+δ(U) (r δ
4+2δ + 1

r3+d/2E ′(ε) 1
2) . (1.67)

Indeed, testing (1.65) with uε −wε, which belongs to H1
0(U), yields

∣∫
U
∇(uε −wε)(x) ⋅ a (x

ε
)∇wε(x)dx∣ ⩽ ∥uε −wε∥H1(U) ∥∇ ⋅ (a ( ⋅

ε
)∇wε)∥

H−1(U) ,

and meanwhile testing the equation for uε with uε −wε gives
∫
U
∇(uε −wε)(x) ⋅ a (x

ε
)∇uε(x)dx = 0.

Combining these and using the Poincaré inequality, we obtain

∥∇uε −∇wε∥2
L2(U) ⩽ C ∫

U
∇(uε −wε)(x) ⋅ a (x

ε
)∇(uε −wε)(x)dx

⩽ C ∥uε −wε∥H1(U) ∥∇ ⋅ (a ( ⋅
ε
)∇wε)∥

H−1(U)⩽ C ∥∇uε −∇wε∥L2(U) ∥∇ ⋅ (a ( ⋅
ε
)∇wε)∥

H−1(U) .

Thus ∥∇uε −∇wε∥L2(U) ⩽ C ∥∇ ⋅ (a ( ⋅
ε
)∇wε)∥

H−1(U) ,

and so we obtain (1.67) from (1.65) (in view of (0.24)) and another application of
the Poincaré inequality.

Step 3. We prove that

∥∇wε −∇u∥Ĥ−1(U) + ∥a ( ⋅
ε
)∇wε − a∇u∥

Ĥ−1(U)

⩽ C ∥∇f∥L2+δ(U) (r δ
4+2δ + 1

r2+d/2E ′(ε) 1
2) . (1.68)
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Here we just have to estimate the size of the second term in the definition of wε,
which should be small in the appropriate norms if the φek are, the latter being con-
trolled by the random variable E(m). This follows from some fairly straightforward
computations.

We have that

∇wε −∇u = ∇(εζr d∑
k=1

∂kuφek ( ⋅
ε
)) ,

and therefore

∥∇wε −∇u∥Ĥ−1(U) ⩽ C ∥εζr d∑
k=1

∂kuφek ( ⋅
ε
)∥

L2(U)

⩽ C ∥∇u∥L∞(Ur)

d∑
k=1

ε ∥φek ( ⋅
ε
)∥
L2(ε◻m) .

This yields by (1.62) that

∥∇wε −∇u∥Ĥ−1(U) ⩽ C 1

r1+d/2 ∥∇f∥L2+δ(U) E ′(ε) 1
2 .

We turn to the estimate for ∥a ( ⋅
ε
)∇wε − a∇u∥

Ĥ−1(U). We have

a ( ⋅
ε
)∇wε − a∇u = ζr d∑

j=1

∂ju (a ( ⋅
ε
) (ej +∇φej ( ⋅

ε
)) − aej)

+ (1 − ζr) (a ( ⋅
ε
) − a)∇u + a ( ⋅

ε
) d∑
j=1

∇(ζr∂ju) εφej ( ⋅
ε
) .

The Ĥ−1(U) norm of the last two terms on the right side can be estimated
analogously to T2 and T3 in Step 1. For the first term, we compute

∥ζr d∑
j=1

∂ju (a ( ⋅
ε
) (ej +∇φej ( ⋅

ε
)) − aej)∥

Ĥ−1(U)⩽ C ∥ζr∇u∥W 1,∞(U) ∥a ( ⋅
ε
) (ej +∇φej ( ⋅

ε
)) − aej∥Ĥ−1(ε◻m) ,

and then use (1.58) and (1.66) to obtain the desired estimate.
Step 4. The conclusion. We deduce from the triangle inequality and Steps 2

and 3 of the proof that

∥∇uε −∇u∥Ĥ−1(U) ⩽ ∥∇wε −∇u∥Ĥ−1(U) + ∥∇uε −∇wε∥L2(U)

⩽ C ∥∇f∥L2+δ(U) (r δ
4+2δ + 1

r3+d/2E ′(ε) 1
2) .
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The bound for the fluxes follows in a similar manner. The bound for the energy
densities then follows from these, using the easy bound

∥∇uε∥L2(U) + ∥∇u∥L2(U) ⩽ C ∥∇f∥L2(U)

and Lemma 1.11. Finally, the bound for ∥uε − u∥L2(U) is obtained from the Ĥ−1(U)
bound for the gradients and Lemma 1.8. While the latter lemma is stated for cubes
only, we can apply it here since uε − u ∈H1

0(U) can be extended to ◻0 by setting it
to be zero on ◻0 ∖U .
Exercise 1.5. Show that

E [ inf
r∈(0,1)

(rβ + 1

r3+d/2E ′(ε) 1
2)] → 0 as m→∞.

In fact, show using Proposition 1.6 that the rate of this limit can be estimated in
terms of the modulus ω(m) defined in (1.27).

Notes and references

The first (qualitative) stochastic homogenization results were obtained indepen-
dently, all around the same time, by Kozlov [81], Papanicolaou and Varadhan [104]
and Yurinskĭı [119]. Many of the ideas presented in this chapter originate in the
variational perspective introduced by Dal Maso and Modica [35, 36], which has its
roots in the work of De Giorgi and Spagnolo [39], although the arguments here are
simpler since the setting is less general. In particular, the use of the subadditivity
of the quantity ν(U, p) to prove qualitative homogenization in the stochastic case
first appeared in [35, 36].



Chapter 2

Convergence of the subadditive quantities

In the previous chapter, we introduced a subadditive quantity ν(U, p) and showed
that its convergence on large cubes implies a very general homogenization result for
the Dirichlet problem. In fact, we saw that an estimate of the modulus ω(n) defined
in (1.27), which represents the rate of convergence of the means E [ν(◻n, p)] to
their limit ν(p), would imply an explicit convergence rate for the homogenization
limits. The goal of this chapter is to obtain an estimate showing ω(n) is at most a
negative power of the length scale: ω(n) ⩽ C3−nα for an exponent α(d,Λ) > 0.

Unfortunately, the argument from the previous chapter for the convergence of
the limit limn→∞E [ν(◻n, p)] = ν(p) provides no clues for how we should obtain
a convergence rate. Indeed, the limit was obtained from the monotonicity of the
sequence n ↦ E [ν(◻n, p)], and obviously a monotone sequence may converge at
any speed. This is a central issue one must face when trying to quantify a limit
obtained from the subadditive ergodic theorem.

To estimate the speed of convergence of a subadditive quantity to its limit,
it is natural to search for a superadditive quantity which is close to the original
subadditive one. If a good estimate of the difference between the two can be
obtained, then an estimate for the speed of convergence of both quantities would
follow since each gives us monotonicity on one side, and the limit would thus
be squeezed in between. In this chapter we accomplish this by introducing a
new subadditive “dual” quantity which we denote by ν∗(U, q). We then compare
the family of subadditive quantities ν(U, p) indexed by p ∈ Rd to the family of
superadditive quantities p ⋅ q − ν∗(U, q) indexed by q ∈ Rd. We will show that, for
each p, there is a q such that these two quantities are close in expectation (in fact,
the correspondence between p and q is linear and gives us another way to define the
homogenized coefficients a). An equivalent way of saying this in the terminology of
convex analysis is that we show that ν(U, ⋅) and ν∗(U, ⋅) are close to being convex
dual functions. We will prove that this is so by constructing an iteration scheme
which establishes the decay of the defect in their convex dual relationship.

34
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We begin in the first section by giving the definition of ν∗ and exploring its
relationship to ν. The iteration procedure giving the convergence rate for ω(n)
is then carried out in Section 2.2. At the end of that section, we upgrade the
stochastic integrability of our estimates, making use of subadditivity and using
independence in a stronger way than we did in the previous chapter. This allows us
to obtain very strong bounds on the tail of the distribution of the random variableE(m) encountered in Proposition 1.5 and Theorem 1.12, thereby giving us useful
quantitative versions of these qualitative homogenization results: see Theorems 2.14
and 2.15 in Section 2.3.

2.1 The dual subadditive quantity ν∗

The dual subadditive quantity is defined for each q ∈ Rd and bounded Lipschitz
domain U ⊆ Rd by

ν∗(U, q) ∶= sup
u∈H1(U)

⨏
U
(−1

2
∇u ⋅ a∇u + q ⋅ ∇u) . (2.1)

Note that we impose no restriction on the trace of u on the boundary of U in (2.1).
It is routine to check that the supremum on the right of (2.1) is finite and that a
maximizer exists which is unique up to an additive constant. Although we make
no explicit use of this fact, we mention that it is characterized as the weak solution
of the Neumann problem

{ −∇ ⋅ (a∇u) = 0 in U,
n ⋅ a∇u = n ⋅ q on ∂U,

(2.2)

where n denotes the outward-pointing unit normal vector to ∂U . Recall that we
denote by A(U) the linear space of a-harmonic functions in U , see (0.30). Thus,
since the maximizer belongs to A(U), we may restrict the supremum in (2.1)
to u ∈ A(U) without changing the value of ν∗(U, q):

ν∗(U, q) = sup
u∈A(U)

⨏
U
(−1

2
∇u ⋅ a∇u + q ⋅ ∇u) . (2.3)

We see immediately that this quantity is subadditive by taking a partition {Uj}
of U and testing the definition of each ν∗(Uj, q) with the restrictions to Uj of the
maximizer of ν(U, q). See the proof of Lemma 2.2 below for details.

The definition of (2.1) itself should remind the reader of the Legendre transform.
Recall that if L(p) is a uniformly convex function of p, then the Legendre transform
of L is the function L∗(q) defined by

L∗(q) ∶= sup
p∈Rd

(−L(p) + p ⋅ q) .
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Notice that (2.1) resembles the formula for L∗, but there is an integral and the
supremum is over H1(U) instead of Rd. We can compare ν∗(U, q) to the other
subadditive quantity ν(U, p) defined in the previous chapter (see (1.7)) by testing
the minimizer of ν(U, p) in the definition of ν∗(U, q). This gives

ν(U, p) + ν∗(U, q) ⩾ p ⋅ q. (2.4)

Indeed, letting v(⋅, U, p) denote the minimizer in the definition of ν(U, p), as in (1.8),
and using that p = ⨏U ∇v(⋅, U, p) since v(⋅, U, p) ∈ `p +H1

0(U), we find that

ν∗(U, q) ⩾ ⨏
U
(−1

2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p) + q ⋅ ∇v(⋅, U, p)) = −ν(U, p) + q ⋅ p.

The inequality (2.4) reminds us of convexity duality, for it is equivalent to
the statement that ν∗(U, q) and ν(U, p) are each bounded below by the Legendre-
Fenchel transform of the other. We emphasize however that, despite our notation,
ν∗(U, ⋅) is not in general equal to the Legendre-Fenchel transform of ν(U, ⋅). Indeed,
the set of solutions of the Neuman problem (2.2) with affine data is not in general
equal to the set of solutions of the Dirichlet problem (1.12) with affine data
(unless the coefficients are constant). Therefore, a precise convex dual relationship
should be expected to hold only in the large-scale limit. We do expect such
duality to hold in the large-scale limit: to see why, imagine that for a fixed q, the
maximizer of ν∗(U, q) is relatively “flat” for a large domain U (meaning that it
is well-approximated by an affine function in a quantitative sense). In that case,
the inequality (2.4) should be nearly an equality for the right choice of p (which
should be the slope of the affine function approximating v(⋅, U, 0, q)). Furthermore,
since −ν∗(U, q) + q ⋅ p is superadditive and lower bounds ν(U, p), its monotonicity
complements that of ν(U, p). This gives us a chance to quantify the convergence
rate for both quantities by studying the sharpness of the inequality (2.4). In view
of (1.22), it also suggests that

lim
n→∞

E[ν∗(◻n, q)] = 1

2
q ⋅ a−1q. (2.5)

These considerations motivate us to study the quantity

J(U, p, q) ∶= ν(U, p) + ν∗(U, q) − p ⋅ q, (2.6)

which monitors the “defect” in the convex duality relationship between ν and ν∗.
Notice that J(U, p, q) contains both ν and ν∗ separately since J(U, p,0) = ν(U, p)
and J(U, 0, q) = ν∗(U, q), so we can think of it as the “master” subadditive quantity.
We expect the following limit to hold:

lim
n→∞

J(◻n, p,ap) = 0. (2.7)
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The goal is to prove (2.7) with an explicit convergence rate for the limit and to
show that this gives a convergence rate for ν(◻n, p) and ν∗(◻n, q) separately. The
main result is stated in Theorem 2.4, below.

We begin our analysis by giving a variational representation for J(U, p, q). As a
first step, we look for a formula for ν(U, p) which resembles that of ν∗(U, q) in (2.3).
In fact, as we will prove below in Lemma 2.1, we have

ν(U, p) = sup
u∈A(U)

⨏
U
(−1

2
∇u ⋅ a∇u + p ⋅ a∇u) . (2.8)

Notice that the comparison between this expression and (2.3) provides compelling
evidence that ν∗(U, q) is a natural quantity to consider.

The formula (2.8) can be derived from a geometric (or least-squares) interpreta-
tion of ν(U, p), which we briefly summarize as follows. Recall from (0.27) that the
space of gradients of functions in H1

0(U) is denoted by L2
pot,0(U). The gradient of

the minimizer for ν(U, p) is the element of p +L2
pot,0(U) with smallest “a(⋅)-norm”,

where the a(⋅)-norm is the square root of the quadratic form

∇v ↦ ⨏
U

1

2
∇v ⋅ a∇v.

It is therefore the orthogonal projection of the constant vector field p onto the
orthogonal complement of L2

pot,0(U) relative to L2
pot(U), where the notion of

orthogonality is defined according to the inner product implicit in the quadratic
form above. This linear space is precisely the set ∇(A(U)) of gradients of a-
harmonic functions in U , see (0.30). Hence, the gradient of the minimizer for
ν(U, p) is also the projection of p onto ∇(A(U)) with respect to the a(⋅)-inner
product, that is, the element of ∇(A(U)) which minimizes the a(⋅)-distance to p.
It can therefore be written as the maximizer over v ∈ A(U) of the functional

v ↦ −⨏
U

1

2
(∇v − p) ⋅ a(∇v − p) = ⨏

U
(−1

2
∇v ⋅ a∇v + p ⋅ a∇v − 1

2
p ⋅ ap) .

Since the term 1
2p ⋅ ap on the right side does not depend on v, it can be dropped

without changing the identity of the maximizer. It turns out that the value of the
minimum of the resulting functional coincides with ν(U, p).

We next give the formal details of the argument sketched above and actually
prove a general formula, valid for the quantity J defined in (2.6), which combines
both (2.3) and (2.8).

Lemma 2.1. For every bounded Lipschitz domain U ⊆ Rd and p, q ∈ Rd,

J(U, p, q) = sup
w∈A(U)

⨏
U
(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) . (2.9)

Moreover, the maximizer v(⋅, U, p, q) is the difference between the maximizer of
ν∗(U, q) in (2.1) and the minimizer of ν(U, p) in (1.7).
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Proof. Let v ∈ `p +H1
0(U) denote the minimizer in the definition of ν(U, p). For

every u ∈ A(U), we have

ν(U, p) + ⨏
U
(−1

2
∇u ⋅ a∇u + q ⋅ ∇u) − p ⋅ q

= ⨏
U
(1

2
∇v ⋅ a∇v − 1

2
∇u ⋅ a∇u + q ⋅ ∇u) − p ⋅ q. (2.10)

Since v ∈ `p +H1
0(U), we have

p = ⨏
U
∇v.

Since u ∈ A(U), we also have

⨏
U
∇u ⋅ a∇v = ⨏

U
∇u ⋅ ap,

and this last identity holds true in particular for u = v. We deduce that the left
side of (2.10) equals

⨏
U
(−1

2
(∇u −∇v) ⋅ a (∇u −∇v) − p ⋅ a (∇u −∇v) + q ⋅ (∇u −∇v)) .

Comparing this result with (2.3), (2.6) and the right side of (2.9), we obtain the
announced result.

We next collect some further properties of J in the following lemma, which
extends Lemma 1.1.

Lemma 2.2 (Basic properties of J). Fix a bounded Lipschitz domain U ⊆ Rd. The
quantity J(U, p, q) and its maximizer v(⋅, U, p, q) satisfy the following properties:

• Representation as quadratic form. The mapping (p, q) ↦ J(U, p, q) is a
quadratic form and there exist matrices a(U) and a∗(U) such that

Id ⩽ a∗(U) ⩽ a(U) ⩽ ΛId (2.11)

and
J(U, p, q) = 1

2
p ⋅ a(U)p + 1

2
q ⋅ a−1

∗ (U)q − p ⋅ q. (2.12)

The matrices a(U) and a∗(U) are characterized by the following relations,
valid for every p, q ∈ Rd:

a(U)p = −⨏
U
a∇v(⋅, U, p,0), (2.13)

a−1
∗ (U)q = ⨏

U
∇v(⋅, U,0, q). (2.14)
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• Subadditivity. Let U1, . . . , UN ⊆ U be bounded Lipschitz domains that form a
partition of U , in the sense that Ui ∩Uj = ∅ if i ≠ j and

∣U ∖ N⋃
i=1

Ui∣ = 0.

Then, for every p, q ∈ Rd,

J(U, p, q) ⩽ N∑
i=1

∣Ui∣∣U ∣ J(Ui, p, q). (2.15)

• First variation for J . For p, q ∈ Rd, the function v(⋅, U, p, q) is characterized
as the unique element of A(U) which satisfies

⨏
U
∇w ⋅ a∇v(⋅, U, p, q) = ⨏

U
(−p ⋅ a∇w + q ⋅ ∇w) , ∀w ∈ A(U). (2.16)

• Quadratic response. For every p, q ∈ Rd and w ∈ A(U),
⨏
U

1

2
(∇w −∇v(⋅, U, p, q)) ⋅ a (∇w −∇v(⋅, U, p, q))

= J(U, p, q) − ⨏
U
(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) . (2.17)

Remark 2.3. From (2.6) and (2.12), we see that for every q ∈ Rd,

ν∗(U, q) = 1

2
q ⋅ a−1

∗ (U)q.
The choice of notation for a∗(U) is justified by the fact that we expect the quantity
ν∗(U, q) to converge to 1

2q ⋅ a−1q, see (2.5). We consider a(U) and a∗(U) to be
“best guess approximations for a by looking only at a(⋅) restricted to U ,” from
the point of view of the quantities ν and ν∗ respectively. The main point of the
arguments in this chapter is to show that these two notions are almost the same
for U = ◻n and large n ∈ N and that the matrices a(◻n) and a∗(◻n) are both close
to a: see Theorem 2.4 below. The matrices a(U) and a∗(U) should be thought of
as “coarsened coefficients” with respect to U .

Proof of Lemma 2.2. Step 1. We derive the first variation and prove the quadratic
response (2.17) inequalities. Fix p, q ∈ Rd and set v ∶= v(⋅, U, p, q). Also fix w ∈ A(U)
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and t ∈ R test the expression (2.6) for J(U, p, q) with ṽt ∶= v + tw:
⨏
U
(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v)

⩾ ⨏
U
(−1

2
∇ṽt ⋅ a∇ṽt − p ⋅ a∇ṽt + q ⋅ ∇ṽt)

= ⨏
U
(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v) + t⨏

U
(−∇v ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w)

+ t2⨏
U
−1

2
∇w ⋅ a∇w.

Rearranging this inequality, dividing by t and sending t→ 0 yields

⨏
U
(−∇v ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) = 0.

This is (2.16). This calculation also shows that any function satisfying (2.16) will
be a maximizer for J(U, p, q). In fact, taking t = 1, writing ṽ ∶= ṽ1 and using the
previous two displays, we see that

J(U, p, q) − ⨏
U
(−1

2
∇ṽ ⋅ a∇ṽ − p ⋅ a∇ṽ + q ⋅ ∇ṽ) = ⨏

U

1

2
∇w ⋅ a∇w.

This is (2.17), which yields, in particular, that the maximizer is unique. By (2.16),
we have that (p, q) ↦ v(⋅, U, p, q) is linear. (2.18)

Step 2. We prove that J(U, p, q) is quadratic and establish the representation
formula (2.12) for matrices a(U) and a∗(U) given by (2.13) and (2.14), respectively.
First, we observe that we have the following identity:

J(U, p, q) = ⨏
U

1

2
∇v(⋅, U, p, q) ⋅ a∇v(⋅, U, p, q). (2.19)

Indeed, this is immediate from (2.9) and (2.16). This together with (2.18) implies

(p, q) ↦ J(U, p, q) is quadratic. (2.20)

In view of the formula (2.6), this implies in particular that q ↦ ν∗(U, q) is quadratic.
We define a∗(U) to be the symmetric matrix such that for every q ∈ Rd,

ν∗(U, q) = 1

2
q ⋅ a−1

∗ (U)q.
The representation (2.12) is then immediate from (2.6). Moreover, for every q ∈ Rd,

q ⋅ a−1
∗ (U)q = ⨏

U
∇v(⋅, U,0, q) ⋅ a∇v(⋅, U,0, q).
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This and (2.18) imply that, for every p, q ∈ Rd,

p ⋅ a−1
∗ (U)q = ⨏

U
∇v(⋅, U,0, p) ⋅ a∇v(⋅, U,0, q).

By (2.16), we deduce that

p ⋅ a−1
∗ (U)q = ⨏

U
p ⋅ ∇v(⋅, U,0, q),

and this is (2.14). The relation (2.13) follows from (1.50) and Lemma 2.1.

Step 3. We prove the bounds (2.11). The upper bound for a(U) was proved
already in Lemma 1.1. The bound a∗(U) ⩽ a(U) is immediate from (2.4) and (2.12)
by taking q = a∗(U)p in (2.12). To obtain the lower bound for a∗(U), we first use
(2.14) to write

ν∗(U, q) = 1

2
q ⋅ a−1

∗ (U)q = 1

2
q ⋅ ⨏

U
∇v(⋅, U,0, q).

By Young’s inequality,

⨏
U
q ⋅ ∇v(⋅, U,0, q) ⩽ ⨏

U
(1

2
q ⋅ a−1q + 1

2
∇v(⋅, U,0, q) ⋅ a∇v(⋅, U,0, q)) .

and thus, by (2.19),

1

2
q ⋅ a−1(U)q ⩽ 1

2
q ⋅ (⨏

U
a−1) q ⩽ 1

2
∣q∣2 ,

which gives the desired lower bound for a∗(U).
Step 4. We verify the subadditivity of J . Testing (2.6) for J(Ui, p, q) with

v = v(⋅, U, p, q), we get

J(Ui, p, q) ⩾ ⨏
Ui

(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v) .

Multiplying this by ∣Ui∣/∣U ∣ and summing over i, we get

J(U, p, q) = ⨏
U
(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v)

= N∑
i=1

∣Ui∣∣U ∣ ⨏Ui (−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v)

⩽ N∑
i=1

∣Ui∣∣U ∣ J(Ui, p, q).
This completes the proof of the lemma.
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The main result of this chapter is the following theorem, which gives quantifies
convergence of a(◻n) and a∗(◻n) to a. We remind the reader that the Os(⋅)
notation is defined in (0.33) and its basic properties are given in Appendix A.

Theorem 2.4. Fix s ∈ (0, d). There exist α(d,Λ) ∈ (0, 1
2
] and C(s, d,Λ) < ∞ such

that, for every n ∈ N,
∣a(◻n) − a∣ + ∣a∗(◻n) − a∣ ⩽ C3−nα(d−s) +O1 (C3−ns) . (2.21)

The right side of (2.21) conveniently breaks the error into a deterministic part
with a relatively small exponent of α(d − s), and a random part with a relatively
large exponent s < d (we will typically take s very close to d). Thus, while we are
controlling the total size of the error in a very mild way, we are controlling the tail
of the distribution of the error very strongly (in fact, as strongly as is possible, see
Remark 2.5 below). In this sense, (2.21) is close to being a deterministic estimate.

Remark 2.5 (Optimality of stochastic integrability). By Chebyshev’s inequality,
we may deduce from (2.21) that, for every t > 0,

P [∣a(◻n) − a∣ + ∣a∗(◻n) − a∣ ⩾ C3−nα(d−s) + t] ⩽ C exp (−3nst) .
In particular, we find that the probability of finding a very large error of size O(1) is
smaller than O(exp (−c3ns)) for every s < d. This estimate is optimal, in the sense
that the probability of this event cannot be made smaller than O (exp (−A3nd))
for a large constant A ≫ 1. To see why this is so, we think of the random
checkerboard example, in which “white” squares have a(x) ≡ Id and “black” squares
have a(x) ≡ 2Id, and a fair coin is tossed independently to determine whether each
square z + ◻0 with z ∈ Zd is white or black. The probability of having all the
squares in ◻n be of a same given color is exactly

(1

2
)3nd = exp (−c3nd) .

These two outcomes (all white versus all black) will necessarily have J(◻, p, q)’s
which are O(1) apart for p, q ∈ B1. So the probability of an error of size O(1) must
be at least O (exp (−c3nd)) in general.

Remark 2.6. The choice of the stochastic integrability exponent 1 in the termO1(C3−ns) appearing in (2.21) is somewhat arbitrary; the only important point is
that the range of allowed values for the product of this exponent and s is (0, d).
Indeed, since for every p, q ∈ B1 and n ∈ N, we have J(◻n, p, q) ⩽ C(d,Λ), an
application of Lemma A.3 yields that for every r ⩾ 1, the right side of (2.21) can
be replaced by

C3−nα(d−s) +Or (C3−ns/r) . (2.22)
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Conversely, if for some r ⩾ 1 and ε, θ > 0, a random variable X satisfies

X ⩽ ε +Or (θ) ,
then by Young’s inequality, for every ρ > 0,

X ⩽ ρ + ρ1−rXr ⩽ ρ + ρ1−rε +O1 (ρ1−rθr) . (2.23)

In particular, applying this result with ρ = 3−β(d−s)n, we get

X ⩽ C3−nα(d−s) +Or (C3−ns/r)
Ô⇒ X ⩽ C3−βn(d−s) +C3−n(α−(r−1)β)(d−s) +O1 (C3−ns+(r−1)βn(d−s)) . (2.24)

Hence, if Theorem 2.4 holds with the right side of (2.21) replaced by (2.22), we
recover the original formulation of this theorem by applying (2.24) with β(α, r) > 0
sufficiently small.

In view of (2.6), the estimate (2.21) can be thought of as two separate estimates,
one for each of the subadditive quantities ν and ν∗. However, it is better to think
of it as just one estimate for the “convex duality defect” J(U, p,ap), as we discussed
above, because this is how we prove it. Since this simple observation is central to
our strategy, we formalize it next.

Lemma 2.7. There exists a constant C(d,Λ) < ∞ such that, for every symmetric
matrix ã ∈ Rd×d satisfying

Id ⩽ ã ⩽ ΛId

and every bounded Lipschitz domain U ⊆ Rd, we have

∣a(U) − ã∣ + ∣a∗(U) − ã∣ ⩽ C sup
p∈B1

(J(U, p, ãp)) 1
2 . (2.25)

Proof. Denote
δ ∶= sup

p∈B1

J(U, p, ãp).
In view of (2.12), for each fixed p ∈ Rd, the uniformly convex function

q ↦ J(U, p, q) = 1

2
p ⋅ a(U)p + 1

2
q ⋅ a−1

∗ (U)q − p ⋅ q (2.26)

achieves its minimum at the point q̃ ∶= a∗(U)p. By (2.11) and (2.12), for every
q ∈ Rd, we have that

1

2
(q − q̃) ⋅ a−1

∗ (U)(q − q̃)
= 1

2
p ⋅ a(U)p + 1

2
q ⋅ a−1

∗ (U)q − p ⋅ q + 1

2
p ⋅ (a∗(U) − a(U))p ⩽ J(U, p, q).
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Choosing q = ãp, we deduce, after taking the supremum over p ∈ B1 and recalling
the definition of δ, that ∣a∗(U) − ã∣2 ⩽ Cδ.
A similar argument, fixing q ∈ Rd and minimizing p↦ J(U, p, q), gives that

∣a(U) − ã∣2 ⩽ Cδ,
and hence (2.25) follows, completing the proof.

Exercise 2.1. Recall the Voigt-Reiss estimates for the homogenized coefficients:

E [∫◻0

a−1(x)dx]−1 ⩽ a ⩽ E [∫◻0

a(x)dx] . (2.27)

In Exercise 1.2, we proved the second inequality of (2.27). Assuming that (2.5)
holds, use properties of ν∗ and the inequality

1

2
p ⋅ a(x)p + 1

2
q ⋅ a−1(x)q ⩾ p ⋅ q

to prove the first inequality of (2.27).

Exercise 2.2. Suppose d = 2 and let R ∈ R2×2 denote the rotation by π
2 about the

origin:

R = ( 0 1−1 0
) .

Assume that there exists a constant σ > 0 such that the random field x ↦ a(x)
has the same law as the field x ↦ σa−1(Rx). The purpose of this exercise is to
show, in this case, that a is given explicitly by the following formula (called Dykhne
formula [44]):

a = √
σ I2. (2.28)

Here is an outline of the proof:

1. Recalling the definifion of the space L2
sol(U) in (0.26) and (2.8), show that

ν(U, p) = sup
g∈L2

sol
(U)
∫
U
(−1

2
g ⋅ a−1g + p ⋅ g) .

2. Show that g ∈ L2
sol(U) if and only if there exists u ∈H1(U) such that

g = ( ∂x2u−∂x1u) =∶ ∇⊥u.
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3. Using that x↦ σa−1(Rx) has the same law as x↦ a(x) and (2.1), show that
for every n ∈ N,

E [ν(◻n, p)] = σ−1E [ν∗(◻n, σp)] .
Assuming (2.5), show that (2.28) holds. Deduce that for the 2-dimensional
random checkerboard displayed on Figure 1 (page xiii) with a0 = αI2 and
a1 = βI2, we have a = √

αβ I2.

2.2 Quantitative convergence of the subadditive quantities

In this section, we present the proof of Theorem 2.4. The main step in the argument
and the focus of most of the section is to obtain the following proposition.

Proposition 2.8. There exist α(d,Λ) ∈ (0, 1
2
] and C(d,Λ) < ∞ such that, for

every n ∈ N,
sup
p∈B1

E [J(◻n, p,ap)] ⩽ C3−nα. (2.29)

The quantity U ↦ J(U, p, q) is nonnegative and subadditive. We expect it to
converge to zero for q = ap and as U becomes large, and indeed, what (2.29) gives
is a rate of convergence for this limit in L1(Ω,P) in large cubes, asserting that
the expectation is at most the C(3n)−α∣q∣2, where 3n is the side length of the cube.
The basic idea for proving this estimate is to show that J(◻n, p,ap) must contract
by a factor less than 1 as we pass from triadic scale n to n + 1. That is, we must
show that, for some θ < 1,

E [J(◻n+1, p,ap)] ⩽ θE [J(◻n, p,ap)] . (2.30)

If we could prove (2.30), then a simple iteration would give (2.29). The inequal-
ity (2.30) can be rewritten as

E [J(◻n+1, p,ap)] ⩽ C (E [J(◻n, p,ap)] −E [J(◻n+1, p,ap)]) .
We do not prove precisely this, but rather a slightly weaker inequality in this spirit
which is still strong enough to yield (2.29) after iteration. We handle all values of
the parameter p at the same time, and we replace the term in parentheses on the
right side of the previous inequality with

τn ∶= sup
p,q∈B1

(E [J(◻n, p, q)] −E [J(◻n+1, p, q)])
= sup
p∈B1

(E [ν(◻n, p)] −E [ν(◻n+1, p)]) + sup
q∈B1

(E [ν∗(◻n, q)] −E [ν∗(◻n+1, q)]) .
This is morally close to the same, but the resulting inequality is a bit weaker.
Notice that τn measures the strictness in the subadditivity relation between scales n
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and n = 1. We sometimes call it the additivity defect. This leaves us with the task
of proving

E [J(◻n+1, p,ap)] ⩽ Cτn. (2.31)

In view of Lemma 2.7, we can roughly summarize (2.31) in words as the statement
that “if the expectations of both of the subadditive quantities do not change much
as we change the scale from n to n + 1 (that is, if the additivity defect is small)
then the subadditive quantities have already converged.” Actually, what we prove
is still slightly weaker than (2.31), because we need to monitor the additivity defect
across many scales rather than just the largest scale. The precise version of (2.31)
is stated in Lemma 2.13, below, and most of this section is focused on its proof.

We begin the proof of Proposition 2.8 by putting the formula (2.17) in a more
useful form for the analysis in this section. It states that we can control the
difference of the optimizers for both ν and ν∗ on two scales by the strictness of the
subadditivity. We have essentially encountered this inequality already in Chapter 1
in the case q = 0: see (1.19).

Lemma 2.9. Fix a bounded Lipschitz domain U ⊆ Rd and let {U1, . . . , Uk} be a
partition of U into smaller Lipschitz domains, up to a set of measure zero. Then,
for every p, q ∈ Rd,

k∑
j=1

∣Uj ∣∣U ∣ 1

2
∥a 1

2 (∇v(⋅, U, p, q) − ∇v(⋅, Uj, p, q))∥2

L2(Uj)

= k∑
j=1

∣Uj ∣∣U ∣ (J(Uj, p, q) − J(U, p, q)) . (2.32)

Proof. Write v ∶= v(⋅, U, p, q) and vj ∶= v(⋅, Uj, p, q). According to (2.17), for every
j ∈ {1, . . . , k},
⨏
Uj

1

2
(∇v −∇vj) ⋅ a (∇v −∇vj)

= J(Uj, p, q) − ⨏
Uj

(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v) .

Summing this over j ∈ {1, . . . , k} gives the lemma.

We next turn to one of the key steps in the proof of Proposition 2.8, which
is to obtain some control of the variance of the spatial average of the gradient of
the maximizer of ν∗. By (2.14), this is the same as controlling the variance of the
gradient of J in the q variable, that is, the matrix a∗.

Note that the following lemma is obvious when q = 0, since v(⋅, U, p,0) ∈
`p +H1

0(U), which implies that

⨏
U
∇v(⋅, U, p,0) = ⨏

U
∇`p(⋅, U, p,0) = p. (2.33)
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Thus the spatial average of ∇v(⋅, U, p,0) over U is actually deterministic. All of
the interest in the lemma therefore concerns the maximizers of ν∗. We note that
its proof is the only place where we use the unit range of dependence assumption
in the proof of Proposition 2.8. We also note that we do not need the full power of
independence here: essentially any mild decorrelation assumption would do.

It is convenient to extend the notation var[X] to random vectors X (taking
values in Rd) by setting var[X] ∶= E [∣X −E [X]∣2].
Lemma 2.10. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every p, q ∈ B1

and m ∈ N,
var [⨏◻m ∇v(⋅,◻m, p, q)] ⩽ C3−mκ +C m∑

n=0

3−κ(m−n)τn. (2.34)

Proof. Step 1. To ease the notation, denote

v ∶= v(⋅,◻m, p, q), vz ∶= v(⋅, z +◻n, p, q). (2.35)

We claim that, for every p, q ∈ B1,

var
1
2 [⨏◻m ∇v] ⩽ var

1
2

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

∇vz⎤⎥⎥⎥⎥⎦ +C (m−1∑
k=n

τk)
1
2

. (2.36)

Using the identity

⨏◻m ∇v = 3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

(∇v −∇vz) + 3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

∇vz,
we find that

var
1
2 [⨏◻m ∇v] ⩽ E

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

∣⨏
z+◻n

(∇v −∇vz)∣2⎤⎥⎥⎥⎥⎦
1
2

+ var
1
2

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

∇vz⎤⎥⎥⎥⎥⎦ . (2.37)

By Lemma 2.9,

∑
z∈3nZd∩◻m

∣⨏
z+◻n

(∇v −∇vz)∣2 ⩽ ∑
z∈3nZd∩◻m

⨏
z+◻n

∣∇v −∇vz ∣2
⩽ C ∑

z∈3nZd∩◻m
(J(z +◻n, p, q) − J(◻m, p, q)) . (2.38)



48 Chapter 2 Convergence of the subadditive quantities

Taking the expectation of (2.38) yields, by stationarity,

E
⎡⎢⎢⎢⎢⎣3−d(m−n) ∑

z∈3nZd∩◻m
∣⨏
z+◻n

(∇v −∇vz)∣2⎤⎥⎥⎥⎥⎦ ⩽ CE [J(◻n, p, q) − J(◻m, p, q)]
= C m−1∑

k=n
τk.

Combining the previous display and (2.37) yields (2.36).
Step 2. We use independence to obtain the existence of θ(d) ∈ (0,1) such that,

for every p, q ∈ B1 and n ∈ N,
var

1
2

⎡⎢⎢⎢⎢⎣3−d ∑
z∈3nZd∩◻n+1

⨏
z+◻n

∇v(⋅, z +◻n, p, q)⎤⎥⎥⎥⎥⎦ ⩽ θ var
1
2 [⨏◻n ∇v(⋅,◻n, p, q)] . (2.39)

To ease the notation, we set, for each z ∈ 3nZd,

Xz ∶= ⨏
z+◻n

∇v(⋅, z +◻n, p, q) −E [⨏
z+◻n

∇v(⋅, z +◻n, p, q)] .
We expand the variance by writing

var

⎡⎢⎢⎢⎢⎣3−d ∑
z∈3nZd∩◻n+1

Xz

⎤⎥⎥⎥⎥⎦ = 3−2d ∑
z,z′∈3nZd∩◻n+1

cov [Xz,Xz′] .
Since Xz is F(z +◻n)-measurable, by the independence assumption we have that
cov [Xz,Xz′] = 0 in the case that the subcubes corresponding to z, z′ ∈ 3nZd ∩◻n+1

are not neighbors: that is, dist(z + ◻n, z′ + ◻n) ≠ 0 (which, since n ⩾ 0, implies
that dist(z +◻n, z′ +◻n) ⩾ 1). For z, z′ ∈ 3nZd ∩◻n+1 corresponding to neighboring
subcubes, we use the Cauchy-Schwarz inequality to get

∣cov [Xz,Xz′]∣ ⩽ var
1
2 [Xz]var

1
2 [Xz′] = var [X0] .

The number of such pairs of cubes is clearly at most 32d − 1, since it suffices to find
a single pair of subcubes which are not neighbors (for instance, opposite corners).
We therefore obtain

var

⎡⎢⎢⎢⎢⎣3−d ∑
z∈3nZd∩◻n+1

Xz

⎤⎥⎥⎥⎥⎦ ⩽ (32d − 1

32d
)var [X0] .

This implies the claim for θ ∶= (1 − 3−2d) 1
2 .

Step 3. Iteration and conclusion. Fix p, q ∈ Rd and denote

σ2
n ∶= var [⨏◻n ∇v(⋅,◻n, p, q)] .
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Combining (2.36) and (2.39), we deduce the existence of θ(d) ∈ (0,1) such that,
for every n ∈ N,

σn+1 ⩽ θσn +Cτ 1
2
n . (2.40)

An iteration yields

σm ⩽ θmσ0 +C m∑
n=0

θm−nτ
1
2
n .

Squaring this and using σ0 ⩽ C, we get

σ2
m ⩽ 2θ2mσ2

0 +C ( m∑
n=0

θm−nτ
1
2
n )2 ⩽ Cθ2m +C m∑

n=0

θm−nτn.

Setting κ ∶= log θ/ log 3, we get

σ2
m ⩽ C3−mκ +C m∑

n=0

3−κ(m−n)τn.

The proof is complete.

Definition 2.11. We define the deterministic matrix aU by

aU ∶= E [a−1
∗ (U)]−1

. (2.41)

We also denote an ∶= a◻n for short.

By (2.11), we have
Id ⩽ aU ⩽ ΛId. (2.42)

Moreover, by (2.14), we note that for every q ∈ Rd,

a−1
U q = E [⨏

U
∇v(⋅, U,0, q)] ,

which is closely related to the quantity we encountered in the statement of
Lemma 2.10. Indeed, since (p, q) ↦ v(⋅, U, p, q) is a linear mapping, and since
by Lemma 2.1, the function v(⋅, U, p,0) is minus the minimizer of ν(U, p), which
has spatial average p, we have

E [⨏
U
∇v(⋅, U, p, q)] = a−1

U q − p. (2.43)

We note for future reference that, for every q ∈ B1 and m,n ∈ N with m < n,
∣a−1
n q − a−1

m q∣2 ⩽ C n−1∑
k=m

τk. (2.44)
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Indeed, by stationarity and Lemma 2.9, we find

∣a−1
n q − a−1

m q∣2
= RRRRRRRRRRRRE

⎡⎢⎢⎢⎢⎣⨏◻n ∇v(x,◻n,0, q)dx − 3−d(n−m) ∑
z∈3mZd∩◻n

⨏
z+◻m

∇v(x,◻m,0, q)dx⎤⎥⎥⎥⎥⎦
RRRRRRRRRRRR
2

⩽ E
⎡⎢⎢⎢⎢⎣3−d(n−m) ∑

z∈3mZd∩◻n
⨏
z+◻m

∣∇v(x, z +◻m,0, q) − ∇v(x,◻n,0, q)∣2 dx⎤⎥⎥⎥⎥⎦⩽ C (E [J(◻m,0, q)] −E [J(◻n,0, q)])
⩽ C n−1∑

k=m
τk.

We also note that the uniformly convex function

q ↦ E [J (U, p, q)] = 1

2
p ⋅E [a(U)]p + 1

2
q ⋅E [a−1

∗ (U)] q − p ⋅ q (2.45)

achieves its minimum at the point q̃ = E [a−1
∗ (U)]−1

p, which by definition is q̃ = aUp.
It therefore follows from (2.12) that, for C(Λ) < ∞,

E [J (U, p,aUp)] ⩽ E [J (U, p, q)] ⩽ E [J (U, p,aUp)] +C ∣q − aUp∣2 . (2.46)

We next use the previous lemma and the multiscale Poincaré inequality to
control the expected flatness of v(⋅,◻n+1, p, q) in terms of the sequence τ1, . . . , τn.
Note that the statement of the lemma can be compared to Proposition 1.4 and in
particular essentially generalizes that proposition with an independent proof.

Lemma 2.12. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every n ∈ N
and p, q ∈ B1,

E [⨏◻n+1 ∣v(x,◻n+1, p, q) − (a−1
n q − p) ⋅ x∣2 dx]

⩽ C32n (3−κn + n∑
m=0

3−κ(n−m)τm) . (2.47)

Proof. Fix p, q ∈ B1 and denote Zm ∶= 3mZd ∩◻n+1.
Step 1. Application of the multiscale Poincaré inequality. Corollary 1.9 gives

⨏◻n+1 ∣v(x,◻n+1, p, q) − (a−1
n q − p) ⋅ x∣2 dx

⩽ C ⨏◻n+1 ∣∇v(x,◻n+1, p, q) − a−1
n q + p∣2 dx

+C ⎛⎝
n∑

m=0

3m (∣Zm∣−1 ∑
y∈Zm

∣⨏
y+◻m

∇v(x,◻n+1, p, q)dx − a−1
n q + p∣2)

1
2⎞⎠

2

. (2.48)
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The first term on the right side is almost surely bounded:

⨏◻n+1 ∣∇v(⋅,◻n+1, p, q) − a−1
n q + p∣2
⩽ 2 ∣a−1

n q − p∣2 + 2⨏◻n+1 ∣∇v(⋅,◻n+1, p, q)∣2 ⩽ C. (2.49)

This leaves us with the task of bounding the expectation of the difference between
the spatial average of ∇v(⋅,◻n+1, p, q) and the deterministic slope a−1

n q − p in all
triadic subcubes of ◻n+1 down to the unit scale.

Step 2. For κ(d) > 0 as in Lemma 2.10, we show that, for every m ∈ {0, . . . , n},
∣Zm∣−1 ∑

y∈Zm
E [∣⨏

y+◻m
∇v(⋅,◻n+1, p, q)dx − a−1

n q + p∣2]
⩽ C (3−κm + m∑

k=0

3κ(k−m)τk + n∑
k=m

τk) . (2.50)

We derive (2.50) by applying the previous lemma and using the triangle inequality
to go down to smaller scales.

By Lemma 2.9, we have, for every q ∈ Rd,

∣Zm∣−1 ∑
y∈Zm

⨏
y+◻m

∣∇v(⋅,◻n+1, p, q) − ∇v(⋅, y +◻m, p, q)∣2
⩽ C ∣Zm∣−1 ∑

y∈Zm
(J(y +◻m, p, q) − J(◻n+1, p, q)) . (2.51)

Taking expectations and using stationarity, we obtain

∣Zm∣−1 ∑
y∈Zm

E [⨏
y+◻m

∣∇v(⋅,◻n+1, p, q) − ∇v(⋅, y +◻m, p, q)∣2]
⩽ C (E [J(◻m, p, q)] −E [J(◻n+1, p, q)]) = C n∑

k=m
τk.

The triangle inequality, the previous display, Lemma 2.10, (2.43) and (2.44) yield

∣Zm∣−1 ∑
y∈Zm

E [∣⨏
y+◻m

∇v(⋅,◻n+1, p, q) − a−1
n q + p∣2]

⩽ 3∣Zm∣−1 ∑
y∈Zm

E [⨏
y+◻m

∣∇v(⋅,◻n+1, p, q) − ∇v(⋅, y +◻m, p, q)∣2]
+ 3∣Zm∣−1 ∑

y∈Zm
E [∣⨏

y+◻m
∇v(⋅, y +◻m, p, q) − a−1

m q + p∣2]
+ 3 ∣a−1

m q − a−1
n q∣2

⩽ C n∑
k=m

τk +C (3−κm + m∑
k=0

3κ(k−m)τk) .
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This is (2.50).
Step 3. We complete the proof of (2.47). To summarize what we have shown

so far, we combine (2.48), (2.49) and (2.50) into the estimate

⨏◻n+1 ∣v(x,◻n+1, p, q) − (a−1
n q − p) ⋅ x∣2 dx ⩽ C ⎛⎝1 + ( n∑

m=0

3mX
1
2
m)2⎞⎠ , (2.52)

where the random variable

Xm ∶= ∣Zm∣−1 ∑
y∈Zm

∣⨏
y+◻m

∇v(⋅,◻n+1, p, q) − (a−1
n q − p)∣2

satisfies

E [Xm] ⩽ C (3−κm + m∑
k=0

3κ(k−m)τk + n∑
k=m

τk) . (2.53)

Next we use Hölder’s inequality to see that

( n∑
m=0

3mX
1
2
m)2 ⩽ ( n∑

m=0

3m)( n∑
m=0

3mXm) ⩽ C3n
n∑

m=0

3mXm

and then take the expectation of this and apply (2.53) to get

E
⎡⎢⎢⎢⎢⎣(

n∑
m=0

3mX
1
2
m)2⎤⎥⎥⎥⎥⎦ ⩽ C3n

n∑
m=0

(3m (3−κm + m∑
k=0

3κ(k−m)τk + n∑
k=m

τk))
⩽ C32n (3−κn + n∑

k=0

3−κ(n−k)τk + n∑
k=0

3−(n−k)τk)
⩽ C32n (3−κn + n∑

k=0

3−κ(n−k)τk) .
Combining the above yields (2.47) and completes the proof of the lemma.

Now that we have control on the flatness of the maximizers of J(◻n, p, q), we
can estimate J(◻n, p,anp) with the help of the Caccioppoli inequality.

Lemma 2.13. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every n ∈ N
and p ∈ B1,

E [J(◻n, p,anp)] ⩽ C (3−κn + n∑
m=0

3−κ(n−m)τm) . (2.54)

Proof. Fix p ∈ B1. Lemma 2.12 asserts that

E [⨏◻n+1 ∣v(⋅,◻n+1, p,anp)∣2] ⩽ C32n (3−κn + n∑
m=0

3−κ(n−m)τm) .
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Applying the Caccioppoli inequality (cf. Lemma C.2), we find that

E [⨏◻n ∣∇v(⋅,◻n+1, p,anp)∣2] ⩽ C (3−κn + n∑
m=0

3−κ(n−m)τm) .
To conclude, it suffices to show that, for every p, q ∈ B1,

E [J(◻n, p, q)] ⩽ CE [⨏◻n ∣∇v(⋅,◻n+1, p, q)∣2] +Cτn. (2.55)

To prove (2.55), fix p, q ∈ B1 and denote

v ∶= v(⋅,◻n, p, q) and w ∶= v(⋅,◻n+1, p, q).
Using (2.19), we find that

J(◻n, p, q) = ⨏◻n 1

2
∇v ⋅ a∇v = ⨏◻n 1

2
∇w ⋅ a∇w − ⨏◻n 1

2
(∇v −∇w) ⋅ a (∇v +∇w) .

By Hölder’s inequality,

⨏◻n (∇v −∇w) ⋅ a (∇v +∇w) ⩽ C ∥∇v −∇w∥L2(◻n) (∥∇v∥L2(◻n) + ∥∇w∥L2(◻n))
and thus, taking expectations, we find that

E [⨏◻n 1

2
(∇v −∇w) ⋅ a (∇v +∇w)]

⩽ CE [∥∇v −∇w∥2
L2(◻n)] 1

2 (E [∥∇v∥2
L2(◻n)] +E [∥∇w∥2

L2(◻n+1)]) 1
2

⩽ Cτ 1
2
n (E [J(◻n, p, q)] +E [J(◻n+1, p, q)]) 1

2

⩽ Cτ 1
2
n E [J(◻n, p, q)] 1

2 .

Combining these and using Young’s inequality, we obtain

E [J(◻n, p, q)] ⩽ E [⨏◻n 1

2
∇w ⋅ a∇w] +Cτ 1

2
n E [J(◻n, p, q)] 1

2

⩽ CE [⨏◻n ∣∇w∣2] + 1

2
E [J(◻n, p, q)] +Cτn.

Rearranging this gives (2.55). This completes the proof of the lemma.

We are now ready to complete the proof of Proposition 2.8 which, as previously
indicated, is accomplished by an iteration of the result of the previous lemma.
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Proof of Proposition 2.8. Define the quantity

En ∶= sup
p∈B1

E [J(◻n, p,anp)] .
Our first goal, which is close to the conclusion of the proposition, is to prove the
estimate

En ⩽ C3−nα. (2.56)

To show this, it is natural to attempt to prove the bound En+1 ⩽ θEn for some
constant θ(d,Λ) ∈ (0,1). This could be iterated to immediately yield (2.56).
However, we cannot show exactly this directly because the supremum in the
definition of En is inconvenient to work with. Instead we consider the quantity
defined for n ∈ N by

Fn ∶= d∑
i=1

E [J(◻n, ei,anei)] . (2.57)

It is clear that Fn is equivalent to En in the sense that

cEn ⩽ Fn ⩽ CEn. (2.58)

The reason Fn is more favorable to consider than En is because of the bound

Fn − Fn+1 ⩾ cτn. (2.59)

Indeed, to prove (2.59), we use (2.46), which gives us that

Fn+1 ⩽ d∑
i=1

E [J(◻n+1, ei,anei)] , (2.60)

and therefore that

Fn − Fn+1

⩾ d∑
i=1

(E [J(◻n, ei,anei)] −E [J(◻n+1, ei,anei)])
= d∑
i=1

(E [ν(◻n, ei)] −E [ν(◻n+1, ei)] +E [ν∗(◻n,anei)] −E [ν∗(◻n+1,anei)])
⩾ c(sup

p∈B1

(E [ν(◻n, p)] −E [ν(◻n+1, p)]) + sup
q∈B1

(E [ν∗(◻n, q)] −E [ν∗(◻n+1, q)]))
= cτn.

(Note that we also used the inequality (2.42) to get the fourth line in the previous
display.) We can thus prove Fn+1 ⩽ θFn by showing that Fn ⩽ Cτn, since the latter
together with (2.59) give us that

Fn ⩽ Cτn Ô⇒ Fn ⩽ C(Fn − Fn+1) ⇐⇒ Fn+1 ⩽ (1 − 1

C
)Fn,
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The inequality Fn ⩽ Cτn is close to what Lemma 2.13 gives us, but unfortunately it
is actually slightly stronger, since the right side of (2.54) is more complicated and
involves a sum of τm over all scales smaller than n with smaller scales discounted
by the exponent κ = κ(d) from that lemma. Therefore, rather than Fn, it is natural
to work instead with the sequence F̃n defined by

F̃n ∶= 3−
κ
2
n

n∑
m=0

3
κ
2
mFm.

Notice that F̃n is essentially a weighted average of Fm over all scales smaller than n,
and is in particular a stronger quantity than Fn in the sense that Fn ⩽ F̃n. Therefore
it suffices to control F̃n.

We next show that there exist θ(d,Λ) ∈ [1
2 ,1) and C(d,Λ) < ∞ such that, for

every n ∈ N,
F̃n+1 ⩽ θF̃n +C3−

κ
2
n. (2.61)

Using (2.59) and F0 ⩽ C, we have

F̃n − F̃n+1 ⩾ 3−
κ
2
n

n∑
m=0

3
κ
2
m (Fm − Fm+1) −C3−

κ
2
n ⩾ c(3−

κ
2
n

n∑
m=0

3
κ
2
mτm −C3−

κ
2
n) .

Lemma 2.13 gives

F̃n+1 ⩽ F̃n = 3−
κ
2
n

n∑
m=0

3−
κ
2
mFm ⩽ C3−

κ
2
n

n∑
m=0

3
κ
2
m (3−κm + m∑

k=0

3−κ(m−k)τk)
⩽ C3−

κ
2
n +C3−

κ
2
n

n∑
m=0

m∑
k=0

3
κ
2
(2k−m)τk

= C3−
κ
2
n +C3−

κ
2
n

n∑
k=0

n∑
m=k

3
κ
2
(2k−m)τk

⩽ C3−
κ
2
n +C3−

κ
2
n

n∑
k=0

3
κ
2
kτk. (2.62)

Comparing the previous two displays yields

F̃n+1 ⩽ C (F̃n − F̃n+1) +C3−
κ
2
n.

A rearrangement of the previous inequality is (2.61).
Now an iteration of (2.61) gives

F̃n ⩽ θnF̃0 +C n∑
k=0

θk3−
κ
2
(n−k).

This implies (after making θ closer to 1 if necessary) that
n∑
k=0

θk3−
κ
2
(n−k) ⩽ Cn (θ ∨ 3−

κ
2 )n ⩽ Cθn.
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Using this and the fact that F̃0 = F0 ⩽ C, we obtain

F̃n ⩽ Cθn.
Taking α(d,Λ) ∶= log 3/ ∣log θ∣ > 0 so that θ = 3−α yields the bound F̃n ⩽ C3−nα and
thereby completes the proof of (2.56).

To complete the proof of the proposition, we need to obtain the same estimate
as (2.56) after replacing a−1

n in the definition of En by a−1. Notice that (2.56), (2.58)
and (2.59) imply that

τn ⩽ C3−nα.

Thus, by (2.44), for every m,n ∈ N with m ⩾ n, we have

∣an − am∣2 ⩽ C3−nα.

It follows that there exists a matrix ã ∈ Rd×d such that

∣an − ã∣2 ⩽ C3−nα.

The previous inequality, (2.46) and (2.56) imply that

sup
p∈B1

E [J(◻n, p, ãp)] ⩽ C3−nα. (2.63)

In view of Lemma 2.7, we obtain that

∣E [a(◻n)] − ã∣ + ∣E [a∗(◻n)] − ã∣ ⩽ C3−nα/2.

Comparing this to Definition 1.2, we see that ã = a. Therefore (2.63) is the same
as (2.29). This completes the proof.

We did not use the full strength of the unit range of dependence assumption in
the proof of Proposition 2.8, and in fact the proof applies essentially verbatim if
this assumption is replaced by a milder decorrelation condition (we just need an
algebraic decay of correlations to obtain Lemma 2.10). We next use independence
in a much stronger way to complete the proof of Theorem 2.4 by upgrading the
stochastic integrability of the result of Proposition 2.8. Here we leverage strongly
on the fact that the subadditive quantities are bounded and localized.

Proof of Theorem 2.4. We first apply the unit range of dependence assumption.
For every m,n ∈ N with m ⩽ n, denote Zm ∶= 3mZd ∩◻n. Note that J(U, p,ap) isF(U)–measurable and J(U, p,ap) ⩽ C ∣p∣2 by (2.11). Therefore an application of
Lemma A.10 yields, for every m,n ∈ N with m ⩽ n,
J(◻n, p,ap) ⩽ 1∣Zm∣ ∑z∈Zm J(z +◻m, p,ap) ⩽ E [J(◻m, p,ap)] + O2 (C3−

d
2
(n−m)) .
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As J(◻m, p,ap) ⩽ C ∣p∣2, we obtain from Lemma A.3 that

J(◻n, p,ap) −E [J(◻m, p,ap)] ⩽ O1 (C3−d(n−m)) .
By Proposition 2.8, we thus obtain, for some α(d,Λ) ∈ (0, 1

2
],

J(◻n, p,ap) ⩽ C3−mα +O1 (C3−d(n−m)) . (2.64)

To conclude, we use the previous display, Lemma 2.7 and the elementary inequality

(a + b) 1
2 ⩽ a 1

2 + 1

2
a−

1
2 b ∀a, b > 0 (2.65)

to obtain, for every m,n ∈ N with m ⩽ n,
∣a(◻n) − a∣ + ∣a∗(◻n) − a∣ ⩽ C3−mα/2 +O1 (C3mα/2−d(n−m)) .

Given s ∈ (0, d), the choice of m to be the closest integer to (d − s)n/(d +α/2) and
then shrinking α yields the desired inequality (2.21). This completes the proof of
the theorem.

2.3 Quantitative homogenization for the Dirichlet problem

In this section, we record some estimates on the convergence of the maximizers
of J(◻m, p, q) and on the homogenization of the Dirichlet problem which will be
useful to us later in the book. We deduce the following two theorems by combining
Propositions 1.5, 1.10 and Theorem 1.12, proved in the previous chapter, with
Theorem 2.4.

Theorem 2.14. Fix s ∈ (0, d). There exist α(d,Λ) ∈ (0, 1
d
] and C(s, d,Λ) < ∞

such that, for every p, q ∈ B1 and m ∈ N,
∥∇v(⋅,◻m, p, q) − (a−1q − p)∥

Ĥ−1(◻m) + ∥a∇v(⋅,◻m, p, q) − (q − ap)∥Ĥ−1(◻m)⩽ C3m−mα(d−s) +O1 (C3m−ms) . (2.66)

Proof. Using Proposition 1.5, and Lemma 2.1 stating that −v(⋅, U, p,0) is the
minimizer of ν(U, p), we have the bound

∥∇v(⋅,◻m, p,0) + p∥2
Ĥ−1(◻m) + ∥a∇v(⋅,◻m, p,0) + ap∥2

Ĥ−1(◻m) ⩽ C +C32mE(m).
Here E(m) is the random variable defined in (1.38). On the other hand, by the
triangle inequality, we get

∥∇v(⋅,◻m,0, q) − a−1q∥
Ĥ−1(◻m)⩽ ∥∇v(⋅,◻m,a−1q,0) + a−1q∥

Ĥ−1(◻m) + ∥∇v(⋅,◻m,a−1q, q)∥
Ĥ−1(◻m) ,
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and similarly

∥a∇v(⋅,◻m,0, q) − q∥Ĥ−1(◻m)⩽ ∥a∇v(⋅,◻m,a−1q,0) + q∥
Ĥ−1(◻m) + ∥a∇v(⋅,◻m,a−1q, q)∥

Ĥ−1(◻m) .

We have that

3−m ∥∇v(⋅,◻m,a−1q, q)∥
Ĥ−1(◻m)

⩽ C ∥∇v(⋅,◻m,a−1q, q)∥
L2(◻m) ⩽ C (J(◻m,a−1q, q)) 1

2 ,

and applying Theorem 2.4 with s+d
2 instead of s, together with the representation

of J in (2.12), gives

J(◻m,a−1q, q) = 1

2
a−1q ⋅ (a(◻m) − a)a−1q + 1

2
a−1q ⋅ (a − a∗(◻m))a−1

∗ (◻m)q
⩽ C3−mα

d−s
2 +O1 (C3−m

s+d
2 ) ,

and then applying (2.65) and reducing α > 0, if necessary, yields

3−m ∥∇v(⋅,◻m,a−1q, q)∥
Ĥ−1(◻m) ⩽ C3−mα(d−s) +O1 (C3−ms) .

A similar bound also holds for the flux a∇v(⋅,◻m,a−1q, q). We obtain, for p, q ∈ B1,

∥∇v(⋅,◻m, p, q) − (a−1q − p)∥2

Ĥ−1(◻m) + ∥a∇v(⋅,◻m, p, q) − (q − ap) ∥2
Ĥ−1(◻m)⩽ C (1 + 32mE(m)) +C3m−mα(d−s) +O1 (C3m−ms) . (2.67)

We are therefore left with the task of estimating E(m). The claim is that

E(m) 1
2 ⩽ 3−mα(d−s)/2 +O1 (C3−ms) . (2.68)

Recall that the definition of E(m) in (1.38) is

E(m) ⩽ C ⎛⎝
m∑
n=0

3n−m ( 1∣Zn∣ ∑z∈Zn ∣a(z +◻n) − a∣)
1
2⎞⎠

2

.

By Theorem 2.4, for every z ∈ Zn,
(∣a(z +◻n) − a∣ −C3−nα(d−s))+ ⩽ O1(C3−n(s+d)/2).

We then use Lemma A.4 to obtain

⎛⎝( 1∣Zn∣ ∑z∈Zn ∣a(z +◻n) − a∣)
1
2 −C3−nα(d−s)/2

⎞⎠
+

⩽ O2 (C3−n(s+d)/4) .
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Since the left side is also bounded by C, we have by Lemma A.3 that it is bounded
by Od (C3−n(s+d)/2d). As (s + d)/2d < 1, we can use Lemma A.4 again to obtain

m∑
n=0

3n−m
⎛⎝( 1∣Zn∣ ∑z∈Zn ∣a(z +◻n) − a∣)

1
2 −C3−nα(d−s)/2

⎞⎠
+

⩽ Od (C3−m(s+d)/2d) .
Squaring this and rearranging, we get

E(m) ⩽ C3−mα(d−s) +Od/2 (C3−m(s+d)/d) . (2.69)

Applying Remark 2.6—see (2.24)—and then using (2.65), we obtain (2.68). We
then obtain (2.66) by combining (2.67) and (2.68) and reducing α again, if necessary.
The proof is complete.

We conclude this chapter with the following quantitative homogenization result
for the Dirichlet problem.

Theorem 2.15. Fix s ∈ (0, d), a bounded Lipschitz domain U ⊆ B1 and an exponent
δ > 0. There exist an exponent β(δ, d,Λ) > 0, a constant C(s,U, δ, d,Λ) < ∞ and a
random variable Xs satisfying Xs = O1 (C) (2.70)

such that the following statement holds. For each ε ∈ (0,1] and f ∈W 1,2+δ(U), let
uε, u ∈ f +H1

0(U) respectively denote the solutions of the Dirichlet problems

{ −∇ ⋅ (a (x
ε
)∇uε) = 0 in U,

uε = f on ∂U,
and { −∇ ⋅ (a∇u) = 0 in U,

u = f on ∂U.
(2.71)

Then we have the estimate

∥uε − u∥2
L2(U) + ∥∇uε −∇u∥2

Ĥ−1(U) + ∥a ( ⋅
ε
)∇uε − a∇u∥2

Ĥ−1(U)+ ∥1
2∇uε ⋅ a ( ⋅

ε
)∇uε − 1

2∇u ⋅ a∇u∥W−2,1(U)⩽ C ∥∇f∥2
L2+δ(U) (εβ(d−s) + Xsεs) . (2.72)

Proof. By Theorem 1.12, inequality (1.58) and the fact that E(m) ⩽ C(d,Λ), there
exists γ(δ, d,Λ) > 0 such that, for each ε ∈ (0,1), if we choose mε ∈ N so that
3mε−1 < ε−1 ⩽ 3mε , then we have

∥uε − u∥2
L2(U) + ∥∇uε −∇u∥2

Ĥ−1(U) + ∥a ( ⋅
ε
)∇uε − a∇u∥2

Ĥ−1(U)+ ∥1
2∇uε ⋅ a ( ⋅

ε
)∇uε − 1

2∇u ⋅ a∇u∥W−2,q(U)

⩽ C ∥∇f∥2
L2+δ(U) inf

r∈(0,1)
(r2γ + 1

r6+d (3−2mε + E(mε)) 1
2) , (2.73)
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Fix s ∈ (0, d). It remains to show that, for some β > 0 and Xs as in the statement
of the theorem,

inf
r∈(0,1)

(r2γ + 1

r6+d (3−2mε + E(mε)) 1
2) ⩽ Cεβ(d−s) + X εs.

In other words, we need to show that, for some β(δ, d,Λ) > 0

sup
m∈N

3ms inf
r∈(0,1)

(r2γ + 1

r6+d (3−2m + E(m)) 1
2 −C3−mβ(d−s))

+
⩽ O1(C). (2.74)

We have already seen in (2.68) that, for some α(d,Λ) > 0 and with s′ ∶= 1
2(d + s),

we have the bound

(3−2m + E(m)) 1
2 ⩽ C3−mα(d−s) +O1 (C3−ms

′) .
We next select r ∈ (0,1) to be as small as possible, but still large enough that

1

r6+d3−mα(d−s) ⩽ 3−mα(d−s)/2 and
1

r6+d3−ms
′/2 ⩽ 3−ms/2.

We can take for example r ∶= 3−m(s′−s)/(12+2d)∨3−mα(d−s)/(12+2d). We obtain, for some
β(γ, d,Λ) > 0,

r2γ + 1

r6+d (3−2m + E(m)) ⩽ C3−mβ(d−s) +O1 (C3−ms−mβ(d−s)) .
Thus, by Lemma A.4,

∑
m∈N

3ms (inf
r>0

(r2γ + 1

r6+d (3−2m + E(m))) −C3−mβ(d−s))
+
⩽ O1 (C ∑

m∈N
3−mβ(d−s))

⩽ O1(C).
This completes the proof of (2.74).

Notes and references

The first quantitative estimate for the homogenization error was obtained by
Yurinskĭı [120], who proved an algebraic rate of convergence in L2(Ω,P) using
different methods. The dual subadditive quantity ν∗(U, q) was introduced in [15]
and this chapter is a simplified version of the arguments which appeared in that
paper. In particular, [15] proved Theorem 2.4 and essentially contained a proof
of Theorem 2.15. Most of the improvements to the argument we make here are
due to the use of the multiscale Poincaré inequality (Proposition 1.7) which was
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introduced later in [11]. This allowed for an easier proof of Lemma 2.12, which was
accomplished in [15] by a long calculation involving Helmholtz-Hodge projections.

It was also shown in [11], by a renormalization-type (bootstrap) argument, that
the scaling of the error in Theorem 2.4 can be improved to the statement that, for
every α < 1,

∣J(◻n, p, q) − (1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q)∣ ⩽ O2 (C3−nα) .

This estimate cannot be improved beyond the exponent α = 1 due to boundary
layers effects, as explained in [11].

The ideas and techniques in this chapter are robust in the sense that they
can be extended beyond the case of linear, uniformly elliptic equations. See [9]
for an extension to the very degenerate case of supercritical percolation clusters
and [15, 13] for general nonlinear equations and integral functionals. While the
techniques are based on variational methods, they also work in the case of linear
equations with non-symmetric coefficients (see Chapter 10). In fact, they extend
to the setting of general uniformly monotone operators [13] and even to parabolic
equations with space-time coefficients [7].

We remark that the philosophy underlying the analysis in this chapter, as well
as that of Chapter 4, is similar to the “variational approach to coarse-graining”
described in [43].



Chapter 3

Regularity on large scales

In this chapter, we show that quantitative homogenization implies that solutions
are typically much more regular, on large scales, than the deterministic regularity
theory for uniformly elliptic equations with rough coefficients would predict.

Such improved regularity results are of fundamental importance to the quan-
titative theory of homogenization. Indeed, to get finer estimates for the rate of
homogenization than what we have obtained thus far, we need better a priori
estimates on the gradients of solutions. We know from the very definition of weak
solution that a solution u of our equation will satisfy ∇u ∈ L2. By the Meyers
estimate (see (3.3) below), this can be slightly improved to ∇u ∈ L2+δ for some small
δ > 0. Our first goal in this chapter is to improve this to something close to ∇u ∈ L∞,
showing roughly that the energy density of a solution cannot concentrate on small
scales. Since the Meyers estimate is the best gradient estimate for an arbitrary
elliptic equation, such a result will necessarily require some probabilistic ingredient.
It turns out that the ingredient we need is the conclusion of Theorem 2.15, which
gives us a-harmonic approximation.

The basic idea, borrowed from the classical proof of the Schauder estimates,
is to implement a C1,γ-type iteration to obtain decay of the excess1 by comparing
a given solution, in each large ball, to the a-harmonic function with the same
boundary values. Homogenization ensures that these two functions are very close
to each other and, since the error is at most algebraic, it sums as we sum over a
sequence of dyadic balls. On the other hand, the regularity of a-harmonic functions
gives an improvement in polynomial approximation as we pass from BR to BR/2.
The main difference from the proof of the Schauder estimates is that here the error
in comparing to a-harmonic functions is controlled by homogenization rather than
by freezing the coefficients. This idea was previously used in the context of periodic

1The excess is the name sometimes given to the quantity that measures how close a function u
is to an affine function at a given scale. The excess of u in Br for example could be defined by
1
r

inf`∈P1 ∥u − `∥Lp(Br) for any convenient p ∈ [1,∞].

62
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homogenization by Avellaneda and Lin [16], and the analysis here can be thought
of as a quantitative version of their compactness, blow-down argument.

The main results of the chapter are the C0,1-type estimate in Theorem 3.3 and
its generalization, Theorem 3.6, which gives higher Ck,1-type regularity estimates
for every k ∈ N and related Liouville results. We set up the context for these results
in the following section.

3.1 Brief review of classical elliptic regularity

Let u ∈ H1(BR) be an a(⋅)-harmonic function in BR, that is, a weak solution of
the linear, uniformly elliptic equation

−∇ ⋅ (a(x)∇u) = 0 in BR. (3.1)

Here we make no further assumptions on the regularity of the coefficient field beyond
measurability or any structural assumption on a(⋅) beyond uniform ellipticity. What
is the best regularity we can expect for the solution u?

• In terms of Hölder spaces, the best regularity is given by the De Giorgi-
Nash estimate (cf. [72, Chapter 3]): there exists α(d,Λ) > 0 and a constant
C(d,Λ) < ∞ such that u ∈ C0,α

loc (BR) and

∥u∥L∞(BR/2) +Rα [u]C0,α(BR/2) ⩽ C ∥u∥L2(BR) . (3.2)

This estimate only holds for scalar equations. It is false, in general, for linear
elliptic systems (there is a counterexample due to De Giorgi [38]).

• In terms of Sobolev spaces, the best regularity is given by the Meyers estimate:
there exists δ(d,Λ) > 0 and a constant C(d,Λ) < ∞ such that ∇u ∈ L2+δ

loc (BR)
and ∥∇u∥L2+δ(BR/2) ⩽ CR ∥u∥L2(BR) . (3.3)

This improvement of integrability of the gradient also extends to the case of
linear elliptic systems. A complete proof of this estimate can be found in
Appendix C, see Theorem C.1.

Lest the reader imagine that it is possible to improve either of these estimates,
or even to show that α or δ can be bounded away from zero independently of
the ellipticity constant Λ, we present the following example due to Meyers [89].
Another example is given later in Section 3.6.

Example 3.1 (Optimality of De Giorgi-Nash & Meyers estimates). Fix an exponent
α ∈ (0,1] and consider the function u ∶ R2 → R defined by

u(x) ∶= ∣x∣α−1x1.
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For every r ∈ (0,1], we have

u /∈ C0,β(Br) for any β > α and ∇u /∈ Lp(Br) for any p ⩾ d + dα

1 − α.
Consider the coefficient matrix a(x) given by

a(x) ∶= (I − x⊗ x∣x∣2 ) +Λ(x⊗ x∣x∣2 ) .
Notice that a(x) has eigenvalue 1 with multiplicity d − 1 (the eigenvectors are
orthogonal to x) and eigenvalue Λ with multiplicity one (the eigenvector is x). See
Figure 3.1 for a visualization in d = 2.

We now compute

∇u(x) = ∣x∣α−1 (e1 + (α − 1)∣x∣−2x1x) .
Therefore

a(x)∇u(x) = ∣x∣α−1e1 + (Λα − 1) ∣x∣α−3x1x.

Taking the divergence of this, we find

(∇ ⋅ a∇u)(x) = ∣x∣α−3x1 (α − 1 + (αΛ − 1)(α + d − 2))
= ∣x∣α−3x1Λ(α2 + (d − 2)α − d − 1

Λ
) .

This vanishes therefore if

α2 + (d − 2)α − d − 1

Λ
= 0.

Therefore u satisfies −∇ ⋅ a∇u = 0 in Rd

if we choose α by the formula

α ∶= 1

2

⎛⎝−(d − 2) +
√

(d − 2)2 + 4(d − 1)
Λ

⎞⎠ . (3.4)

Notice that in d = 2 we have α = Λ−1/2 and

α ∼ (d − 1

d − 2
)Λ−1 as Λ→∞ in d > 2.

In particular, in every dimension, the best exponent in the De Giorgi-Nash estimate
is no larger than the α in (3.4). For the Meyers estimate in d = 2, the exponent δ
can be no larger than 2α(1 − α) with α in (3.4). In higher dimensions, however,



3.1 Brief review of classical elliptic regularity 65

Figure 3.1 The coefficient field a in Example 3.1 with d = 2 and Λ = 4. The matrix
a(x) at each grid point x is represented by two lines which indicate the direction of the
eigenvectors of a(x) with lengths proportional to the corresponding eigenvalue. Notice
that the eigenvector with the largest eigenvalue points toward the origin, where the
singularity occurs in the solution.

the exponent in the Meyers estimate cannot be improved because we can just add
dummy variables to the two-dimensional example.

Also notice that, for u as above,

⨏
Br

∣∇u(x)∣2 dx = r2(α−1)⨏
B1

∣∇u(x)∣2 dx. (3.5)

In other words, the energy density of the solution u is very large in B1 compared
to average of the energy density of u in Br for large r. This should be compared
with the statement of Theorem 3.3, below.

Incidentally, it is known that in d = 2 solutions of (3.1) belong to C0,Λ−1/2(B1/2)
and therefore Λ−1/2 is the sharp exponent for Hölder regularity in dimension d = 2:
see [107] for a short and beautiful proof. In d > 2, the best exponent is not known.
In fact, a problem posed by De Giorgi (which is still open) is to show that the
exponent α(d,Λ) in the De Giorgi-Nash estimate satisfies a lower bound of the
form α(d,Λ) ⩾ cΛ−p for some c(d) > 0 and p(d) < ∞.

The relatively weak regularity of solutions of (3.1) with oscillating coefficients
stands in sharp contrast to the very strong regularity possessed by solutions of a
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constant-coefficient equation

−∇ ⋅ (a∇u) = 0 in BR (3.6)

which in the case of equations, of course, up to the affine change of variables
x↦ a−

1
2x, is just Laplace’s equation

−∆u(a 1
2 ⋅) = 0 in a−

1
2BR.

We call solutions of (3.6) a-harmonic. These a-harmonic functions possess the
same regularity as harmonic functions (cf. [46] or [72]): for every k ∈ N, there exists
C = C(k, d,Λ) < ∞ such that, for every R > 0 and a-harmonic function u on BR,

∥∇ku∥
L∞(BR/2)

⩽ C

Rk
∥u∥L2(BR) . (3.7)

Moreover, the constant Ck grows in k at a slow enough rate to guarantee the real
analyticity of a-harmonic functions (see [46]). This is to say that an a-harmonic
function in Br has the property that at any point z ∈ Br, the Taylor series of u at
z is convergent with a certain convergence radius. The proof of (3.7) is based on
the fact that any partial derivative of u is still a-harmonic, and in this way one
gets strong Hk-estimates. These Hk-estimates can be turned into Ck,1-estimates
using Sobolev (Morrey-type) inequalities.

Each of the estimates discussed so far is scale-invariant. In other words, while
we have stated them in BR for general R > 0, it is actually enough to consider R = 1
since the general statement can be recovered by scaling. Indeed, rescaling the
coefficients under either assumption (measurable in x or constant) does not change
the assumption. There are certain elliptic estimates, however, which are not scale-
invariant. In these cases, the assumptions on the coefficients a(⋅) always refer to an
implicit length scale. A good example of this is the family of Schauder estimates.

For divergence-form equations, one version of the Schauder estimates states
that the De Giorgi-Nash and Meyers estimates may be improved if we assume that
the coefficients are Hölder continuous. Precisely, for every β ∈ (0,1), if we assume
in addition that a ∈ C0,β(BR), then any weak solution u ∈H1(B1) of (3.1) satisfies
u ∈ C1,β

loc (BR) and, if we define the length scale

r0(a) ∶= [a]− 1
β

C0,β(BR/2)
,

then there exists C(d,Λ) < ∞ such that, for every r ∈ (0, r0(a)] and x ∈ BR/4,

∥∇u∥L∞(Br(x)) + rβ [∇u]C0,β(Br(x)) ⩽ Cr−1∥u∥L2(B2r(x)). (3.8)

In other words, it is only on length scales small enough that the coefficients have
their properly scaled Hölder seminorm at most of order O(1) that the quantitative
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estimate holds. In the typical way this estimate is stated, the dependence on the
seminorm [a]C0,β(BR) is hidden in the constant C and the restriction r ⩽ r0(a) is
removed. Even though the two statements are obviously equivalent, we prefer our
formulation, in which the estimate is only valid on certain length scales.

Let us say a few words about the proof of the Schauder estimate (3.8), which
can be found in [72, Chapter 3]. Like most estimates which are not scale-invariant,
its proof is perturbative. The idea is a very classical one: since the coefficients are
continuous (an assumption made quantitative by the introduction of r0(a)), on
small scales they are close to being constant. It is therefore natural to wonder
to what extent, in this situation, one can “borrow” the very strong regularity of
solutions of constant-coefficient equations (harmonic functions) by approximation.

We present an outline of how the perturbation argument works in this classical
framework to obtain C0,1− regularity of solutions under the assumption that the
coefficients are uniformly continuous: for a bounded domain U ⊆ Rd,

lim
r→0

sup
x∈U

∥a(⋅) − a(x)∥L∞(U∩Br(x)) = 0. (3.9)

Proving Hölder regularity involves understanding the pointwise behavior of a
function. However, a priori a weak solution is only an H1 function and therefore is
not necessarily even defined at every point; likewise, the definition of weak solution
is a statement involving integrals, not pointwise information. It is therefore helpful
to think of Hölder continuity in terms of the Campanato characterization (see
Exercise 3.1 below), as a quantitative statement concerning the L2-oscillation of a
function on small scales. We will proceed by trying to show that the L2 oscillation
of a weak solution must improve as we zoom in to smaller and smaller scales.

Let u ∈ H1(U) be a solution in U of −∇ ⋅ (a(x)∇u(x)) = 0 and Br(x0) ⊆ U .
By translation, we may assume x0 = 0 to ease the notation. One now takes
w ∈ u +H1

0(Br/2) solving −∇ ⋅ (a(x0)∇w(x)) = 0 and subtracts the equations of u
and w. Testing the resulting equation with u −w ∈H1

0(Br/2), one arrives, after an
application of Young’s inequality and ellipticity of a(⋅), at

⨏
Br/2

∣∇u −∇w∣2 ⩽ ∥a(⋅) − a(x0)∥2
L∞(Br/2)⨏Br/2 ∣∇u∣2 .

By the Poincaré and Caccioppoli inequalities (cf. Lemma C.2), we deduce

⨏
Br/2

∣u −w∣2 ⩽ C ∥a(⋅) − a(x0)∥2
L∞(Br)⨏

Br
∣u − (u)Br ∣2 .

Using (3.7) for k = 1 and the Poincaré inequality, it follows that, for every t ∈ (0, 1
4r],

∥w − (w)Bt∥L2(Bt) ⩽ Ct ∥∇w∥L2(Bt) ⩽ C ( t
r
) ∥w − (w)Br/2∥L2(Br/2)

.
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Combining the above displays and using the triangle inequality yields

∥u − (u)Bt∥L2(Bt) ⩽ C ⎛⎝ tr + (r
t
) d2 ∥a(⋅) − a(x0)∥L∞(Br)

⎞⎠∥u − (u)Br∥L2(Br) .

Now, for any δ ∈ (0, 1) we may take t = θr with θ(δ, d,Λ) ∈ (0, 1) small enough, and
subsequently find, using (3.9), r0(a) small enough so that r ⩽ r0(a) implies

∥u − (u)Bθr∥L2(Bθr) ⩽ θ1−δ ∥u − (u)Br∥L2(Br) .

This can be iterated. Indeed, we set rj+1 ∶= θrj and choose r0 ∈ (0, 1
2r0(a)] to get

∥u − (u)Brj ∥L2(Brj )
⩽ (rj

r0

)1−δ ∥u − (u)Br0∥L2(Br0)
.

This gives, for any r ∈ (0, r0(a) ∧ dist(x0, ∂U)],
sup
t∈(0,r)

tδ−1 ∥u − (u)Bt(x0)∥L2(Bt(x0))
⩽ C(δ, d,Λ)rδ−1 ∥u − (u)Br(x0)∥L2(Br(x0))

, (3.10)

The definition of Campanato spaces (see e.g. [60, Section 2.3] or [72, Chapter 3])
stems from the inequality as above, and standard iteration techniques used in such
spaces lead to full C0,1−-regularity, that is, C0,1−δ-regularity for every δ ∈ (0, 1). We
leave the details as an exercise.

Exercise 3.1. Let γ ∈ (0,1], f ∈ L2
loc(Rd). Suppose that, for some R > 0 and a

domain U ⊆ Rd,
sup
x∈U

sup
r∈(0,R)

r−γ ∥f − (f)Br(x)∥L2(Br(x))
< ∞.

Show that f ∈ C0,γ(U). Hint: see [72, Theorem 3.1].

In subsequent sections, we see that this relatively simple idea can be pushed
much further. We emphasize that the perturbation argument above does not use
any properties of the function u apart from harmonic approximation: that at each
given scale, there exists a harmonic function approximating the original function in
L2. In particular, apart from this property, we do not even use that u is a solution
of an equation. In the particular setting of homogenization studied here, in which u
is a solution of the equation (3.1) with coefficients a(⋅) sampled by P, this property
is essentially implied by Theorem 2.15. To make this more transparent, we present
in Proposition 3.2 below a reformulation of the latter result.

A conceptually important point is that homogenization allows us to prove the
harmonic approximation only on length scales larger than a certain random length
scale Xs which is roughly of size O(1), the order of the correlation length scale.
Since we cannot expect homogenization to give us information on scales smaller
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than O(1), we cannot expect harmonic approximation to hold on these scales.
Thus, in contrast to the Schauder theory—which controls small scales but not
larger scales—here we are able to control large scales but not small scales.

Proposition 3.2 (Harmonic approximation). Fix s ∈ (0, d). There exist constants
α(d,Λ) > 0, C(s, d,Λ) < ∞, and a random variable Xs ∶ Ω → [1,∞] satisfying the
estimate Xs = Os (C) , (3.11)

such that the following holds: for every R ⩾ Xs and weak solution u ∈H1(BR) of

−∇ ⋅ (a∇u) = 0 in BR, (3.12)

there exists a solution u ∈H1(BR/2) satisfying

−∇ ⋅ (a∇u) = 0 in BR/2

and ∥u − u∥L2(BR/2) ⩽ CR−α(d−s) ∥u − (u)BR∥L2(BR) . (3.13)

Proof. We first apply the interior Meyers estimate (Theorem C.1), which states
that there exist δ(d,Λ) > 0 and C(d,Λ) > 0 such that, for every u ∈ H1(BR)
satisfying (3.12), we have that ∇u ∈ L2+δ(BR/2) and

∥∇u∥L2+δ(BR/2) ⩽ CR ∥u − (u)BR∥L2(BR) . (3.14)

For each s ∈ (0, d), we let X̃s denote the random variable in the statement of
Theorem 2.15 with δ the exponent in the Meyers estimate, as above. Recall
from (2.70) that X̃s ⩽ O1(C). We now define

Xs ∶= X̃ 1/s
(s+d)/2 ∨ 1

It is clear that Xs = Os(C). Applying Theorem 2.15 with ε = R−1 and s̃ = s+d
2

gives us the desired conclusion for every R ⩾ Xs if we take u to be the solution
of the Dirichlet problem for the homogenized equation with Dirichlet boundary
condition u on ∂BR/2.

3.2 C0,1-type estimates

In this section, we prove a C0,1-type estimate for a(⋅)-harmonic functions which
holds on large length scales, that is, on length scales larger than some random
scale, which we denote by Xs. We also prove sharp estimates on the distribution
of Xs with respect to P. The arguments are here completely deterministic: the only
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probabilistic ingredient is Proposition 3.2. What we present here is a real variables
argument for any L2-function allowing a good harmonic approximation, similar to
what we saw in the previous section for Schauder estimates, but now valid only
above a certain length scale.

The main result of this section is the following theorem.

Theorem 3.3 (Quenched C0,1-type estimate). Fix s ∈ (0, d). There exist a constant
C(s, d,Λ) < ∞ and a random variable Xs ∶ Ω→ [1,∞] satisfying

Xs = Os (C) , (3.15)

such that the following holds: for every R ⩾ Xs and weak solution u ∈H1(BR) of

−∇ ⋅ (a∇u) = 0 in BR, (3.16)

we have, for every r ∈ [Xs,R], the estimates

1

r
∥u − (u)Br∥L2(Br)

⩽ C
R

∥u − (u)BR∥L2(BR) (3.17)

and ∥u∥L2(Br) ⩽ C ∥u∥L2(BR) . (3.18)

Observe that, by the Caccioppoli and Poincaré inequalities, we can write (3.17)
equivalently (up to changing the constant C) as:

sup
r∈[Xs,R]

∥∇u∥L2(Br) ⩽ C ∥∇u∥L2(BR) . (3.19)

In other words, the energy density of the solution in a small ball centered at the
origin is controlled by the average energy density of the solution on the largest scale
if the radius of the ball is larger than Xs. This can be contrasted with Example 3.1,
where we found the reverse inequality in (3.5). We may also give up a volume
factor in the previous inequality to get an estimate in B1:

∥∇u∥L2(B1) ⩽ CX d
2
s ∥∇u∥L2(BR) .

Therefore Theorem 3.3 gives very strong control of the gradients of solutions.
It may seem strange to call Theorem 3.3 a “C0,1-type” estimate since the

conclusion involves L2–type bounds. The reason is that, from the point of view of
homogenization, the quantities ∥∇u∥L2(BXs) or ∥∇u∥L2(B1) should be considered as
equivalent to ∣∇u(0)∣. Similarly, (3.18) should be thought of as a bound for ∣u(0)∣.
Indeed, on the one hand, homogenization theory is concerned only with the behavior
of solutions on scales larger than the correlation length scale and cannot be expected
to provide useful estimate on smaller scales: without further assumptions, our
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model could be a checkerboard with each cell containing a translate of the matrix
in Example 3.1. On the other hand, if we impose the (quite reasonable) additional
assumption that the coefficients a(⋅) are uniformly Hölder continuous, P-a.s., then
we may combine the Schauder estimates with (3.19) to obtain the true pointwise
estimate ∣∇u(0)∣ ⩽ CX d

2
s ∥∇u∥L2(BXs) ⩽ CX d

2
s ∥∇u∥L2(BR) . (3.20)

However, we prefer to consider the problem of controlling the small scales to be a
separate matter which does not concern us here, because a theory of homogenization
should not ask questions about such small scales. In any case, we will discover that
a microscopic-scale estimate like (3.19) will serve us just as well as a pointwise
bound like (3.20).

Theorem 3.3 is a consequence of Proposition 3.2 and the following lemma.

Lemma 3.4. Fix α ∈ (0,1], K ⩾ 1 and X ⩾ 1. Let R ⩾ 2X and u ∈ L2(BR) have
the property that, for every r ∈ [X, 1

2R], there exists w ∈ H1(Br) which is a weak
solution of −∇ ⋅ (a∇w) = 0 in Br,

satisfying ∥u −w∥L2(Br/2) ⩽Kr−α ∥u − (u)Br∥L2(Br)
. (3.21)

Then there exists C(α,K, d,Λ) < ∞ such that, for every r ∈ [X,R],
1

r
∥u − (u)Br∥L2(Br)

⩽ C
R

∥u − (u)BR∥L2(BR) . (3.22)

Before presenting the proof of Lemma 3.4, we give some further comments on
the regularity of a-harmonic functions. As already mentioned before, a-harmonic
functions are smooth; indeed, they are even real analytic. For our purposes, it is
convenient to quantify the smoothness via L2-integrals. We introduce the linear
vector space

Ak ∶= {u ∈H1
loc(Rd) ∶ −∇ ⋅ (a∇u) = 0, lim

r→∞
r−(k+1) ∥u∥L2(Br) = 0} . (3.23)

The Ck,1 estimate (3.7) for a-harmonic functions implies that, for every u ∈ Ak,
∥∇k+1u∥

L∞(Rd) ⩽ lim sup
R→∞

∥∇k+1u∥
L∞(BR) ⩽ Ck+1 lim sup

R→∞
R−k−1 ∥u∥L2(BR) = 0.

Thus Ak coincides with the set of a-harmonic polynomials of degree at most k.
Conversely, (3.7) also asserts that the local behavior of an arbitrary a-harmonic
function can be described in terms of Ak. To see this, let w be a-harmonic in Br.
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Then, for any k ∈ N, there exists a constant Ck(d,Λ) ∈ [1,∞) and p ∈ Ak such that,
for every t ∈ (0, 1

2r],
∥w − p∥L∞(Bt) ⩽ Ck ( tr)

k+1 ∥w − p∥L2(Br) . (3.24)

We leave the proof of this fact from (3.7) as an exercise.

Exercise 3.2. Let w ∈ H1(BR(y)) be a-harmonic. Prove using (3.7) that, for
every k ∈ N, there exists p ∈ Ak and a constant Ck such that (3.24) holds. Hint:
Prove that the Taylor expansion of w at y is a-harmonic by an induction on the
order of the expansion, using blow-ups, homogeneity and (3.7), and then conclude
with the aid of (3.7).

We next extract from the pointwise regularity estimate (3.7) some properties
of a-harmonic polynomials which will be useful below. Fix k ∈ N and p ∈ Ak.
Then (3.7) gives, for every r ⩾ 1,

k∑
m=0

rm ∥∇mp∥L∞(Br) ⩽ C ∥p∥L2(B2r) ⩽ 2kC ∥p∥L2(Br) . (3.25)

In what follows, we need some control on the homogeneous parts of p. For this, let
πm,yp stand for the Taylor expansion of p at y of degree m, that is

(πm,yp)(x) ∶= m∑
j=0

1

j!
∇jp(y)(x − y)⊗j = m∑

j=0

∑
∣α∣=j

1

α!
∂αp(y)(x − y)α . (3.26)

We have by (3.7) that

∥(πm,y − πm−1,y)p∥L2(Br(y)) ⩽ rm∣∇mp(y)∣ ⩽ Cm ∥p∥L2(Br(y)) .

This implies the equivalence between the following two norms of Ak:
∥p∥L2(Br(y)) ⩽ k∑

m=0

∥(πm,y − πm−1,y)p∥L2(Br(y)) ⩽ Ck ∥p∥L2(Br(y)) . (3.27)

We remark that, in the case a = Id and for any r ⩾ 1, the constant Ck in (3.27) can
be taken to be 1 due to the orthogonality, with respect to the usual inner product
of L2(Br), of homogeneous harmonic polynomials of different degrees.

We next show that the strong regularity described in (3.24) can be transferred
to a function u which possesses good harmonic approximation. While in this section
we are interested only in the case k = 1, we state an estimate for general k ∈ N since
it will be useful in the characterization of Ak in the next section.
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Lemma 3.5. Fix α ∈ [0,1], K ⩾ 1 and X ⩾ 1. Let R ⩾ 2X and u ∈ L2(BR) have
the property that, for every r ∈ [X,R], there exists wr ∈H1(Br/2) which is a weak
solution of −∇ ⋅ (a∇wr) = 0 in Br/2,

satisfying ∥u −wr∥L2(Br/2) ⩽Kr−α ∥u − (u)Br∥L2(Br)
. (3.28)

Then, for every k ∈ N, there exists θ(α, k, d,Λ) ∈ (0, 1
2) and C(α, k, d,Λ) < ∞ such

that, for every r ∈ [X,R],
inf
p∈Ak

∥u − p∥L2(Bθr) ⩽ 1

4
θk+1−α/2 inf

p∈Ak
∥u − p∥L2(Br) +CKr−α ∥u − (u)Br∥L2(Br) . (3.29)

Proof. Let t ∈ (0, 1
4r]. Then, by the triangle inequality and (3.24), we get

inf
p∈Ak

∥u − p∥L2(Bt)

⩽ inf
p∈Ak

∥wr − p∥L2(Bt) + ∥wr − u∥L2(Bt)

⩽ Ck ( t
r
)k+1

inf
p∈Ak

∥wr − p∥L2(Br/2) + (r
t
) d2 ∥wr − u∥L2(Br/2)

⩽ Ck ( t
r
)k+1

inf
p∈Ak

∥u − p∥L2(Br/2) + ⎛⎝Ck ( tr)
k+1 + (r

t
) d2⎞⎠∥wr − u∥L2(Br/2) .

We choose t = θr with θ = (Ck22+ d
2 )−2/α, and use (3.28) and an elementary fact

inf
p∈Ak

∥u − p∥L2(Br/2) ⩽ 2
d
2 inf
p∈Ak

∥u − p∥L2(Br)

to obtain the statement.

We are now ready to give the proof of Lemma 3.4.

Proof of Lemma 3.4. It is typically difficult to obtain a C0,1 estimate by performing
a decay of oscillation estimate. Instead we try to perform a C1,β-type “improvement
of flatness” iteration. In other words, we measure the distance between our solution
and the closest affine function rather than the closest constant function (as in
the previous section). Because we are actually interested in the oscillation of the
function and not its flatness (since we are not trying to get a C1,β estimate), we
must keep track of the size of the slopes of the approximating affine functions. This
makes the argument a little more technical.

We assume that R ⩾ R0 ∶=X∨H, whereH is a large constant to be selected below
and which will depend on (α,K, d,Λ). Fix u ∈ L2(BR) satisfying the hypothesis
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of the lemma. It is convenient to rephrase the claim of the lemma in terms of
the maximal function:

M ∶= sup
r∈[R0,R]

1

r
∥u − (u)Br∥L2(Br) .

Our goal is to prove the bound

M ⩽ C
R

∥u − (u)BR∥L2(BR) . (3.30)

Indeed, if X ⩾H, then (3.30) is the same as (3.22). On the other hand, if X ⩽H,
then we have R0 =H and

sup
r∈[X,H]

1

r
∥u − (u)Br∥L2(Br) ⩽H1+ d

2M,

which implies (3.22) since H1+ d
2 ⩽ C. It therefore suffices to prove (3.30). Notice

that we have here appealed to the following elementary fact: for every 0 < r < t < ∞,

∥u − (u)Br∥L2(Br) ⩽ ∥u − (u)Bt∥L2(Br) ⩽ ( t
r
) d2 ∥u − (u)Bt∥L2(Bt) ,

where the first inequality follows by the fact that (u)Br is realizing the infimum in
infa∈R ∥u − a∥L2(Br) and the second one follows by giving up a volume factor.

Step 1. We first set up the argument. Using the definition of M , (3.21) implies
that, for every r ∈ [R0,R], there exists an a-harmonic function wr such that

∥u −wr∥L2(Br/2) ⩽Kr1−αM . (3.31)

Denote the L2-flatness of u in Br by

E1(r) ∶= 1

r
inf
p∈A1

∥u − p∥L2(Br) . (3.32)

Then Lemma 3.5 yields, for k = 1,

E1(θr) ⩽ 1

2
E1(r) +CKr−αM, (3.33)

where both θ and C depend on α, d,Λ. Define, for j ∈ N,
rj ∶= θjR

so that the previous inequality reads, for every rj ⩾ 2X, as

E1(rj+1) ⩽ 1

2
E1(rj) +Cr−αj M.



3.2 C0,1-type estimates 75

Denote by J the largest integer such that rJ ⩾ R0. Summing over j then leads to

J+1∑
j=1

E1(rj) ⩽ 1

2

J∑
j=0

E1(rj) +CH−αM
J∑
j=0

θjα.

We may reabsorb the sum on the right and get

J+1∑
j=0

E1(rj) ⩽ 2E1(R) + 2C

1 − θαH−αM ⩽ 2E1(R) +CH−αM. (3.34)

The small number H−α will allow us to reabsorb M later in the proof.
Step 2. Let pj ∈ A1 denote (the unique) affine function realizing the infimum in

E1(rj). It is easy to see that pj must be of the form x↦ (u)Brj +∇pj ⋅x, and hence

c∣∇pj ∣ ⩽ 1

rj
∥pj − (u)Brj ∥L2(Brj )

⩽ C ∣∇pj ∣.
It follows that

1

rj
∥u − (u)Brj ∥L2(Brj )

⩽ E1(rj) +C ∣∇pj ∣.
This gives us a way to estimate the maximal function M :

M = sup
r∈[R0,R]

r−1 ∥u − (u)Br∥L2(Br) ⩽ θ−( d2+1) max
j∈{0,...,J}

(E1(rj) + ∣∇pj ∣) .
By (3.34), we have

max
j∈{0,...,J}

E1(rj) ⩽ J∑
j=0

E1(rj) ⩽ 2E1(R) +CH−αM.

Thus it remains to estimate ∣∇pj ∣. For this, observe that

∣∇pj −∇pj+1∣ ⩽ C

rj+1

∥pj − pj+1∥L2(Brj+1)
⩽ θ−( d2+1) (E1(rj+1) +E1(rj)) .

Summing the previous inequality over j ∈ {0, . . . , J} yields

max
j∈{0,...,J}

∣∇pj ∣ ⩽ ∣∇p0∣ + 2θ−(
d
2
+1)

J+1∑
j=0

E1(rj) ⩽ ∣∇p0∣ +C J+1∑
j=0

E1(rj)
where the last term on the right can again be estimated with the aid of (3.34). Our
initial effort to estimate the sum on the right stems precisely from the inequality
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above. The term ∣∇p0∣ on the right can be easily treated with the aid of the triangle
inequality as follows:

∣∇p0∣ ⩽ C
R

∥p0 − (u)BR∥L2(BR)

⩽ C
R

∥u − p0∥L2(BR) + CR ∥u − (u)BR∥L2(BR)

⩽ CE1(R) + C
R

∥u − (u)BR∥L2(BR)

⩽ C
R

∥u − (u)BR∥L2(BR) .

Combining the above estimates leads to

M ⩽ C
R

∥u − (u)BR∥L2(BR) +CH−αM.

Choosing now H ∶= (2C)1/α allows to reabsorb the last term and yields (3.30).
Step 3. We finally demonstrate (3.18). From (3.17) it follows that, for N ∈ N

such that 2−NR < r ⩽ 2−N+1R,

N∑
j=0

∥u − (u)B
2−jR

∥
L2(B

2−jR
) ⩽ C ∥u − (u)BR∥L2(BR) .

Using Jensen’s inequality we get

∣(u)B
2−j−1R

− (u)B
2−jR

∣ ⩽ 2
d
2 ∥u − (u)B

2−jR
∥
L2(B

2−jR
) ,

and thus by the two previous displays we obtain

N−1∑
j=0

∣(u)B
2−j−1R

− (u)B
2−jR

∣ ⩽ C ∥u∥L2(BR) .

Consequently,
sup

j∈{0,...,N}
∣(u)B

2−jR
∣ ⩽ C ∥u∥L2(BR) ,

from which (3.18) follows easily using (3.17). The proof is complete.

Exercise 3.3. Generalize Theorem 3.3 to allow for right-hand sides by proving the
following statement: for every s ∈ (0, d), there exist C(s, d,Λ) < ∞ and a random
variable Xs ∶ Ω→ [1,∞] satisfying

Xs = Os (C1) , (3.35)

such that the following holds: for every R ⩾ X , f ∈H−1(B2R), and weak solution
u ∈H1(B2R) of −∇ ⋅ (a∇u) = f in B2R, (3.36)
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we have, for r ⩾ Xs,
sup
t∈(r,R)

1

t
∥u − (u)Bt∥L2(Bt)

⩽ C
R

∥u − (u)BR∥L2(BR) +C ∫ R

r

1

s
∥f∥H−1(Bs) ds. (3.37)

Hint: Obtain a harmonic approximation statement for u by just throwing away
the f . In other words, show first that, in every ball Br with r ⩽ R,

∥∇u −∇ũr∥L2(Br) ⩽ C ∥f∥H−1(Br)

where ũr satisfies

{ −∇ ⋅ (a∇ũr) = 0 in Br,

ur = u on ∂Br.

We then pick up an extra error term in our harmonic approximation, namely
C ∥f∥H−1(Br). We then rerun the iteration in the proof of Lemma 3.4 and observe
that, as we sum this over the scales, these extra terms are bounded by the second
term on the right side of (3.37).

Notice also that, for every p ∈ (d,∞], there exists C(p, d) < ∞ such that

∫ R

r

1

s
∥f∥H−1(Bs) ds ⩽ CR ∥f∥Lp(BR) .

3.3 Higher-order regularity theory and Liouville theorems

A classical fact in partial differential equations is that the regularity theory can
be used to classify entire solutions (solutions in the whole Rd) which have at most
polynomial growth. We encountered this idea for a-harmonic functions in the
previous section in the characterization of Ak. These classification theorems are
usually called Liouville theorems.

The purpose of this section is to show that appropriate versions of such Liouville
theorems and of (3.24) continue to hold (with high P probability) in the case of
heterogeneous equations. For this purpose, it is necessary to generalize the notion
of Ak. It is natural therefore to define the vector space of solutions of (3.1) which
grow at most like o(∣x∣k+1) as ∣x∣ → ∞:

Ak ∶= {u ∈ A(Rd) ∶ lim sup
r→∞

r−(k+1) ∥u∥L2(Br) = 0} . (3.38)

The next theorem is the main result of this chapter. In particular, it supersedes
Theorem 3.3. It identifies the dimension of the space Ak, relates it to Ak and gives
an appropriate version of (3.24).
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Theorem 3.6 (Higher regularity theory). Fix s ∈ (0, d). There exist an exponent
δ(s, d,Λ) ∈ (0, 1

2
] and a random variable Xs satisfying the estimate

Xs ⩽ Os (C(s, d,Λ)) (3.39)

such that the following statements hold, for every k ∈ N:
(i)k There exists C(k, d,Λ) < ∞ such that, for every u ∈ Ak, there exists p ∈ Ak

such that, for every R ⩾ Xs,
∥u − p∥L2(BR) ⩽ CR−δ ∥p∥L2(BR) . (3.40)

(ii)k For every p ∈ Ak, there exists u ∈ Ak satisfying (3.40) for every R ⩾ Xs.
(iii)k There exists C(k, d,Λ) < ∞ such that, for every R ⩾ Xs and u ∈ A(BR), there

exists φ ∈ Ak such that, for every r ∈ [Xs,R], we have the estimate

∥u − φ∥L2(Br) ⩽ C ( r
R

)k+1 ∥u∥L2(BR) . (3.41)

In particular, P-almost surely, we have, for every k ∈ N,
dim(Ak) = dim(Ak) = (d + k − 1

k
) + (d + k − 2

k − 1
). (3.42)

Theorem 3.6 allows us to think of the finite-dimensional space Ak in the same
way that we think of harmonic polynomials. The third statement says that we
can approximate an arbitrary solution of our equation by these “heterogeneous
polynomials” to the same precision that an analytic function can be approximated by
true polynomials. This fact has important consequences and, from a computational
perspective, greatly reduces the complexity of the space of solutions. We think
of (iii)k as a “large-scale Ck,1 estimate.”

The three basic tools we use to prove Theorem 3.6 are Theorem 2.15, Proposi-
tion 3.2 and Lemma 3.5. Throughout we fix s ∈ (0, d) and

r0 ∶=H ∨ Xs, (3.43)

where the random variable Xs is the maximum of the respective random variables
from Theorem 2.15 and Proposition 3.2, with the given s ∈ (0, d). Observe, in
particular, that when r ⩾ r0, we may apply both of them. The large constant H
will be fixed later on. Notice that it is in fact enough to prove the statement for
r ⩾ r0, since if Xs ⩽ H, we may simply enlarge the constant in each statement
by the prefactor H

d
2 to obtain the result. We will give several conditions on H
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during the proof, but in the end it can be chosen to depend only on s, k, d,Λ. The
parameter δ in the statement is fixed to be

δ ∶= α(d − s) ∧ 1

2
, (3.44)

where α(d,Λ) > 0 is as in the statement of Proposition 3.2.
The proof of Theorem 3.6 is an induction on k ∈ N. As will be explained below,

Theorem 3.3 is actually the base case, that is, it is equivalent to the statement of
Theorem 3.6 for k = 0.

To set up the induction argument, it is necessary to formulate a slightly weaker
version of (iii)k. The reason has to do with the trouble of getting on top of the
exponent β = 1 in a Ck,β estimate, as discussed in the previous section in the case
k = 0. We therefore denote by (iii′)k the statement that

(iii′)k There exists C(s, k, d,Λ) < ∞ such that, for every R ⩾ r0 and u ∈ A(BR),
there exists φ ∈ Ak(Rd) such that, for every r ∈ [r0,R], we have the estimate

∥u − φ∥L2(Br) ⩽ C ( r
R

)k+1−δ/2 ∥u∥L2(BR) . (3.45)

Theorem 3.6 is a consequence of Theorem 3.3 and the following four implications:
for each k ∈ N,

(i)k−1, (ii)k−1 and (iii′)k−1 Ô⇒ (ii)k (3.46)(i)k−1 and (ii)k Ô⇒ (i)k (3.47)(i)k and (ii)k Ô⇒ (iii′)k (3.48)

and (i)k+1, (ii)k+1 and (iii′)k+1 Ô⇒ (iii)k. (3.49)

We present the proof of each of these four implications separately, followed by the
proof of (3.42). We first argue that Theorem 3.3 does indeed give us the base case.

Proof of (i)0, (ii)0 and (iii)0. Observe that (ii)0 is trivial, since A0 contains only
constants, and hence A0 ⊆ A0. Property (iii)0, on the other hand, is a restatement
of Theorem 3.3. Finally, the property (i)0 follows also from Theorem 3.3 since, for
every u ∈ A0 and r ⩾ r0,

1

r
∥u − (u)Br∥L2(Br) ⩽ C lim sup

R→∞

1

R
∥u − (u)BR∥L2(BR) = 0.

We deduce that A0 = A0 is the set of constant functions.
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We now proceed with the proofs of the assertions (3.46), (3.47), (3.48) and (3.49).
We first establish a basic decay estimates used in the proof. Recall that δ(s, d,Λ) > 0
is defined in (3.44). For each k ∈ N and r > 0, we define

Ek(r) ∶= 1

rk
inf
p∈Ak

∥u − p∥L2(Br) .

Proposition 3.2 and Lemma 3.5 yield the existence of θ(s, k, d,Λ) ∈ (0, 1) such that,
for every r ⩾ r0, u ∈ A(Br), k ∈ N,

Ek(θr) ⩽ 1

4
θ1−δ/2Ek(r) +Cs,kr−(k+δ) ∥u∥L2(Br) (3.50)

and
Ek+1(θr) ⩽ 1

4
θ1−δ/2Ek+1(r) +Cs,kr−(k+1+δ) ∥u∥L2(Br) . (3.51)

For each j ∈ N, we define
rj ∶= θ−jr0.

Recall that r0 is the random variable defined in (3.43). Note that rj is defined
differently here compared to the previous section.

Proof of (3.46). Due to (ii)k−1 and (3.27), we may assume that q ∈ Ak is a homo-
geneous polynomial of degree k. By this we mean that (πk − πk−1)q = q, where
πk = πk,0 is defined in (3.26). Fix thus such q ∈ Ak.

Step 1. First, by Theorem 2.15, after appropriate rescaling (x↦ x/ε), we find,
for each m ∈ N, a solution um ∈ A(Brm) such that

∥um − q∥L2(Brm) ⩽ Cr−δm ∥q∥L2(Brm) . (3.52)

Indeed, we may take um to be the solution of the Dirichlet problem

{ −∇ ⋅ (a(x)∇um) = 0 in Brm ,

um = q on ∂Brm .

Theorem 2.15 applied to ũm ∶= um(rm⋅) for ε ∶= r−1
m yields the bound (3.52).

Now let wm ∶= um+1 − um and φm ∈ Ak−1(Rd) be given by (iii′)k−1 for wm.
Then (iii′)k−1 together with the triangle inequality and the previous display imply,
for every j ⩽m,

∥wm − φm∥L2(Brj )
⩽ C (θk−δ/2)m−j ∥wm∥L2(Brm) ⩽ Cr−δm (θk−δ/2)m−j ∥q∥L2(Brm)

= Cr−δj (θδ/2)m−j ∥q∥L2(Brj )
.
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By (i)k−1, there exists pm ∈ Ak−1 such that, for every n ∈ N,
∥pm − φm∥L2(Brn) ⩽ Cr−δn ∥pm∥L2(Brn) .

IfH in (3.43) is taken sufficiently large, depending only on (δ, k, d,Λ), then Cr−δ0 ⩽ 1
2 .

Then the triangle inequality and the two previous displays gives

∥pm∥L2(Brm) ⩽ 2 ∥φm∥L2(Brm)⩽ 2 ∥um+1 − um∥L2(Brm) + 2 ∥wm − φm∥L2(Brm) ⩽ Cr−δm ∥q∥L2(Brm) .

Therefore we have, for every n,m ∈ N with n >m,

∥φm∥L2(Brn) ⩽ C ( rn
rm

)k−1 ∥pm∥L2(Brm)

⩽ Cθ(m−n)(k−1)r−δm ∥q∥L2(Brm) = Cθ(n−m)(1−δ)r−δn ∥q∥L2(Brn) .

Set vn ∶= un −∑n−1
m=1 φm, so that vn −uj = ∑n−1

m=j(wm −φm)−∑j−1
m=1 φm. Then, for every

j ∈ N with j < n,
∥vn − q∥L2(Brj )

⩽ ∥uj − q∥L2(Brj )
+ n−1∑
m=j

∥wm − φm∥L2(Brj )
+ j−1∑
m=1

∥φm∥L2(Brj )
(3.53)

⩽ Cr−δj ∥q∥L2(Brj )
(1 + n−1−j∑

m=0

(θδ/2)m + j−1∑
m=1

(θ1−δ)m)
⩽ Cr−δj ∥q∥L2(Brj )

.

In the next step we will show that the previous estimate is enough to conclude.
Step 2. We will show that, up to a subsequence, u = limn→∞ vn exists, belongs

to Ak(Rd), and satisfies (3.40) for r ⩾ r0. First, by the Caccioppoli estimate (cf.
Lemma C.2) we have that

∥∇vn∥L2(Brj/2)
⩽ Cr−1

j ∥vn∥L2(Brj )
⩽ Cr−1

j ∥q∥L2(Brj )
.

Weak compactness in H1 and Rellich’s theorem imply that there exists ṽj ∈
H1(Brj/2) and a subsequence {nm} ⊆ N such that, as m→∞,

{∇vnm ⇀ ∇ṽj weakly in L2(Brj/2), and
vnm → ṽj strongly in L2(Brj/2).

The above convergence guarantees that ṽj ∈ A(Brj/2), and by (3.53) it moreover
satisfies by the strong convergence in L2, for every h < j,

∥ṽj − q∥L2(Brh)
⩽ Cr−δh ∥q∥L2(Brh)

.
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Taking the above subsequence {nm}, and repeating the argument in Brj+1 with this
subsequence, gives ṽj+1, and by the uniqueness of weak limits, ṽj = ṽj+1 in Brj/2.
We can repeat the argument for every j, and appeal to a diagonal argument to
obtain a subsequence {nj}j∈N such that u = limj→∞ vnj belongs to Ak and satisfies,
for every r ⩾ R0, ∥u − q∥L2(Br) ⩽ Cr−δ ∥q∥L2(Br) .

This completes the proof of (3.46) for general k ∈ N.
Proof of (3.47). The proof of this implication is the most challenging one, and
we divide it into several steps. Let us give the outline of the argument. The
starting point is (3.51) with k + 1 degree polynomial approximations. We will use
it together with the fact that u ∈ Ak, implying that limr→∞Ek+1(r) = 0. Using this
it is possible to show that k + 1 degree derivatives of approximating polynomials
are quantitatively small, see (3.60). In Step 3 we will prove that the lower degree
parts of approximating polynomials are small as well, and identify the kth degree
part of the approximating polynomial via a suitable Cauchy sequence. Finally, in
Step 4, we conclude using (i)k−1 and (ii)k.

Step 1. We first initialize the argument. Assume that u ∈ Ak, that is, u ∈ A(Rd)
and

lim
j→∞

r
−(k+1)
j ∥u∥L2(Brj )

= 0. (3.54)

Let pj ∈ Ak+1 be the unique minimizer appearing in Ek+1(rj). Then, by the triangle
inequality,

r
−(k+1)
j ∥u∥L2(Brj )

⩽ Ek+1(rj) +Cr−(k+1)
j ∥pj∥L2(Brj )

.

Hence, if we choose the parameter H to satisfy a condition

H ⩾ (4Cs,k) 1
δ Ô⇒ Cs,kr

−δ
j ⩽ 1

4
, (3.55)

we obtain from (3.51) that

Ek+1(rj) ⩽ 1

2
Ek+1(rj+1) +Cr−(k+1+δ)

j+1 ∥pj+1∥L2(Brj+1)
. (3.56)

From (3.54) it follows that limj→∞Ek+1(rj) = 0, and therefore we may sum over j
in (3.56), and obtain after reabsorption that, for every m ∈ N,

∞∑
j=m

Ek+1(rj) ⩽ C ∞∑
j=m+1

r
−(k+1+δ)
j ∥pj∥L2(Brj )

. (3.57)

Observe also that (3.54) and (3.25) imply

lim sup
j→∞

∣∇k+1pj ∣ ⩽ C lim sup
j→∞

r
−(k+1)
j ∥pj∥L2(Brj )

⩽ C lim
j→∞

r
−(k+1)
j ∥u∥L2(Brj )

= 0. (3.58)



3.3 Higher-order regularity theory and Liouville theorems 83

Step 2. In this step we will show that ∇k+1pj is small for large j with a quantified
rate. First, the triangle inequality and (3.25) yield

∣∇k+1(pj − pj+1)∣ ⩽ Cr−(k+1)
j ∥pj − pj+1∥L2(Brj+1)

⩽ C (Ek+1(rj) +Ek+1(rj+1)) ,
and thus by (3.58) and (3.57),

∣∇k+1pm∣ ⩽ C ∞∑
j=m

Ek+1(rj) ⩽ C ∞∑
j=m+1

r
−(k+1+δ)
j ∥pj∥L2(Brj )

.

Furthermore, denoting πk = πk,0, we have that

r
−(k+1)
j ∥pj∥L2(Brj )

⩽ r−(k+1)
j ∥πkpj∥L2(Brj )

+ ∣∇k+1pj ∣,
and therefore

∣∇k+1pm∣ ⩽ C ∞∑
j=m+1

r
−(k+1+δ)
j ∥πkpj∥L2(Brj )

+C ∞∑
j=m+1

r−δj ∣∇k+1pj ∣.
It follows that

sup
j⩾m

∣∇k+1pj ∣ ⩽ C ∞∑
j=m+1

r
−(k+1+δ)
j ∥πkpj∥L2(Brj )

+C sup
j⩾m

∣∇k+1pj ∣ ∞∑
j=m+1

r−δj .

The last sum can be estimated, with large enough H in the definition of r0, as

C
∞∑
j=m

r−δj ⩽ C

1 − θδH−δ ⩽ 1

2
. (3.59)

Therefore we obtain, after reabsorption,

∣∇k+1pm∣ ⩽ C ∞∑
j=m

r
−(k+1+δ)
j ∥πkpj∥L2(Brj )

. (3.60)

Step 3. We then proceed to identify the limit of (πk −πk−1)pj as j →∞. Setting

Ẽk(rm) ∶= r−km ∥u − πkpm∥L2(Brm) ,

we deduce from (3.57) and (3.60) that

Ẽk(rm) ⩽ rmEk+1(rm) +Crm∣∇k+1pm∣ ⩽ Crm ∞∑
j=m

r
−(k+1+δ)
j ∥πkpj∥L2(Brj )

. (3.61)

To obtain suitable estimates for (πk − πk−1)pj, we need to analyze the sum of
Ẽk(rm)’s. Rearrange the last sum in (3.61) as

rm
∞∑
j=m

r
−(k+1+δ)
j ∥πkpj∥L2(Brj )

⩽ r−(k+δ)m ω(m),
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where we denote

ω(m) = k∑
h=0

ωh(k) , ωh(m) ∶= ∞∑
j=m

(θk+1+δ)j−m ∥(πh − πh−1)pj∥L2(Brj )
,

with a convention that π−1 = 0. Since (πh − φh−1)q is a homogeneous polynomial of
degree h, we have in particular that, for every q ∈ Ak and r, t > 0,

∥(πh − πh−1)q∥L2(Br) = (r
t
)h ∥(πh − πh−1)q∥L2(Bt) . (3.62)

Moreover, we have by the equivalence of norms described in (3.27) that, for q ∈ Ak,
∥q∥L2(Br) ⩽ k∑

h=0

∥(πh − πh−1)q∥L2(Br) ⩽ Ck ∥q∥L2(Br) . (3.63)

With this notation we get from (3.61) that

Ẽk(rm) ⩽ Cr−(k+δ)m ω(m). (3.64)

We next estimate the growth of ω(m). A first, crude bound is

ω(m + 1) ⩽ θ−(k+1+δ)ω(m). (3.65)

By the triangle inequality, (3.62) and (3.63), we get

ωh(m + 1) = ∞∑
j=m+1

(θk+1+δ)j−(m+1) ∥(πh − πh−1)pj∥L2(Brj )

= ∞∑
j=m

(θk+1+δ)j−m ∥(πh − πh−1)pj+1∥L2(Brj+1)

= θ−h ∞∑
j=m

(θk+1+δ)j−m ∥(πh − πh−1)pj+1∥L2(Brj )

⩽ θ−hωh(m) +C ∞∑
j=m

(θk+1+δ)j−m ∥πh(pj − pj+1)∥L2(Brj )
.

Let us estimate the last term. By (3.64) and (3.65) we have

∥πh(pj − pj+1)∥L2(Brj )
⩽ ∥πk(pj − pj+1)∥L2(Brj )⩽ Crkj (Ẽk(rj) + Ẽk(rj+1)) ⩽ Cr−δj ω(j) ⩽ Cr−δj (θk+1+δ)m−j ω(m)

and hence
∞∑
j=m

(θk+1+δ)j−m ∥πk(pj − pj+1)∥L2(Brj )
⩽ Cω(m) ∞∑

j=m
r−δj ⩽ Cr−δm ω(m).
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Therefore we obtain

ωh(m + 1) ⩽ θ−hωh(m) +Cr−δm ω(m). (3.66)

By choosing H in the definition of r0 larger, if necessary, we have that Cr−δ0 ⩽ 1,
and therefore iterating the previous inequality, we get, for every n ⩾m,

ω(n) ⩽ ω(m) n∏
j=m

(θ−k + θδj) ⩽ C ( rn
rm

)k ω(m). (3.67)

In particular,
sup
m∈N

r−km ω(m) ⩽ Cr−k0 ω(0) < ∞. (3.68)

Furthermore, defining
ω̃h(m) ∶= rδ−km ωh(m),

we have by (3.66) that, for h ⩽ k − 1,

ω̃h(m + 1) ⩽ θ1−δω̃h(m) +Cr−km ω(m).
By taking supremum over m and reabsorbing,

sup
m∈N

rδ−km ωh(m) < ∞.
As a consequence, we obtain from the definition of ωh(m) that

sup
m∈N

rδ−km ∥πk−1pj∥L2(Brj )
< ∞. (3.69)

Returning to (3.64) and using (3.67), we obtain, after summation,

∞∑
n=m

Ẽk(rn) ⩽ C ∞∑
n=m

r
−(k+δ)
n ω(n) ⩽ Cr−(k+δ)m ω(m). (3.70)

This implies that {∇kπkpj}j is a Cauchy-sequence: for every n ⩾m,

∣∇kπk(pn − pm)∣ ⩽ C n∑
j=m

Ẽk(rn) ⩽ Cr−(k+δ)m ω(m) → 0 as m→∞
Therefore there exists a polynomial q ∈ Ak, which is homogeneous of degree k
(πk−1q = 0) and, for every m ∈ N,

∣∇k(πkpm − q)∣ ⩽ Cr−(k+δ)m ω(m). (3.71)

Step 4. We conclude the argument. By (ii)k we find φq ∈ Ak such that, for
every r ⩾ r0, ∥φq − q∥L2(Br) ⩽ Cr−δ ∥q∥L2(Br) .
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We will then show that u − φq ∈ Ak−1. By the triangle inequality, we have

r−kj ∥u − φq∥L2(Brj )
⩽ r−kj ∥u − q∥L2(Brj )

+Cr−(k+δ)j ∥q∥L2(Brj )

and, using also (3.70) and (3.71),

r−kj ∥u − q∥L2(Brj )
⩽ Ẽk(rj) +C ∣∇k(pj − q)∣ + r−kj ∥πk−1pj∥L2(Brj )

⩽ Cr−δj sup
m∈N

(r−km ω(m) + rδ−km ∥πk−1pj∥L2(Brj )
) .

Then, by (3.68) and (3.69), we obtain

lim
j→∞

r−kj ∥u − φq∥L2(Brj )
= 0.

Therefore, by the definition, u − φq ∈ Ak−1. By (i)k−1 we consequently find q̃ ∈ Ak−1

such that, for every r ⩾ r0,

∥u − φq − q̃∥L2(Br) ⩽ Cr−δ ∥q̃∥L2(Br) .

Finally, setting p = q + q̃ ∈ Ak, we have by the triangle inequality and (3.27) that,
for every r ⩾ r0,

∥u − p∥L2(Br) ⩽ Cr−δ (∥q∥L2(Br) + ∥q̃∥L2(Br)) ⩽ Cr−δ ∥p∥L2(Br) ,

which was to be proven.

Proof of (3.48). Assuming that (i)k and (ii)k hold, we will show that also (iii′)k
is true. Let n ∈ N be such that R ∈ [rn, rn+1). In view of (3.50), by imposing the
condition on H that

H ⩾ (4Cs,kθ
−1) 1

δ , (3.72)

which in view of the definition of r0 also implies that

Cs,kr
−δ
j ⩽ 1

4
θ,

we deduce that, for every u ∈ A(Brj+1), there exists p ∈ Ak such that

∥u − p∥L2(Brj )
⩽ 1

2
θk+1−δ/2 ∥u∥L2(Brj+1)

.

Define sequences {uj}, {pj} and {φj} recursively by setting un ∶= u and, for every
j ∈ {1, . . . , n}, selecting pj−1 ∈ Ak by way of the previous display to satisfy

∥uj − pj−1∥L2(Brj−1)
⩽ 1

2
θk+1−δ/2 ∥uj∥L2(Brj )

and ∥pj−1∥L∞(Brj )
⩽ C ∥uj∥L2(Brj )

.
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Then pick φj−1 ∈ Ak(Rd) using the assumption (ii)k satisfying

∥pj−1 − φj−1∥L2(Brj−1)
⩽ Cr−δj ∥pj−1∥L2(Brj−1)

,

and set uj−1 ∶= uj − φj−1. The triangle inequality and the above estimates imply

∥uj−1∥L2(Brj−1)
⩽ (1

2
θk+1−δ/2 +Cr−δj ) ∥uj∥L2(Brj )

.

As before, the condition on H guarantees that Cr−δj ⩽ 1
2θ

k+1−δ/2, and thus the
previous inequality gives after iteration that, for every j ∈ {0, . . . , n},

∥uj∥L2(Brj )
⩽ ( rj

rn
)k+1−δ/2 ∥u∥L2(Brn) ⩽ C (rj

R
)k+1−δ/2 ∥u∥L2(BR) .

Since

uj = u − n−1∑
m=j

φm,

we have hence shown that, for every r ∈ [r0,R],
inf

φ∈Ak(Rd)
∥u − φ∥L2(Br) ⩽ C ( r

R
)k+1−δ/2 ∥u∥L2(BR) . (3.73)

To complete the proof of (iii′)k, we need to check that we can select φ ∈ Ak(Rd)
independent of the radius r. Let φr ∈ Ak(Rd) achieve the infimum on the left side
of (3.73) for r ∈ [r0,R]. Then by the triangle inequality, for r ∈ [r0,

1
2R],

∥φr − φ2r∥L2(Br) ⩽ C ( r
R

)k+1−δ/2 ∥u∥L2(BR) .

The statements (i)k and (ii)k imply that every φ ∈ Ak(Rd) satisfies, for every s ⩾ r,
∥φ∥L2(Bs) ⩽ C (s

r
)k ∥φ∥L2(Br) .

Combining the previous two displays, we get that, for every s ⩾ r ⩾ r0,

∥φr − φ2r∥L2(Bs) ⩽ C (s
r
)k ( r

R
)k+1−δ/2 ∥u∥L2(BR) = C (r

s
)1−δ/2 ( s

R
)k+1−δ/2 ∥u∥L2(BR) .

Summing the previous inequality over dyadic radii yields, for every s ⩾ r ⩾ r0,

∥φr − φs∥L2(Bs) ⩽ C ( s
R

)k+α ∥u∥L2(BR) .

In particular, if we take φ ∶= φr0 , then we obtain, for every r ⩾ r0,

∥u − φ∥L2(Br) ⩽ ∥u − φr∥L2(Br) + ∥φ − φr∥L2(Br) ⩽ C ( r
R

)k+1−δ/2 ∥u∥L2(BR) .

This completes the proof of (iii′)k.
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Proof of (3.49). We finish the proof of the theorem by showing that (i)k+1, (ii)k+1

and (iii′)k+1 imply (iii)k. Fix R ⩾ 2Xs and u ∈ A(BR). Select first ψ ∈ Ak+1(Rd)
such that, for every r ∈ [Xs,R],

∥u − ψ∥L2(Br) ⩽ C ( r
R

)k+2−δ/2 ∥u∥L2(BR) . (3.74)

By (i)k+1, we can choose pψ ∈ Ak+1 to satisfy

∥ψ − pψ∥L2(Br) ⩽ Cr−δ ∥pψ∥L2(Br) .

By (ii)k+1, we may also take ψ̃ ∈ Ak+1 such that

∥ψ̃ − (πk+1 − πk)pψ∥L2(Br)
⩽ Cr−δ ∥(πk+1 − πk)pψ∥L2(Br) .

It is clear that ψ̃ has growth of degree k + 1: by (3.27), we have

∥ψ̃∥
L2(Br)

⩽ 2 ∥(πk+1 − πk)pψ∥L2(Br) = 2( r
R

)k+1 ∥(πk+1 − πk)pψ∥L2(BR)

⩽ C ( r
R

)k+1 ∥pψ∥L2(BR)

⩽ C ( r
R

)k+1 ∥u∥L2(BR) . (3.75)

The function φ ∶= ψ − ψ̃ is now our candidate in (iii)k. To see that φ ∈ Ak, we get
by (3.27) that

∥φ∥L2(Br) ⩽ ∥ψ − pψ∥L2(Br) + ∥ψ̃ − (πk+1 − πk)pψ∥L2(Br)
+ ∥πkpψ∥L2(Br)⩽ Cr−δ ∥pψ∥L2(Br) + ∥πkpψ∥L2(Br)⩽ Crk+1−δ ∥pψ∥L2(B1) ,

and therefore limr→∞ r−(k+1) ∥φ∥L2(Br) = 0 and φ ∈ Ak. Furthermore, by (3.74), (3.75)
and the triangle inequality, we find that

∥u − φ∥L2(Br) ⩽ C ∥ψ̃∥
L2(Br)

+C ∥u − ψ∥L2(Br)

⩽ C ((r
s
)k+1 + ( r

R
)k+2−δ/2)∥u∥L2(BR) ⩽ C (r

s
)k+1 ∥u∥L2(BR) .

The proof is now complete.

Proof of (3.42). An explicit expression for dim (Ak) in terms of (k, d) is

dim (Ak) = (d + k − 1

k
) + (d + k − 2

k − 1
).
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This formula holds also for k = 0 if we interpret (d−2
−1

) = 0. A proof of this fact can
be found in [6, Corollary 2.1.4].

We now argue by induction on k that

dim(Ak) = dim(Ak). (3.76)

A proof of (3.76) in the case k = 0 has already been given above in the argument
for (i)0, (ii)0 and (iii)0, where we saw that A0 = A0 is the set of constant functions.
We next observe that (i)k and (ii)k give us a canonical isomorphism between the
spaces Ak/Ak−1 and Ak/Ak−1. Thus, for every k ∈ N with k ⩾ 1,

dim(Ak/Ak−1) = dim(Ak/Ak−1).
We now easily obtain (3.76) by induction on k.

Theorem 3.6 may be generalized to allow for polynomial right-hand sides,
essentially replacing Ak by Pk in each of the assertions, where Pk is the set of
polynomials of degree at most k. To give the precise statement, we consider, for
each k ∈ N and Pk, the equation

−∇ ⋅ (a(x)∇u) = −∇ ⋅ (a∇p) in U

and denote the set of solutions by

A[p] (U) ∶= {u ∈H1
loc(U) ∶ ∀w ∈ C∞

c (U), ∫
U
∇w ⋅ (a∇u − a∇p) = 0} .

We then define, for each k ∈ N and p ∈ Pk, the affine space

Ak [p] ∶= {u ∈ A[p] (Rd) ∶ lim sup
r→∞

r−(k+1) ∥u∥L2(Br) = 0} ,
and set Pk ∶= ⋃

p∈Pk
Ak [p] .

In order to extend Theorem 3.6 to allow for polynomial right-hand sides, it is
necessary only to extend the statement (ii)k. This is done in the following lemma.

Lemma 3.7. For each s ∈ (0, d), there exists δ(s, d,Λ) > 0 and a random variableXs satisfying (3.39) such that, for every k ∈ N and p ∈ Pk, there exists u ∈ Ak [p]
such that, for every R ⩾ Xs,

∥u − p∥L2(BR) ⩽ CR−δ ∥p∥L2(BR) .

Proof. The proof is almost identical to that of (3.46), except that it requires a
version of Theorem 2.15 with (smooth) right-hand sides. The required modifications
are straightforward and left as an exercise to the reader.
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Corollary 3.8 (Higher regularity theory, generalized). Fix s ∈ (0, d). There exist
an exponent δ(s, d,Λ) ∈ (0, 1

2
] and a random variable Xs satisfying the estimate

Xs ⩽ Os (C(s, d,Λ)) (3.77)

such that the following statements hold, for every k ∈ N:
(i)k There exists C(k, d,Λ) < ∞ such that, for every u ∈ Pk, there exists p ∈ Pk

such that u ∈ Ak [p] and, for every R ⩾ Xs,
∥u − p∥L2(BR) ⩽ CR−δ ∥p∥L2(BR) . (3.78)

(ii)k For every p ∈ Pk, there exists u ∈ Ak [p] satisfying (3.40) for every R ⩾ Xs.
(iii)k There exists C(k, d,Λ) < ∞ such that, for every R ⩾ Xs, p ∈ Pk and solution

u ∈H1(BR) of the equation

−∇ ⋅ (a∇u) = −∇ ⋅ (a∇p) =∶ f in BR,

there exists φ ∈ Ak [p] such that, for every r ∈ [Xs,R],
∥u − φ∥L2(Br) ⩽ C ( r

R
)k+1 ∥u∥L2(BR)

+C ( r
R

)k+1 (k−1∑
j=0

Rj ∥∇jf∥
L∞(BR) +Rk−1+β [∇k−1f]

C0,β(BR)) . (3.79)

In particular, P-almost surely, we have, for every k ∈ N and p ∈ Pk,
dim (Ak [p]) = dim(Ak) = (d + k − 1

k
) + (d + k − 2

k − 1
). (3.80)

Proof. The corollary is immediate from Theorem 3.6 and Lemma 3.7. Indeed,
we may use the lemma and linearity to reduce the statement of the corollary to
Theorem 3.6.

Exercise 3.4. Show that for every k ∈ N and p ∈ Pk, there exists q ∈ Pk+2 such that
p = −∇ ⋅ (a∇q). Hint: consider the solution v ∈ C∞(B1) of the Dirichlet problem

{ −∇ ⋅ (a∇v) = p in B1,

v = 0 on ∂B1,

and define

q(x) ∶= k−2∑
j=0

∇jv(0)x⊗j.
Deduce p = −∇ ⋅ (a∇q) by a scaling argument and the Ck−1,α regularity of v.
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Exercise 3.5. Further generalize Corollary 3.8(iii)k to allow for non-polynomial
right-hand sides. The precise statement is: for every s ∈ (0, d) and β ∈ (0, 1), there
exist C(s, β, d,Λ) < ∞ and a random variable Xs ∶ Ω→ [1,∞] satisfying

Xs = Os (C) , (3.81)

such that the following holds: for every R ⩾ Xs, k ∈ N with k ⩾ 1, f ∈ Ck−1,α(B2R),
and weak solution u ∈H1(B2R) of

−∇ ⋅ (a∇u) = f in B2R, (3.82)

if we use Exercise 3.4 to find p ∈ Pk such that −∇ ⋅ (a∇p) (x) = ∑k−2
j=0 ∇jf(x)x⊗j,

then there exists φ ∈ Ak[p] satisfying, for every r ∈ [Xs,R],
∥u − φ∥L2(Br) ⩽ C ( r

R
)k+1 ∥u∥L2(BR)

+C ( r
R

)k+1 (k−1∑
j=0

Rj ∥∇jf∥
L∞(BR) +Rk−1+β [∇k−1f]

C0,β(BR)) . (3.83)

Note that last factor of the last term in parentheses on the right side is just the
properly scaled Ck−1,β(BR) norm of f .

Remark 3.9 (Stationary extension of Xs). The random variable Xs in the state-
ments of Theorems 3.3, 3.6 and Corollary 3.8 controls the regularity in balls centered
at the origin. We obtain similar statements for balls centered at x ∈ Rd by replacing
with Xs by TxXs, where we recall TxXs is the translation of Xs given by

(TxXs) (a) ∶= Xs (Txa) ,
and Tx acts on the coefficient field by (Txa)(y) ∶= a(y+x). It is convenient therefore
to think of Xs as a stationary random field (see Definition 3.10 below) and to
denote its spatial dependence by writing

Xs(x) ∶= TxXs.
It will be helpful to have some regularity in x of Xs(x). We will now argue that
we may modify Xs slightly, without changing any of the conclusions in the above
theorems, so that, for every x, y ∈ Rd,

∣Xs(x) − Xs(y)∣ ⩽ 2∣x − y∣. (3.84)

To see this, we replace Xs(x) by X ′
s(x), defined by

X ′
s(x) ∶= 2 + inf

y∈Rd
(2∣y − x∣ + Xs(y)) .
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Observe that, for every x ∈ Rd, X ′
s(x) ⩽ 2 + √

d + Xs (⌈x⌉), where ⌈x⌉ ∈ Zd is the
lattice point with coordinates (⌈xi⌉). Thus X ′

s(x) satisfies the estimate (3.77) after
enlarging the constant C. It is clear that x↦ X ′

s(x) is 2-Lipschitz, that is,

∣X ′
s(x) − X ′

s(y)∣ ⩽ 2∣x − y∣.
Finally, we obtain all the same statements (i)k–(iii)k in Theorem 3.6 and Corol-
lary 3.8 (and likewise in Theorem 3.3) after inflating the constant C. To see this,
fix x and find y such that, with R ∶= ∣x − y∣ ∨ 1, we have

Xs(y) ⩽ X ′
s(x) − 2R.

Then r ⩾ X ′
s(x) implies r ⩾ 2R and hence we have both Br(x) ⊆ B2r(y) and Br(y) ⊆

B2r(x) for every r ⩾ X ′
s(y). Thus for every f ∈ L2(BR(x)) and r ∈ [X ′

s(x), 1
4R],

∥f∥L2(Br(x)) ⩽ 2d ∥f∥L2(B2r(y)) and ∥f∥L2(Br(y)) ⩽ 2d ∥f∥L2(B2r(x))

This observation and the triangle inequality gives us the statements (i)k–(iii)k
in Theorem 3.6 and Corollary 3.8 with X ′

s(x) in place of Xs and with the balls
centered at x rather than the origin.

3.4 The first-order correctors

In this section, we identify the vector space A1/R with a family of Zd–stationary
potential field which we call the first-order correctors. We then obtain some
preliminary estimates on these functions.

The name corrector comes from the fact that φξ represents the difference
between the element of A1 tracking the affine function x → ξ ⋅ x and the affine
function itself. We should therefore think of A1 as an analogue in the whole space
of the solutions to the Dirichlet problem in a large domain with affine boundary
data. In fact, these two sets of solutions will be converging to each other in the
sense that, for some δ > 0 and every r larger than a random minimal scale,

∥φξ − (φξ)Br∥L2(Br)
⩽ Cr1−δ.

We can therefore use the estimates we have already proved in the previous chapters
to get some quantitative bounds on the correctors in addition to the bound on
the L2-oscillation in Br. There are two advantages to studying φξ rather than
the finite-volume analogues in previous chapters: one is that its gradient ∇φξ is
statistically stationary (a concept explained below), and the second is that there
are no boundaries to perturb its behavior. There are also disadvantages, such as
the fact that the correctors are not localized: they depend on the coefficients in
the whole space.

We begin by introducing the concept of a stationary random field.
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Definition 3.10 (Stationary random field). Let (S,S) be a measurable space. An
S–valued Zd–stationary random field is a B ×F–measurable mapping

F ∶ Rd ×Ω→ S

with the property that, for every z ∈ Zd and a ∈ Ω,

F (x + z,a) = F (x,Tza) for a.e. x ∈ Rd and P–a.s. in a ∈ Ω.

If S = R then we typically call F a stationary random field or just stationary field.
If S = Rd then we may say that F is a stationary vector field.

If F is an S–valued stationary random field, we typically keep the dependence
of F on a implicit in our notation and just write F (x). Of course, the canonical
process a↦ a is itself the most obvious example of a stationary random field, as is
any function of a which commutes with translations.

Definition 3.11 (Stationary random potential field). A stationary random poten-
tial field is an Rd–valued stationary random field F such that, P–a.s. in a ∈ Ω, the
vector field F (⋅,a) is the gradient of a function in H1

loc(Rd). In this case we can
write F (x,a) = ∇u(x,a). We denote the collection of stationary random potential
fields by L2

pot.

We can also think of an element of L2
pot as a mapping from Ω to L2

pot, loc(Rd).
Note that an element ∇u of L2

pot need not be the spatial gradient of a stationary
random field, since the potential u is only well-defined up to a constant.

Lemma 3.12. There exists a family {∇φe ∶ e ∈ Rd} ⊆ L2
pot such that

∇A1 ∶= {∇u ∶ u ∈ A1} = {e +∇φe ∶ e ∈ Rd}
and

lim sup
r→∞

1

r
∥φe − (φe)Br∥L2(Br)

= 0 P–a.s.

Proof. According to Theorem 3.6, to every u ∈ A1, there corresponds a unique—up
to additive constants—element of A1. Conversely, every p ∈ A1 is associated to
an element of A1 which is again unique up to additive constants. Therefore there
exists a canonical bijection between ∇A1 and ∇A1. Identifying the latter with Rd,
we obtain an isomorphism ξ ↦ (ξ +∇φξ) from Rd to ∇A1, where the potential field
ξ +∇φξ is uniquely determined, P–a.s., by membership in ∇A1 and the condition

lim sup
R→∞

1

R
∥φξ∥L2(BR) = 0.

We next argue that the potential field ∇φξ is Zd-stationary. Indeed, for each
fixed z ∈ Zd, consider the potential field ξ + ∇φ′ξ obtained through the canonical
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bijection associated with the shifted coefficient field Tza ∶= a(⋅ + z). We have that
the function x↦ ξ ⋅ x + φ′ξ(x − z) belongs to A1 and, since (P–a.s.)

lim sup
R→∞

1

R
∥φ′ξ∥L2(BR) = 0,

the triangle inequality yields (P–a.s.)

lim sup
R→∞

1

R
∥φ′ξ(⋅ − z)∥L2(BR) = 0.

We deduce that ∇φξ = ∇φ′ξ(⋅ −z), P–a.s. In other words, ∇φξ(x+z,a) = ∇φξ(⋅, Tza),
P–a.s. in a ∈ Ω, therefore ∇φξ ∈ L2

pot.

The potential functions φe for the gradient fields in the family {∇φe}e∈Rd are
called the first-order correctors. We next record an important consequence of
Theorem 3.6 for the first-order correctors, giving us bounds on ∥∇φe∥L2(Br) for r
larger than a minimal scale.

Lemma 3.13. Fix s ∈ (0, d) and let Xs be as in the statement of Theorem 3.6.
There exist β(d,Λ) > 0 and C(d,Λ) < ∞ such that, for every r ⩾ Xs and e ∈ ∂B1,

∥φe − (φe)Br∥L2(Br)
+ ∥∇φe∥Ĥ−1(Br) + ∥a (e +∇φe) − ae∥

Ĥ
−1(Br)+ ∥1

2 (e +∇φe) ⋅ a (e +∇φe) − 1
2e ⋅ ae∥W−1,1(Br)

⩽ Cr1−β(d−s) (3.85)

and ∥∇φe∥L2(Br) ⩽ C. (3.86)

In particular, there exists ε(d,Λ) > 0 and C(d,Λ) < ∞ such that

sup
e∈∂B1

∥∇φe∥L2(B1) ⩽ O2+ε (C) . (3.87)

Proof. According to statement (i)1 of Theorem 3.6, for every r ⩾ Xs, we have

∥φe − (φe)Br∥L2(Br)
⩽ Cr1−δ. (3.88)

We next prove the estimate for the other three terms on the right side of (3.85).
Let `e denote the affine function `e(x) ∶= e ⋅ x. For each r > 0, let wr ∈ H1(Br)
denote the solution of the Dirichlet problem

{ −∇ ⋅ (a∇wr) = 0 in Br,

wr = `e on ∂Br.
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According to Theorem 2.15 and the proof of Proposition 3.2, there exists an
exponent δ(s, d,Λ) > 0 and a random variable Xs such that Xs ⩽ Os(C) and, for
every r ⩾ Xs,

∥wr − `e∥2
L2(Br) + ∥∇wr − e∥2

Ĥ
−1(Br)

+ ∥a∇wr − ae∥2

Ĥ
−1(Br)+ ∥1

2∇wr ⋅ a∇wr − 1
2e ⋅ ae∥W−2,1(Br)

⩽ Cr2(1−δ). (3.89)

Combining (3.88), the previous line, the triangle inequality, the fact that wr − (` +
φe) ∈ A(Br) and the Caccioppoli inequality, we find that, for every r ⩾ Xs,

∥∇wr − (e +∇φe)∥L2(Br/2) ⩽ Cr−δ. (3.90)

The triangle inequality, (3.89) and (3.90) imply that, for every r ⩾ Xs,
∥∇φe∥2

Ĥ
−1(Br/2)

+ ∥a (e +∇φe) − ae∥2

Ĥ
−1(Br/2)+ ∥1

2 (e +∇φe) ⋅ a (e +∇φe) − 1
2e ⋅ ae∥W−2,1(Br/2)

⩽ Cr2(1−δ). (3.91)

Using (3.86), which we will prove next, and interpolation we can improve the
norm for the last term from W −2,1 to W −1,1, after shrinking the exponent δ. This
completes the proof of (3.85).

We turn to the proof of (3.86). Set φe ∶= `e + φe and observe that, for every
r ⩾ Xs, ∥φe − (φe)Br∥L2(Br)

⩽ ∥`e∥L2(Br) + ∥φe − (φe)Br∥L2(Br)
⩽ Cr.

As φe ∈ A1 ⊆ A, we apply the Caccioppoli inequality to obtain, for every r ⩾ Xs,
∥∇φe∥L2(Br)

⩽ C
r

∥φe − (φe)Br∥L2(B2r)
⩽ C.

As ∥∇φe∥L2(Br) ⩽ 1 + ∥∇φe∥L2(Br)
, we obtain (3.86).

To prove (3.87), we first notice that we can just give up a volume factor to get

sup
e∈∂B1

∥∇φe∥L2(B1) ⩽ X d
2
s sup
e∈∂B1

∥∇φe∥L2(BXs) ⩽ CX d
2
s ⩽ O2s/d(C).

The right side is slightly worse than O2(C), but we can do slightly better than
give up a volume factor by using Hölder’s inequality and the Meyers estimate:

∥∇φe∥L2(B1)
⩽ (X d

2
s ) 2

2+δ ∥∇φe∥L2+δ(B
Xs/2)

⩽ C (X d
2
s ) 2

2+δ ∥∇φe∥L2(BXs)
⩽ CX d

2+δ
s .

Now the right side is ⩽ O(2+δ)s/d(C) and so we can take s close enough to d to
obtain the result.
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Remark 3.14 (Pointwise bounds for scalar equations). Using the De Giorgi-Nash
Hölder estimate, we can upgrade (3.85) from L2 to L∞ on the small scales. The
claim is that, in the notation of Lemma 3.13 and after shrinking the exponent
β(s, d,Λ) > 0, we have, for every e ∈ ∂B1 and r ⩾ Xs, the estimate

sup
e∈∂B1

∥φe − (φe)Br∥L∞(Br)
⩽ Cr1−β(d−s). (3.92)

This estimate is only valid for scalar equations—since the De Giorgi-Nash estimate
is unavailable for elliptic systems. We will not use it to prove any of the results in
this chapter (or, except for a few exceptions, in the rest of the book).

By the interpolation inequality (3.94) stated below and the sublinear esti-
mate (3.85), the bound (3.92) reduces to the following claim: there exist α(d,Λ) > 0
and C(s, d,Λ) < ∞ such that, for every r ⩾ 2Xs,

rα [φe]C0,α(Br/2) ⩽ Cr. (3.93)

To obtain the latter, we apply the De Giorgi-Nash estimate (3.2) in the ball Br to
the function w(x) ∶= x↦ e ⋅ x + φe(x), which satisfies

−∇ ⋅ (a∇w) = 0 in Rd,

to obtain, by the triangle inequality and (3.85),

rα [φe]C0,α(Br/2) ⩽ rα + rα [w]C0,α(Br/2)⩽ rα +C ∥w − (w)Br∥L2(Br)⩽ rα +C (r + ∥φe − (φe)Br∥L2(Br))⩽ Cr.
This gives (3.93) and completes the proof of (3.92).

Exercise 3.6. Prove the following interpolation inequality for L∞ between L2

and C0,α: for every r ∈ (0,∞) and α ∈ (0,1], there exists C(α, d) < ∞ such that,
for every function u ∈ C0,α(Br),

∥u∥L∞(Br) ⩽ C ∥u∥ 2α
d+2α

L2(Br)
(rα [u]C0,α(Br)) d

d+2α . (3.94)

Sketch of proof: By scaling we may assume r = 1 and ∥u∥L∞(B1) = 1. Fix x0 ∈ B1

such that u(x0) > 1
2 . Deduce that

u(x) > 1

2
− [u]C0,α(B1) ∣x − x0∣α =∶ w(x)

Notice that w(x) ⩾ 1
4 in a ball Br(x0) with r = c [u]− 1

α

C0,α(B1) and conclude that

∥u∥L2(B1) ⩾ ∥w∥L2(Br(x0)) ⩾ c∣Br∣ 12 = c [u]− d
2α

C0,α(B1) .
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The main focus of the next chapter is on obtaining sharp estimates of the
gradient, flux and energy density of the first-order correctors in negative Sobolev
spaces. We prepare for the analysis there by giving a suboptimal version of these
bounds, with a small exponent β > 0, but which is optimal in stochastic integrability.

For reasons that will become clear below, it is very convenient to formulate
these estimates in terms of spatial averages of these functions against the standard
heat kernel. Here and throughout the rest of this chapter and the next one, we use
the notation, for a given Ψ ∈ L1(Rd),

∫
Ψ
f = ∫

Ψ
f(x)dx ∶= ∫

Rd
Ψ(x)f(x)dx. (3.95)

Recall that we denote the standard heat kernel by

Φ(t, x) ∶= (4πt)− d2 exp(−∣x∣2
4t

) (3.96)

and define, for each z ∈ Rd and r > 0,

Φz,r(x) ∶= Φ(r2, x − z) and Φr ∶= Φ0,r. (3.97)

Proposition 3.15. For each s ∈ (0, d), there exist C(s, d,Λ) < ∞, β(s, d, λ) > 0
and a random variable Xs satisfying

Xs(x) ⩽ Os(C) (3.98)

such that, for every r ⩾ Xs and e ∈ ∂B1, we have

∣∫
Φr
∇φe∣ ⩽ Cr−β, (3.99)

∣∫
Φr

a(e +∇φe) − ae∣ ⩽ Cr−β, (3.100)

and ∣∫
Φr

1

2
(e +∇φe) ⋅ a (e +∇φe) − 1

2
e ⋅ ae∣ ⩽ Cr−β. (3.101)

Proof. We apply Lemma 3.16 below with k ∈ {1,2}, p = 2, β = 2d, and ψ(x) =
exp (− ∣x∣2

4 ). Clearly (3.102) is valid with A(d) < ∞, and thus by Lemmas 3.13
and 3.16 we get, for every r ⩾ Xs, with Xs as in Lemma 3.13,

∣∫
Φr
∇φe∣ ⩽ Cr−1∫ ∞

1
t−d−1 ∥∇φe∥H−1(Btr)

dt

t
⩽ Cr−1∫ ∞

1
t−d−1(tr)1−δ dt

t
⩽ Cr−δ.

Proofs of (3.100) and (3.101) follow similarly.

We next prove the lemma used in the previous argument.
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Lemma 3.16. Fix r > 0, k ∈ N ∪ {0}, p ∈ [1,∞], A > 0 and β > 0. Suppose that
ψ ∈W k, p

p−1

loc (Rd) satisfies

∥ψ∥
W
k,

p
p−1 (B1)

+ sup
t>1

(tβ+k ∥ψ∥
W
k,

p
p−1 (B2t∖Bt)

) ⩽ A. (3.102)

Then there exists C(d) < ∞ such that

∣∫
Rd
f(x)r−dψ (x

r
) dx∣ ⩽ CAr−k ∫ ∞

1
td−β−k ∥f∥W−k,p(Btr)

dt

t
.

Proof. Let η ∈ C∞
0 (B1) be such that η = 1 in B1/2. Set η0 = 0 and, for m ∈ N,

ηm = η0(2−m⋅). Changing variables and decomposing ψ using ηm’s, we get

∫
Rd
f(x)r−dψ (x

r
) dx = ∫

Rd
f(rx)ψ (x) dx

= ∞∑
m=0

∫
Rd
f(rx)ψ (x) (ηm+1(x) − ηm(x)) dx. (3.103)

Now,

∣∫
Rd
f(rx)ψ (x) (ηm+1(x) − ηm(x)) dx∣

⩽ C2mdr−k ∥f∥W−k,p(B2m+1r)
∥ψ (ηm+1 − ηm)∥

W
k,

p
p−1 (B2m+1)

.

By assumption (3.102),

∥ψ (ηk+1 − ηk)∥
W
k,

p
p−1 (B2m+1)

⩽ CA2−m(β+k) ∥η0∥Wk,∞
0 (B1) ,

and hence we arrive at

∣∫
Rd
f(rx)ψ (x) dx∣ ⩽ Cr−k ∞∑

m=0

2m(d−β−k) ∥f∥W−k,p(B2m+1r)
∥η0∥Wk,∞

0 (B1) .

The result follows from this.

The previous proposition and the stationarity of ∇φe imply strong bounds in
expectation for the same quantities, a fact which will be useful to us later.

Lemma 3.17. There exist c(d,Λ) > 0 and C(d,Λ) < ∞ such that, for every e ∈ ∂B1,
x ∈ Rd and r ⩾ 1,

∣E [∫
Φx,r

∇φe]∣ ⩽ C exp (−cr2) , (3.104)

∣E [∫
Φx,r

a(e +∇φe)] − ae∣ ⩽ C exp (−cr2) (3.105)

and

∣E [∫
Φx,r

1

2
(e +∇φe) ⋅ a(e +∇φe)] − 1

2
e ⋅ ae∣ ⩽ C exp (−cr2) . (3.106)



3.4 The first-order correctors 99

Proof. We prove only the first estimate, since the argument for the others are
similar. By the stationarity of ∇φe and the fact that

⨏
[0,1]d

∣E [∇φe(x)]∣2 dx ⩽ E [⨏
[0,1]d

∣∇φe(x)∣2 dx] ⩽ C,
we deduce that the map

x↦ E [∇φ(x)]
is a Zd–periodic function belonging to L2

loc(Rd). In view of (3.99), it therefore
suffices to show that, for any Zd–periodic function f ∈ L1

loc(Rd), we have

∥f ∗Φ(t, ⋅) − (f)[0,1]d∥L∞(Rd)
⩽ C exp (−ct) ∥f − (f)[0,1]d∥L1([0,1]d)

. (3.107)

We may assume that (f)[0,1]d = 0. We see then that the claim is equivalent to the
exponential decay in L∞ of a solution of the heat equation on the torus with mean
zero initial data. This is a classical fact that can be seen in several ways and we
outline one such proof in Exercise 3.7 below.

Exercise 3.7. Prove (3.107): that is, there exist constants C(d) < ∞ and c(d) > 0
such that, for every Zd-periodic function f ∈ L1

loc(Rd) and t ∈ [1,∞),
sup
x∈Rd

∣(f ∗Φ(t, ⋅)) (x) − (f)[0,1]d ∣ ⩽ C ∥f − (f)[0,1]d∥L1([0,1]d)
exp(−ct). (3.108)

Hint: Assume (f)[0,1]d = 0, let f(t, x) = (f ∗Φ(t, ⋅)) (x), which is Zd–periodic in x
and solves the heat equation, and argue that

∂t∫
[0,1]d

1

2
∣f(t, x)∣2 dx = −∫

[0,1]d
∣∇f(t, x)∣2 dx.

Deduce by the Poincaré inequality (note (f(t, ⋅))[0,1]d = 0 since heat flow preserves
mass) that

∂t∫
[0,1]d

1

2
∣f(t, x)∣2 dx ⩽ −c∫

[0,1]d
1

2
∣f(t, x)∣2 dx. (3.109)

Deduce that the quantity ∫[0,1]d 1
2 ∣f(t, x)∣2 dx decays exponentially. Now use point-

wise bounds for the heat equation (or the semigroup property again) to conclude.

Exercise 3.8. Show that the optimal Poincaré constant for Zd-periodic, mean-zero
functions is 1/2π. That is, for every Zd-periodic f ∈ L2

loc(Rd) with (f)[0,1]d = 0,

∫
[0,1]d

∣f(x)∣2 dx ⩽ 1

4π2 ∫[0,1]d
∣∇f(x)∣2 dx.

Deduce that the best constant c in (3.109) is 8π2, and therefore the best constant c
in (3.108) is 4π2. (In particular, it can be taken independently of d.)
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3.5 Boundary regularity

In this section, we extend some of the interior regularity estimates presented in
previous sections by giving global versions for Dirichlet boundary conditions. In
particular, we prove a C0,1-type estimate in C1,γ domains with boundary data
in C1,γ . We also give Liouville-type theorems by characterizing the set of solutions
in a half space which have polynomial traces on the boundary plane and grow at
most polynomially at infinity. This allows us to give a Ck,1-type regularity result
for arbitrary solutions in half-balls.

The first result is an extension of Theorem 3.3 to a neighborhood of a boundary
point of a C1,γ domain U for solutions which satisfy a given C1,γ Dirichlet boundary
condition on ∂U . Since the domain U imposes a macroscopic length scale, it is
natural to denote the microscopic scale by a small parameter ε > 0.

Theorem 3.18 (Quenched C0,1-type estimate, boundary version). Fix s ∈ (0, d),
γ ∈ (0,1] and a C1,γ domain U with 0 ∈ ∂U . There exist C(s, γ,U, d,Λ) < ∞, and
a random variable Xs ∶ Ω→ [1,∞] satisfying

Xs = Os (C) , (3.110)

such that the following holds: for every ε ∈ (0, 1
2
], R ⩾ 2εXs and functions g ∈

C1,γ(∂U) and u ∈H1(BR ∩U) satisfying

{ −∇ ⋅ (a (x
ε
)∇u) = 0 in BR ∩U,

u = g on BR ∩ ∂U, (3.111)

we have, for every r ∈ [εXs, 1
2R], the estimate

1

r
∥u − g(0)∥L2(Br∩U) ⩽ CR ∥u − g(0)∥L2(BR∩U)

+CRγ [∇g]C0,γ(BR∩U) +C ∥∇g∥L∞(BR∩U) . (3.112)

Remark 3.19. By the global Caccioppoli inequality (cf. Lemma C.8), we can
write the estimate (3.112), for every r ∈ [εXs,R], as
∥∇u∥L2(Br∩U) ⩽ C (∥∇u∥L2(BR∩U) +Rγ [∇g]C0,γ(BR∩∂U) + ∥∇g∥L∞(BR∩∂U)) . (3.113)

Indeed, one can test the weak formulation of u with (u− g)φ2, where g is extended
to BR ∩ ∂U and φ is a cut-off function in B2r, and then get

∥∇u∥L2(Br∩U) ⩽ C (1

r
∥u − g(0)∥L2(B2r∩U) + ∥∇g∥L∞(B2r∩U)) .
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On the other hand, by the triangle inequality and Poincaré’s inequality,

1

R
∥u − g(0)∥L2(BR∩U) ⩽ 1

R
∥u − g∥L2(BR∩U) + 1

R
∥g − g(0)∥L2(BR∩∂U)

⩽ C ∥∇u −∇g∥L2(BR∩U) + 1

R
∥g − g(0)∥L2(BR∩∂U)

⩽ C (∥∇u∥L2(BR∩U) + ∥∇g∥L∞(BR∩∂U)) .
Combining the above two displays with (3.112) leads to (3.113).

Remark 3.20. If we relax the assumption that 0 ∈ ∂U to the assumption that
BR ∩ ∂U ≠ ∅, one may combine Theorems 3.3 and 3.18 to obtain

1

r
∥u −mr∥L2(Br∩U) ⩽ CR ∥u − g(0)∥L2(BR∩U)

+CRγ [∇g]C0,γ(BR∩U) +C ∥∇g∥L∞(BR∩U) , (3.114)

where

mr ∶= {g(0) if dist(0, ∂U) ⩽ r,(u)Br if dist(0, ∂U) > r.
The proof of Theorem 3.18 closely follows the one of Theorem 3.3, and we

only need to modify the argument slightly. The classical boundary regularity
estimate for a-harmonic functions which we need is stated as follows. Let γ ∈ (0, 1],
U be a C1,γ domain and u an a-harmonic function in U such that g ∶= u∣∂U ∈
C1,γ(∂U). Then there exists C(d, β,U) < ∞ such that, for every x0 ∈ ∂U and
r ∈ (0, 1

2 diam(U)),
∥∇u∥L∞(Br/2(x0)∩U) + rγ [∇u]C0,γ(Br/2(x0)∩U)⩽ C (∥∇u∥L2(Br(x0)∩U) + ∥∇g∥L∞(Br∩∂U) + rγ [∇g]C0,γ(Br∩∂U)) . (3.115)

The estimate can be easily obtained by iterating the result of the following lemma.

Lemma 3.21. Let γ ∈ (0,1] and R > 0. Suppose that U is a C1,γ-domain with
0 ∈ ∂U and g ∈ C1,γ(∂BR ∩U). Let u solve

{ −∇ ⋅ (a∇u) = 0 in BR ∩U,
u = g on BR ∩ ∂U, (3.116)

Then there exists a constant C(γ,U, d,Λ) < ∞ such that, for every θ ∈ (0, 1
8
],

inf
p∈Lg

∥u − p∥L2(BθR∩U) ⩽ Cθ2 inf
p∈Lg

∥u − p∥L2(BR∩U) (3.117)

+Cθ− d2Rγ (∥u − `g∥L2(BR∩U) +R [∇g]C0,γ(∂BR∩U)) ,
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where

`g(x) ∶= g(0) + ∇Tg(0) ⋅ x and Lg ∶= {`g(x) + q ⋅ x ∶ q ∈ Rd} . (3.118)

Above ∇Tg(0) stands for the tangential gradient of g.

Before presenting the proof, let us prove yet another preliminary version in the
special case when the solution is zero on a hyperplane. We denote, for each e ∈ ∂B1

and r > 0, the half space

He ∶= {x ∈ Rd ∶ x ⋅ e > 0} , Er ∶= Br ∩He and E0
r ∶= Br ∩ ∂He.

Lemma 3.22. Let R > 0 and let u solve

{ −∇ ⋅ (a∇u) = 0 in ER,
u = 0 on E0

R.
(3.119)

Then, for k ∈ N, there exists C(k, d,Λ) < ∞ such that

∥∇ku∥
L∞(ER/2)

⩽ C

Rk
∥u∥L2(ER) . (3.120)

Proof. After rotation we may assume that e = ed. Let us denote by ∇′ the gradient
with respect to the d−1 first variables. Note that, for every m ∈ N, each component
of um ∶= (∇′)mu solves the same equation as u and um = 0 on E0

R. The Caccioppoli
estimate (cf. Lemma C.8) then implies that, for r ∈ (0,R) and σ ∈ [1

2 ,1),
∥∇um∥L2(Eσr) ⩽ Cm(1 − σ) 1

r
∥um∥L2(Er) .

This gives iteratively that

∥∇um−1∥L2(Er/2) ⩽ Cmrm ∥u∥L2(Er) . (3.121)

By the equation, we deduce the existence of a bounded matrix Am such that

∂2
dum−1(x) =Am∇um(x).

Indeed, this follows from the positivity of add or, in the case of elliptic systems, from
the positive definitiveness of the matrix (aαβdd )αβ. Using this formula repeatedly it
is easy to see that there exists a bounded matrix Bm such that

∇mu = Bm∇um−1.

Together with (3.121) we get

∥∇mu∥L2(ER/2) ⩽ CmRm
∥u∥L2(ER) .

Applying then Morrey’s inequality for sufficiently large m finishes the proof.
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Proof of Lemma 3.21. Without loss of generality we may assume that the normal
vector to ∂U at the origin is ed. Moreover, since u − g(0) −∇g(0) ⋅ x still solves the
same equation, we may assume that both g(0) = 0 and ∇g(0) = 0.

Step 1. By the assumption that U is a C1,γ-domain, we can find r0 small
enough so that the boundary of U is the graph xd = ψ(x′), where we denote
x′ = (x1, . . . , xd−1). The new coordinate system is given by y = Θ(x) = (x′, xd−ψ(x′))
so that the boundary of U in Br0 in the new coordinates is E0

r0 = Br0∩∂Hed . Clearly
Θ is invertible, since ∇Tψ(0) = 0, ψ ∈ C1,γ(E0

r0), and r0 is small. Moreover,

sup
x∈Br∩U

∣Θ(x) − x∣ ⩽ sup
x∈Br∩U

∣ψ(x)∣ ⩽ r1+γ [∇ψ]C0,γ , (3.122)

and
sup

x∈Br∩U
∣∇Θ(x) − Id∣ ⩽ sup

x∈Br∩U
∣∇ψ(x)∣ ⩽ rγ [∇ψ]C0,γ , (3.123)

again by the fact that ψ(0) = 0 and ∇ψ(0) = 0. Consider

ũ = u ○Θ−1 and g̃ = g ○Θ−1,

so that ũ = g̃ on E0
r0 .

Step 2. Observe that ũ satisfies the equation

∇y ⋅ (b(y)∇yũ(y)) = 0 in Er,

where we define

bij(y) ∶= aij − δid d−1∑
k=1

∂kψ(y′)akj − δjd d−1∑
k=1

∂kψ(y′)aik
+ δidδjd d−1∑

k,m=1

∂kψ(y′)∂mψ(y′)akm.
In view of the fact that ∇ψ(0) = 0, we have, for every r ∈ (0, r0],

∥b(⋅) − a∥L∞(Er) ⩽ Crγ [∇ψ]C0,γ(Er) . (3.124)

Therefore, for r0 small enough, the ellipticity of b is dictated by a. Since ∇Tg(0) = 0,
we can extend g̃ to Br0 so that, for r ∈ (0, r0],

∥∇g̃∥L∞(Br) ⩽ Crγ [∇g]C0,γ(E0
r0

) . (3.125)

Step 3. We next prove a suitable comparison estimate. Solve

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ ⋅ (b(⋅)∇ṽ) = 0 in Er/2,
ṽ = ũ − g̃ on ∂Br ∩Er,
ṽ = 0 on E0

r ,

(3.126)



104 Chapter 3 Regularity on large scales

so that, by (3.125),

⨏
Er

∣∇ũ(x) − ∇ṽ(x)∣2 dx ⩽ C ∥∇g̃∥2
L∞(Er) ⩽ Cr2γ [∇g]C0,γ(E0

r0
) . (3.127)

On the other hand, solving

{ −∇ ⋅ (a∇w̃) = 0 in Er/2,
w̃ = ṽ on ∂Er,

(3.128)

leads to

⨏
Er

∣∇w̃(x) − ∇ṽ(x)∣2 dx ⩽ C [ψ]C0,γ(E0
r0

)⨏
Er

∣∇ṽ(x)∣2 dx. (3.129)

Therefore, combining (3.127) and (3.129) and allowing C to depend also on ψ
(which depends on ∂U), we obtain

⨏
Er

∣∇w̃(x) − ∇ũ(x)∣2 dx ⩽ Cr2γ ([∇g]C0,γ(E0
r0

) + ⨏
Er

∣∇ũ(x)∣2 dx) . (3.130)

Testing the equation of ũ with (u − g̃)φ2, where φ is a cut-off function, we also
obtain

⨏
Er

∣∇ũ(x)∣2 dx ⩽ C
r2 ⨏E2r

∣ũ(x)∣2 dx +C ∥∇g̃∥2
L∞(Er) .

Consequently, since ũ = w̃ + g̃ on ∂Er, we get by Poincaré’s inequality that

∥w̃ − ũ∥L2(Er) ⩽ Crγ (r [∇g]C0,γ(E0
2r)

+ ∥ũ∥L2(E2r)) . (3.131)

Step 4. We now prove (3.117). Since w̃ = 0 on ∂E0
r , we may use Lemma 3.22 to

obtain
inf
p∈Lg

∥w̃ − p∥L2(Eθr) ⩽ Cθ2 inf
p∈Lg

∥w̃ − p∥L2(Er) ,

where Lg is defined in (3.118). Now (3.117) follows using the triangle inequal-
ity, (3.131) and changing variables to obtain the estimate for u instead of ũ.

We next formulate the harmonic approximation lemma near the boundary of a
C1,γ domain U .

Lemma 3.23 (Harmonic approximation, boundary version). Fix s ∈ (0, d). Suppose
γ ∈ (0,1] and U is a C1,γ domain with 0 ∈ ∂U . There exist constants α(d,Λ) > 0,
C(s, γ,U, d,Λ) < ∞, and a random variable Xs ∶ Ω→ [1,∞] satisfying

Xs = Os (C) (3.132)

such that the following holds: for every ε ∈ (0,1), R ⩾ Xs and u ∈ H1(BεR ∩ U)
satisfying −∇ ⋅ (a (x

ε
)∇u) = 0 in BεR ∩U, (3.133)
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there exists a solution u ∈H1(BεR/2 ∩U) satisfying

{ −∇ ⋅ (a∇u) = 0 in BεR/2 ∩U,
u = u on BεR/2 ∩ ∂U,

and

∥u − u∥L2(BεR/2∩U) ⩽ CR−α(d−s) (∥u − g(0)∥L2(BεR∩U) + εR ∥∇g∥L∞(BεR∩∂U)) .
(3.134)

Proof. The proof is almost the same as that of Proposition 3.2, the only difference
being the use of the global (rather than interior) Meyers estimate, which is proved
in Theorem C.7. Indeed, we have that

∥∇u∥L2+δ(BεR/2∩U) ⩽ C (∥∇u∥L2(B 3
4 εR

∩U) + ∥∇g∥L∞(BεR∩∂U)) ,
and the Caccioppoli estimate (test with (u − g)φ2) yields

∥∇u∥L2(B 3
4 εR

∩U) ⩽ C ( 1

εR
∥u − g(0)∥L2(BεR∩U) + ∥∇g∥L∞(BεR∩∂U)) .

The rest of the proof is left to the reader.

We next formulate a version of Lemma 3.4, which holds up to the boundary.

Lemma 3.24. Fix α ∈ (0, 1], K ⩾ 1 and X ⩾ 1. Suppose that γ > 0 and U is a C1,γ

domain with 0 ∈ ∂U . Also fix g ∈ C1,γ(U). Let ε ∈ (0,1), R ⩾ 2εX and u ∈ L2(BR)
have the property that, for every r ∈ [Xε, 1

2R], there exists w ∈H1(Br) which is a
weak solution of

{ −∇ ⋅ (a∇wr) = 0 in Br ∩U,
wr = g on Br ∩ ∂U, (3.135)

satisfying

∥u −wr∥L2(Br/2∩U) ⩽K (ε
r
)α (∥u − g(0)∥L2(Br∩U) + r ∥∇g∥L∞(Br∩∂U)) . (3.136)

Then there exists C(α,K,U, d,Λ) < ∞ such that, for every r ∈ [εX,R],
1

r
∥u − g(0)∥L2(Br∩U) ⩽ CR ∥u − g(0)∥L2(BR∩U)

+CRγ [∇g]C0,γ(∂BR∩U) +C ∥∇g∥L∞(∂BR∩U) . (3.137)
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Proof. We first deduce an appropriate decay estimate for u. Use (3.136) to get

∥u −wr∥L2(Br/2∩U) ⩽ C (ε
r
)α (∥u − g(0)∥L2(Br∩U) + r ∥∇g∥L∞(∂Br∩U)) . (3.138)

Apply then (3.117) to wr: for any θ ∈ (0, 1
8
] we have

inf
p∈Lg

∥wr − p∥L2(U∩Bθr) ⩽ Cθ2 inf
p∈Lg

∥wr − p∥L2(Br/2∩U) (3.139)

+Cθ− d2 rγ (∥wr − `g∥L2(Br/2∩U) + r [∇g]C0,γ(∂Br∩U)) ,
where `g = g(0) + ∇Tg(0) ⋅ x and Lg ∶= {`g(x) + q ⋅ x ∶ q ∈ Rd}. We now choose θ so
that Cθ = 1

2 and set

E1(r) ∶= 1

r
inf
p∈Lg

∥u − p∥L2(Br∩U) and E0(r) ∶= 1

r
∥u − `g∥L2(Br∩U) .

Rearranging terms after using the triangle inequality yields, for r ∈ (εX, εR],
E1(θr) ⩽ 1

2
E1(r) +C (rγ + (ε

r
)α)E0(r)

+Crγ [∇g]C0,γ(∂BR∩U) +C (ε
r
)α ∥∇g∥L∞(∂BR∩U) .

The rest of the proof is very similar to Lemma 3.4. Indeed, for r0 ∈ [εX,R] and
r1 ∈ [εX, r0], set

M ∶= max
r∈[r1,r0]

E0(r).
Let n ∈ N be such that εX ∈ (θn+1r0, θnr0] and take k ∈ N and r1 = θn−kr0.
Summation then gives

n−k∑
j=0

E1(θjr) ⩽ 2E1(r0) +C (rγ0 + θkα(d−s))M
+Crγ0 [∇g]C0,γ(∂BR∩U) +CX−α ∥∇g∥L∞(∂BR∩U) .

Letting pj ∈ Lg be the minimizing affine function in E1(θjr) and p0 = `g, we then
obtain

max
j∈{1,...,n−k}

∣∇pj ∣ ⩽ 2E0(r0) +C (rγ0 + θkα(d−s))M
+Crγ0 [∇g]C0,γ(∂BR∩U) +CX−α ∥∇g∥L∞(∂BR∩U) .

Thus we also get

M ⩽ Cθ− d2 (rγ0 + θkα(d−s))M+Cθ− d2 (E0(r0) + rγ0 [∇g]C0,γ(∂BR∩U) +X−α ∥∇g∥L∞(∂BR∩U)) .
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We now choose k large enough and r0 small enough so that

Cθ−
d
2 (rγ0 + θkα(d−s)) ⩽ 1

2
.

Therefore we obtain after reabsorption that

M ⩽ Cθ− d2 (E0(r0) + rγ0 [∇g]C0,γ(∂BR∩U) +X−α ∥∇g∥L∞(∂BR∩U)) .
From this (3.112) follows easily.

Theorem 3.18 is now a consequence of Lemmas 3.23 and 3.24.

Exercise 3.9. State and prove a global version of Exercise 3.3.

We next present an analogue of Theorem 3.6 in half spaces with Dirichlet
boundary data. In particular, we classify all solutions in the upper half space

Rd
+ ∶= {xd > 0}

which have at most polynomial growth in Rd+ and a polynomial trace on ∂Rd+.
For the precise statement, see Theorem 3.27 below. We first discuss such a

characterization for a-harmonic functions. Let us consider first the scalar case and
assume that a = Id, so that we are discussing harmonic functions. The first question
we should address is (identifying Rd−1 with ∂Rd+) whether every polynomial in d−1
variables is the trace of a harmonic polynomial in Rd. The answer is affirmative:
for every polynomial p on Rd−1, we first extend it to Rd and then define a harmonic
polynomial q by

q(x) ∶= ⌈deg(p)/2⌉∑
n=0

(−1)n(2n)! x2n
d ∆np(x). (3.140)

It is straightforward to check that q is harmonic and that q = p on ∂Rd+. Observe
also that q has the same degree as p, and that if p is homogeneous then so is q.
The mapping p ↦ q given by (3.140) defines a linear injection from P(Rd−1) toA(Rd), but it is not a surjection: there are many nonzero harmonic polynomials
which have zero trace on ∂Rd+, for instance x↦ xdp(x), where p is any harmonic
polynomial of the first d − 1 variables.

Motivated by the previous discussion, we extend the result to a general hyper-
plane. Recall the definition of the half space, for each e ∈ ∂B1,

He ∶= {x ∈ Rd ∶ x ⋅ e > 0} and Er ∶=He ∩Br.

The purpose of Exercises 3.10 and 3.11 is to show that

Ak (He) ∶= {u ∈ A(Rd) ∶ lim sup
r→∞

r−(k+1) ∥u∥L2(Er) = 0, u ∣∂He = p ∈ Pk(Rd)}
is simply the set of restrictions of elements of Ak = Ak(Rd) to He. In particular,
traces of a-harmonic polynomials exhaust the set of polynomials on ∂He.
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Exercise 3.10. Verify the claim that

Ak (He) = {u ∣He ∶ u ∈ Ak} , (3.141)

using the following argument (which does not work in the case of elliptic systems):
given u ∈ Ak (Rd+) with u ∣Rd+ = p ∈ Pk, check that w ∈ Ak, where w is the odd
reflection of u−q and q ∈ Ak is defined in (3.140). Notice then that u = w+q in Rd+.

In the following lemma, we give a quantitative version of the Liouville principle
in Exercise 3.10, using an argument which extends to the case of elliptic systems.

Lemma 3.25. Fix k ∈ N, e ∈ ∂B1, γ ∈ (0,1], r > 0 and g ∈ Ck,γ(Br ∩ ∂He). Let u
be an a-harmonic function u ∈ H1(Er) satisfying u = g on Br ∩ ∂He. Then there
exist C(k, d,Λ) < ∞ and p ∈ Ak such that, for every s ∈ (0, r],

∥u − p∥L2(Es) ⩽ C (s
r
)k+1 ∥u∥L2(Er) +C (r

s
) d2 rk+γ [∇kg]

C0,γ(Br∩∂He)
. (3.142)

Proof. Letting q ∈ Ak be an a-harmonic polynomial agreeing with the k-th degree
Taylor series of g at origin, we see that, for s ∈ (0, r],

∥q − g∥L∞(Bs∩∂He) ⩽ Csk+γ [∇kg]
C0,γ(Bs∩∂He)

.

Thus, since u − q is still a-harmonic, we may without loss of generality assume
that q = 0. Extending g to Er satisfying

k∑
j=0

rj ∥∇jExt(g)∥
L∞(Er)

⩽ Crk+γ [∇kg]
C0,γ(Br∩∂He)

,

and taking vr ∈H1(Er) to be the a-harmonic function belonging to u− g +H1
0(Er),

we obtain by testing that

∥∇u −∇vr∥L2(Er) ⩽ C ∥∇Ext(g)∥L2(Er) ⩽ Crk−1+γ [∇kg]
C0,γ(Br∩∂He)

.

Poincaré’s inequality hence gives

∥u − vr∥L2(Er) ⩽ Crk+γ [∇kg]
C0,γ(Br∩∂He)

.

Since vr has zero boundary values on Er ∩ ∂He, Lemma 3.22 and the previous
display imply the result by the triangle inequality.

Exercise 3.11. Verify (3.141) using Lemma 3.25.
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Lemma 3.26. Fix α ∈ [0,1], K ⩾ 1 and X ⩾ 1. Let R ⩾ 2X and u ∈ L2(BR) have
the property that, for every r ∈ [X,R], there exists wr ∈H1(Br/2) which is a weak
solution of

{ −∇ ⋅ (a∇wr) = 0 in Er,
wr = g on Br ∩ ∂He,

satisfying

∥u −wr∥L2(Er/2) ⩽Kr−α (∥u − g(0)∥L2(Er) + r ∥∇e⊥g∥L∞(Er∩∂He)) . (3.143)

Then, for every k ∈ N, there exists θ(α, k, d,Λ) ∈ (0, 1
2) and C(α, k, d,Λ) < ∞ such

that, for every r ∈ [X,R],
inf
p∈Ak

∥u − p∥L2(Eθr) ⩽ 1

4
θk+1−α/2 inf

p∈Ak
∥u − p∥L2(Er) +Crk+γ [∇kg]

C0,γ(Br∩∂He)

+CKr−α (∥u − g(0)∥L2(Er) + r ∥∇e⊥g∥L∞(Er∩∂He)) . (3.144)

Proof. Fix r ∈ [X,R] and let wr be as in the statement satisfying (3.143). An
application of Lemma 3.25 yields

inf
p∈Ak

∥wr − p∥L2(Bt) ⩽ C ( t
r
)k+1

inf
p∈Ak

∥wr − p∥L2(Bt) +Crk+γ [∇kg]
C0,γ(Br∩∂He)

.

Choosing t = θr with θ = (C22+ d
2 )−2/α and using (3.143) together with the triangle

inequality then yields the result.

We define

Ak (He) ∶= {u ∈ A(He) ∶ lim sup
r→∞

r−(k+1) ∥u∥L2(Br∩He) = 0, u∣∂He = p ∈ Pk(Rd)} .
The main result of this section is the following characterization of Ak (He), which
is a version of Theorem 3.6 for half spaces.

Theorem 3.27 (Higher regularity theory in half spaces). Fix s ∈ (0, d) and e ∈ ∂B1.
There exist an exponent δ(s, d,Λ) ∈ (0, 1

2
] and a random variable Xs satisfying the

estimate Xs ⩽ Os (C(s, d,Λ)) (3.145)

such that the following statements hold, for every k ∈ N:
(i)k There exists C(k, d,Λ) < ∞ such that, for every u ∈ Ak(He), there exists

p ∈ Ak(He) such that, for every R ⩾ Xs,
∥u − p∥L2(BR∩He) ⩽ CR−δ ∥p∥L2(BR∩He) . (3.146)
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(ii)k For every p ∈ Ak(He), there exists u ∈ Ak(He) satisfying (3.40) for every
R ⩾ Xs.

(iii)k Fix γ ∈ (0,1]. There exists C(k, γ, d,Λ) < ∞ such that, for every R ⩾ Xs and
u ∈ A(BR ∩He) satisfying u = g ∈ Ck,γ(BR ∩ ∂He) on BR ∩ ∂He, there exists
φ ∈ Ak(He) such that, for every r ∈ [Xs,R], we have the estimate

∥u − φ∥L2(Br∩He) ⩽ C ( r
R

)k+1 ∥u∥L2(BR∩He)+CRk+γ [∇kg]
C0,γ(BR∩∂He)

(3.147)

In particular, P-almost surely, we have, for every k ∈ N,
dim(Ak(He)) = dim(Ak(He)) = (d + k − 1

k
) + (d + k − 2

k − 1
). (3.148)

Having Lemmas 3.23 and 3.26 in hand, the proof of Theorem 3.27 follows closely
that of Theorem 3.6, and we leave the details as an exercise.

Exercise 3.12. Prove Theorem 3.27 using Lemmas 3.23 and 3.26.

3.6 Optimality of the regularity theory

In this section we will demonstrate that the estimate (3.15) for the random minimal
scale Xs in Theorem 3.3 is optimal by giving an explicit example in d = 2 for which

P [Xs > t] ≳ exp (−ct2) . (3.149)

It is straightforward to generalize the example below to dimensions d > 2, to
obtain (3.149) with td in place of t2 on the right side, but for simplicity we consider
only the case d = 2 here.

We work with a Bernoulli random checkerboard example. Define two matrices

a1 ∶= 1

2
(5 3

3 5
) and a2 ∶= 1

2
( 5 −3−3 5

) .
These matrices are simultaneously diagonalizable, with unit eigenvectors

v1 ∶= 1√
2
(1

1
) and v2 ∶= 1√

2
(−1

1
) .

Note that a1v1 = 4v1, a1v2 = v2, a2v1 = v1, a2v2 = 4v2. Moreover, since a reflection
of the x2-axis flips v1 and v2, it also maps a1 to a2. We have chosen 1 and 4 for the
eigenvalues in order to make the computations as simple as possible (the square
roots of a1 and a2 and their inverses have a pleasant form, see below). In particular,
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we could take the eigenvalues to be 1 and 1 + δ for any δ > 0 and the details below
would be only slightly different.

We let P0 be the probability measure on {a1,a2} which assigns probability 1
2 to

each matrix. We take P̃ to be PZ2

0 , which is the law of the i.i.d. ensemble {a(z)}z∈Z2 .
We assign to each a(z) a coefficient field a(x) defined for all x ∈ R2 by extending a(⋅)
to be constant on the cubes of the form z + [0,1)2, and the pushforward of this
extension is denoted by P, which is the law of a(x).

Notice that P satisfies our assumptions with Λ = 4 but with range of dependence
equal to

√
2 instead of 1. (We could modify the example to have unit range of

dependence by performing a dilation, but this makes the notation messy so we will
not do so.)

We define the “bad matrix” by

ã = ⎧⎪⎪⎨⎪⎪⎩
a1 in {(x1, x2) ∈ R2 ∶ x1x2 > 0} ,
a2 in {(x1, x2) ∈ R2 ∶ x1x2 < 0} . (3.150)

In other words, ã, restricted to QL, is equal to a1 in the first and third quadrant
and equal to a2 in the second and fourth quadrants (see Figure 3.2). Observe that,
for each L ∈ N, the probability that the coefficient field sampled by P is equal to ã
in the cube QL ∶= [−L,L)2 is

P [a = ã in QL] = (1

2
)(2L)2 = exp (−(log 16)L2) . (3.151)

Let BL denote the “bad event” BL ∶= {a ∶ a = ã a.e. in QL}. We will check in the
following lemma that any minimal radius X for which the statement of Theorem 3.3
holds must be larger than L on the event BL holds, at least for large enough L.

Lemma 3.28. There exists a solution u ∈H1
loc(R2) ∩L∞loc(R2) of the equation

−∇ ⋅ (ã∇u) = 0 in R2

such that, with α ∶= π/2 arccos (−3
5
) ≈ 0.7094 . . . < 1, we have

u(λx) = λαu(x)
Proof. Let Q ⊆ R2 be the first quadrant, that is,

Q ∶= {(x1, x2) ∈ R2 ∶ x, y > 0} .
By symmetry, it suffices to find a solution u ∈H1

loc(Q) ∩L∞loc(Q) satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ ⋅ (a1∇u) = 0 in Q,
u = 0 on ∂Q∩ {x2 = 0},
e1 ⋅ a1∇u = 0 on ∂Q∩ {x1 = 0}, (3.152)
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Figure 3.2 The coefficient field ã defined in (3.150). The matrix at each grid point is
represented by two lines which indicate the direction of the eigenvectors of the matrix
with lengths proportional to the corresponding eigenvalue. Like the coefficient field in
Figure 3.1, the eigenvector with the largest eigenvalue generally points in the direction of
the origin.

and which is α-homogeneous. We then obtain the desired solution by extending u
by reflecting u across the Neumann boundary {x1 = 0} to get a solution in {x2 > 0},
and then performing a negative reflection across {x2 = 0} to obtain a solution in R2.

In order to solve (3.152), we can perform an affine change of variables so that
the equation becomes the Laplace equation. The change of variables will map Q to
a sector S and we will find a radial function in S which solves the equation. Since
the angle of S will turn out to be larger than π

2 , this will allow us to select α < 1.

The change of variables is x ↦ a
1/2
1 x. Given a function u ∈ H1

loc(Q) ∩ L∞loc(Q),
we define

v(x) ∶= u (a1/2
1 x) , x ∈ S ∶= a

−1/2
1 Q.

For the sake of computations, we note that

a
1/2
1 ∶= 1

2
(3 1

1 3
) and a

−1/2
1 ∶= 1

4
( 3 −1−1 3

) .
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It is easy to check that u solves (3.152) if and only if v solves the problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∆v = 0 in S,
v = 0 on ∂S ∩ a

−1/2
1 {x2 = 0},

n ⋅ ∇u = 0 on ∂S ∩ a
−1/2
1 {x1 = 0}.

(3.153)

In other words, v should be a harmonic function in the sector S satisfying a zero
Dirichlet condition on one boundary line and a zero Neumann condition on the
other (here the vector n = a

1/2
1 e1 is the outer-pointing unit normal to ∂S on the

second boundary line ∂S ∩ a
−1/2
1 {x1 = 0}). We denote the the angle of opening

of S (the angle between the two boundary lines) by θ∗, and notice by an easy
computation that

θ∗ = arccos(−3

5
) .

Notice that θ∗ ≈ 2.2143..., in particular, π2 < θ∗ < π.
To solve (3.153), by symmetry we can perform a rotation and reflection so that

the boundary line with the Dirichlet condition lies on the positive x1-axis, and the
second boundary line for the Neumann condition lies in the second quadrant. We
may then search for a solution taking the following the form, in polar coordinates:

v(r, θ) = rα sin( π

2θ∗
θ)

Since this function clearly satisfies the appropriate boundary conditions, we can just
ask for which values of α the function v is harmonic. By an easy computation we
see that we should take α = π/2θ∗ < 1. This completes the proof of the lemma.

Let us now suppose that we are given a large constant C > 1 and minimal
scale X which satisfies the result of Theorem 3.3 with C = C. This means that, for
each L ⩾ 1

2X and every solution w ∈H1(BL) of

−∇ ⋅ (a∇w) = 0 in BL,

we have, for every r ∈ [X , 1
2L],
∥∇w∥L2(Br) ⩽ C ∥∇w∥L2(BL) .

However, by homogeneity, the function u in the statement of the previous lemma
satisfies ∥∇u∥L2(Br) = L1−αrα−1 ∥∇u∥L2(BL) .

Therefore if a ∈ BL (i.e. a = ã in QL) and L > 1
2X , then taking r = X yields

X ⩾ C−
1

1−αL.
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In view of (3.151), we deduce that

P [X ⩾ (2 ∨ C−
1

1−α)L] ⩾ exp (−(log 16)L2) .
Therefore we conclude that, no matter how large the constant C is chosen, any
minimal scale X satisfying the statement of Theorem 3.3 will not be bounded byOs(C) for any s > d and, moreover, if we take c small enough then

E [exp (cX d)] = ∞.
Notes and references

The regularity theory for homogenization was introduced in the celebrated work of
Avellaneda and Lin [16, 17, 18] in the 1980s for periodic, smooth coefficients. They
proved C0,1 estimates, higher Ck,1-type estimates and Liouville theorems as well
as Calderón-Zygmund estimates. Their original arguments are similar in spirit to
the ones here, based on a-harmonic approximation, although their softer approach
using a compactness blow-down argument and qualitative homogenization does
not extend beyond the non-compact (i.e. non-periodic) setting.

The arguments in Section 3.2 are taken from [15], where the C0,1-type estimates
was first proved in the stochastic setting and the idea of using a quantitative excess
decay or C1,γ-type iteration was introduced. It was that paper which introduced the
concept of a random scale above which stronger regularity holds and gave a recipe
for obtaining sharp stochastic integrability of this random scale. Following [15], the
regularity theory was expanded and completed rather rapidly in a series of papers
by several authors [14, 63, 13, 52, 11, 12], where the higher regularity theory and
related Liouville theorems were established. Prior to [15], some weaker C0,1−ε-type
regularity results and qualitative Liouville theorems were obtained in [21, 84] by
rather different methods.

The arguments in Section 3.3 are taken mostly from [12, Section 3], where the
full statement of Theorem 3.6 first appeared. Example 3.1 is due to Meyers [89,
Section 5]. Boundary regularity results appeared previously in [14, 53].



Chapter 4

Quantitative description of first-order
correctors

The regularity theory, namely Theorem 3.6(iii)1, tells us that an arbitrary solution
of our equation can be approximated on scales smaller than the macroscopic scale,
up to additive constants and at leading order, by an element of the d-dimensional
space A1/R. This result gives us a very fine quantitative understanding of the
microscopic- and mesoscopic-scale behavior of solutions and can greatly reduce the
complexity of many natural homogenization problems—provided that we have a
good quantitative understanding of A1 itself.

The elements of A1/R are, modulo constants, the set of solutions in the whole
space Rd which exhibit linear growth at infinity. We know from Theorem 3.6
that each of these solutions is close to some affine function in the sense of (3.40):
roughly, it diverges from an affine function like O(∣x∣1−δ). Indeed, every u ∈ A1 can
be written for some p ∈ A1 as

u(x) = p(x) + φ∇p(x),
where {φξ ∶ ξ ∈ Rd} is the set of first-order correctors (defined in Section 3.4 above).

The goal in this chapter is to prove estimates on quantities such as the L2-
oscillation of the first-order correctors and estimates on the gradients, fluxes and
energy densities in negative Sobolev spaces. Unlike the theory developed in previous
chapters (see for instance Lemma 3.13 and Proposition 3.15), our intention here is
to prove optimal quantitative bounds on the first-order correctors, that is, we wish
to discover the actual scaling of the errors.

We next present one of the main quantitative results for the first-order correctors,
stated in terms of convolutions against the heat kernel. Most of this chapter is
focused on its proof, which is finally completed in Section 4.6 and where we also
present the version of the estimates in terms of W −α,p norms. Here and throughout
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the rest of this chapter, we use the notation, for a given Ψ ∈ L1(Rd),
∫

Ψ
f = ∫

Ψ
f(x)dx ∶= ∫

Rd
Ψ(x)f(x)dx. (4.1)

Recall that the standard heat kernel is denoted by

Φ(t, x) ∶= (4πt)− d2 exp(−∣x∣2
4t

) .
We also define, for each z ∈ Rd and r > 0,

Φz,r(x) ∶= Φ(r2, x − z) and Φr ∶= Φ0,r.

Theorem 4.1. Fix s < 2. There exists C(s, d,Λ) < ∞ such that, for every r ⩾ 1,
x ∈ Rd and e ∈ B1, ∣∫

Φx,r
∇φe∣ ⩽ Os (Cr− d2 ) , (4.2)

∣∫
Φx,r

a(e +∇φe) − ae∣ ⩽ Os (Cr− d2 ) , (4.3)

and ∣∫
Φx,r

1

2
(e +∇φe) ⋅ a (e +∇φe) − 1

2
e ⋅ ae∣ ⩽ Os (Cr− d2 ) . (4.4)

Moreover, in dimensions d > 2, the corrector φe exists as a Zd-stationary function
which is identified uniquely by the choice E [⨏◻0

φe] = 0 and there exist δ(d,Λ) > 0
and C(d,Λ) < ∞ such that

∥φe∥L2(◻0) ⩽ O2+δ(C). (4.5)

In d = 2, there exists C(s, d,Λ) < ∞ such that, for every r ∈ [2,∞), R ∈ [r,∞) and
x, y ∈ Rd, we have

∥φe − (φe ∗Φr) (0)∥L2(Br) ⩽ Os (C log
1
2 r) (4.6)

and ∣(φe ∗Φr) (x) − (φe ∗ΦR) (y)∣ ⩽ Os (C log
1
2 (2 + R + ∣x − y∣

r
)) . (4.7)

If f(x) is a stationary random field with a unit range of dependence and∣f ∣ ⩽ 1 almost surely, then ∫Φr
f(x)dx should have roughly the same scaling as the

average of Crd many independent random variables—the fluctuations of which
are of order (Crd)− 1

2 = Cr− d2 with Gaussian tails. That is, the average of Crd
many bounded and independent random variables has fluctuations bounded byO2 (Cr− d2 ). Therefore, the conclusion of Theorem 4.1 can be interpreted as the
statement that the spatial averages of the gradient, flux and energy density of the
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correctors behave in the same way as a stationary random field with finite range
of dependence, or a sum of independent random variables. In particular, these
estimates are optimal, both in the scaling ≃ r− d2 of the error as well as in stochastic
integrability ≲ O2− (strictly speaking, they are only almost optimal in stochastic
integrability, since it is probably possible to prove the estimates with O2 replacingOs for s < 2). The estimates (4.5), (4.6) and (4.7) on the sublinear growth of the
correctors are also optimal, in every dimensions. In particular, the logarithmic
divergence in d = 2 is intrinsic to the problem and not an artifact of our proof (see
Theorem 5.24 and Exercise 5.4). Note that the choice of the heat kernel in (4.6)
and (4.7) is not important and can be replaced by any other H2 function: see
Remark 4.28.

The proof of Theorem 4.1 is accomplish by a bootstrap argument, using the
suboptimal bounds proved in previous chapters as a starting point. We will show,
as we pass to larger and larger length scales, that we can improve the exponent from
the tiny α > 0 or δ > 0 found in previous chapters to the optimal exponent. This
bootstrap argument will use more sophisticated versions of ideas already present in
Chapter 2. We will identify a variant of the energy quantity J , which we denote
by J1, and show that it is becoming more additive on larger and larger scales.
The regularity theory will allow us to localize this quantity. The combination of
additivity and locality will then allow us to apply the independence assumption
in a very simple and straightforward way to control the fluctuations of J1 by
essentially reducing it to a sum of independent random variables (or more precisely
a convolution of a random field with finite range of dependence).

This bootstrap argument, which is the focus of most of the chapter, is outlined
in Section 4.2. We begin in the next section by introducing the energy quantity J1.

4.1 The energy quantity J1 and its basic properties

In order to study the first-order correctors and prove Theorem 4.1, we introduce a
variant of the quantity J studied in Chapter 2 which is adapted to A1 and which we
denote by J1. There is another important difference between J1 and the quantity J
considered in previous chapters: since our goal is to prove very precise estimates,
the analysis requires us to relax the concept of domain on which our quantity is
defined to allow for smoother objects. The integral ⨏U f(x)dx can of course be
written as ∫Rd ∣U ∣−11U(x)f(x)dx; we will replace ∣U ∣−11U in our definition of J
by allowing for an arbitrary nonnegative L1 function Ψ with unit mass. Usually
we will take Ψ = Φr. Recall that we use the notation in (4.1) to denote integrals
against Ψ. We also write ∥w∥Lp(Ψ) ∶= (∫Ψ ∣w∣p) 1

p for p ∈ [1,∞), and
Ak(Ψ) ∶= {u ∈ Ak ∶ ∥∇u∥L2(Ψ) ⩽ 1} .
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We define, for every nonnegative Ψ ∈ L1(Rd) with ∫Rd Ψ = 1 and p, q ∈ Rd,

J1(Ψ, p, q) ∶= sup
w∈A1

∫
Ψ
(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) . (4.8)

As we will see, the quantity J1(Ψ, p, q) shares many properties possessed by its
predecessor, the quantity J(U, p, q) analyzed in Chapter 2. One notable exception is
that there is no version of the splitting formula (2.6) for J1. Indeed, the connection
between (2.6) and (2.9) relies on an integration by parts to determine the spatial
average of the gradient of v(⋅, U, p,0), and this computation is destroyed by the
presence of the weight Ψ. Thus there is no version of Lemma 2.7 and no way to
control the fluctuations of J1 from its behavior for (p, q) with q = ap. This makes
our analysis more complicated, compared to Chapter 2, by not allowing us to
make much use of subadditivity, forcing us to considerably alter our strategy. The
advantage we have here, compared with Chapter 2, is that the regularity theory is
at our disposal as well as the suboptimal bounds summarized in Proposition 4.3
below, which are used as the base case of our bootstrap argument. Both of these
crucial ingredients are actually consequences of the analysis in Chapter 2.

Related to the loss of the splitting formula is the (relatively minor, technical)
problem that J1(Ψ, p, q) is not necessarily uniformly convex in p and/or q. This
leads us to introduce the notion of a nondegenerate mask for J1.

Definition 4.2 (Nondegeneracy at Ψ). We say that J1 is nondegenerate at Ψ if,
for every p, q ∈ Rd,

J(Ψ, p,0) ⩾ 1

4
p ⋅ ap and J(Ψ,0, q) ⩾ 1

4
q ⋅ a−1q. (4.9)

Since J1 is quadratic, nondegeneracy at Ψ implies that it is uniformly convex
in p and q separately, as we will see in Lemma 4.4 below.

The maximizer of J1(Ψ, p, q) is denoted by

v(⋅,Ψ, p, q) ∶= the element of A1 achieving the supremum in the definition of J1.

Note that such a maximizer exists since ∇A1 is a d–dimensional vector subspace
of L2(Rd,Ψ(x)dx) by Theorem 3.6. Furthermore, it is unique—up to additive
constants—by the strict concavity of the integral functional in the definition of J1.

We next use Proposition 3.15 to get quantitative convergence of J1 on scales
larger than a random minimal scale.

Proposition 4.3. Fix s ∈ (0, d). Then there exist an exponent β(s, d,Λ) > 0, a
random variable Xs and a constant C(s, d,Λ) < ∞ such that

Xs = Os(C)
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and, for every r ⩾ Xs and p, q ∈ Rd,

∣J1(Φr, p, q) − (1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q)∣ ⩽ Cr−β (∣p∣2 + ∣q∣2) . (4.10)

In particular, J1 is nondegenerate at Φr for every r ⩾ Xs.
Proof. The idea is to evaluate J1 in terms of the integral of the energy densities,
fluxes and gradients of the correctors {φξ}ξ∈Rd which reduces, up to a suitable error,
to a deterministic computation by Proposition 3.15.

We take Xs to be as in Proposition 3.15 and fix r ⩾ Xs and p, q ∈ Rd. Then
Proposition 3.15 yields, for every ξ ∈ Rd,

∣ ∫
Φr

(−1

2
(ξ +∇φξ) ⋅ a(ξ +∇φξ) − p ⋅ a(ξ +∇φξ) + q ⋅ (ξ +∇φξ))

− (−1

2
ξ ⋅ aξ − p ⋅ aξ + q ⋅ ξ) ∣ ⩽ C (∣ξ∣2 + ∣ξ∣(∣p∣ + ∣q∣)) r−β. (4.11)

By Lemma 3.12, we may write J1(Φr, p, q) as

J1(Φr, p, q)
= sup
ξ∈Rd

∫
Φr

(−1

2
(ξ +∇φξ) ⋅ a(ξ +∇φξ) − p ⋅ a(ξ +∇φξ) + q ⋅ (ξ +∇φξ)) . (4.12)

We deduce that

sup
ξ∈Rd

(−1

2
ξ ⋅ aξ − p ⋅ aξ + q ⋅ ξ −Cr−β (∣ξ∣2 + ∣ξ∣(∣p∣ + ∣q∣))) ⩽ J1(Φr, p, q).

Using the identity

sup
ξ∈Rd

(−1

2
ξ ⋅ aξ − p ⋅ aξ + q ⋅ ξ) = 1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q

and the fact that the maximizing ξ is ξ = −p + a−1q which satisfies ∣ξ∣ ⩽ C(∣p∣ + ∣q∣),
we obtain that

1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q ⩽ J1(Φr, p, q) +Cr−β (∣p∣2 + ∣q∣2) .

This is one half of (4.10). To ensure that J1 is nondegenerate at Φr for r ⩾ Xs, we
note that

1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q = 1

2
(p − a−1q) ⋅ a (p − a−1q)

and replace Xs with Xs ∨C for a suitable constant C so that Cr−β ⩽ CX −β
s ⩽ 1

4 .
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To get the other half of (4.10), we argue similarly, first using the nondegeneracy
of J1 at Φr to get that the parameter ξ achieving the supremum in (4.12) is bounded
by C(∣p∣ + ∣q∣). Then we apply the estimate (4.11) to obtain

J1(Φr, p, q) ⩽ 1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q +Cr−β (∣p∣2 + ∣q∣2) .

This completes the proof.

We next summarize some basic properties of J1 in the following lemma, which
can be compared with Lemma 2.2. In what follows, we use Dp and Dq, respectively,
to denote the derivatives of J1 in the variables p and q (the symbol ∇ is reserved
for spatial variables).

Lemma 4.4 (Basic properties of J1). The quantity J1(Ψ, p, q) and its maximizer
v(⋅,Ψ, p, q) satisfy the following properties:

• First variation for J1. For p, q ∈ Rd, the function v(⋅,Ψ, p, q) is characterized
as the unique element of A1 which satisfies

∫
Ψ
∇w ⋅ a∇v(⋅,Ψ, p, q) = ∫

Ψ
(−p ⋅ a∇w + q ⋅ ∇w) , ∀w ∈ A1. (4.13)

In particular,

J1(Ψ, p, q) = ∫
Ψ

1

2
∇v(⋅,Ψ, p, q) ⋅ a∇v(⋅,Ψ, p, q). (4.14)

• Quadraticity, linearity and boundedness. The mapping (p, q) ↦ ∇v(⋅,Ψ, p, q)
is linear, (p, q) ↦ J1(Ψ, p, q) is quadratic, and there exists C(Λ) < ∞ such
that ∥∇v(⋅,Ψ, p, q)∥2

L2(Ψ) ⩽ J1(Ψ, p, q) ⩽ C (∣p∣2 + ∣q∣2) . (4.15)

• Polarization. For each p, q, p′, q′ ∈ Rd,

J1(Ψ, p + p′, q + q′)
= J1(Ψ, p, q) + J1(Ψ, p′, q′) + ∫

Ψ
(−ap′ + q′) ⋅ ∇v(⋅,Ψ, p, q). (4.16)

• Uniformly convexity for nondegenerate Ψ. Suppose that J1 is nondegenerate
at Ψ. Then there exists C(Λ) < ∞ such that, for every p1, p2, q ∈ Rd,

1

C
∣p1 − p2∣2 ⩽ 1

2
J1 (Ψ, p1, q) + 1

2
J1 (Ψ, p2, q) − J1 (Ψ,

1

2
p1 + 1

2
p2, q) (4.17)

and, for every q1, q2, p ∈ Rd,

1

C
∣q1 − q2∣2 ⩽ 1

2
J1 (Ψ, p, q1) + 1

2
J1 (Ψ, p, q2) − J1 (Ψ, p,

1

2
q1 + 1

2
q2) . (4.18)
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• Second variation and quadratic response. For every p, q ∈ Rd and w ∈ A1,

∫
Ψ

1

2
(∇w −∇v(⋅,Ψ, p, q)) ⋅ a (∇w −∇v(⋅,Ψ, p, q))

= J1(Ψ, p, q) − ∫
Ψ
(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) . (4.19)

• Formulas for derivatives of J1. For every p, q ∈ Rd,

DpJ1(Ψ, p, q) = −∫
Ψ
a∇v(⋅,Ψ, p, q) (4.20)

and
DqJ1(Ψ, p, q) = ∫

Ψ
∇v(⋅,Ψ, p, q). (4.21)

Proof. Let us begin with the first and second variations for J1. Let p, q ∈ Rd and
u, v ∈ A1. Test J1(Ψ, p, q) with w = v(⋅,Ψ, p, q) + tu, t ∈ R ∖ {0}, to obtain

0 ⩽ J1(Ψ, p, q) − ∫
Ψ
(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w)

= −t∫
Ψ
(−a∇v(⋅,Ψ, p, q) − ap + q) ⋅ ∇u + t2

2 ∫Ψ
∇u ⋅ a∇u.

Dividing by t and then sending t → 0 gives (4.13). The second variation for-
mula (4.19) is a consequence of (4.13) and the previous display with the choice
t = 1. The first variation formula immediately implies

(p, q) ↦ ∇v(⋅,Ψ, p, q) is a linear mapping from Rd ×Rd → ∇A1,

as well as the formula (4.14). By Young’s inequality, we deduce

J1(Ψ, p, q) ⩽ C ∥Ψ∥L1(Rd) (∣p∣ + ∣q∣)2 = C (∣p∣ + ∣q∣)2 (4.22)

and hence (4.15). By (4.13) and (4.14), we also obtain

J1(Ψ, p + p′, q + q′) (4.23)

= ∫
Ψ
(1

2
∇v(⋅,Ψ, p + p′, q + q′) ⋅ a∇v(⋅,Ψ, p + p′, q + q′))

= ∫
Ψ
(1

2
∇v(⋅,Ψ, p, q) ⋅ a∇v(⋅,Ψ, p, q) + 1

2
∇v(⋅,Ψ, p′, q′) ⋅ a∇v(⋅,Ψ, p′, q′))

+ ∫
Ψ
∇v(⋅,Ψ, p, q) ⋅ a∇v(⋅,Ψ, p′, q′)

= J1(Ψ, p, q) + J1(Ψ, p′, q′) + ∫
Ψ
(−ap′ + q′) ⋅ ∇v(⋅,Ψ, p, q).
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This is (4.16). Together with (4.22), this yields both (4.20) and (4.21). Indeed,
for h ∈ Rd and t ∈ R ∖ {0}, the formulas for gradients follow by taking p′ = th and
q′ = 0 or q = th and p′ = 0 in the above formula, and then dividing by t and finally
sending t→ 0, noticing that ∣J(Ψ, p′, q′)∣ ⩽ C ∣h∣2t2 in both cases by (4.22).

We are left to prove both (4.17) and (4.18). But they are now simple con-
sequences of (4.23) and the bounds (4.9) and (4.22). Indeed, taking p = p1 and
p′ = −1

2(p1 − p2), and p = p2 and p′ = 1
2(p1 − p2), together with choices q′ = 0 and q,

we easily deduce (4.17) using linearity, (4.23), (4.9) and (4.22). The estimate (4.18)
is showed analogously. The proof is complete.

Definition 4.5 (Minimal scale Ys). For the rest of this chapter, we let Ys denote,
for each s ∈ (0, d), the maximum of the random variables in Theorem 3.6 and
Propositions 3.15 and 4.3. In particular, we have that

Ys = Os (C(s, d,Λ))
and that r ⩾ Ys implies each of the conclusions in these results. We also let Ys(x)
denote, for each x ∈ Rd, the random variable a↦ Ys(Txa) where Tx is the translation
operator on Ω defined in (0.4). It follows that Ys(x) satisfies the same estimate
as Ys and that similar statements hold for r ⩾ Ys(x), appropriately translated by x.

Since it will be used many times below, we record here the observation that,
for every x ∈ Rd, s ∈ (0, d) and t > 0, we have the estimate

1{Ys(x)⩾r} ⩽ (Ys
r

)t ⩽ Os/t (Cr−t) . (4.24)

We also require a useful consequence of (3.86) and (3.99), which is that

r ⩾ Yt(x) Ô⇒ {φξ ∶ ∣ξ∣ ⩽ c} ⊆ ∇A1(Φx,r) ⊆ {φξ ∶ ∣ξ∣ ⩽ C} , (4.25)

where here and throughout the rest of the section we denote

φe ∶= `e + φe. (4.26)

Also, by Proposition 4.3 and (4.14),

r ⩾ Yt(x) Ô⇒ c∣q∣ ⩽ ∥∇v(⋅,Φx,r,0, q)∥L2(Φx,r) ⩽ C ∣q∣. (4.27)

It will also be useful to have a deterministic scale above which the quadratic
function (p, q) ↦ E [J(Ψr, p, q)] behaves nicely. By Proposition 4.3, there exists
r0(d,Λ) ∈ [1,∞) such that, for every x ∈ Rd,

r ⩾ r0 Ô⇒ E [J1(Φx,r, p,0)] ⩾ 1

4
p ⋅ ap and E [J1(Φx,r,0, q)] ⩾ 1

4
q ⋅ a−1q. (4.28)
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4.2 The additive structure of J1

In this section, we state the main quantitative estimates on J1 and give an overview
of the structure of the proofs.

Theorem 4.6 (The additive structure of J1). For every s < 2, there exists a
constant C(s, d,Λ) < ∞ such that the following statements hold.

(i) Additivity. For every R > r ⩾ 1, z ∈ Rd and p, q ∈ B1,RRRRRRRRRRRJ1(Φz,R, p, q) − ∫
Φ
z,
√

R2−r2

J1(Φx,r, p, q)dxRRRRRRRRRRR ⩽ Os/2 (Cr
−d) .

(ii) Control of the expectation. For every r ⩾ 1, z ∈ Rd and p, q ∈ B1,

∣E [J1(Φz,r, p, q)] − (1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q)∣ ⩽ Cr−d.

(iii) CLT scaling of the fluctuations. For every r ⩾ 1 and p, q ∈ B1,

∣J1(Φz,r, p, q) −E [J1(Φz,r, p, q)] ∣ ⩽ Os (Cr− d2 ) .
(iv) Localization. For every δ, ε > 0, there exist C(δ, ε, s, d,Λ) < ∞ and, for every

r ⩾ 1, z ∈ Rd and p, q ∈ B1, an F(Br1+δ(z))-measurable random variable
J

(δ)
1 (z, r, p, q) such that, for γ ∶= d

s ∧ (d
2(1 + δ) + δ) − ε,

∣J1(Φz,r, p, q) − J(δ)
1 (z, r, p, q)∣ ⩽ Os (Cr−γ) .

We will see in Section 4.6 that Theorem 4.1 is a corollary of Theorem 4.6.
Therefore most of this chapter is focused on the proof of the latter, which is via a
bootstrap on the exponent α for which the following statements hold.

Definition 4.7 (Add(s,α)). For each s,α ∈ (0,∞), we let Add(s,α) denote the
statement that there exists a constant C(s,α, d,Λ) < ∞ such that, for every z ∈ Rd,
1 ⩽ r ⩽ R and p, q ∈ B1,

J1(Φz,R, p, q) = ∫
Φ
z,
√

R2−r2

J1(Φx,r, p, q)dx +Os (Cr−α) .
Definition 4.8 (Fluc(s,α)). For each s,α ∈ (0,∞), we let Fluc(s,α) denote the
statement that there exists a constant C(s,α, d,Λ) < ∞ such that, for every z ∈ Rd,
r ⩾ 1 and p, q ∈ B1,

J1(Φz,r, p, q) = E [J1(Φz,r, p, q)] + Os (Cr−α) .
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Definition 4.9 (Loc(s, δ, α)). For each s, δ, α ∈ (0,∞), we let Loc(s, δ, α) denote
the statement that there exists a constant C(s,α, δ, d,Λ) < ∞ and, for every z ∈ Rd,
r ⩾ 1 and p, q ∈ B1, an F(Br1+δ(z))-measurable random variable J(δ)

1 (z, r, p, q) such
that

J1(Φz,r, p, q) = J(δ)
1 (z, r, p, q) + Os (Cr−α) .

The bootstrap argument is split into three main subclaims: (i) an improvement
of additivity, (ii) localization estimates and (iii) fluctuation estimates. These are
proved in the following three sections, and their arguments are mostly independent
of each other. In the rest of this section, we give their precise statements and show
that Theorem 4.6 is a consequence of them.

Proposition 4.10 (Improvement of additivity). For every ε > 0, there exists an
exponent η(ε, s, d,Λ) > 0 such that, for every s ∈ (0,2] and α ∈ (0, (ds − ε) ∧ d

2
],

Fluc(s,α) Ô⇒ Add (s,α + η) . (4.29)

Moreover, for every s ∈ (0,2] and α ∈ (0, ds) ∩ (0, d2],
Fluc(s,α) Ô⇒ Add ( s

2 ,2α) . (4.30)

Proposition 4.11 (Localization estimates). For every s ∈ (0,∞), α ∈ (0, ds) and
δ, η > 0,

Fluc(s,α) Ô⇒ Loc (s, δ, (α(1 + δ) + δ) ∧ d
s − η) .

Proposition 4.12 (Fluctuation estimates). For every s ∈ (1,2], β ∈ (0, d2] and
α, δ > 0 satisfying α > β(1 + δ), we have

Add(s,α) and Loc(s, δ, α) Ô⇒ Fluc(s, β).
We conclude this section by demonstrating that Theorem 4.6 follows from the

previous three propositions.

Proof of Theorem 4.6. Step 1. We claim that, for each ε > 0 and α ∈ (0, d2 − ε],
there exists τ(ε, d,Λ) > 0 such that

Fluc(2, α) Ô⇒ Fluc(2, α + τ).
Let η = η(ε, d,Λ) > 0 be as in Proposition 4.10 with s = 2. By shrinking η, we may
also assume that η ⩽ 1

2ε. Next, select δ(ε, d,Λ) > 0 by δ ∶= η/(1 + d
2) and observe

that
α(1 + δ) + δ ⩽ α + η ⩽ d

2
.

According to Propositions 4.10 and 4.11, we have that

Fluc(2, α) Ô⇒ Add (2, α(1 + δ) + 1
2δ) and Loc (2, α(1 + δ) + 1

2δ) .
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Taking τ(ε, d,Λ) > 0 to be defined by τ ∶= δ/(2+ 2δ) and applying Proposition 4.12,
we see that

Add (2, α(1 + δ) + 1
2δ) and Loc (2, α(1 + δ) + 1

2δ) Ô⇒ Fluc(2, α + τ).
This completes the proof of the claim.

Step 2. We show that

∀α < d
2 , Fluc(2, α) holds. (4.31)

According to Proposition 4.3 and Lemma A.3, there exists β(d,Λ) > 0 such that
Fluc(t, β/t) holds for every t ⩾ 1. Thus the result of Step 1 yields (4.31).

Step 3. We show that

∀s ∈ (1,2), Fluc (s, d2) holds. (4.32)

Fix s ∈ (1,2) and let η(s, d,Λ) > 0 be as in Proposition 4.10 for ε ∶= d
s − d

2 . Next,
select δ(s, d,Λ) > 0 by δ ∶= η/(d + 1) so that d

2(1 + δ) + 1
2δ = d

2 + 1
2η. Using (4.31)

with α sufficiently close to d
2 , we may apply Propositions 4.10 and 4.11 to obtain

Add (s, d2(1 + δ) + 1
2δ) and Loc (s, δ, d2(1 + δ) + 1

2δ) hold.

Now we apply Proposition 4.12 once more to obtain that Fluc(s, d2) holds.
Step 4. The conclusion. Now that we have proved Fluc(s, d2) for every s < 2,

we may apply once more Propositions 4.10 and 4.11 to obtain that Add ( s
2 , d) and

Loc (s, δ, d2(1 + δ) + δ − η) hold for every s < 2 and δ, η > 0. This completes the
proofs of statements (i), (iii) and (iv) of the theorem.

We have left to prove statement (ii). We postpone this to the next section, since
we obtain the result as a byproduct of the analysis in the proof of Proposition 4.10,
see Remark 4.18.

4.3 Improvement of additivity

The purpose of this section is to prove Proposition 4.10. The argument here can be
compared with that of Chapter 2, where we compare two solutions (maximizers of J)
by first estimating the spatial average of their gradients. However, the mechanism
by which we gain control over these spatial averages is somewhat different here.

We begin by using the Fluc(s,α) assumption together with the identities (4.20)
and (4.21) to obtain control of the spatial averages of the gradients and fluxes of
v(⋅,Φr, p, q). Since the span of ∇v(⋅,Φr,0, q) over q ∈ {e1, . . . , ed} is ∇A1, at least
for r ⩾ Ys, it is reasonable to expect that we can gain control of the spatial averages
of gradients and fluxes of arbitrary elements of A1. To put it another way, we are
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able to show that, for an arbitrary u ∈ A1, the convolution u ∗Φr is very close to
an a-harmonic function. Since a-harmonic functions are very smooth, we can use
elliptic regularity to rule out the presence of “wiggles” in u ∗Φr. This allows us to
match ∇v(⋅,Φr, p, q) to the appropriate corrector field ξ +∇φξ, with ξ deterministic
and independent of the scale r, up to an error of Os(Cr−α). As a consequence, we
deduce that ∇v(⋅,Φx,r, p, q) is close to ∇v(⋅,ΦR, p, q) in L2(Φx,r) for R > r, with an
error of Os(Cr−α). By quadratic response, we then deduce that J1(ΦR, p, q) and∫Φ√

R2−r2
J1(Φx,r, p, q)dx are within Os(Cr−α)2 = Os/2(Cr−2α) of each other, which

is precisely Add(s/2,2α).
Throughout this section, we fix parameters

s ∈ (0,2] and α ∈ (0, ds) ∩ (0, d2] (4.33)

and suppose that
Fluc(s,α) holds. (4.34)

We first use the Fluc(s,α) assumption to show a correspondence between the
spatial averages of gradients and fluxes of elements of A1.

Lemma 4.13. There exists a constant C(s,α, d,Λ) < ∞ such that, for every z ∈ Rd,

sup
u∈A1(Φz,r)

∣∫
Φz,r

(a(x) − a)∇u(x)dx∣ = Os (Cr−α) . (4.35)

Proof. Step 1. We first show that, for every x ∈ Rd and r ⩾ r0, we can implicitly
define a matrix ax,r to satisfy, for every q ∈ Rd,

E [∫
Φx,r

(a − ax,r)∇v(⋅,Φx,r,0, q)] = 0. (4.36)

By (4.28) and the fact that (p, q) ↦ E [J1(Φx,r, p, q)] is quadratic, we have that,
for every r ⩾ r0,

the linear map q ↦ E [∫
Φx,r

∇v(⋅,Φx,r,0, q)] is invertible.

Denote the matrix representing the inverse of this map by ãx,r. Also let bx,r
denote the matrix representing the linear map q ↦ E [−DpJ(Φx,r,0, q)]. We may
now define the matrix ax,r ∶= bx,rãx,r and observe, by (4.20), that (4.36) holds.
Moreover, we have ∣a − ax,r∣ ⩽ Cr−ε. (4.37)

Step 2. We use the Fluc(s,α) assumption and polarization to show that, for
every x ∈ Rd, q ∈ B1 and r ⩾ r0,

∣∫
Φx,r

(a − ax,r)∇v(⋅,Φx,r,0, q)∣ = Os (Cr−α) . (4.38)
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To verify (4.38), it suffices by (4.36) to show that

∫
Φx,r

∇v(⋅,Φx,r,0, q) = E [∫
Φx,r

∇v(⋅,Φx,r,0, q)] + Os (Cr−α) (4.39)

and

∫
Φx,r

a∇v(⋅,Φx,r,0, q) = E [∫
Φx,r

a∇v(⋅,Φx,r,0, q)] + Os (Cr−α) . (4.40)

We check only (4.40) since the proof of (4.39) is similar. We use (4.16) and the
Fluc(s,α) assumption to find that, for every p′ ∈ B1,

p′ ⋅ ∫
Φx,r

a∇v(⋅,Φx,r,0, q)
= −J(Φx,r, p

′, q) + J(Φx,r,0, q) + J(Φx,r, p
′,0)= E [−J(Φx,r, p

′, q) + J(Φx,r,0, q) + J(Φx,r, p
′,0)] + Os (Cr−α)

= E [p′ ⋅ ∫
Φx,r

a∇v(⋅,Φx,r,0, q)] + Os (Cr−α) .
Thus

∣∫
Φx,r

a∇v(⋅,Φx,r,0, q) −E [∫
Φx,r

a∇v(⋅,Φx,r,0, q)]∣
= sup
p′∈B1

(p′ ⋅ ∫
Φx,r

a∇v(⋅,Φx,r,0, q) − p′ ⋅E [∫
Φx,r

a∇v(⋅,Φx,r,0, q)])
⩽ d∑
i=1

∣ei ⋅ (∫
Φx,r

a∇v(⋅,Φx,r,0, q) −E [∫
Φx,r

a∇v(⋅,Φx,r,0, q)])∣
⩽ Os (Cr−α) .

This completes the proof of (4.40) and thus of (4.38).
Step 3. We show that, for every r ⩾ r0,

sup
w∈A1(Φx,r)

∣∫
Φx,r

(a − ax,r)∇w∣ ⩽ Os (Cr−α) . (4.41)

By (4.38) and the linearity of q ↦ ∇v(⋅,Φx,r,0, q), we have that

sup
q∈B1

∣∫
Φx,r

(a − ax,r)∇v(⋅,Φx,r,0, q)∣ = Os (Cr−α) . (4.42)

Fix t ∈ (0, d). By (4.27), we have that

sup
u∈A1(Φx,r)

∣∫
Φx,r

(a − ax,r)∇u∣1{r⩾Yt(x)}

⩽ C sup
q∈B1

∣∫
Φx,r

(a − ax,r)∇v(⋅,Φx,r,0, q)∣ = Os (Cr−α) .
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On the other hand, taking t ∶= αs < d and using (4.24), we find

sup
u∈A1(Φx,r)

∣∫
Φx,r

(a − ax,r)∇u∣1{r<Yt(x)} ⩽ C1{r<Yt(x)} ⩽ Os (Cr− ts) = Os (Cr−α) .
Combining the previous two displays yields (4.41).

Step 4. In view of (4.41), to complete the proof of the lemma it remains to
check that, for every x ∈ Rd and r ⩾ r0,

∣ax,r − a∣ ⩽ Cr−α. (4.43)

Indeed, note that we trivially have the estimate (4.35) for every r ∈ [1, r0) by (4.15)
and r0 ⩽ C. Fix x ∈ Rd. By Lemma 3.17, namely (3.104) and (3.105), we have

sup
e∈∂B1

∣E [∫
Φx,r

(a(x) − a) (e +∇φe)]∣ ⩽ C exp (−cr2) . (4.44)

On the other hand, by Lemma 3.13, namely (3.86),

r ⩾ Yt(x) Ô⇒ sup
e∈∂B1

∥e +∇φe∥L2(Φx,r) ⩽ C,
and therefore, by (4.41),

sup
e∈∂B1

∣E [∫
Φx,r

(a(x) − ax,r) (e +∇φe)1{r⩾Yt(x)}]∣ ⩽ Cr−α.
On the other hand, by (3.87) and (4.24),

sup
e∈∂B1

∣∫
Φx,r

(a(x) − ax,r) (e +∇φe)∣1{r<Yt(x)} ⩽ CO2(C) ⋅ O2t/d(Cr− d2 ).
We deduce from the previous two displays (and the assumption α ⩽ d

2) that

sup
e∈∂B1

∣E [∫
Φx,r

(a(x) − ax,r) (e +∇φe)]∣ ⩽ Cr−α. (4.45)

The triangle inequality, (4.44), (4.45) and (3.104) give us that

∣ax,r − a∣ ⩽ sup
e∈∂B1

∣(ax,r − a) e∣ ⩽ Cr−α,
as desired. This completes the proof.

We next rephrase the previous lemma as the statement that u ∗Φr is “almost
a-harmonic.” To see why this should be so, notice that if the right side of (4.47)
below identically vanished, then (4.47) would simply be the weak formulation of
the equation −∇ ⋅ (a∇(u ∗Φr)) = 0. We can think of (4.47) as roughly asserting
that ∥−∇ ⋅ (a∇(u ∗Φr))∥H−1(Rd) ≲ Cr−α,
although this estimate would be a bit too strong since the random variables Hr(x)
introduced in the lemma are not necessarily uniformly bounded in x.
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Lemma 4.14. There exists a constant C(s,α, d,Λ) < ∞ and, for every x ∈ Rd and
r ⩾ 1, a nonnegative random variable Hr(x) satisfying

Hr(x) ⩽ C ∧Os (Cr−α) (4.46)

such that, for every u ∈ A1 and ψ ∈H1
c (Rd),

∣∫
Rd
∇ψ(x) ⋅ a∇(u ∗Φr) (x)dx∣ ⩽ ∫

Rd
∣∇ψ(x)∣ ∥∇u∥L2(Φx,r)Hr(x)dx. (4.47)

Proof. We define

Hr(x) ∶= C sup
u∈A1(Φx,r)

∣∫
Φx,r

(a − a)∇u∣ .
By Lemma 4.13, we see that (4.46) is satisfied. Fix u ∈ A1, ψ ∈ H1

c (Rd) and
compute

∣∫
Rd
∇ψ(x) ⋅ a∇(u ∗Φr) (x)dx∣
= ∣∫

Rd
∇ψ(x) ⋅ (∫

Φx,r
a∇u) dx∣

⩽ ∣∫
Rd
∇ψ(x) ⋅ (∫

Φx,r
a∇u) dx∣ + ∫

Rd
∣∇ψ(x)∣ ∥∇u∥L2(Φx,r)Hr(x)dx

= ∣∫
Rd
∇(ψ ∗Φr) (x) ⋅ a(x)∇u(x)dx∣ + ∫

Rd
∣∇ψ(x)∣ ∥∇u∥L2(Φx,r)Hr(x)dx.

The first term on the last line is zero, by the equation. To make the integration by
parts rigorous, we observe that ψ ∗Φr decays faster than any polynomial at infinity
and u has at most linear growth. This completes the proof of the lemma.

The next lemma is the backbone of this section. It asserts that the spatial
average of elements of A1 are close to constants on every scale. This will eventually
allow us to compare maximizers on different scales.

Lemma 4.15. There exists C(s,α, d,Λ) < ∞ such that, for every r ∈ [1,R/√2],
sup

w∈A1(ΦR)
inf
ξ∈Rd

∥∇w ∗Φr − ξ∥2

L2(Φ√
R2−r2

) ⩽ Os/2 (Cr−2α) . (4.48)

Proof. Throughout, we fix T ∶= √
R2 − r2.

Step 1. We first reduce ourselves to analyzing maximizers of J1. For convenience,
let X denote the random variable

X ∶= sup
w∈A1(ΦR)

inf
ξ∈Rd

∥∇w ∗Φr − ξ∥2
L2(ΦT ).
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Note that 0 ⩽X ⩽ 1 by definition. Using sα < d and (4.24), we find that

X1{Ys⩾T} ⩽ 1{Ys⩾T} ⩽ Os/2 (CT −2α) ⩽ Os/2 (Cr−2α) .
On the other hand, we see from (4.27) and R ⩾ T that, for some C(Λ) < ∞,

T > Ys Ô⇒ ∇A1(ΦT ) ⊆ {∇v(⋅,ΦR,0, q) ∶ q ∈ BC} .
Therefore

X1{Ys<T} ⩽ C sup
q∈B1

inf
ξ∈Rd

∥∇v(⋅,ΦR,0, q) ∗Φr − ξ∥2
L2(ΦT ) 1{Ys<T}. (4.49)

By linearity, the desired inequality (4.48) follows from (4.49) and the following
statement:

d∑
j=1

inf
ξ∈Rd

∥∇v(⋅,ΦR,0, ej) ∗Φr − ξ∥2
L2(ΦT ) 1{Ys<T}

⩽ max{Os/2 (Cr−2α) ,O sα
d+2α

(Cr−(d+2α))} . (4.50)

Indeed, by Lemma A.3(i),

O sα
d+2α

(Cr−(d+2α)) ∧ 1 ⩽ Os/2 (Cr−2α) .
Thus, since X ∈ [0,1], it suffices to prove (4.50). For the rest of the argument, we
fix j ∈ {1, . . . , d} and set

v ∶= v(⋅,ΦR,0, ej).
To simplify the notation, we also assume that T > Ys, so that we may drop 1{T>Ys}
from all the expressions.

Step 2. Harmonic approximation of v ∗Φr and iteration. For convenience, we
denote

w ∶= v ∗Φr.

For each S ⩾ T , we introduce an a-harmonic approximation of w in BS, which we
denote by hS. We take hS to be the unique element of (w +H1

0(BS)) ∩ A(BS). It
follows from Lemma 4.14 (choosing ψ = hS −w and applying the Cauchy-Schwarz
inequality) that

⨏
BS

∣∇w(x) − ∇hS(x)∣2 dx ⩽ ⨏
BS

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx,

where Hr(x) = C ∧Os(Cr−α) is as in Lemma 4.14. Therefore, for every θ ∈ (0,1],
⨏
BθS

∣∇w(x) − ∇hS(x)∣2 dx ⩽ θ−d⨏
BS

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx. (4.51)
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By the regularity of a-harmonic functions, we find, for every η ∈ Rd,

inf
ξ∈Rd

∥∇hS − ξ∥L2(BθS) ⩽ Cθ ∥∇hS − η∥L2(BS) . (4.52)

By the triangle inequality and the previous two displays, denoting

ω(%) ∶= %− 1
2 inf
ξ∈Rd

∥∇w − ξ∥L2(B%) ,

we obtain, for θ = (2C)− 1
2 ,

ω(θS) ⩽ 1

2
ω(S) +CS− 1

2 (⨏
BS

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx) 1
2

.

Setting Sj ∶= θ−jT and summing over all the scales, using also the fact that ω(%) → 0
as %→∞ on the event {T > Ys}, yields

∞∑
j=0

ω(Sj) ⩽ CT − 1
2H , (4.53)

where we have defined

H ∶= ∞∑
n=1

θ
n
2 (⨏

Bθ−nT

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx) 1
2

. (4.54)

Letting ξj ∈ Rd be the minimizer appearing in the definition of ω(Sj), we obtain by
the triangle inequality that, for m > j,

∣ξj − ξj+1∣ ⩽ CS 1
2
j (ω(Sj) + ω(Sj+1)) .

Therefore we get, again by the triangle inequality,

∣ξm − ξ0∣ ⩽ m−1∑
j=0

∣ξj − ξj+1∣ ⩽ m∑
j=0

S
1
2
j ω(Sj) ⩽ C (Sm

T
) 1

2 H .
Using now the decay properties of ΦT we conclude that

∥∇w − ξ0∥2
L2(ΦT ) = ∞∑

m=−∞
∫

{Sm⩽∣y∣⩽Sm+1}
ΦT (y)∣∇w(y) − ξ0∣2 dy

⩽ C ∞∑
m=0

exp (−cθ−2m) θ−dm (∣ξm−ξ0∣2 + ∥∇w−ξm∥2
L2(BSm))

⩽ CH ∞∑
m=0

exp (−cθ−2m) θ−(d+1)m

⩽ CH .



132 Chapter 4 Quantitative description of first-order correctors

The rest of the proof is thus devoted to estimating the random variable H.
Step 3. We use the Lipschitz estimate to pull the ∥∇v∥2

L2(Φx,r) term outside the
integrals appearing in H defined in (4.54). The claim is that

⨏
Bθ−nT

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx

⩽ C ⨏
Bθ−nT

(1 + 1{r⩽Ys(x)} (X(x)
r

)d)(Hr(x))2
dx . (4.55)

First, since we are working on the event {T > Ys}, we have that there is pv ∈ Rd

such that, for all S ⩾ T ,
∥v∥L2(BS) ⩽ CS ∣pv ∣ ⩽ C (S

T
) ∥v∥L2(BT ) .

Without loss of generality we may assume that (v)BT = 0. The Poincaré inequality
and the fact that we have ∥∇v∥L2(ΦR) ⩽ C yield that

∥v∥L2(BS) ⩽ CS. (4.56)

Suppose next that r ⩽ S ⩽ ∣x∣ + T and Ys(x) ⩽ ∣x∣ + T . The Caccioppoli inequality
and the C0,1-type estimate (Theorem 3.3) then yield

∥∇v∥L2(BS(x)) ⩽ (Ys(x) ∨ S
S

) d2 ∥∇v∥L2(B
Ys(x)∨S(x))

⩽ C (Ys(x) ∨ S
S

) d2 (Ys(x) ∨ S)−1 ∥v − (v)B2(Ys(x)∨S)
∥
L2(B2(Ys(x)∨S)(x))

⩽ C (Ys(x) ∨ r
r

) d2 .
On the other hand, if r ⩽ S ⩽ ∣x∣ + T and Ys(x) ⩾ ∣x∣ + T , then we get

∥∇v∥L2(BS(x)) ⩽ (∣x∣ + T
S

) d2 ∥∇v∥L2(B
∣x∣+T (x)) ⩽ C (Ys(x)

r
) d2 ,

and finally if S ⩾ ∣x∣ + T , then directly ∥∇v∥L2(BS(x)) ⩽ C by the Caccioppoli
inequality and (4.56). Using these gives

∥∇v∥2
L2(Φx,r) ⩽ C ∫ ∞

r
(S
r
)d exp(−cS2

r2
)⨏

BS(x)
∣∇v(y)∣2 dy dS

S

⩽ C (Ys(x) ∨ r
r

)d∫ ∣x∣+T

r
(S2

r2
) d2 exp(−cS2

r2
) dS

S

+C ∫ ∞

∣x∣+T
(S
r
)d exp(−cS2

r2
) dS

S

⩽ C (Ys(x) ∨ r
r

)d .
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We deduce that

⨏
Bθ−nT

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx ⩽ ⨏
Bθ−nT

(1 + 1{r⩽Ys(x)} (Ys(x)r
)d)(Hr(x))2

dx,

which completes the proof of (4.55).
Step 4. We next estimate the term in (4.55). The claim is that there exists

C(α, s, d,Λ) < ∞ such that

(1 + 1{r⩽Ys(x)} (Ys(x)r
)d)(Hr(x))2 ⩽ O sα

d+2α
(Cr−(d+2α)) ∨ Os/2(Cr−2α). (4.57)

First, note that (4.46) gives

(Hr(x))2 = Os/2(Cr−2α).
Moreover, since sα < d, we have that

1{r⩽Ys(x)} (Ys(x)r
)d ⩽ (Ys(x)

r
)d = Osα/d (Cr−d) . (4.58)

By Lemma A.3(ii), applied with s1 = s
2 , s2 = sα

d , θ1 = Cr−2α and θ2 = Cr−d, we
therefore obtain

1{r⩽Ys(x)} (Ys(x)r
)d (Hr(x))2 = O sα

d+2α
(Cr−(d+2α)) .

This proves (4.57).
Step 5. We complete the proof. Combining (4.53), (4.55) and (4.57), we get by

Lemma A.4 that

H ⩽ C ∞∑
n=0

θ
n
2 (⨏

Bθ−nR

∥∇v∥2
L2(Φx,r) (Hr(x))2

dx) 1
2

⩽ C ∞∑
n=0

θ
n
2 (⨏

Bθ−nR

(1 + 1{r⩽Ys(x)} (Ys(x)r
)d)(Hr(x))2

dx)
1
2

⩽ (O sα
d+2α

(C ∞∑
n=0

θ
n
2 r−(d+2α)) ∨Os/2 (C ∞∑

n=0

θ
n
2 r−2α))

1
2

= (O sα
d+2α

(Cr−(d+2α)) ∨ Os/2(Cr−2α)) 1
2 .

This combined with the result of Step 1 yields (4.50) and completes the proof by
the discussion in the first step.

By summing the result of the previous lemma over the scales, we can control
the spatial averages of the gradients of the correctors, up to an error of Os(Cr−α).
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Lemma 4.16. There exists C(s, d,Λ) < ∞ such that, for every ξ ∈ B1, x ∈ Rd,
R ⩾ 2 and r ∈ [1,R/√2],

∥∇φξ ∗Φr∥
L2(Φ

x,
√

R2−r2
)
= Os (Cr−α) .

Proof. Fix ξ ∈ B1. By Lemma 4.15, for each r ⩾ 1, there exists a random vector
ξ(r) ∈ Rd satisfying

∥∇φξ ∗Φr − ξ(r)∥L2(Φ2r) ⩽ Os (Cr−α) . (4.59)

It follows from the triangle inequality, the fact that Φr ⩽ CΦ4r, the semigroup
property and the previous display that

∣ξ(r) − ξ(2r)∣ ⩽ ∥(∇φξ − ξ(r)) ∗Φ2r∥L2(Φr) + ∥(∇φξ − ξ(2r)) ∗Φ2r∥L2(Φr)= ∥(∇φξ ∗Φr − ξ(r)) ∗Φ√
3r2

∥
L2(Φr)

+ ∥∇φξ ∗Φ2r − ξ(2r)∥L2(Φr)⩽ ∥∇φξ ∗Φr − ξ(r)∥L2(Φ2r) +C ∥∇φξ ∗Φ2r − ξ(2r)∥L2(Φ4r)⩽ Os (Cr−α) .
By summing over the scales, we obtain that {ξ(2nr)}n∈N is Cauchy and its limit
ξ(∞) satisfies ∣ξ(r) − ξ(∞)∣ ⩽ Os (Cr−α) .
Since ∇φξ is a stationary function with zero mean, the ergodic theorem implies
that, in fact, ξ(∞) = 0, P-almost surely. Combining this with (4.59) yields

∥∇φξ ∗Φr∥L2(Φ2r) ⩽ Os (Cr−α) .
Since Φx,r ⩽ CΦ2r for x ∈ Br, we deduce that, for every x ∈ Br,

∥∇φξ ∗Φr∥L2(Φx,r) ⩽ Os (Cr−α) .
By stationarity, we have the same estimate for every x ∈ Rd. The desired estimate
now follows from the semigroup property of the heat kernel and Lemma A.4.

Using the previous lemma, we can “match the parameters” by identifying the
maximizer v(⋅,Φx,r, p, q) as the corrector φξ with ξ = −p + a−1q, up to an error
of Os (Cr−α). Recall that φξ is defined in (4.26).

Lemma 4.17. There exists C(s,α, d,Λ) < ∞ such that, for every r ⩾ 1, x ∈ Rd and
p, q ∈ B1, ∥∇v(⋅,Φx,r, p, q) − ∇φ(−p+ā−1q)∥L2(Φx,r)

⩽ Os (Cr−α) . (4.60)
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Proof. Step 1. We first show that, for some C(d,Λ) < ∞,

sup
w∈A1(Φx,r)

(∥∇w∥L2(Φx,r) −C ∣(∇w)Φx,r
∣) ⩽ Os (Cr−α) . (4.61)

By Lemma 4.16, for each ξ ∈ BC ,

∣∫
Φx,r

∇φξ − ξ∣ = ∣∫
Φx,r

∇φξ∣ ⩽ ∥∇φξ ∗Φr/
√

2∥L2(Φ
x,r/

√

2
)
⩽ Os (Cr−α) . (4.62)

It follows from this and (4.25) that

sup
w∈A1(Φx,r)

(∥∇w∥L2(Φx,r) −C ∣(∇w)Φx,r
∣)
+
1{r⩾Ys(x)} ⩽ Os (Cr−α) .

On the other hand, by (4.24) and sα < d,
sup

w∈A1(Φx,r)
∥∇w∥L2(Φx,r) 1{r⩽Ys(x)} ⩽ 1{r⩽Ys(x)} ⩽ Os (Cr−α) .

This completes the proof of (4.61).
Step 2. We match each ∇v(⋅,Φx,r, p, q) to ∇φξ for a deterministic ξ. Let

Lx,r ∶ Rd ×Rd → Rd denote the deterministic linear map

(p, q) ↦ E [∫
Φx,r

∇v(⋅,Φx,r, p, q)] .
Fix p, q ∈ B1 and set ξ ∶= Lx,r(p, q). Then ∣ξ∣ ⩽ C by (4.15) and, by (4.39),

∣∫
Φx,r

∇v(⋅,Φx,r, p, q) − ξ∣ ⩽ Os (Cr−α) . (4.63)

By the previous line and (4.62),

∣∫
Φx,r

(∇v(⋅,Φx,r, p, q) − ∇φξ)∣ ⩽ Os (Cr−α) .
By (4.61), we deduce that

∥∇v(⋅,Φx,r, p, q) − ∇φξ∥L2(Φx,r)
⩽ Os (Cr−α) . (4.64)

Step 3. We identify Lx,r(p, q) up to a suitable error. The claim is that

∣Lx,r(p, q) − (−p + a−1q)∣ ⩽ Cr−α. (4.65)

As before, we denote ξ ∶= Lx,r(p, q). By (4.64) and quadratic response,

∣J1(Φx,r, p, q) − ∫
Φx,r

(−1

2
∇φξ ⋅ a∇φξ − p ⋅ a∇φξ + q ⋅ ∇φξ)∣ ⩽ Os/2 (Cr−2α) .
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Taking expectations and applying Lemma 3.17 yields

E [J1(Φx,r, p, q)] ⩽ E [∫
Φx,r

(−1

2
∇φξ ⋅ a∇φξ − p ⋅ a∇φξ + q ⋅ ∇φξ)] +Cr−2α

⩽ (−1

2
ξ ⋅ aξ − p ⋅ aξ + q ⋅ ξ) +Cr−2α.

On the other hand, it is clear by testing the definition of J1 with φξ′ that

E [J1(Φx,r, p, q)] ⩾ sup
ξ′∈Rd

E [∫
Φx,r

(−1

2
∇φξ′ ⋅ a∇φξ′ − p ⋅ a∇φξ′ + q ⋅ ∇φξ′)]

⩾ sup
ξ′∈Rd

(−1

2
ξ′ ⋅ aξ′ − p ⋅ aξ′ + q ⋅ ξ′) −C exp(−cr2).

Thus

(−1

2
ξ ⋅ aξ − p ⋅ aξ + q ⋅ ξ) ⩾ sup

ξ′∈Rd
(−1

2
ξ′ ⋅ aξ′ − p ⋅ aξ′ + q ⋅ ξ′) −Cr−2α.

The supremum on the right side is attained at ξ∗ ∶= −p+a−1q and hence by quadratic
response, we get ∣ξ − ξ∗∣ ⩽ Cr−α. This is (4.65).

Step 4. The conclusion. With ξ∗ ∶= −p + a−1q and ξ ∶= Lx,r(p, q) as above, we
apply the triangle inequality, (4.64) and (4.65) to find that

∥∇v(⋅,Φx,r, p, q) − ∇φξ∗∥L2(Φx,r)⩽ ∥∇v(⋅,Φx,r, p, q) − ∇φξ∥L2(Φx,r)
+ ∥∇φξ −∇φξ∗∥L2(Φx,r)⩽ ∥∇φξ−ξ∗∥L2(Φx,r)

+Os (Cr−α) .
⩽ Cr−α sup

e∈∂B1

∥∇φe∥L2(Φx,r)
+Os (Cr−α) .

On the other hand, we see from (3.87) and Lemma A.4 that

sup
e∈∂B1

∥∇φe∥L2(Φx,r)
⩽ O2+ε (C) ⩽ Os(C).

This completes the proof of (4.60).

The “parameter matching” of the previous lemma allows us, in particular, to
compare the maximizers of J1 on different scales by matching them to the same
corrector. By quadratic response, this implies the additivity statement—with
double the exponent and half the stochastic integrability. We then interpolate
this result with the base case to obtain the additivity statement with no loss of
stochastic integrability but maintaining still a slight improvement of the exponent.
We conclude this section by presenting the details of this argument.
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Proof of Proposition 4.10. The triangle inequality and (4.60) imply

∫
Φ√

R2−r2

∥∇v (⋅,ΦR, p, q) − ∇v(⋅,Φx,r, p, q)∥2
L2(Φx,r) dx ⩽ Os/2 (Cr−2α) . (4.66)

By (4.66) and quadratic response, we have, for every p, q ∈ B1 and 1 ⩽ r < R,
J(ΦR, p, q) = ∫

Φ√
R2−r2

J(Φx,r, p, q)dx +Os/2 (Cr−2α) . (4.67)

This is Add(s/2,2α).
Suppose now that α < d

s − ε for a given ε > 0. We next argue that Add(s/2,2α)
and the base case estimate Proposition 4.3 imply that Add(s,α + η) holds for some
η(ε, s, d,Λ) > 0, by an interpolation between these statements. Fix t ∈ (αs, d) to be
selected. We first observe that, by Proposition 4.3 and the triangle inequality, we
have the P–a.s. bound

∣∫
Φ√

R2−r2

(J(ΦR, p, q) − J(Φx,r, p, q))1{Yt(x)⩽r} dx∣1{Yt⩽R} ⩽ Cr−β. (4.68)

By (4.15) and Lemma A.4, for every s′ > 0,

∫
Φ√

R2−r2

(∣J(ΦR, p, q)∣ + ∣J(Φx,r, p, q)∣)1{Yt(x)⩾r} dx

⩽ C ∫
Φ√

R2−r2

1{Yt(x)⩾r} dx ⩽ Os′/2 (Cr− 2t
s′ ) (4.69)

in view of the fact that, for every x ∈ Rd,

1{Yt(x)⩾r} ⩽ (Yt(x)
r

) 2t
s′ ⩽ Os′/2 (Cr− 2t

s′ ) .
Taking s′ = s and using 2t/s > 2α, the previous inequality and (4.67) imply that

∣∫
Φ√

R2−r2

(J(ΦR, p, q) − J(Φx,r, p, q))1{Yt(x)⩽r} dx∣1{Yt⩽R} ⩽ Os/2 (Cr−2α) . (4.70)

The estimates (4.70), (4.68) and Lemma A.3(i) applied to the random variable

X ∶= crβ ∣∫
Φ√

R2−r2

(J(ΦR, p, q) − J(Φx,r, p, q))1{Yt(x)⩽r} dx∣1{Yt⩽R}

with parameters s′ ∶= s and s/2 in place of s, yield the bound

∣∫
Φ√

R2−r2

(J(ΦR, p, q) − J(Φx,r, p, q))1{Yt(x)⩽r} dx∣1{Yt⩽R} ⩽ Os (Cr−α− 1
2
β) .
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Using the previous line together with the triangle inequality and (4.69) again, this
time with s′ = 2s and observing that t/s > α, we obtain that

∣∫
Φ√

R2−r2

(J(ΦR, p, q) − J(Φx,r, p, q)) dx∣1{Yt⩽R} ⩽ Os (Cr−α−η) .
where

η ∶= 1

2
β ∧ ( t

s
− α) .

We take t ∶= 1
2 (αs + d) to get that η > 0 depends only on (ε, s, d,Λ). Finally,

using (4.24) and (4.15) again we see that

∣∫
Φ√

R2−r2

(J(ΦR, p, q) − J(Φx,r, p, q)) dx∣1{Yt>R}

⩽ C1{Yt>R} ⩽ Os (CR− t
s) ⩽ Os (Cr−α−η) .

Combining the above yields Add(s,α + η) and completes the argument.

Remark 4.18. Using the result of Lemma 4.17 and quadratic response to estimate
J1(Φx,r, p, q), and then taking the expectation of the result and combining it with
Lemma 3.17 yields that

∣E [J(Φx,r, p, q)] − (1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q)∣ ⩽ Cr−2α. (4.71)

Thus the assumption of Fluc(s,α) implies (4.71).

4.4 Localization estimates

In this section, we prove the localization estimate stated in Proposition 4.11. The
proposition roughly states that, under the assumption that Fluc(s,α) holds, we
can compute J1(Φr, p, q) up to an error of Os(Cr−γ), for some γ > α(1 + δ), with
only the knowledge of the coefficients restricted to Br1+δ . To prove this result, we
are therefore confronted with what can be thought of as a computational question:

What is the best way to compute J1(Φr, p, q)?
Since J1(Φr, p, q) can be computed straightforwardly once A1 is known, we can
rephrase the task into a more specific problem:

Find an algorithm which accurately computes the correctors in Br by
only looking at the coefficients in Br1+δ .
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We have already shown in the proof of Proposition 3.15 that the first-order correctors
are close to the solutions of the Dirichlet problem with affine data. Therefore we
could compute the latter. A similar idea is to consider all solutions in a large ball
and choose the ones which are closest in L2 to affine functions. These proposals
can be shown to work as long as α < 1. However, when α > 1 the precision they
give is not enough, because we cannot expect the normalized L2 difference between
an element of A1 and the corresponding affine function to be better than O(1).
Therefore, at length scale r, we would not be able to show that the gradient of our
approximation and that of the true corrector are closer than ≃ O(r−1).

To do better, rather than look for the solution minimizing the distance to an
affine function in the L2 norm, we measure the distance in a weaker norm. As in the
rest of the chapter, we find it convenient to formulate the “weak norm” in terms on
spatial averages of the heat kernel. We find the solution u such that the difference
in the L2 norm between a given affine function and u ∗Φcr is minimized, where
c > 0 is some appropriately small constant. Using some lemmas from the previous
section—which assert that the Fluc(s,α) assumption implies that elements of A1

are within order r1−α of affine functions after convolution by Φr—we are able to
show roughly that the resulting solution is within order r1−α of a true corrector
in the ball of radius r1+δ in this weak norm. Separately, we can use the higher
regularity theory, Theorem 3.6, and a version of the multiscale Poincaré inequality
(adapted for heat kernels) to show that the difference in the weak norm actually
controls the difference in the L2 norm. We can then use the higher regularity theory
a second time to improve the error in the approximation as we zoom in to Br.

Before we proceed with the proof of Proposition 4.11, we give a version of the
multiscale Poincaré inequality which controls the L2 norm of a function w with
respect to an exponential weight ΨR at scale R by the L2 norms of ∇w ∗Φ√

t over
all the scales 0 < √

t < σR. To compare the second term on the right side of (4.73)
with that of (1.41) for f = ∇w(0, ⋅), use the change of variables t = r2 to write the
former as

∫ (σR)2

0
∫

ΨR
∣∇w(t, y)∣2 dy dt = 2∫ σR

0
r∫

ΨR
∣∫

Φx,r
∇w(y,0)dy∣2 dxdr.

Then observe that a Riemann sum approximation of the right side (using intervals
of the form [3n,3n+1]) would look very much like the square of the right side
of (1.41), with averages over triadic cubes replaced by averages with respect to
heat kernels with roughly the same length scale.

Lemma 4.19 (Multiscale Poincaré inequality, heat kernel version). Suppose that
w = w(t, x) is a solution of the heat equation

∂tw −∆w = 0 in Rd × (0,∞)



140 Chapter 4 Quantitative description of first-order correctors

satisfying w(0, ⋅) ∈ L2(ΨR) and

∫ R2

0
∫

ΨR
∣w(t, y)∣2 dy dt < ∞,

where ΨR is the function

ΨR(x) ∶= R−d exp(−∣x∣
R

) . (4.72)

Then there exists C(d,Λ) < ∞ such that, for every σ ∈ (0,1],
∫

ΨR
∣w(0, y)∣2 dy

⩽ C ∫
ΨR

∣w((σR)2, y)∣2 dy +C ∫ (σR)2

0
∫

ΨR
∣∇w(t, y)∣2 dy dt. (4.73)

Proof. We compute, for any ε > 0

∣∂t∫
ΨR

1

2
∣w(t, y)∣2 dy∣ = ∣∫

Rd
∇(ΨRw(t, ⋅)) (y) ⋅ ∇w(t, y)dy∣

⩽ C ∫
Rd

ΨR(y)⎛⎝1

ε
∣∇w(t, y)∣2 + ε(∣∇ΨR(y)∣

ΨR(y) )2 ∣w(t, y)∣2⎞⎠ dy
⩽ C
ε ∫ΨR

∣∇w(t, y)∣2 dy + Cε
R2 ∫ΨR

∣w(t, y)∣2 dy.
Integrating with respect to t yields

sup
t∈[0,(σR)2]

∫
ΨR

∣w(⋅, y)∣2 dy
⩽ ∫

ΨR

∣w((σR)2, y)∣2 dy + ∫ (σR)2

0
∣∂t∫

ΨR
∣w(t, y)∣2 dy∣ dt

⩽ ∫
ΨR

∣w((σR)2, y)∣2 dy + C
ε ∫

(σR)2

0
∫

ΨR
∣∇w(t, y)∣2 dy dt

+ ∫ (σR)2

0

Cε

R2 ∫ΨR
∣w(t, y)∣2 dy dt.

Now taking ε = c sufficiently small, we can absorb the last term on the right side
to obtain

∫
ΨR

∣w(0, y)∣2 dy ⩽ sup
t∈[0,(σR)2]

∫
ΨR

∣w(t, y)∣2 dy
⩽ C ∫

ΨR

∣w ((σR)2), y)∣2 dy +C ∫ (σR)2

0
∫

ΨR
∣∇w(t, y)∣2 dy dt.

This completes the proof of the lemma.
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We next specialize the previous lemma to elements of Ak(Rd). We obtain that
elements of Ak(Rd) behave like normal polynomials in the sense that their spatial
averages bound their oscillation. We need this result for Ak(Rd) for very large
k ∈ N in order to transfer this property, by approximation using Theorem 3.6, to
arbitrary solutions.

Lemma 4.20. Fix s ∈ (0, d), k ∈ N, and let Xs denote the random variable in
Theorem 3.6. There exist σ0(k, d,Λ) ∈ (0, 1

2
] and, for every σ ∈ (0, σ0], constants

C(σ, k, d,Λ) < ∞ and θ(σ, k, d,Λ) ∈ (0, 1
2
] such that, for every v ∈ Ak and r ⩾ Xs,

∥v∥2
L2(Ψr) ⩽ C ⨏

Br/θ

∣∫
Φy,σr

v(z)dz∣2 dy . (4.74)

Proof. Fix k ∈ N and v ∈ Ak. Define

w(t, y) ∶= ∫
Φy,

√

t

v(z)dz ,
which is the solution of

{∂tw −∆w = 0 in Rd × (0,∞),
w = v on Rd × {0}.

By Theorem 3.6, for every r ⩾ Xs, there exists a unique polynomial q ∈ Ak such
that, for every S ⩾ R ⩾ r, we have

∥v∥L2(BS) ⩽ C ∥q∥L2(BS) ⩽ C (S
R

)k ∥q∥L2(BR) ⩽ C (S
R

)k ∥v∥L2(BR) . (4.75)

In particular, v2(x)dx is a doubling measure and v has at most polynomial growth.
Our starting point is Lemma 4.19, which gives, for every σ ∈ (0,1],
∫

Ψr
∣v(y)∣2 dy ⩽ C ∫

Ψr
∣w((σr)2, y)∣2 dy +C ∫ (σr)2

0
∫

Ψr
∣∇w(t, y)∣2 dy dt. (4.76)

Step 1. We show that there exists a small σ0 = σ0(k, d,Λ) ∈ (0,1] such that

C ∫ (σ0r)2

0
∫

Ψr
∣∇w(y, t)∣2 dy dt ⩽ 1

4 ∫Ψr
∣v(y)∣2 dy , (4.77)

so that by absorbing it back onto the left side, (4.76) can be improved to

∫
Ψr

∣v(y)∣2 dy ⩽ C ∫
Ψr

∣w ((σr)2, y)∣2 dy (4.78)
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for all σ ∈ (0, σ0]. To prove (4.77), we first get by Hölder’s inequality that

∫
Ψr

∣∇w(t, y)∣2 dy ⩽ ∫
Ψr
∫

Φy,
√

t

∣∇v(z)∣2 dz dy .
We then notice that the right side can be rewritten with the aid of Fubini’s theorem,
taking into account the definitions of Ψr and Φ√

t, for all ε > 0 as

∫ εr2

0
∫

Ψr
∫

Φy,
√

t

∣∇v(z)∣2 dz dy dt
= ∫

Ψr
∣∇v(z)∣2∫ εr2

0
∫

Φz,
√

t

exp(∣z∣
r
− ∣y∣
r
) dy dt dz .

We analyze the integral in the middle. By the triangle inequality, we obtain

∫ εr2

0
∫

Φz,
√

t

exp(∣z∣
r
− ∣y∣
r
) dy dt ⩽ ∫ εr2

0
∫
Rd

exp(∣z − y∣
r

)Φ√
t(z − y)dy dt

⩽ C ∫ εr2

0
t−

d
2 ∫

Rd
exp(∣y∣

r
− ∣y∣2

t
) dy dt

⩽ C ∫ εr2

0
t−

d
2 ∣B 2t

r
∣ dt +C ∫ εr2

0
∫

Φ√
2t

dy dt

⩽ Cεr2 .

Therefore, combining the above three displays, we arrive at

∫ εr2

0
∫

Ψr
∣∇w(t, y)∣2 dy dt ⩽ Cεr2∫

Ψr
∣∇v(z)∣2 dz . (4.79)

Furthermore, we have the layer-cake formula, for any g ∈ L1(Ψr) and V ⊆ Rd,

∫
V

Ψr(z)g(z)dz = 1

rd+1 ∫ ∞

0
exp(−λ

r
)∫

V ∩Bλ
g(z)dz dλ . (4.80)

Using the Caccioppoli estimate and the doubling property (4.75), we deduce that

∫
BR

∣∇v(y)∣2 dy ⩽ C

R2 ∫B2R

∣v(y)∣2 dy ⩽ C
r2 ∫BR ∣v(y)∣2 dy

for any R ⩾ r. Thus the layer-cake formula (4.80) yields

r2∫
Ψr

∣∇v(z)∣2 dz ⩽ C ∫
Ψr

∣v(z)∣2 dz .
Now our claim (4.77) follows from (4.76), (4.79) and the above display provided
we take ε = σ2

0 sufficiently small.
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Step 2. We next show that for any ε ∈ (0, 1) and σ ∈ (0, σ0], there are constants
C(ε, σ, k, d,Λ) < ∞ and θ(ε, σ, k, d,Λ) ∈ (0,1) such that

∫
Ψr

∣w((σr)2, y)∣2 dy ⩽ C ⨏
Br/θ

∣w((σr)2, y)∣2 dy + ε∫
Ψr

∣v(y)∣2 dy . (4.81)

This together with (4.78) proves our claim by taking small enough ε, which then
also fixes the parameter θ. We first decompose the integral on the left as

∫
Ψr

∣w((σr)2, y)∣2 dy
⩽ Cθ ⨏

Br/θ

∣w((σr)2, y)∣2 dy + ∫
Rd∖Br/θ

Ψr(y) ∣∫
Φy,σr

v(z)dz∣2 dy . (4.82)

As in Step 1, with the aid of the triangle and Hölder’s inequalities we obtain

∫
Rd∖Br/θ

Ψr(y) ∣∫
Φy,cr

v(z)dz∣2 dy (4.83)

⩽ ∫
Rd∖Br/θ

Ψr(z) ∣v(z)∣2∫
Φz,σr

exp(∣y − z∣
r

) dy dz
⩽ C ∫

Rd∖Br/θ
Ψr(z) ∣v(z)∣2 dz .

Now the layer-cake formula (4.80) and the polynomial growth in (4.75) imply

∫
Rd∖Br/θ

Ψr(z) ∣v(z)∣2 dz ⩽ 1

rd+1 ∫ ∞

r/θ
exp(−λ

r
)∫

Bλ
∣v(z)∣2 dz dλ (4.84)

⩽ C
r ⨏Br ∣v(z)∣2 dz∫

∞

r/θ
exp(−λ

r
)(λ

r
)k dλ .

For any given ε ∈ (0,1), we may choose θ(ε, k, d,Λ) > 0 so small that

1

r ∫
∞

r/θ
exp(−λ

r
)(λ

r
)k dλ = ∫ ∞

1/θ
exp (−λ)λk dλ = ε.

Combining (4.83) and (4.84), we get

∫
Rd∖Br/θ

Ψr(y) ∣∫
Φy,δr

v(z)dz∣2 dy ⩽ Cε⨏
Br

∣v(z)∣2 dz
with C independent of ε. Inserting this into (4.82), we obtain that (4.81) holds.

We now proceed with the details of the proof of Proposition 4.11. As in the
previous section, here we fix parameters

δ > 0, s ∈ (0,2], α ∈ (0, ds) ∩ (0, d2] and γ ∈ (0, (α(1 + δ) + δ) ∧ d
s
) . (4.85)
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and suppose that
Fluc(s,α) holds. (4.86)

The random variable Ys is defined, for each s ∈ (0, d), in Definition 4.5.
We begin with the construction, for each fixed r ⩾ 2, of a (random) vector

subspace of A(Br1+δ) denoted by Vδr which should well approximate A1 in Br in a
sense to be made precise.

Fix r ⩾ 2 and set T ∶= r1+δ. Also fix a large integer m ∈ N to be selected
below—it is chosen in (4.97) in Step 2 of the proof of Lemma 4.21 and depends
only on (δ,α, d)—and let σ and θ be the constants in the statement of Lemma 4.20
for k =m. We also define an intermediate scale

S ∶= r1+δ−ε,

where ε > 0 is defined by the relation

γ = α(1 + δ) + δ − (1 + α)ε.
Note that r < S < T . The reason for introducing the scale S is that we have to
apply the regularity theory twice: the first time (for k =m large) to transfer the
result of Lemma 4.20 to more general solutions and the second time (with k = 1)
to improve the scaling in the localization estimate.

Motivated by the right side of (4.74), we define I ∶H1(BT ) → R+ by

I [w] ∶= ⨏
BS/θ

∣∫
Φy,σS

w(x)1BT (x)dx∣2 dy.
For each i ∈ {1, . . . , d}, let wi ∈ A(BT ) be the minimizer of the optimization problem

minimize I [w − `ei] among w ∈ K,
where `e(x) ∶= e ⋅ x and we take the admissible class K to be the subset of A(BT )
consisting of functions with gradients under some control:

K ∶= {w ∈ A(BT ) ∶ ∥∇w∥L2(BT ) ⩽ C} ,
where C(s, d,Λ) is chosen large enough compared to the constants C on the right
side of (3.86) and of (4.27) to ensure that

r ⩾ Ys Ô⇒ {v(⋅,Φr,0,ae) ∶ e ∈ ∂B1} ∪ {φe ∶ e ∈ ∂B1} ⊆ K. (4.87)

The functional I[⋅] is clearly weakly continuous on the convex set K with respect
to the H1(BT )-norm, and the existence of a minimizer follows. The uniqueness
of the minimizer is not important, in the case of multiple minimizers we can for
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instance select the one with the smallest L2(BT )-norm. It is not hard to show that,
by (3.99) and (4.87), that

r ⩾ Ys Ô⇒ {w1, . . . ,wd} is linearly independent. (4.88)

Finally, we define Vδr ∶= span{w1, . . . ,wd} .
It is clear that each of the functions wi is F(BT )–measurable, and thus

Vδr is F(BT )–measurable.

The main part of the argument for Proposition 4.11 is formalized in the following
lemma, which states roughly that every element of A1 can be approximated by an
element of Vδr , up to an error of order ≃ r−γ. We let Φδ

r denote the truncated heat
kernel given by

Φδ
r(x) ∶= Φr(x)1x∈BT . (4.89)

Lemma 4.21. There exists a constant C(γ, δ, s, α, d,Λ) < ∞ such that

sup
u∈A1(Φr)

inf
w∈Vδr

∥∇u −∇w∥L2(Φδr) + sup
w∈Vδr (Φr)

inf
u∈A1

∥∇u −∇w∥L2(Φδr) ⩽ Os (Cr−γ) . (4.90)

Proof. Since γ < d
s , we have by (4.24) that

sup
u∈A1(Φr)

inf
w∈Vδr

∥∇u −∇w∥L2(Φδr) 1{Ys⩾r}

⩽ sup
u∈A1(Φr)

∥∇u∥L2(Φδr) 1{Ys⩾r} ⩽ 1{Ys⩾r} ⩽ Os (Cr−γ) ,
and a similar inequality holds if we switch the roles of A1 and Vδr . Therefore
for the rest of the argument we work on the event {Ys < r} while dropping
the 1{Ys<r} from the expressions to lighten the notation. For each j ∈ {1, . . . , d}, we
denote vj ∶= v(⋅,Φr,0,aej).

Step 1. We show that

sup
j∈{1,...,d}

I [wj − vj] ⩽ Os/2 (CS2−2α) . (4.91)

Fix j ∈ {1, . . . , d}. Observe that (4.87) and the definition of wj imply that

I [wj − `ej] ⩽ I [vj − `ej] . (4.92)

We may assume that the additive constant for vj is chosen so that

⨏
BS/θ

vj ∗ΦσS = 0. (4.93)
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We now use the assumption that Fluc(s,α) holds, which allows us to apply
Lemma 4.17—actually it is best to use directly (4.63) and (4.65) from its proof—
which, together with the Poincaré inequality and (4.93), yields

I [vj − `ej] ⩽ Os/2 (CS2−2α) . (4.94)

Indeed, we compute

I [vj − `ej] = ⨏
BS/θ

∣∫
Φy,σS

(vj(x) − `ej(x)) dx∣2 dy
⩽ CS2⨏

BS/θ

∣∫
Φy,σS

(∇vj(x) − ej) dx∣2 dy
⩽ CS2∫

Φ√
S2−(σS)2

∣∫
Φy,σS

(∇vj(x) − ej) dx∣2 dy
⩽ Os/2 (CS2−2α) .

We deduce from (4.92) and (4.94) that

I [wj − `ej] ⩽ Os/2 (CS2−2α) . (4.95)

The triangle inequality then gives us

I [wj − vj] ⩽ Os/2 (CS2−2α) .
Summing over j ∈ {1, . . . , d} yields (4.91).

Step 2. We upgrade (4.91) to convergence in the strong L2-norm by using the
regularity theory and Lemma 4.20. The precise claim is that

sup
j∈{1,...,d}

∥wj − vj∥L2(BS/θ) ⩽ Os (CS1−α) . (4.96)

According to wj ∈ K and r ⩾ Ys, we have that, for every r′ ∈ [r, T ],
inf
u∈Am

∥wj − u∥L2(Br′)
⩽ C (r′

T
)m+1 ∥wj∥L2(Br′)

⩽ C (r′
T
)m+1

T.

This implies that

inf
u∈Am

∥∇wj −∇u∥L2(BS) ⩽ C (S
T
)m = Cr−εm ⩽ CS−εm/(1+δ).

We now select
m ∶= ⌈d(1 + δ)ε−1⌉ (4.97)
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so that εm/(1 + δ) ⩾ d > α. Observe that m depends only on (δ,α, d), as claimed
above. Taking ũj ∈ Am to achieve the infimum in the previous display, we have
shown that ∥∇wj −∇ũj∥L2(BS) ⩽ CS−α.
It follows from the triangle inequality and (4.91) that

I [ũj − vj] ⩽ Os/2 (CS2−2α) .
Since ũj − vj ∈ Am, we may apply Lemma 4.20 to obtain

∥ũj − vj∥2
L2(BS) ⩽ C ∥ũj − vj∥2

L2(ΨS) ⩽ CI [ũj − vj] ⩽ Os/2 (CS2−2α) .
By the triangle inequality again, we obtain (4.96).

Step 3. We apply the regularity theory to obtain better estimates on balls Bρ

with ρ ∈ [r, S]. The claim is that, for every j ∈ {1, . . . , d},
inf
u∈A1

sup
ρ∈[r,S/8θ]

1

ρ
∥∇wj −∇u∥L2(Bρ) ⩽ Os (CS−1−α) . (4.98)

Fix j. Applying statement (iii)1 of Theorem 3.6 and using that r > Ys, we deduce
the existence of uj ∈ A1 satisfying, for every ρ ∈ [r, S/8θ] and a ∈ R,

∥wj − uj∥L2(B2ρ) ⩽ C ( ρ
S
)2 ∥wj − vj − a∥L2(BS/θ) .

By the Caccioppoli and Poincaré inequalities, this yields

∥∇wj −∇uj∥L2(Bρ) ⩽ C ( ρ
S
) ∥∇wj −∇vj∥L2(BS/θ) .

Applying (4.96), we deduce that, for every ρ ∈ [r, S],
1

ρ
∥∇wj −∇uj∥L2(Bρ) ⩽ CS ∥∇wj −∇vj∥L2(BS/θ) ⩽ Os (CS−1−α) .

Taking the supremum over ρ ∈ [r, S/8θ], we obtain (4.98).
Step 4. We show that, for every j ∈ {1, . . . , d},

∥∇wj −∇uj∥L2(Φδr)
⩽ Os (Cr−γ) . (4.99)

By (4.98) and a layer-cake approximation,

∥∇wj −∇uj∥2
Φδr

⩽ C ∫ T

r
(ρ
r
)d exp(−c(ρ

r
)2)∥∇wj −∇uj∥2

L2(Bρ)
dρ

ρ
(4.100)

⩽ Os/2 (C ( r
S
)2

S−2α) . (4.101)
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Using the definition of S, we see that

( r
S
)2

S−2α = r−2γ.

This completes the proof of (4.99).
Step 5. The conclusion. Let T ∶ Vδr /R→ A1/R be the linear mapping for whichT (wj) = uj for every j ∈ {1, . . . , d}. By linearity, we deduce from (4.99) that, for

any w ∈ Vδr ,
inf
u∈A1

∥∇w −∇u∥L2(Φδr) ⩽ ∥∇w −∇T (w)∥L2(Φδr) ⩽ Os (C ∥∇w∥L2(Φδr) r
−γ) .

This gives us an estimate for the second term on the left of (4.90). Since by (4.88),
we have that r ⩾ Ys implies dim(Vδr /R) = dim(A1/R) = d, we deduce that T is
within Os(Cr−γ) of an isometry. If a linear operator on finite dimensional spaces
is within h of an isometry, its inverse is within O(h) of an isometry as well. This
observation yields the estimate for the first term on the left of (4.90).

Now that we have approximated A1 by a local vector space Vδr , we define the
localized version of J(Φr, p, q) by

J
(δ)
1 (0, r, p, q) ∶= sup

w∈Vδr
∫

Φδr

(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) ,

where Φδ
r is the truncated heat kernel defined in (4.89). For future reference, we

note that, for every r ⩾ 1 and s′ < d,
sup

u∈A1(Φr)
∫

Φr−Φδr

∣∇u∣2 ⩽ C ∧Os′ (exp (−cr−2δ)) . (4.102)

This is easy to show from (3.86), (3.99) and (4.25). It is clear that

J
(δ)
1 (0, r, p, q) is F(BT )-measurable.

To complete the proof of Proposition 4.11, it remains to prove the following lemma.

Lemma 4.22. Recall that γ ∈ (0, (α(1 + δ) + δ) ∧ d
s
). There exists a constant

C(γ, δ, s, α, d,Λ) < ∞ such that, for every p, q ∈ B1,

∣J1(Φr, p, q) − J(δ)
1 (0, r, p, q)∣ ⩽ Os (Cr−γ) .

Proof. The main principle underlying the proof is that if we compute the minimum
of a uniformly convex function on a finite dimensional subspace and then perturb
this subspace by h and recompute the minimum, we find that the minimum is
perturbed by O(h).
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Fix p, q ∈ B1. Denote by v(δ)(⋅,0, r, p, q) ∈ K the maximizer in the definition
of J(δ)

1 (0, r, p, q). Write v = v(⋅,Φr, p, q) and v(δ) = v(δ)(⋅,0, r, p, q) for short. By
Lemma 4.21, we can find u ∈ A1 and w ∈ V δ

r such that

∥∇v(δ) −∇u∥
L2(Φδr)

+ ∥∇v −∇w∥L2(Φδr) ⩽ Os (Cr−γ) .
Here we used (4.15) and the fact that a similar bound holds for v(δ) by the same
argument. Using also (4.102), we deduce that

J1(Φr, p, q)
⩾ ∫

Φr
(−1

2
∇u ⋅ a∇u − p ⋅ a∇u + q ⋅ ∇u)

⩾ ∫
Φδr

(−1

2
∇u ⋅ a∇u − p ⋅ a∇u + q ⋅ ∇u) −Os (exp (−cr−2δ))

⩾ ∫
Φδr

(−1

2
∇v(δ) ⋅ a∇v(δ) − p ⋅ a∇v(δ) + q ⋅ ∇v(δ)) −Os (Cr−γ)

= J(δ)
1 (0, r, p, q) − Os (Cr−γ)

and, similarly,

J
(δ)
1 (0, r, p, q) ⩾ ∫

Φδr

(−1

2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w)

⩾ ∫
Φδr

(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v) −Os (Cr−γ)

⩾ ∫
Φr

(−1

2
∇v ⋅ a∇v − p ⋅ a∇v + q ⋅ ∇v) −Os (Cr−γ)

= J(Φr, p, q) − Os (Cr−γ) .
This completes the proof.

4.5 Fluctuation estimates

In this section, we prove Proposition 4.12. The argument is a variation of a classical
proof of the central limit theorem for sums of bounded and i.i.d. (independent and
identically distributed) random variables, which we now summarize. For a random
variable X, we call the mapping

λ↦ logE [exp (λX)]
its Laplace transform. We first observe that the Laplace transform of a single
centered random variable is close to a parabola near λ = 0, and then use this fact
to monitor the behavior of the Laplace transform of the rescaled sums. Passing to
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larger and larger scales, these Laplace transforms approach the parabola on larger
and larger intervals. This implies that the rescaled sums converge in law to the
unique distribution whose Laplace transform is this parabola, that is, a Gaussian.
(See also the paragraph below (5.78) for a more precise discussion.)

It is convenient to introduce a new notation for centered random variables. For
every random variable X, s ∈ (1,2] and θ ∈ (0,∞), we write

X = Os(θ) (4.103)

to mean that ∀λ ∈ R, logE [exp (λθ−1X)] ⩽ λ2 ∨ ∣λ∣ s
s−1 .

It is classical to verify that the assumption of (4.103) implies that X is centered.
Moreover, there exists C(s) < ∞ such that, for every random variable X,

X = Os(1) and E[X] = 0 Ô⇒ X = Os(C).
See Lemma A.7 for a proof of this fact. The key ingredient of the proof of
Proposition 4.12 is the simple observation that a sum of k independent Os(θ)
random variables is Os(√k θ), in agreement with the scaling of the central limit
theorem: see Lemmas A.9 and A.10 in Appendix A.

We begin with a weaker form of Proposition 4.12, which is sufficient to show a
weaker form of Theorem 4.6 with almost optimal (rather than optimal) exponents.
Although we will not use this lemma, its proof is a simpler version of the argument
used below to prove Proposition 4.12 and thus easier to understand on a first
reading.

Lemma 4.23. For every α ∈ (0,∞), β ∈ (0, α ∧ d
2
) and δ ∈ (0, (α−β)(d−2β)

βd ), we have

Add(s,α) and Loc(s,α, δ) Ô⇒ Fluc(s, β).
Proof. Throughout the proof, the value of the constant C(α, s, δ, β, d,Λ) < ∞ may
change from place to place. We fix p, q ∈ B1, and aim to show that for every z ∈ Rd

and r ⩾ 1,
J1(Φz,r, p, q) = E[J1(Φz,r, p, q)] + Os (Cr−β) . (4.104)

Denote by J
(δ)
1 (z, r, p, q) the random variables provided by the assumption of

Loc(s,α, δ), and set

J̃
(δ)
1 (z, r) ∶= J(δ)

1 (z, r, p, q) −E [J(δ)
1 (z, r, p, q)] , (4.105)

where we dropped the dependency on the fixed vectors p, q, ∈ Rd in the notation for
concision. By the construction of J(δ)

1 , in order to prove (4.104), it suffices to show
that for every z ∈ Rd and r ⩾ 1,

J̃
(δ)
1 (z, r) = Os (Cr−β) . (4.106)
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By the assumption of Add(s,α) and Loc(s,α, δ), we have, for every z ∈ Rd and
R ⩾ r ⩾ 1,

J̃
(δ)
1 (z,R) = ∫

Φ
z,
√

R2−r2

J̃
(δ)
1 (⋅, r) + Os (Cr−α) . (4.107)

For R1,C ⩾ 1, we denote by A(R1,C) the statement that for every z ∈ Rd and
r ∈ [1,R1],

J̃
(δ)
1 (z, r) = Os (Cr−β) .

Since 0 ⩽ J1(Φz,r, p, q) ⩽ C, we can assume ∣J̃(δ)
1 (z, r)∣ ⩽ C, and thus for every

R1 ∈ [1,∞), we can find a constant C ∈ [1,∞) such that A(R1,C) holds. In order
to show (4.106) and complete the proof, it thus suffices to show that for every C
sufficiently large and R1 sufficiently large,

A(R1,C) Ô⇒ A(2R1,C). (4.108)

Indeed, this yields the existence of a constant C such that A(R1,C) holds for every
R1 sufficiently large, which means that (4.106) holds.

We thus assume A(R1,C), fix R ∈ (R1,2R1] and z ∈ Rd and aim to show that

J̃
(δ)
1 (z,R) = Os (CCR−β−ε) + Os (CR−β) ,

for some exponent ε(α,β, d) > 0 (recall that the constant C is not allowed to
depend on C). Without loss of generality, we assume that z = 0, fix

r ∶= R β
α , (4.109)

and rewrite the additivity property (4.107) as

J̃
(δ)
1 (0,R) = ∫

Φ√
R2−r2

J̃
(δ)
1 (⋅, r) + Os (CR−β) , (4.110)

We decompose the integral on the right side of (4.110) as

∑
y∈r1+δZd

∫
Φ√

R2−r2

J̃
(δ)
1 (⋅, r)1◻

r1+δ
(y).

For R1 sufficiently large, our choice of r in (4.109) ensures that r ∈ [1,R1], and
therefore, by the induction hypothesis,

∀x ∈ Rd, J̃
(δ)
1 (x, r) = Os (Cr−β) .

By Lemmas A.8 and A.10, we deduce that

∑
y∈r1+δZd

∫
Φ√

R2−r2

J̃
(δ)
1 (⋅, r)1◻

r1+δ
(y) = Os ⎛⎜⎝CCr−β

⎡⎢⎢⎢⎢⎣∑y∈Z (∫
Φ√

R2−r2

1◻
r1+δ

(y))2⎤⎥⎥⎥⎥⎦
1
2⎞⎟⎠ .
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Moreover,

∑
y∈r1+δZd

(∫
Φ√

R2−r2

1◻
r1+δ

(y))2 ⩽ Crd(1+δ)R−d,

so we have shown that

∫
Φ√

R2−r2

J̃
(δ)
1 (⋅, r) = Os (CCr−β+ d2 (1+δ)R− d

2 ) .
Recalling our choice of r in (4.109), we see that

r−β+
d
2
(1+δ)R− d

2 = R−[ d
2
(1− β

α
)+β β

α
]+ d

2
δ,

and since β < d
2 , the exponent between square brackets is larger than β. It thus

suffices to check that δ is sufficiently small to obtain the desired result. That is, we
need to verify that

d

2
(1 − β

α
) + β β

α
− d

2
δ > β.

This condition is equivalent to our assumption δ < (α−β)(d−2β)
βd , so the proof is

complete.

We now turn to the proof of Proposition 4.12, which is a refined version of
Lemma 4.23 above. To guide our intuition, we can compare the behavior of
J1(Φz,r, p, q) with that of a bounded random field with finite range of dependence,
integrated against Φz,r. The additivity and localization properties of the former can
only be less good than those of the latter. For the latter quantity, the significant
overlap between the heat kernel masks makes it difficult to reach the CLT scaling,
if we insist on manipulating only averages of the random field against Φz,r. If we
want to reach the CLT scaling for this simpler quantity via a renormalization-type
argument, it would be more appropriate to consider averages of the original random
fields against masks that are constant on a large cube, and then have a much smaller
transition layer to 0 occupying an asymptotically negligible volume. This would
indeed allow us to decompose larger-scale quantities into a sum of independent
quantities on a smaller scale, plus negligible boundary regions.

In our context, we implement this idea of using “masks with a mesoscopic
transition layer” by considering quantities of the form

⨏◻R J1(Φz,r, p, q)dz (4.111)

for r ⩽ R relatively close to R (on a logarithmic scale). For the toy example
mentioned above, this would amount to considering convolutions of the original
random field against the function

Φ(r, ⋅) ∗ 1◻R∣◻R∣ ,
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which indeed is essentially equal to 1 in ◻R away from the boundary, and essentially
vanishes to 0 over a width of the order of r around the boundary of ◻R. In our
context, it is of course essential that we also make sure that r is sufficiently large
in (4.111), since additivity is not exact.

Proof of Proposition 4.12. Since we assume α > β(1 + δ), there exist exponents
η1 < η2 < 1 such that

η1α > β and η2(1 + δ) < 1. (4.112)

These exponents will serve to describe the interval of allowed values for r in
quantities of the form (4.111). Throughout the proof, the value of the constant
C(α, s, β, δ, η1, η2, d,Λ) < ∞ and of the exponent ε(α,β, δ, η1, η2, d) > 0 may change
from place to place without further mention. As in the proof of Lemma 4.23, we fix
p, q ∈ B1 and define J̃(δ)

1 (z, r) by (4.105). Since α > β, in order to prove Fluc(s, β),
it suffices to show that for every R ⩾ 1 and z ∈ Rd, we have

J̃
(δ)
1 (z,R) = Os (CR−β) . (4.113)

Recall from (4.107) and Lemma A.7 that for every z ∈ Rd and R ⩾ r ⩾ 1, we have
the additivity property

J̃
(δ)
1 (z,R) = ∫

Φ
z,
√

R2−r2

J̃
(δ)
1 (⋅, r) + Os (Cr−α) . (4.114)

For R1,C ⩾ 1, we let A(R1,C) denote the statement that for every R ∈ [1,R1],
r ∈ [Rη1 ,Rη2], z ∈ Rd, and every (deterministic) function f ∈ L∞(Rd) satisfying∥f∥L∞(Rd) ⩽ 1, we have

⨏◻R(z)
f J̃

(δ)
1 (⋅, r) = Os (CR−β) .

We focus on showing that

there exists C < ∞ such that, for every R ⩾ 1, A(R,C) holds. (4.115)

Since 0 ⩽ J(z, r, p, q) ⩽ C, we can assume that ∣J̃(δ)
1 (z, r)∣ ⩽ C. It is therefore

clear that for every given R1, we can find C sufficiently large that A(R1,C) holds.
In order to prove (4.115), it therefore suffices to show that for every C and R1

sufficiently large,

A(R1,C) Ô⇒ A(2R1, (1 +R−ε
1 )C). (4.116)

Hence, we assume that A(R1,C) holds for possibly large values of R1 and C, give
ourselves R ∈ (R1, 2R1], r ∈ [Rη1 ,Rη2], z ∈ Rd and a function f ∈ L∞(Rd) satisfying∥f∥L∞(Rd) ⩽ 1, and aim to show that

⨏◻R(z)
f J̃

(δ)
1 (⋅, r) = Os (C(1 +R−ε)R−β) + Os (CCR−β−ε) . (4.117)
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For notational convenience, we fix z = 0 from now on. Roughly speaking, in order
to reduce the proof of (4.117) to an application of the induction hypothesis, we
will first lower the value of r to

r1 ∶= (R
2
)η1 (4.118)

in the expression on the left side of (4.117), using additivity; and then lower the
value of R to R

2 , by chopping the integral. We do each of these operations in the
next two steps.

Step 1. For r1 as defined in (4.118), define

g ∶= (f1◻R) ∗Φ (⋅, r2 − r2
1) .

Note that ∥g∥L∞(Rd) ⩽ 1. In this step, we show that

⨏◻R f J̃(δ)
1 (⋅, r) = R−d∫

Rd
g J̃

(δ)
1 (⋅, r1) + Os (CR−β−ε) . (4.119)

By (4.114), we have, for every x ∈ Rd,

J̃
(δ)
1 (x, r) = ∫

Φ
x,

√

r2−r2
1

J̃
(δ)
1 (⋅, r1) + Os (Cr−α1 ) .

Recalling the choice of η1 in (4.112), we see that the O term above can be replaced
by Os (CR−β−ε). Multiplying the last display by f(x), integrating over ◻R and
using Lemma A.8, we get

⨏◻R f J̃(δ)
1 (⋅, r)

= R−d∫◻R ∫Rd
f(x)Φ (y − x, r2 − r2

1) J̃(δ)
1 (y, r1)dy dx +Os (CR−β−ε) .

This is (4.119).
Step 2. We prove (4.117). We first cover the box of side length R +R1−2ε with

2d boxes of side length R
2 at distance at least R1−2ε from one another, and a set of

boxes of side length R1−2ε for the remainder. More precisely, we define

Z ∶= (R
4
+ R1−2ε

2
){−1,1}d,

a subset of Rd with 2d elements. The set

◻R+R1−2ε ∖ ⋃
z∈Z
◻R

2
(z)
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can be covered (up to a set of null measure) with the non-overlapping boxes

⋃
z∈Z′

◻R1−2ε(z),
for some Z ′ ⊆ R1−2εZd such that

∣Z ′∣ ⩽ CR2ε(d−1). (4.120)

Up to a set of null measure, the complementary set

Rd ∖ (⋃
z∈Z
◻R

2
(z) ∪ ⋃

z∈Z ′
◻R1−2ε(z))

is contained in Rd ∖◻R+R1−2ε . Since

x ∈ Rd ∖◻R Ô⇒ R−dg(x) ⩽ C exp(− ∣x∣2
Cr2

1

) , (4.121)

and ∣J̃(δ)
1 (x, r1)∣ ⩽ C, we have, for ε > 0 sufficiently small that 1 − 2ε > η1,

RRRRRRRRRRRR
−d∫

Rd∖(⋃z∈Z ◻R
2
(z)∪⋃z∈Z′ ◻R1−2ε(z))

g J̃
(δ)
1 (⋅, r1)RRRRRRRRRRR ⩽ CR

−100d

almost surely. We treat the remaining parts of the integral separately, starting
with ⋃z∈Z ◻R

2
(z). By the definition of J̃(δ)

1 (z, r1), the random variables

⎛⎝∫◻R
2
(z)
g J̃

(δ)
1 (⋅, r1)⎞⎠

z∈Z

are independent. By the induction hypothesis, each satisfies

(R
2
)−d∫◻R

2
(z)
g J̃

(δ)
1 (⋅, r1) = Os (C(R

2
)−β) .

Hence, by Lemma A.9, we deduce that

R−d∑
z∈Z
∫◻R

2
(z)
g J̃

(δ)
1 (⋅, r1) = Os (2β−

d
2CR−β) .

Since β ⩽ d
2 , this implies

R−d∑
z∈Z
∫◻R

2
(z)
g J̃

(δ)
1 (⋅, r1) = Os (CR−β

1 ) .
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It remains to analyze the contribution of the integral over ⋃z∈Z′ ◻R1−2ε(z). For
ε > 0 sufficiently small (and R1 sufficiently large), we have

r1 = (R
2
)η1 ∈ [R(1−2ε)η1 ,R(1−2ε)η2].

We can thus apply the induction hypothesis and obtain

R−d(1−2ε)∫◻R1−2ε(z)
g J̃

(δ)
1 (⋅, r1) = Os (CR−β(1−2ε)) .

Using Lemma A.10 and (4.120), we deduce that

R−d ∑
z∈Z ′

∫◻R1−2ε(z)
g J̃

(δ)
1 (⋅, r1) = Os (CCR−2dε+(d−1)ε−β(1−2ε)) .

The exponent on the right side above can be rewritten as

−[β + ε + ε (d − 2β)] .
Since we assume β ⩽ d

2 , this completes the proof of (4.117), and therefore of (4.115).
Step 3. We have thus shown that for every R ⩾ 1, r ∈ [Rη1 ,Rη2], z ∈ Rd, and

every function f ∈ L∞(Rd) satisfying ∥f∥L∞(Rd) ⩽ 1, we have

⨏◻R(z)
f J̃

(δ)
1 (⋅, r) = Os (CR−β) . (4.122)

We now use additivity once more to show that this implies (4.113). We fix r = Rη1

and apply (4.114) to get

J̃
(δ)
1 (0,R) = ∫

Φ√
R2−r2

J̃
(δ)
1 (⋅, r) + Os (Cr−α) .

By the choice of η1 in (4.112), the O term on the right side can be replaced byOs (CR−β). We then decompose the integral on the right side above as

∑
z∈RZd

∫◻R(z)
Φ√

R2−r2 J̃
(δ)
1 (⋅, r).

By (4.122), we have, for every z ∈ RZd,
R−d∫◻R(z)

Φ√
R2−r2 J̃

(δ)
1 (⋅, r) = Os (C∥Φ√

R2−r2∥L∞(◻R(z))R
−β) .

Moreover, by a Riemann sum argument, we verify that

∑
z∈RZd

∥Φ√
R2−r2∥L∞(◻R(z)) ⩽ CR−d.

By Lemma A.4, we therefore obtain

∫
Φ√

R2−r2

J̃
(δ)
1 (⋅, r) = Os (CR−β) .

This is (4.113), so the proof is complete.
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4.6 Corrector estimates in weak norms

In this section, we demonstrate that Theorem 4.6 implies Theorem 4.1, with the
exception of the final estimate (4.7), which is proved in Section 4.7. Much of the
work is already implicit in Section 4.3, namely in the estimate (4.60). This estimate
and Theorem 4.6 imply the first three estimates of Theorem 4.1 on the spatial
averages of the gradient, flux and energy density of the first-order correctors. The
estimates (4.5) and (4.6) on the oscillation of the correctors themselves are obtained
from these, as expected, by an appropriate version of the multiscale Poincaré
inequality, Lemma 4.19 in this case. The final “almost pointwise” estimate (4.7)
on the oscillation of φe in dimension d = 2 requires a more subtle analysis which is
postponed to Section 4.7.

We will actually prove something more than the statement of Theorem 4.1 by
allowing for spatial averages against more general masks Ψ than the heat kernel Φr.
In particular, we would like to be able to take compactly supported functions but,
to have the best estimates, it is necessary to take them sufficiently smooth. It turns
out to be convenient to take Sobolev functions (with possibly a fractional order).
It is therefore natural to write the estimates we seek in terms of the W −α,p(B1)
norms of rescalings of the gradients, fluxes and energy densities of the correctors.
The main result is stated in the following theorem. Recall that ζε is the standard
mollifier defined in (0.15).

Theorem 4.24 (Corrector estimates in W −α,p). Fix s ∈ (0,2), α ∈ (0,∞) and
p ∈ [2,∞). There exist C(s,α, p, d,Λ) < ∞ and δ(α, d,Λ) > 0 such that, for every
r ∈ [1,∞), e ∈ ∂B1 and ε ∈ (0, 1

2
],

∥∇φe ( ⋅
ε
) ∗ ζε∥W−α,p(B1)

+ ∥(a ( ⋅
ε
) (e +∇φe ( ⋅

ε
))) ∗ ζε − ae∥

W−α,p(B1)+ ∥(1
2
(e +∇φe ( ⋅

ε
)) ⋅ a ( ⋅

ε
) (e +∇φe ( ⋅

ε
))) ∗ ζε − 1

2e ⋅ ae∥W−α,p(B1)

⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O2+δ (Cεα) if α < d
2 ,Os (Cε d2 ∣log ε∣ 12) if α = d
2 ,

Os (Cε d2 ) if α > d
2 .

(4.123)

The reason for convolving the small scales with the standard mollifier ζε is that,
without further assumptions on the coefficients, we cannot expect to control the
regularity of the correctors on scales smaller than the correlation length scale (which
in this case is ε) beyond what deterministic elliptic regularity estimates provide. In
particular, we cannot improve the integrability of their gradients beyond what the
Meyers estimate gives. As we have explained in other contexts, these small scales
do not concern homogenization and it is therefore natural to ignore them. The
mollifier allows us to do just that. In the case p = 2 (or p slightly larger than 2, by
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the Meyers estimate), we can control the first two terms on the right side of (4.123)
without the mollifier. An estimate we have without the mollifier is, for instance:

∥∇φe ( ⋅
ε
)∥
H−α(B1)

+ ∥a ( ⋅
ε
) (e +∇φe ( ⋅

ε
)) − ae∥

H−α(B1)

⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O2+δ (Cεα) if α < d
2 ,Os (Cε d2 ∣log ε∣ 12) if α = d
2 ,

Os (Cε d2 ) if α > d
2 .

(4.124)

Similarly, (4.123) holds for every p ∈ [2,∞) without ζε provided we work under
the additional assumption that the coefficient field a(x) is uniformly continuous
(with the constant C depending additionally on the modulus of continuity). In the
course of the proof of Theorem 4.24, we will indicate where the argument should
be modified to obtain these results.

Theorem 4.24 is obtained from Theorem 4.1 and some functional inequalities
which transfer estimates on the spatial averages of a function f against translates
of the heat kernel into estimates on ∥f∥W−α,p(B1) for general α > 0 and p ∈ (1,∞).

We proceed now with the proof of most of Theorem 4.1.

Proof of Theorem 4.1, with the exception of (4.7). Step 1. We prove (4.2), (4.3)
and (4.4). These estimates are a straightforward consequence of Theorem 4.6 and
the basic properties of J1.

Fix s ∈ (0,2). According to Theorem 4.6,

∣J1(Φr, p, q) − (1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q)∣ ⩽ Os (Cr− d2 ) . (4.125)

Theorem 4.6 also implies that Fluc (s, d2) holds and thus we may use Lemma 4.17
to obtain that, for every r ⩾ 1 and p, q ∈ B1,

∥∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q)∥L2(Φr)
⩽ Os (Cr− d2 ) . (4.126)

Recall that, by (4.16), for every e, p, q ∈ Rd,

p ⋅ ∫
Ψ
a∇v(⋅,Ψ,−e,0) = J1(Ψ,−e + p,0) − J1(Ψ,−e,0) − J1(Ψ, p,0) (4.127)

and

q ⋅ ∫
Ψ
∇v(⋅,Ψ,−e,0) = J1(Ψ,−e, q) − J1(Ψ,−e,0) + J1(Ψ,0, q). (4.128)

We also have that, by (4.14),

J1(Ψ, p, q) = ∫
Φr

1

2
∇v(⋅,Ψ, p, q) ⋅ a∇v(⋅,Ψ, p, q).
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The above identities, (4.125), (4.126) and the triangle inequality now give the desired
bounds (4.2), (4.3) and (4.4). For the latter we also use the upper bound (4.15).

Step 2. We prove (4.5) and (4.6) by combining the bound (4.2) for the spatial
averages of the gradient of the corrector with the multiscale Poincaré inequality,
Lemma 4.19. Applying the latter to φe − (φe ∗ΦR)(0) for fixed e ∈ ∂B1 yields

∫
ΨR

∣φe(y) − (φe ∗ΦR)(0)∣2 dy ⩽ C ∫
ΨR

∣(φe ∗ΦR) (y) − (φe ∗ΦR)(0)∣2 dy
+C ∫ R2

0
∫

ΨR

∣(∇φe ∗Φ√
t) (y)∣2 dy dt. (4.129)

In dimensions d > 2, we use Lemma A.3 to interpolate between (3.87) and (4.2).
We take ε ∈ (0, 1

2), set
s ∶= {2 if d = 2,

2 + ε if d > 2,

and obtain, for every s′ < s and x ∈ Rd,

∣∫
Φx,r

∇φe∣ ⩽ Os′ (Cr− ds ) . (4.130)

This and Lemma A.4 imply that, for every x, y ∈ Rd,

∣φe ∗ΦR(y) − φe ∗ΦR(x)∣ = ∣∫ 1

0
(y − x) ⋅ ∇φe ∗ΦR(ty + (1 − t)x)dt∣

⩽ ∣y − x∣ ∫ 1

0
∣∇φe ∗ΦR(ty + (1 − t)x)∣ dt

⩽ Os′ (C ∣y − x∣R− d
s ) . (4.131)

We thus obtain the following estimate for the first term on the right side of (4.129):

∫
ΨR

∣(φe ∗ΦR) (y) − (φe ∗ΦR)(0)∣2 dy ⩽ Os′/2 (CR− 2d
s ∫

Rd
∣y∣2ΨR(y)dy)

⩽ Os′/2 (CR2− 2d
s )

⩽ Os′/2(C).
We split the second term on the right side of (4.129) into small scales and large
scales. The small scales we crudely estimate using (3.87):

∫ 1

0
∫

ΨR

∣(∇φe ∗Φ√
t) (y)∣2 dy dt ⩽ C ∫

ΨR
∣∇φe(y)∣2 dy ⩽ Os′/2(C). (4.132)
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For the large scales, we use (4.130) and Lemma A.4:

∫ R2

1
∫

ΨR

∣(∇φe ∗Φ√
t) (y)∣2 dy dt ⩽ Os′/2 (C ∫ R2

1
t−

d
2 dt)

= {Os′/2 (C logR) if d = 2,Os′/2(C) if d > 2.

Combining the above inequalities yields, for every s′ < s,
∫

ΨR
∣φe(y) − (φe ∗ΦR)(0)∣2 dy ⩽ {Os′/2 (C logR) if d = 2,Os′/2(C) if d > 2.

(4.133)

Note that in dimension d = 2 we have now completed the proof of (4.6).
To complete the proof in dimensions d > 2 of (4.5) and the statement preceding

it, we next perform a variant of the above estimates to show that, with s < 5
2 as

above, for every s′ < 2, we have

∣φe ∗Φ2R(x) − φe ∗ΦR(x)∣ ⩽ Os′ (CR1− d
s ) . (4.134)

Note that this inequality makes sense even though φe is only well-defined, a priori,
up to an additive constant. By (4.131) and Lemma A.4, we have

∣φe ∗Φ2R(x) − φe ∗ΦR(x)∣ = ∣∫
Φ√

3R

(φe ∗ΦR(y + x) − φe ∗ΦR(x)) dy∣
⩽ ∫

Φ√
3R

∣φe ∗ΦR(y + x) − φe ∗ΦR(x)∣ dy
⩽ ∫

Φ√
3R

Os (C ∣y∣R− d
s ) dy

⩽ Os′ (CR1− d
s ) .

Now, in dimensions d > 2, since d
s > 1, we find that the sequence

{φe(x) − φe ∗Φ2n(x)}n∈N
is Cauchy, P–a.s. We denote its limit by φe(x) − (φe)∞(x). By (4.131), we see
that the quantity (φe)∞(x) exists for every x ∈ Rd, P–a.s., and is independent
of x. We denote this deterministic constant by (φe)∞. We may therefore select the
additive constant for φe in a stationary way by requiring that (φe)∞ = 0 and obtain
a stationary random field. Note that, by the estimates above,

∣φe ∗ΦR(x)∣ ⩽ ∑
k∈N

∣φe ∗Φ2kR(x) − φe ∗Φ2k+1R(x)∣ ⩽ Os′(C).
This completes the proof of (4.5).
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In the next lemma, we squeeze some further information from the previous
argument by showing that, up to a small error, the spatial averages of the gradient,
flux and energy density of the first-order correctors are equivalent to the quantity J1.

Lemma 4.25. For every α ∈ (0, d] and s ∈ (0,2 ∧ d
α
), there exists C(α, s, d,Λ) < ∞

such that, for every p, q ∈ B1, x ∈ Rd and r ⩾ 1,

∣J1(Φx,r, p, q) − 1

2 ∫Φx,r
(−p ⋅ a∇φ(−p+ā−1q) + q ⋅ ∇φ(−p+ā−1q))∣ ⩽ Os (Cr−α) (4.135)

and

∣J1(Φx,r, p, q) − 1

2 ∫Φx,r
∇φ(−p+ā−1q) ⋅ a∇φ(−p+ā−1q)∣ ⩽ Os (Cr−α) . (4.136)

Proof. By Theorem 4.6, Fluc (s, d2) holds for every s ∈ (0, 2). Therefore Lemma 4.17
holds for α = d

2 and s ∈ (0, 2) which, in view of (4.13) and (4.14), implies the lemma
for such α and s. It therefore suffices by Lemma A.3 to prove the lemma in the
case α = d and s ∈ (0,1).

The second estimate (4.136) is actually an immediate consequence of (4.19)
and (4.126). To prove the first estimate (4.135), we recall that, by (4.13) and (4.14),

J1(Φx,r, p, q) = 1

2 ∫Ψ
(−p ⋅ a∇v(⋅,Φx,r, p, q) + q ⋅ ∇v(⋅,Φx,r, p, q)) . (4.137)

To obtain (4.135), it suffices therefore to establish that, for each s ∈ (0,2), there
exists a constant C(s, d,Λ) < ∞ such that, for every p, q ∈ B1, x ∈ Rd and r ⩾ 1,

∣∫
Φx,r

(∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q))∣ ⩽ Os/2 (Cr−d) (4.138)

and

∣∫
Φx,r

a (∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q))∣ ⩽ Os/2 (Cr−d) . (4.139)

As ∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q) ∈ ∇A1, we have, by (4.2), (4.25) and (4.126),

∣∫
Φx,r

(∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q))∣1{Ysd/2(x)⩽r}

⩽ Os (Cr− d2 ∥∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q)∥L2(Φr)
) ⩽ Os/2 (Cr−d) .
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On the other hand, (4.24) and (4.25) imply that

∣∫
Φx,r

(∇v(⋅,Φr, p, q) − ∇φ(−p+ā−1q))∣1{Ysd/2(x)⩾r}

⩽ C (∥∇v(⋅,Φr, p, q)∥L2(Φx,r) + ∥∇φ(−p+ā−1q)∥L2(Φx,r)
)1{Ys(x)⩾r}

⩽ C ⎛⎝1 + (Ysd/2(x)
r

)
d
2 ∥∇φ(−p+ā−1q)∥L2(Φx,Ysd/2(x)

)

⎞⎠1{Ysd/2(x)⩾r}

⩽ C (Ysd/2(x)
r

)
d
2

1{Ys(x)⩾r}

⩽ Os/2 (Cr−d) .
Combining these yields (4.138). The argument for (4.139) is almost identical. The
proof of (4.135) is complete.

Remark 4.26. Theorem 3.6 asserts that Ak+1/Ak and Ak+1/Ak are canonically
isomorphic vector spaces, for every k ∈ N, in the sense that an isomorphism can be
chosen which is invariant under translation of the coefficients. The final paragraph
of the proof of Theorem 4.1, which proves that φe exists as a stationary random
field, also proves the essentially equivalent statement that this isomorphism in the
case k = 0 can be extended to a canonical isomorphism between A1 and A1 in
dimensions d > 2. It is an open problem to identify a canonical isomorphism for
the space Ak+⌈ d

2
⌉/Ak.

We now give the proof of Theorem 4.24 by combining Theorem 4.1 with the
functional inequalities in Appendix D.

Proof of Theorem 4.24. We give only the proof of the estimates for the gradient of
the correctors. The arguments for the bounds for the flux and energy density are
almost identical. It is convenient to denote Ψ(x) ∶= exp (−∣x∣).

Fix α ∈ (0,∞), p ∈ [2,∞) and ε ∈ (0, 1
2
]. Denote

fε ∶= ∇φe ( ⋅
ε
) ∗ ζε.

We intend to apply the inequalities of Remark D.6 to fε. In the case α ∈ N we
use (D.23), while if α /∈ N we apply (D.24). In order to prepare for the application
of these, we first use Theorem 4.1 to estimate ∣(fε ∗Φ(t, ⋅)) (x)∣. What the theorem
gives us is that, for every x ∈ Rd and t ⩾ ε2,

∣(fε ∗Φ(t, ⋅)) (x)∣ ⩽ Os (C (εt− 1
2) d2) . (4.140)
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Indeed, by Lemma A.4,

∣(fε ∗Φ(t, ⋅)) (x)∣ = ∣∫
Rd
∫
Rd

Φ(t, x − y)∇φe (y − z
ε

) ζε(z)dz dy∣
= ∣∫

Rd
∫
Rd

Φ( t
ε2
, x − y

ε
)∇φe (y

ε
− z) ζ(z)dz dy∣

⩽ ∫
Rd
ζ(z) ∣∫

Rd
Φ( t

ε2
, x − y

ε
)∇φe (y

ε
− z) dy∣ dz

⩽ Os (C (εt− 1
2) d2) .

We will use this inequality for the larger scales (t ⩾ ε2) but we still need something
to control the small scales. These are handled rather crudely using (3.87) and
Young’s inequality for convolutions. The claim is that there exists δ(d,Λ) > 0 such
that, for every t > 0,

∥fε ∗Φ(t, ⋅)∥Lp(Ψ) ⩽ O2+δ (C) . (4.141)

To obtain this, we simply use Young’s inequality for convolutions to get

∥fε ∗Φ(t, ⋅)∥Lp(Ψ) ⩽ ∥fε∥Lp(Ψ) ∥Φ (t, ⋅)∥L1(Ψ) ⩽ ∥fε∥Lp(Ψ) .

The right side is controlled by (3.87) and Lemma A.4:

∥fε∥pLp(Ψ) = ∫Rd
Ψ(x) ∣∫

Rd
∇φ(y − x

ε
) ζε(y)dy∣p dx ⩽ ∫

Rd
Ψ(x) ∥∇φ∥pL2(B1(x/ε)) dx

⩽ O(2+δ)/p(C).
It is here, in the proof of (4.141), that we used the mollifier ζε. If we were working
in the case p = 2 or under the assumption that the coefficients are uniformly
continuous, we could obtain the same estimate without ζε in the definition of fε.

Now we are ready to use the multiscale Poincaré-type functional inequalities.
We must split the argument into two cases, depending on whether α ∈ N or not.
We first assume that α ∈ N and apply (D.23), which gives us

∥fε∥W−α,p(B1) ⩽ C (∫
Rd

Ψ(x) (∫ 1

0
(tα2 ∣fε ∗ (Φ(t, ⋅)) (x)∣)2 dt

t
) p2 dx)

1
p

⩽ C (∫
Rd

Ψ(x) (∫ 1

ε2
(tα2 ∣fε ∗ (Φ(t, ⋅)) (x)∣)2 dt

t
) p2 dx)

1
p

+C ⎛⎝∫Rd
Ψ(x)(∫ ε2

0
(tα2 ∣fε ∗ (Φ(t, ⋅)) (x)∣)2 dt

t
)
p
2

dx
⎞⎠

1
p

.
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To estimate the first term, we use (4.140) and Lemma A.4 to get

∫ 1

ε2
(tα2 ∣fε ∗ (Φ(t, ⋅)) (x)∣)2 dt

t

⩽ ∫ 1

ε2
tαOs/2 (C (εt− 1

2)d) dt

t
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O(2+δ)/2 (Cε2α) if α < d

2 ,Os/2 (Cεd ∣log ε∣) if α = d
2 ,Os/2 (Cεd) if α > d
2 .

We remark that, to get the extra δ > 0 in the first line above, we used α < d
2 , (4.141)

and Os–interpolation, i.e., Lemma A.3(ii). Using Lemma A.4 again, we obtain

(∫
Rd

Ψ(x) (∫ 1

ε2
(tα2 ∣fε ∗ (Φ(t, ⋅)) (x)∣)2 dt

t
) p2 dx)

1
p

⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O(2+δ) (Cεα) if α < d
2 ,Os (Cε d2 ∣log ε∣ 12) if α = d
2 ,

Os (Cε d2 ) if α > d
2 .

The second term is controlled by (4.141), Jensen’s inequality and Lemma A.4:

∫
Rd

Ψ(x)(∫ ε2

0
(tα2 ∣fε ∗ (Φ(t, ⋅)) (x)∣)2 dt

t
)
p
2

dx

⩽ Cεpα∫
Rd
∫ ε2

0
Ψ(x) ∣fε ∗ (Φ(t, ⋅)) (x)∣p dt

t1−αε2α
dx

⩽ O(2+δ)/p (Cεpα)
Combining the previous two displays yields the theorem in the case α ∈ N.

We next consider the case α ∈ (0,∞) ∖N. An application of (D.24) gives us

∥fε∥W−α,p(B1) ⩽ C (∫ 1

0
(tα2 ∥fε ∗Φ(t, ⋅)∥Lp(Ψ))p dtt ) 1

p

.

As before, we split up the integral over time (which represents the square of
the length scale) so that we may handle large scales and small scales differently.
Using (4.141) and Lemma A.4, we have

∫ ε2

0
(tα2 ∥fε ∗Φ(t, ⋅)∥Lp(Ψ))p dtt ⩽ ∫ ε2

0
tpα/2−1O(2+δ)/p(C)dt

⩽ O(2+δ)/p (∫ ε2

0
tpα/2−1 dt)

= O(2+δ)/p (Cεpα) .
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For the large scales, we use (4.140) and Lemma A.4 (twice) to find that

∫ 1

ε2
(tα2 ∥fε ∗Φ(t, ⋅)∥Lp(Ψ))p dtt = ∫ 1

ε2
tpα/2−1∫

Rd
Ψ(x) ∣(fε ∗Φ(t, ⋅)) (x)∣p dxdt

⩽ ∫ 1

ε2
Os/p (C (εt− 1

2) pd2 ) dt
⩽ Os/p (Cε pd2 ∫ 1

ε2
t
p
2
(α− d

2
)−1 dt) .

Taking the pth root yields

(∫ 1

ε2
(tα2 ∥fε ∗Φ(t, ⋅)∥Lp(Ψ))p dtt ) 1

p ⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O(2+δ) (Cεα) if α < d
2 ,Os (Cε d2 ∣log ε∣ 12) if α = d
2 ,

Os (Cε d2 ) if α > d
2 .

As above, we note that the extra δ > 0 in the first line was obtained by using
α < d

2 , (4.141) and Os–interpolation, Lemma A.3(ii). Combining this with the
estimate for the small scales gives us the desired estimate in the case α /∈ N. This
completes the proof of the theorem.

4.7 Corrector oscillation estimates in two dimensions

In this section we complete the proof of Theorem 4.1 by obtaining the estimate (4.7)
in dimension d = 2. Recall that this estimates asserts, for each s ∈ (0,2), the
existence of C(s,Λ) < ∞ such that, for every x, y ∈ R2 and r,R ∈ [2,∞) with r ⩽ R,
we have

∣(φe ∗Φr) (x) − (φe ∗ΦR) (y)∣ ⩽ Os (C log
1
2 (2 + R + ∣x − y∣

r
)) . (4.142)

Throughout we fix s ∈ (0,2). By a variant of the argument leading to (4.133)
in the previous section, we have, in d = 2, a constant C(s,Λ) < ∞ such that, for
every s ∈ (0,2), r,R ∈ [2,∞) with r ⩽ R,

∫
ΨR

∣(φe ∗Φr)(y) − (φe ∗ΦR)(0)∣2 dy ⩽ Os/2 (C log (2 + R
r
)) . (4.143)

Moreover, we have already shown in (4.131) that for some C(s,Λ) < ∞, we have,
for every x, y ∈ R2 and R ⩾ 2,

∣φe ∗ΦR(y) − φe ∗ΦR(x)∣ ⩽ Os (C ∣y − x∣R−1) . (4.144)

To obtain (4.142), it therefore suffices by the triangle inequality and stationarity
to prove the inequality in the case x = y = 0 and 2r ⩽ R. In other words, we will
prove the statement of the following proposition.
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Proposition 4.27. Suppose that d = 2. For each s ∈ (0, 2), there exists C(s,Λ) < ∞
such that, for every r,R ∈ [2,∞) with 2r ⩽ R,

∣(φe ∗Φr) (0) − (φe ∗ΦR) (0)∣ ⩽ Os (C log
1
2 (R

r
)) . (4.145)

The proof of Proposition 4.27 is delicate because the scaling of the estimate
is in some sense critical. Before embarking on its proof, let us see that a slightly
suboptimal version, in which we give up a square root of the logarithm, has a very
easy proof. Thes suboptimal estimate states that, for some C(s,Λ) < ∞ and every
r,R ∈ [2,∞) with 2r ⩽ R,

∣(φe ∗Φr) (0) − (φe ∗ΦR) (0)∣ ⩽ Os (C log (R
r
)) . (4.146)

This follows from the identity

(φe ∗Φr) (0) − (φe ∗ΦR) (0) = ∫ R2

r2
∫
R2
∇Φ(t, x) ⋅ ∇φe(x)dxdt

= ∫ R2

r2
∫
R2
∇Φ ( t

2 , y) ⋅ ∫R2
Φ ( t

2 , x − y)∇φe(x)dxdy dt,
which we can crudely estimate using (4.2): we obtain

∣(φe ∗Φr) (0) − (φe ∗ΦR) (0)∣
⩽ ∫ R2

r2
∫
R2

∣∇Φ ( t
2 , y)∣ ∣∫R2

Φ ( t
2 , x − y)∇φe(x)dx∣ dy dt

⩽ ∫ R2

r2
Os (Ct−1) dt = Os (C log (R

r
)) .

This is (4.146).
If we believe that (4.145) is correct, then we should ask ourselves where our

proof of (4.146) was inefficient. The first identity split our quantity into a sum (or
integral) of spatial averages of ∇φe, and we showed that each of the dyadic scales
between r and R contributed Os(C) (where a “dyadic scale” corresponds, roughly,
to t in an interval [2kr,2k+1r)). Since there are log (R

r
) many dyadic scales, this

gives the estimate (4.146) by the triangle inequality. If we hypothesize, however,
that the contributions of these dyadic scales are decorrelated, we may expect that
the variance of the quantity is proportional to log (R

r
), giving us an improvement

by a square root of the logarithm. This is exactly what we will show.

Proof of Proposition 4.27. Fix s ∈ (1, 2) and r,R ∈ [2,∞) with 2r ⩽ R. We will use
the following rescaled version of (4.124): for every L ⩾ 1 and f ∈H2

0 (BL),
∣∫

R2
f(x)∇φe(x)dx∣ ⩽ Os (CL3 ∥f∥H2(BL)) . (4.147)
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As in the proof of the suboptimal bound (4.146), we start from the formula

(φe ∗Φr)(0) − (φe ∗ΦR)(0) = ∫
R2
∇H(x) ⋅ ∇φe(x)dx (4.148)

where

H(x) ∶= ∫ R2

r2
Φ(t, x)dt.

Step 1. We split the integral into dyadic annuli. We write

∫
R2
∇H(x) ⋅ ∇φe(x)dx = ∞∑

k=0
∫
R2
ηk(x)∇H(x) ⋅ ∇φe(x)dx, (4.149)

where {ηk}k⩾0 ⊆ C∞
c (R2) is a partition of unity subordinate to {Ak}k⩾0, with

A0 ∶= Br and Ak ∶= Br2k ∖Br2k−2 , ∀k ⩾ 1,

with the following properties:

0 ⩽ ηk ⩽ 1 in R2,
∞∑
k=0

ηk ≡ 1 in R2, ηk ≡ 0 in R2 ∖Ak,
as well as the regularity bounds

∥∇mηk∥L∞(Ak) ⩽ Cm (r2k)−m ∀m ∈ N, (4.150)

and the dilation symmetry property

ηk(x) = η1(21−kx), ∀k ⩾ 2. (4.151)

Such a partition of unity can be constructed explicitly. With ζε the standard
mollifier defined in (0.15), we take

η0 ∶= 1B 3
4 r
∗ ζ 1

4
r and η1(x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1R2∖B 3

4 r
∗ ζ 1

4
r) (x), if x ∈ Br,

(1B 3
2 r
∗ ζ 1

2
r) (x), if x ∈ R2 ∖Br.

Then for each k ⩾ 2 we let ηk be defined by (4.151).
Step 2. We show that, for every k ∈ N,

∣∫
R2
ηk(x)∇H(x) ⋅ ∇φe(x)dx∣ ⩽ Os (C exp(−(r2k)2

CR2
)) . (4.152)

By (4.147) it suffices to check that

(2kr)3 ∥ηk∇H∥H2(Br) ⩽ C exp(−(r2k)2

CR2
) .
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This follows from straightforward computations. Indeed, for every x ∈ Ak and
m ∈ N, we have

∣∇mH(x)∣ ⩽ ∫ R2

r2
∣∇mΦ(t, x)∣ dt ⩽ C ∫ R2

r2
t−

m
2
− d

2 exp(−r222k

Ct
) dt

⩽ C (r2k)−m exp(−(r2k)2

CR2
) .

Combining this with (4.150), we obtain, for each m ∈ N,
∥∇m (ηk∇H)∥L∞(Ak) ⩽ C (r2k)−(m+1)

exp(−(r2k)2

CR2
) , (4.153)

Thus in particular ∥ηk∇H∥W 2,∞(B
r2k

) ⩽ C (r2k)−3
exp(− (r2k)2

CR2 ).
Step 3. Let k∗ ∈ N be chosen so that R < r2k∗ ⩽ 2R and let G(x) denote the

elliptic Green function for −∆, that is,

G(x) ∶= − 1

2π
log ∣x∣ = ∫ ∞

0
Φ(t, x)dt. (4.154)

The goal of this step is to show that there exists C(s,Λ) < ∞ such that

k∗∑
k=1

∣∫
R2
ηk(x) (∇H(x) − ∇G(x)) ⋅ ∇φe(x)dx∣ ⩽ Os(C). (4.155)

As an intermediate step, we first show that, for every x ∈ B2R ∖Br,

∣∇mG(x) − ∇mH(x)∣ ⩽ Cr−m exp(− ∣x∣2
Cr2

) +CR−m. (4.156)

In view of (4.154), we have that

∣∇mG(x) − ∇mH(x)∣ ⩽ ∫ r2

0
∣∇mΦ(t, x)∣ dt + ∫ ∞

R2
∣∇mΦ(t, x)∣ dt.

For each ∣x∣ > r, we have

∫ r2

0
∣∇mΦ(t, x)∣ dt ⩽ C ∫ r2

0
t−1−m

2 exp(−∣x∣2
Ct

) dt ⩽ Cr−m exp(− ∣x∣2
Cr2

) .
For each ∣x∣ < 2R, we have

∫ ∞

R2
∣∇mΦ(t, x)∣ dt ⩽ C ∫ ∞

R2
t−1−m

2 dt = CR−m.
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Combining these yields (4.156). Using (4.150) and (4.156), we obtain, for each
k ∈ {1, . . . , k∗},

∥∇m (ηk (∇G −∇H))∥L∞(Ak) ⩽ C (r2k)−(m+1)
exp (−c22k) +CR−1 (r2k)−m .

In particular, for each k ∈ {1, . . . , k∗},
(r2k)3 ∥ηk (∇G −∇H)∥H2(B

r2k
) ⩽ C (r2k)3 ∥ηk (∇G −∇H)∥W 2,∞(Ak)⩽ C (R−1r2k + exp (−c22k)) .

Applying (4.147), we obtain, for each k ∈ {1, . . . , k∗},
∣∫

R2
ηk(x) (∇G(x) − ∇H(x)) ⋅ ∇φe(x)dx∣ ⩽ Os (C (R−1r2k + exp (−c22k))) .

Using Lemma A.4 to sum the previous display over k ∈ {1, . . . , k∗}, we obtain

k∗∑
k=1

∣∫
R2
ηk(x) (∇H(x) − ∇G(x)) ⋅ ∇φe(x)dx∣ ⩽ Os(C).

This completes the proof of (4.155).
Step 4. We summarize the results of previous steps. The claim is that

∣(φe ∗Φr)(0) − (φe ∗ΦR)(0) − k∗∑
k=1
∫
R2
ηk(x)∇G(x) ⋅ ∇φe(x)dx∣ = Os (C) . (4.157)

This follows from (4.148), (4.149), (4.152), (4.155) and the triangle inequality.
Step 5. We show that, for each k ∈ N and T ∈ [1,∞),
∫
R2
ηk(x)∇G(x) ⋅ ∇φe(x)dx
= ∫

R2
ηk(x)∇G(x) ⋅ (Φ (T, ⋅) ∗ ∇φe) (x)dx +Os (CT 1

2 (r2k)−1) . (4.158)

Set hk,j ∶= ηk∂xjG. We have

hk,j = ∫ ∞

0
(∆hk,j ∗Φ(t, ⋅)) (x)dt. (4.159)

Fix T ∈ [1,∞) and compute

∫
R2
ηk(x)∇G(x) ⋅ ∇φe(x)dx
= ∫ T

0
∫
R2

∆hk,j(x) (Φ(t, ⋅) ∗ ∂xjφe) (x)dt dx
+ ∫ ∞

T
∫
R2

(∆hk,j ∗Φ (t − T, ⋅)) (x) (Φ (T, ⋅) ∗ ∂xjφe) (x)dt dx
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By (4.159), the second integral on the right side of the previous display is equal to

∫
R2
ηk(x)∇G(x) ⋅ (Φ (T, ⋅) ∗ ∇φe) (x)dx,

and thus to establish (4.158) it suffices to show that

∫ T

0
∫
R2

∆hk,j(x) (Φ(t, ⋅) ∗ ∂xjφe) (x)dt dx = Os (CT 1
2 (r2k)−1) . (4.160)

We compute, using (4.2), (4.153) and Lemma A.4,

∣∫ T

0
∫
R2

∆hk,j(x) (Φ(t, ⋅) ∗ ∂xjφe) (x)dt dx∣
⩽ ∫ T

0
∫
R2

∣∆hk,j(x)∣ ∣(Φ(t, ⋅) ∗ ∂xjφe) (x)∣ dt dx
⩽ Os (∣Ak∣ ∥∆hk,j(x)∥L∞(Ak)∫ T

0
t−

1
2 dt) = Os (CT 1

2 (r2k)−1) .
This completes the proof of (4.158).

Step 6. We localize to prepare for the use of the independence assumption. For
each k ⩾ 1, denote

Ãk ∶= Br2k+1 ∖Br2k−3 .

We will construct, for each k ∈ N, an F(Ãk)–measurable random variable Sk
satisfying, for some δ(s) > 0 and C(s,Λ) < ∞,

∣Sk − ∫
R2
ηk(x)∇G(x) ⋅ ∇φe(x)dx∣ ⩽ Os (C(r2k)−δ) . (4.161)

We aim at applying (4.158) with T = Tk ∶= (r2k−3) 2
1+ε and ε > 0 to be selected below.

Define

J̃1 (Ψ, e, ej) ∶= J1 (Ψ,−e, ej) − J1 (Ψ,−e,0) + J1 (Ψ,0, ej) − ej ⋅ e. (4.162)

By (4.128) and Lemma 4.25, there exists δ1(s) ∈ (0, 1
2
] such that

∣(Φ(Tk, ⋅) ∗ ∂xjφe) (x) − J̃1 (Φ(Tk, ⋅ − x), e, ej)∣ ⩽ Os (CT − 1
2
(1+δ1)

k ) . (4.163)

By Theorem 4.6, taking δ2(s) ∈ (0, 1
2δ1] sufficiently small so that

1 + 3

2
δ2 ⩽ 2

s
,

we obtain, for each t ∈ [1,∞), x ∈ Rd, e ∈ ∂B1 and j ∈ {1,2}, a random variable
J̃

(δ2)
1 (t, x, e, ej) satisfying

J̃
(δ2)
1 (t, x, e, ej) is F (B

t
1
2 (1+δ2)

(x))–measurable
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and ∣J̃1 (Φ(t, ⋅ − x), e, ej) − J̃(δ2)
1 (t, x, e, ej)∣ ⩽ Os (Ct− 1

2
(1+ 3

2
δ2)) . (4.164)

Choose now ε ∶= δ2 in the definition of Tk. Since δ2 ⩽ 1
2δ1, we obtain

T
− 1

2
(1+δ1)

k + T − 1
2
(1+ 3

2
δ2)

k ⩽ C (r2k)−(1+ δ2
4
)

and
T

1
2
(1+δ2)

k = r2k−3.

Define

Sk ∶= 2∑
j=1
∫
R2
ηk(x)∂xjG(x) ⋅ J̃(δ2)

1 (Tk, x, e, ej) dx.
As the function ηk is supported in Ak and Ak +Br2k−3 ⊆ Ãk, we have that indeed

Sk is F(Ãk)–measurable.

Using (4.163) and (4.164), we obtain by Lemma A.4 that, for every k ∈ N,
∣Sk − ∫

R2
ηk(x)∇G(x) ⋅ (Φ (Tk, ⋅) ∗ ∇φe) (x)dx∣

⩽ 2∑
j=1
∫
Ak

∣∇G(x)∣ ∣(Φ (Tk, ⋅) ∗ ∂xjφe) (x) − J̃(δ2)
1 (Tk, x, e, ej)∣ dx

⩽ Os (C(r2k)− δ24 ) .
Combining this with (4.158) yields (4.161) with δ = 1

4δ2.
Step 7. The conclusion. We have by (4.157) and (4.161) that

∣(φe ∗Φr)(0) − (φe ∗ΦR)(0) − k∗∑
k=1

Sk∣ = Os (C) . (4.165)

Notice that (4.152) and (4.161) also imply that

Sk = Os(C).
By Lemma A.7, we have that

Sk ∶= Sk −E [Sk] = Os (C) .
By the unit range of dependence assumption, the random variables Sk and Sl are
independent for every k, l ∈ N satisfying ∣k − l∣ ⩾ 5. Therefore, by Lemma A.10,

∣ k∗∑
k=1

Sk∣ ⩽ 4∑
l=0

RRRRRRRRRRR
⌊(k∗−l)/5⌋∑

k=1

S5k+l

RRRRRRRRRRR = Os (Ck
1
2
∗ ) = Os (C +C log

1
2 (R

r
)) . (4.166)
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We also have from (4.165), (4.148) and (3.104) that

∣ k∗∑
k=1

E [Sk]∣ ⩽ C + ∣E [(φe ∗Φr)(0) − (φe ∗ΦR)(0)]∣
= C + ∣E [∫ R2

r2
∫
R2
∇Φ ( t

2 , x) ⋅ (Φ ( t
2 , ⋅) ∗ ∇φe) (x)dxdt]∣

⩽ C + ∫ R2

r2
∫
R2

∣∇Φ ( t
2 , x)∣ ∣E [(Φ ( t

2 , ⋅) ∗ ∇φe) (x)∣ dxdt]
⩽ C +C exp (−cr) ⩽ C.

Combining this with (4.166) yields

∣ k∗∑
k=1

Sk∣ ⩽ Os (C +C log
1
2 (R

r
)) .

In view of (4.165), the proof of the proposition is now complete.

Remark 4.28. The choice of the heat kernel in the statement of the estimates (4.6)
and (4.7) in Theorem 4.1 is not crucial. Let f ∈H2(R2) with ∫R2 f = 1 and denote,
for every r ⩾ 1, fr(x) ∶= r−2f(x/r). The claim is that, for every s ∈ (0,2), there
exists C(f, s,Λ) < ∞ such that

∣(φe ∗Φr) (x) − (φe ∗ fr) (x)∣ ⩽ Os (C) . (4.167)

To prove (4.167), we argue as in the proof of Proposition 4.27. We use the identity

(φe ∗Φr) (0) − (φe ∗ fr) (0)
= ∫ ∞

0
∫
R2
∫
R2

(∆fr(y) −∆Φr(y))Φ(t, x − y)φe(x)dxdy dt
= −∫ ∞

0
∫
R2
∫
R2

(∇fr(y) − ∇Φr(y))Φ(t, x − y)∇φe(x)dxdy dt.
We estimate

∣∫ r2

0
∫
R2
∫
R2

(∇fr(y) − ∇Φr(y))Φ(t, x − y)∇φe(x)dxdy dt∣
⩽ ∫ r2

0
∫
R2

∣∇fr(y) − ∇Φr(y)∣ ∣∫
R2

Φ(t, x − y)∇φe(x)dx∣ dy dt
⩽ Os (C (∥∇fr∥L1(R2) + ∥∇Φr∥L1(R2))∫ r2

0
t−

1
2 dt)

= Os (C (1 + ∥∇f∥L1(R2))) .
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To estimate the integral over (r2,∞), we let w(t, x) ∶= ((fr −Φr) ∗Φ(t, ⋅)) (x) and
use the fact that ∫R2(fr −Φr) = 0 implies that w(t, x) has faster decay to zero by
factor of rt−

1
2 : there exists C depending on f such that

∣w(t, x)∣ ⩽ Crt− 3
2 exp(−∣x∣2

Ct
) .

(We leave the proof of this estimate as an exercise to the reader, but see the
discussion around (9.55) for a hint.) Using this estimate leads to

∣∫ ∞

r2
∫
R2
∫
R2

(∇fr(y) − ∇Φr(y))Φ(t, x − y)∇φe(x)dxdy dt∣
= ∣∫ ∞

r2
∫
R2
∇w(t, x) ⋅ ∇φe(x)dxdt∣

⩽ ∫ ∞

r2
∫
R2

∣w ( t
2 , y)∣ ∣∫R2

∇Φ ( t
2 , x − y) ⋅ ∇φe(x)dxdt∣

= Os (C) .
Combining the above yields (4.167).

Note also that, by density, we only require that f ∈W 1,1 in the argument above.
In fact, it can also be shown by a variant of this computation that (4.167) is still
valid if the regularity assumption on f is relaxed to f ∈Wα,1(R2) for some α > 0.
In particular, we may take f ∶= ∣B1∣−11B1 . We leave the verification of this claim as
an exercise to the reader.

Notes and references

Most of the statements of Theorems 4.1 and 4.6 were first proved in [12], and this
chapter is based on that paper. Another, independent proof appeared later in [68]
based on a quantity they call the “homogenization commutator” which is essentially
equivalent to J1 (as can be readily seen from Lemma 4.25 above) and originates
from the ideas and philosophy of [15, 11, 12]. The first successful use of this kind of
bootstrap or renormalization argument to prove quantitative results in stochastic
homogenization appeared previously in [11]. These approaches are related to the
strategy of Chapter 2, which can be regarded as a more primitive form of this idea.
In [11], the bootstrap was formalized for the quantity J from Chapter 2 rather
than J1 and this produced a suboptimal estimate (α = 1 rather than α = d

2), due to
boundary layer effects.

Quantitative estimates for the first-order correctors with the same scalingO(r− d2 )
as in Theorem 4.1, but with much weaker stochastic integrability, were proved
several years earlier in [65, 66, 62, 67] for a certain class of random environments



174 Chapter 4 Quantitative description of first-order correctors

close to the random checkerboard model. The methods in these papers were based
not on renormalization but rather on nonlinear concentration inequalities—such as
the so-called spectral gap or logarithmic Sobolev inequalities—an idea originating in
statistical physics previously introduced into stochastic homogenization by Naddaf
and Spencer [98, 99]. Optimal quantitative bounds on first-order correctors were
extended to the setting of supercritical percolation clusters in [37] by combining
the methods described in this book with these nonlinear concentration inequalities.

Some months after a preliminary version of this book was posted to the arXiv,
Bella, Giunti and Otto [20] reproved Remark 4.26 above (by obtaining the full
statement of our Theorem 3.6) and extended the canonical isomorphism to one
between Ak+2/Ak and Ak+2/Ak in dimensions d > 2.



Chapter 5

Scaling limits of first-order correctors

In the previous chapter, we proved that the spatial averages of the gradients
and fluxes of the correctors display stochastic cancellations similar to those of a
stationary random field with a finite range of correlations. In this chapter, we take
this analysis a step further by identifying the next-order behavior of correctors.
We will show here that, as r →∞, the random field r

d
2 ∇φe (r ⋅) converges in law

to a correlated random field, which turns out to be the gradient of a Gaussian
free field. Our analysis is inspired by the previous chapters, and we focus first on
describing the next-order behavior of the quantity J1. Contrary to the gradient of
the corrector, this quantity has short-range correlations even at the critical scaling,
and is therefore more amenable to direct analysis. We show that J1 converges in
law to a convolution of white noise, and consequently deduce, by a deterministic
argument, the convergence in law of the rescaled corrector to a Gaussian free field.

We begin the chapter by defining the notions of white noise and of Gaussian
free field and providing explicit constructions of these random fields in Sections 5.1
and 5.2. We then present an informal, heuristic argument for the convergence in
law of the corrector in Section 5.3. In the final two sections, we make this heuristic
derivation rigorous. We prove a central limit theorem for J1 in Section 5.4, and
then deduce the convergence in law of the corrector as a consequence in Section 5.5.

5.1 White noise and the Gaussian free field

In this section, we introduce the concepts of white noise and Gaussian free field. A
white noise can be thought of as the limit in law of a centered random field with
finite range of dependence, under the scaling of the central limit theorem. Indeed,
we present in the next section an explicit construction of white noise based on this
idea. A Gaussian free field can be seen as a generalization of Brownian motion
where the time variable becomes multi-dimensional. An explicit construction of
the Gaussian free field is also presented in the next section.

175
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Informally, we think of a scalar white noise (W(x))x∈Rd of variance σ2 ∈ [0,∞)
as being a centered Gaussian random field such that, for every x, y ∈ Rd,

E[W(x)W(y)] = σ2δ(x − y),
where δ is the d-dimensional Dirac distribution. Unfortunately, even if we could
construct such a random field, it would not have Lebesgue measurable realizations.
Scalar white noise is simply too rough to be a function. Let us continue however
with formal computations based on this idea: setting, for each f ∈ L2(Rd),

W(f) ∶= ∫
Rd

W(x)f(x)dx (5.1)

we obtain that
E[(W(f))2] = σ2∥f∥2

L2(Rd). (5.2)

This motivates the following definition.

Definition 5.1 (Scalar white noise). A scalar white noise over Rd of variance
σ2 ∈ [0,∞) is a family of real random variables (W(f), f ∈ L2(Rd)) such that

• for every λ ∈ R and f, g ∈ L2(Rd), we have

W(λf + g) = λW(f) +W(g) a.s., (5.3)

• for every f ∈ L2(Rd), the random variable W(f) is a centered Gaussian with
variance σ2∥f∥2

L2(Rd).

Figure 4 (page xv) illustrates the convolution of white noise by a smooth
function with compact support.

For notational convenience, in this section we denote by P the underlying
probability measure, although it is unrelated with the law of the coefficient field
a(x) appearing in most of the rest of the book.

It is important to observe that Definition 5.1 completely determines the joint
law of the vector (W(f1), . . . ,W(fn)), for every f1, . . . , fn ∈ L2(Rd). Indeed, for
every λ1, . . . , λn ∈ R, the law of

n∑
i=1

λiW(fi) =W( n∑
i=1

λifi)
is a centered Gaussian with variance

σ2
n∑

i,j=1

λiλj ∫
Rd
fifj.

The claim of uniqueness is therefore a consequence of the second part of the
following elementary lemma, which can be proved using Fourier transforms (see
e.g. [23, Theorem 29.4]).
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Lemma 5.2 (Cramér-Wold lemma). (1) Let (Xn, n ∈ N) and X be random variables
taking values in Rd. If for each λ ∈ Rd,

λ ⋅Xn

(law)ÐÐ→
n→∞

λ ⋅X,
then

Xn

(law)ÐÐ→
n→∞

X.

(2) In particular, if λ ⋅X1 and λ ⋅X have the same law for every λ ∈ Rd, then X1

and X have the same law.

Remark 5.3. If we only know that, for each λ ∈ Rd, the random variable λ ⋅Xn

converges in law, then it is automatic that the limit can be put in the form λ ⋅X
for some random variable X not depending on λ. Indeed, the convergence in
law of each of the coordinates of Xn implies that the sequence (Xn)n∈N is tight.
By the second part of Lemma 5.2, any limit point of the law of Xn is uniquely
characterized. Therefore Xn itself converges in law to some random variable X,
and in particular λ ⋅Xn converges in law to λ ⋅X.

Remark 5.4. The first part of Lemma 5.2 is useful to recover joint convergence
in law of vectors of random variables from the individual convergence in law of
scalar-valued random variables. In certain situations, we can also obtain joint
convergence in law of random variables by first identifying the convergence in law
of a subset of random variables, and then checking that other random variables are
essentially deterministic functions of the former. More precisely, for arbitrary real
or vector-valued random variables (Xn), (Yn), X and continuous function g, we
have (Xn, Yn) (law)ÐÐ→

n→∞
(X,g(X)) (5.4)

if and only if

Xn

(law)ÐÐ→
n→∞

X and ∣Yn − g(Xn)∣ (prob.)ÐÐÐ→
n→∞

0. (5.5)

Indeed, the implication (5.4) Ô⇒ (5.5) is clear. Conversely, in order to verify (5.4),
it suffices to show that, for every real-valued, uniformly continuous and bounded
function (x, y) ↦ f(x, y), we have

E[f(Xn, Yn)] ÐÐ→
n→∞

E [f(X,g(X))] .
Assuming (5.5), this is easily verified using the decomposition

E[f(Xn, Yn)] = E[f(Xn, Yn)1∣Yn−g(Xn)∣⩽δ] +E[f(Xn, Yn)1∣Yn−g(Xn)∣>δ],
appealing to the uniform continuity of f and taking δ > 0 sufficiently small.
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We deduce from Lemma 5.2 that, for each f1, . . . , fk ∈ L2(Rd), the vector(W(f1), . . . ,W(fk)) is Gaussian with covariance matrix

(σ2∫
Rd
fifj)

i,j∈{1,...k}
. (5.6)

As was already mentioned, we will provide with an explicit construction of white
noise in the next section. One can alternatively appeal to an abstract extension
argument to justify the existence of white noise. Indeed, we first observe that
the matrix in (5.6) is nonnegative definite. For each f1, . . . , fk ∈ L2(Rd), it is
therefore possible to construct a centered Gaussian vector (W(f1), . . . ,W(fk))
with covariance matrix given by (5.6). By Kolmogorov’s extension theorem (see
e.g. [23, Theorem 36.2]), we deduce the existence of a family of random variables(W(f), f ∈ L2(Rd)) such that, for every k ∈ N and every f1, . . . , fk ∈ L2(Rd),
the random variables (W(f1), . . . ,W(fk)) form a centered Gaussian vector with
covariance (5.6). It is then elementary to verify that the difference between the
two sides of the identity (5.3) has null variance, and therefore that this identity
holds almost surely.

We next extend Definition 5.1 to higher dimensions. Given a nonnegative
matrix Q ∈ Rn×n, we would like a vector white noise with covariance matrix Q to be
an Rn-valued, centered Gaussian random field satisfying, for every i, j ∈ {1, . . . , n}
and x, y ∈ Rd,

E[Wi(x)Wj(y)] = Qijδ(x − y). (5.7)

As above, for a vector field f = (f1, . . . , fn) ∈ L2(Rd;Rn), we may set

W(f) ∶=W1(f1) +⋯ +Wn(fn) (5.8)

and integrate the formal identity (5.7), suggesting that W(f) should be a centered
Gaussian with variance ∫Rd f ⋅Qf .
Definition 5.5 (Vector white noise). Let Q ∈ Rn×n be a nonnegative symmetric
matrix. An n-dimensional vector white noise on Rd with covariance matrix Q is a
family of real random variables (W(f), f ∈ L2(Rd;Rn)) such that

• for every λ ∈ R and f ,g ∈ L2(Rd;Rn), we have

W(λf + g) = λW(f) +W(g) a.s.,

• for every f ∈ L2(Rd;Rn), the random variable W(f) is a centered Gaussian
with variance

∫
Rd

f ⋅Qf .
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Exercise 5.1. Given a nonnegative symmetric matrix Q ∈ Rn×n, use Kolmogorov’s
extension theorem to prove that a vector white noise W with covariance Q as in
Definition 5.5 exists. For such W and for every f (1), . . . , f (k) ∈ L2(Rd;Rn), show
that the vector (W(f (1)), . . . ,W(fk))
is a centered Gaussian vector with covariance matrix

(∫
Rd

f (i) ⋅Qf (j))
i,j∈{1,...,k}

.

Exercise 5.2. Verify that a vector white noise W admits the decomposition (5.8),
where W1, . . . ,Wn are scalar white noises.

We next introduce the concept of a Gaussian free field. Intuitively, we think of
the Gaussian free field as a scalar random field on Rd which generalizes Brownian
motion to higher dimensions. One way to characterize Brownian motion (up to
an additive constant) is as the process on R whose derivative is a scalar white
noise. With this in mind, a naive attempt to generalize Brownian motion to
dimensions d > 1 could then be to look for a random field Ψ such that ∇Ψ is
a vector white noise. This obviously fails, however, since the requirement that∇Ψ be a gradient field imposes an additional constraint that a vector white noise
does not satisfy: a vector white noise does not vanish when tested against smooth
and compactly supported divergence-free fields. (In fact, we encounter a similar
phenomenon in d = 1 if we attempt for instance to define Brownian motion on
the circle rather than on the full line.) A possible revision of our naive attempt
could be to ask that ∇Ψ is “as close as possible” to a white noise vector field. As
was recalled in (0.29), the Helmholtz-Hodge decomposition asserts that the space
L2(Rd;Rd) is the orthogonal sum of the space of gradient fields and the space
of divergence-free fields. Here, we take up a slightly more general point of view,
and allow for a symmetric positive definite matrix a to mediate the orthogonality
between vector fields. The decomposition then states that every f ∈ L2(Rd;Rd) can
be written as

f = a∇u + g, where u ∈H1(Rd), g ∈ L2
sol(Rd). (5.9)

The two terms a∇u and g in this decomposition are orthogonal with respect to
the scalar product (f1, f2) ↦ ∫

Rd
f1 ⋅ a−1f2. (5.10)

Note that, given f ∈ L2(Rd;Rd), the function u in the decomposition can be obtained
by solving the equation

−∇ ⋅ a∇u = −∇ ⋅ f in Rd. (5.11)
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In view of this, and intending a∇Ψ to be the projection of a vector white noise W
onto the space {a∇u ∶ u ∈H1(Rd)} with respect to the scalar product in (5.10),
we may expect that ∇Ψ should satisfy the equation

−∇ ⋅ a∇Ψ = −∇ ⋅W. (5.12)

Since white noise is a rather singular object (which we have not even made sense
of as a random distribution so far), the meaning of this equation remains to be
determined. We may formally test (5.12) against u ∈ C∞

c (Rd) to get

∫
Rd
∇Ψ ⋅ a∇u = ∫

Rd
W ⋅ ∇u. (5.13)

The quantity on the right side of (5.13) is our interpretation for W(∇u), see (5.1)
and (5.8). The identity (5.13) can therefore be read as a requirement for how∇Ψ should behave when tested against a∇u with u ∈ C∞

c (Rd). Moreover, since
we intend ∇Ψ to be a gradient, we require ∇Ψ to vanish when tested against
sufficiently smooth divergence-free and compactly supported vector fields. By the
Helmholtz-Hodge decomposition, these two requirements entirely specify ∇Ψ. We
can combine them into the single statement that, for f decomposed as in (5.9),

∇Ψ(f) =W(∇u).
It is convenient to denote by Pā ∶ L2(Rd;Rd) → L2(Rd;Rd) the gradient of the
solution operator for (5.11), that is, Pā(f) = ∇u where u ∈ H1(Rd) is the unique
solution of (5.11).

The precise definition of gradient Gaussian free field we adopt is as follows.

Definition 5.6 (Gradient GFF). Let a ∈ Rd×d be a symmetric and positive definite
matrix and Q ∈ Rd×d be symmetric and nonnegative. A d-dimensional gradient
Gaussian free field (or gradient GFF for short) on Rd associated with a and Q is a
family of real random variables (∇Ψ(f), f ∈ L2(Rd;Rd)) such that:

• for every λ ∈ R and f ,g ∈ L2(Rd;Rd), we have

∇Ψ(λf + g) = λ∇Ψ(f) + ∇Ψ(g) a.s.

• for every f ∈ L2(Rd;Rd), the random variable ∇Ψ(f) is a centered Gaussian
with variance ∫

Rd
(Pāf) ⋅Q (Pāf) .

See Figure 5.1 for samples of Gaussian free fields convolved with a given smooth
and compactly supported function, for different values of the matrix Q.

As for white noise, one can appeal to Kolmogorov’s extension theorem to justify
the existence of the gradient Gaussian free field. We provide with a more explicit
construction in the next section.
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Figure 5.1 The figures above are samples of the GFF convolved against a fixed smooth
and compactly supported function, with a = I2 and where the matrix Q has been taken to
be I2, e1⊗e1 and e2⊗e2 respectively. Notice that in the first image, the field looks roughly
isotropic in the sense that the mountain ranges do not have a preferred orientation. This
is not the case in the last two images, where the mountain ranges seem to line up in the
e1 and e2 directions respectively.

Exercise 5.3. Let W be a vector white noise and λ > 0. We define the rescaled
field Wλ(x) ∶=W(λx) by setting, for every f ∈ L2(Rd;Rn),

Wλ(f) ∶= λ−dW (x↦ f(λ−1x)) .
Show that Wλ has the same law as λ−

d
2 W. Letting ∇Ψ be a gradient GFF and

defining (∇Ψ)λ(x) ∶= (∇Ψ)(λx) similarly, show that (∇Ψ)λ has the same law as
λ−

d
2 ∇Ψ. In particular, we should keep in mind that, as we zoom in to a small

length scale λ > 0, these fields blow up like λ−
d
2 .

As the name and notation suggest, the gradient GFF ∇Ψ can be realized as the
gradient of a random field Ψ. This is a consequence of the following elementary
lemma.
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Lemma 5.7. For every f ∈ C∞
c (Rd) of mean zero, there exists F ∈ C∞

c (Rd;Rd)
such that ∇ ⋅ F = f .
Proof. Without loss of generality, we may assume that supp f ⊆ B1. Let h ∈ C∞

c (R)
be such that ∫R h = 1 and supph ⊆ B1. Writing x = (x1, . . . , xd) ∈ Rd, we define the
functions

g0(x) ∶= f(x),
g1(x) ∶= h(x1)∫

R
f(y1, x2, . . . , xd)dy1,

g2(x) ∶= h(x1)h(x2)∫
R2
f(y1, y2, x3, . . . , xd)dy1 dy2,

⋮
gd(x) ∶= h(x1)⋯h(xd)∫

Rd
f = 0.

Observe that g0, . . . , gd ∈ C∞
c (Rd). For every i ∈ {1, . . . , d}, we set

Fi(x) ∶= ∫ xi

−∞
(gi−1 − gi)(x1, . . . , xi−1, y, xi+1, . . . , xd)dy.

Since
∂iFi(x) = gi−1(x) − gi(x),

we deduce that ∇ ⋅ F = f . In order to complete the proof, there remains to verify
that F is compactly supported. Since g0, . . . , gd are compactly supported, it suffices
to check that, for every i ∈ {1, . . . , d},

xi > 1 Ô⇒ F (x) = 0. (5.14)

The fact that
xi > 1 Ô⇒ Fj(x) = 0

for j ≠ i is clear, by the assumption of supp f ⊆ B1 (for j < i) and of supph ⊆ B1

(for j > i). For the remaining case, if xi > 1 then, since ∫R h = 1 and supph ⊆ B1,
we have

∫ xi

−∞
gi−1(x1, . . . , xi−1, y, xi+1, . . . , xd)dy
= h(x1)⋯h(xi−1)∫

Ri
f(y1, . . . , yi, xi+1, . . . , xd)dy1⋯dyi

= ∫ xi

−∞
gi(x1, . . . , xi−1, y, xi+1, . . . , xd)dy.

This shows (5.14) and thereby completes the proof.
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Lemma 5.7 allows us to define an action of the Gaussian free field Ψ on the
set of mean-zero functions in C∞

c (Rd) (the smoothness requirement can then be
removed by a density argument). Indeed, for every function f ∈ C∞

c (Rd) of mean
zero and F ∈ C∞

c (Rd;Rd) such that ∇ ⋅ F = f , we simply set

Ψ(f) ∶= −∇Ψ(F ). (5.15)

This definition does not depend on the particular choice of F ∈ C∞
c (Rd;Rd) satisfying∇ ⋅ F = f , since by definition of the projection operator Pā,

∇ ⋅ F = 0 Ô⇒ ∇Ψ(F ) = 0 a.s.

Letting h ∈ C∞
c (Rd) denote a fixed test function such that ∫Rd h = 1, we can then

extend this definition by setting, for f,F as in Lemma 5.7 and an arbitrary c ∈ R,
Ψ(f + ch) ∶= −∇Ψ(F ). (5.16)

Naturally, every element of C∞
c (Rd) can be represented in the form of f + ch for

some f ∈ C∞
c (Rd) of mean zero and c ∈ R. The relation (5.16) thus defines a

field whose formal gradient is ∇Ψ, and whose “additive constant” is fixed by the
requirement that Ψ should evaluate to 0 when tested against h.

The definition provided by (5.16) is however not canonical, due to the arbitrary
choice of the function h. In particular, the law of Ψ is not invariant under
translations: for any fixed x0 ∈ Rd ∖ {0}, the law of the translated field formally
written as x↦ Ψ(x + x0) is different from the law of Ψ.

Exercise 5.4. Let Ψ be a Gaussian free field as defined by (5.15) or (5.16). Fix
f ∈ C∞

c (Rd) and, for every r > 0, set fr ∶= r−df(r−1 ⋅). Show that there exists a
constant C(d) < ∞ such that, for every r > 0,

Ψ(f2r) −Ψ(fr) = O2 (Cr1− d
2 ) .

Deduce that, in the case d ⩾ 3, the sequence (Ψ(f2n) −Ψ(f))n∈N is Cauchy with
probability one. Conclude that, in d ⩾ 3, one can construct a field Ψ whose law
is invariant under translations. (Hint: compare with the proof that the corrector
exists as a stationary random field in Section 4.6.) When d = 2, show that

∣log(r)∣− 1
2 (Ψ(fr) −Ψ(f))

converges in law to a centered Gaussian, as r tends to 0 and as r tends to infinity.

Exercise 5.5. Suppose that d ⩾ 3 and denote by G the Green function for the
operator −∇ ⋅ a∇ in Rd. Equation (5.12) suggests the formal definition

Ψ(x) = ∫
Rd
∇G(x, z) ⋅W(z)dz. (5.17)
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Using the heuristics of (5.7), formally derive from (5.17) that, for every x, y ∈ Rd,

E [Ψ(x)Ψ(y)] = ∫
Rd
∇G(x, y) ⋅Q∇G(z, y)dy. (5.18)

Use this property as a starting point for a direct definition of Ψ as a stationary
random field, for d ⩾ 3. Assuming further that the matrix Q is a scalar multiple
of a, show by integration by parts that (5.18) reduces to

E [Ψ(x)Ψ(y)] = cG(x, y), (5.19)

for some constant c > 0.

Remark 5.8. The Gaussian free field is usually defined so that (5.19) holds, with
suitable modifications when d = 2. Our notion of GFF is more general, and reduces
to (5.19) only when the matrix Q is a scalar multiple of a. One can visually
distinguish between samples of the GFFs for different matrices Q, see Figure 5.1.

5.2 Explicit constructions of random fields

The definitions of white noise and of the gradient GFF given in the previous section
are the weakest possible. Indeed, while Definitions 5.1, 5.5 and 5.6 impose an
uncountable number of constraints, each is a constraint for the joint law of the
field tested against finitely many test functions. This weak definition allows for
a short, abstract proof of existence of these objects, appealing to Kolmogorov’s
extension theorem as previously mentioned. It however leaves open the question
of whether these fields can be realized as random elements valued in the space of
distributions. The difficulty lies in the fact that the set of full probability measure
over which the identity (5.3) holds depends on the test functions f, g ∈ L2(Rd), and
there are uncountably many such test functions. Moreover, we cannot immediately
use a density argument to circumvent this issue, since W(f) will not be bounded
uniformly over ∥f∥L2(Rd) ⩽ 1, as will be explained shortly.

It is possible to complete the construction of white noise (or of the gradient
GFF) as a random distribution by appealing to a generalization of Kolmogorov’s
continuity theorem (see e.g. [108, Theorem I.2.1] for the classical theorem, and
[55, Proposition 2.29] for a possible generalization to distributions). However, we
prefer to adopt a more direct approach. The goal of this section is to present an
explicit construction of white noise, in the spirit of Lévy’s construction of Brownian
motion as the limit of continuous piecewise linear approximations. This bypasses
appeals to the Kolmogorov extension and continuity theorems, and exposes simple
approximations of white noise involving a locally finite number of independent
Gaussian random variables. We conclude the section by constructing the gradient
GFF as a deterministic function of white noise, in agreement with (5.12).
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To which spaces of distributions can we expect a scalar white noise W to belong?
If W has unit variance, then it is immediate from the definition that there exists a
universal C < ∞ such that, for every f ∈ L2(Rd),

W(f) = O2 (C∥f∥L2(Rd)) .
A superficial look at this relation may suggest that W(f) belongs to L2(Rd), “by
duality.” This is false for several reasons, the most obvious one being that since
the law of W is invariant under translation, the quantity E[∥W∥2

L2(Rd)] can only
be infinite. It turns out that W cannot be realized in L2

loc(Rd) either, nor even in
W −α,p

loc (Rd) for any α ⩽ d
2 and p ∈ [1,∞], as will be explained in Lemma 5.11 and

Exercise 5.6 below.
Our goal then is to prove the following proposition, which gives the optimal

Sobolev space in which scalar white noise can be realized.

Proposition 5.9 (Construction of white noise). Let α > d
2 . There exists a random

element W of W −α,∞
loc (Rd) such that, for every f ∈Wα,1(Rd) with compact support,

the evaluation of W against f , denoted by W(f), is a centered Gaussian with
variance ∥f∥2

L2(Rd). Moreover, there exists a constant C(d) < ∞ such that

sup{W(f) ∶ ∥f∥Wα,1(Rd) ⩽ 1 and supp f ⊆ B1} ⩽ O2 (C) . (5.20)

Remark 5.10. We do not discuss the measurability of the supremum on the left
side of (5.20). We simply understand (5.20) as the statement that there exists a
random variable X taking values in [0,+∞] such that the inequality

sup{W(f) ∶ ∥f∥Wα,1(Rd) ⩽ 1 and supp f ⊆ B1} ⩽ X
holds everywhere in the probability space, and moreover,

X ⩽ O2 (C) .
Since W from Proposition 5.9 is a random distribution, it is clear that with

probability one,

∀f, g ∈Wα,1(Rd) with compact support, ∀λ ∈ R,
W(λf + g) = λW(f) +W(g). (5.21)

Note the differences between this statement and (5.3): the statement above holds
with probability one over every allowed test functions simultaneously; but the set
of allowed test functions is smaller.

One can a posteriori extend the definition of W(f) to every f ∈ L2(Rd), if
desired. Indeed, for any given f ∈ L2(Rd), let (fn)n∈N be a (deterministic) sequence
of compactly supported smooth functions converging to f in L2(Rd). Since

E [(W(fn) −W(fm))2] = ∥fn − fm∥2
L2(Rd),



186 Chapter 5 Scaling limits of first-order correctors

the sequence (W(fn))n∈N is Cauchy in L2(P). It therefore converges to a limit
random variable, which we may still denote by W(f). Once W is thus extended,
the verification of Definition 5.1 is straightforward. Yet, note that the random
variable W(f) is only well-defined up to a set of null probability measure, and this
set may depend on the function f . Because of this, one cannot replace the set of
test functions Wα,1(Rd) in (5.21) by L2(Rd).

The difficulty we are describing here is perhaps best visualized through an
orthonormal basis (ek)k∈N of L2([0,1]). Using the properties of white noise and
Lemma 5.2, one can verify that (W(ek))k∈N is a sequence of independent standard
Gaussian variables. Hence, for any fixed sequence (λk)k∈N of real numbers satisfying

∞∑
k=0

λ2
k < ∞, (5.22)

we can define

W( ∞∑
k=0

λkek)
as the L2(P)-convergent series

∞∑
k=0

λkW (ek) ,
which is a Gaussian random variable with variance given by (5.22). On the other
hand, we have

sup{ ∞∑
k=0

λkW(ek) ∶ ∞∑
k=0

λ2
k ⩽ 1} = ( ∞∑

k=0

W(ek)2)
1
2 = +∞ a.s.

In other words, we can always find a random choice for the sequence (λk) such
that the left side of (5.22) is bounded by 1, and yet

∞∑
k=0

λkW(ek) = +∞ a.s.

The next lemma is a more precise version of this argument.

Lemma 5.11. Let α < d
2 . If W is a random distribution such that, for every

f ∈ C∞
c (Rd), the evaluation of W against f is a centered Gaussian with variance∥f∥2

L2(Rd), then the event that W belongs to W −α,1
loc (Rd) is of null probability measure.

Remark 5.12. Our usage of the word “event” for the event that W belongs to
W −α,1

loc (Rd) is slightly abusive, since we do not discuss the measurability of this
subset of the probability space. We simply understand the conclusion of Lemma 5.11
as stating that this subset of the probability space is contained in a measurable set
of null probability measure. Alternatively, one can enlarge the σ-algebra so that it
contains all such subsets.
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Proof of Lemma 5.11. Fix α ∈ (0, d2) and a nonzero smooth function f ∈ C∞
c (Rd)

supported in B1/2. For every z ∈ R and ε > 0, we consider

fε,z ∶= ε d2 f (ε−1(⋅ − z)) .
By scaling, there exists C(f,α, d) < ∞ such that, for every z ∈ Rd and ε ∈ (0,1],

∥fε,z∥Wα,∞(Rd) ⩽ Cε d2−α.
Denote

Pε ∶= εZd ∩ (−1

2
,
1

2
)d .

For every ε ∈ (0,1], we have

sup
(sz)∈{−1,1}Pε

∥∑
z∈Pε

szfε,z∥
Wα,∞(Rd)

⩽ Cε d2−α ÐÐ→
ε→0

0, (5.23)

since the supports of the functions (fε,z)z∈Pε are disjoint. For the same reason,

sup
(sz)∈{−1,1}Pε

W(∑
z∈Pε

szfε,z) = ∑
z∈Pε

∣W (fε,z)∣ .
On the event that W belongs to W −α,1

loc (Rd), the quantity above must tend to 0
almost surely as ε tends to 0, by (5.23). However, W(fε,z) is a centered Gaussian
with variance ε−d∥f∥2

L2(Rd). In particular, by the law of large numbers,

lim
ε→0

P
⎡⎢⎢⎢⎢⎣∑z∈Pε ∣W (fε,z)∣ ⩾ ∥f∥2

L2(Rd)

2

⎤⎥⎥⎥⎥⎦ = 1.

This completes the proof.

Exercise 5.6. In this exercise, we extend the result of Lemma 5.11 to the critical
case α = d

2 . We rely on the characterizations of W −α,p(Rd) in terms of spatial
averages provided by Appendix D. However, the case when α is an integer and
p = 1 is not covered by the results of the appendix. Thus the goal is to show that,
under the assumptions of Lemma 5.11, the event that W belongs to W − d

2
,p

loc (Rd) is
of null probability measure, where

{p = 1 if d /∈ 2N,
p ∈ (1,∞) if d ∈ 2N.

1. Show that, for every nonnegative random variable X and θ ∈ [0,1], we have

P [X > θE[X]] ⩾ (1 − θ)2E[X]2

E[X2] . (5.24)

(This inequality is sometimes called the Paley-Zygmund inequality.)
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2. Show that, for every p ∈ [1,∞), there exists a constant cp < ∞ such that, for
every centered Gaussian random variable X,

var [∣X ∣p] = cpE [∣X ∣p]2
. (5.25)

3. We fix χ ∈ C∞
c (Rd) a smooth function with compact support such that χ ≡ 1

on B1. Show that there exists a constant c > 0 such that, for every x ∈ B1/2
and ε ∈ (0, 1

2], we have

E [∫ 1

ε
t
d
4 ∫

Rd
∣W(χΦ(t, ⋅ − y))∣dy dt

t
] ⩾ c log ε−1 (5.26)

and
E [∫ 1

ε
t
d
2 ∣W(χΦ(t, ⋅ − x))∣2 dt

t
] ⩾ c log ε−1. (5.27)

4. When the dimension d is odd, conclude using Proposition D.4, Chebyshev’s
and Minkowski’s inequalities, (5.25) and (5.26). If d is even, use instead
Proposition D.1, (5.24), Minkowski’s inequality, (5.25) and (5.27).

Remark 5.13. One may wonder where white noise lies in finer function spaces,
such as Besov spaces. For every α ∈ R and p, q ∈ [1,∞], we can define the Besov
space Bα

p,q(Rd) as the space of distributions f such that

∥f∥Bαp,q(Rd) ∶= (∫ 1

0
(t−α2 ∥f ∗Φ(t, ⋅)∥Lp(Rd))q dtt ) 1

q

is finite. Note that, in view of Proposition D.4, for every α ∈ (0,∞) ∖ N and
p ∈ (1,∞), we have W −α,p(Rd) = B−α

p,p(Rd). One can verify that white noise belongs
to B−α

p,q,loc(Rd) if and only if

α > d
2

or (α = d
2
, p < ∞ and q = ∞) .

In the latter case (and whenever p or q is infinite), the space Bα
p,q(Rd) we have

defined is strictly larger than the completion of the set of smooth functions with
respect to the norm ∥ ⋅ ∥Bαp,q(Rd). White noise belongs only to the local version of
the larger of these two sets.

We now focus on the proof of Proposition 5.9, that is, on the construction of
white noise. Departing from the rest of the book, we prefer to work here with
dyadic instead of tryadic cubes. We define, for every n ∈ N,

Dn ∶= (0,2−n)d ⊆ Rd. (5.28)
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For each n ∈ N, the family (z +Dn, z ∈ 2−nZd) is a partition of Rd up to a Lebesgue
null set. Given a family (Xz)z∈2−nZd of independent standard Gaussian random
variables, consider the random function over Rd

W̃n ∶= ∑
z∈2−nZd

∣Dn∣− 1
2 Xz 1z+Dn .

This provides us with an approximation of white noise on scale 2−n. Indeed, for
every f ∈ L2(Rd), the random variable

W̃n(f) ∶= ∫
Rd

W̃n(x)f(x)dx
is a centered Gaussian with variance

∑
z∈2−nZd

∣Dn∣ (⨏
z+Dn

f)2

. (5.29)

In particular, this quantity equals ∥f∥2
L2(Rd) if f is constant over each dyadic cube

of the form z +Dn, for z ∈ 2−nZd. The point of the proof of Proposition 5.9 is to
construct these approximations consistently for different values of n and then to
verify the convergence to a limiting object as n→∞.

Proof of Proposition 5.9. We break the proof into two steps. In the first step, we
construct a consistent sequence of approximations of white noise at scale 2−n and
then, in the second step, show that these approximations are Cauchy and estimate
the rate of convergence.

Step 1. Define f (0), f (1) ∈ L2(R) by

f (0) ∶= 1(0,1) and f (1) ∶= 1(0, 1
2
) − 1( 1

2
,1).

and consider the family of functions on Rd

x = (x1, . . . , xd) ↦ d∏
k=1

f (ik)(xk),
indexed by all sequences (i1, . . . , id) ∈ {0,1}d. Denote these functions by χ(0), . . .,
χ(2d−1), with

χ(0) ∶= 1D0

corresponding to the choice of sequence (i1, . . . , id) = (0, . . . ,0). See Figure 5.2 for
a representation of these functions in two dimensions.

The functions (χ(i))i<2d form an orthonormal basis of the subspace of L2(Rd)
spanned by the indicator functions 1z+D1 , for z ranging in {0, 1

2
}d. For each n ∈ N

and i < 2d, we define the rescaled functions

χ
(i)
n ∶= 2

nd
2 χ(i) (2n ⋅) . (5.30)
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+ ++ + + +− − + −+ − + −− +
Figure 5.2 The functions χ(i), i ∈ {0,1,2,3}, in dimension d = 2. The plus and minus
signs indicate that the function takes the value 1 and −1 respectively.

The normalization is chosen so that, for each n, the family (χ(i)
n )

i<2d
is orthonormal

in L2(Rd). As a consequence, the family

{χ(0)(⋅ − z), z ∈ Zd} ∪ {χ(i)
k (⋅ − z), 0 ⩽ k < n, z ∈ 2−kZd, 1 ⩽ i < 2d} (5.31)

is an orthonormal basis of the vector space spanned by the functions

{1z+Dn , z ∈ 2−nZd}.
Let {X(i)

n,z ∶ n ∈ N, z ∈ 2−nZd,0 ⩽ i < 2d} be a family of independent Gaussian random
variables. For n ∈ N, define a random function Wn on Rd by

Wn ∶= ∑
z∈Zd

X
(0)
0,z χ

(0)(⋅ − z) + n−1∑
k=0

∑
z∈2−kZd
1⩽i<2d

X
(i)
k,z χ

(i)
k (⋅ − z).

In view of the properties of the family in (5.31) reviewed above, we deduce that,
for every f ∈ L2(Rd), the random variable

Wn(f) ∶= ∫
Rd

Wn(x)f(x)dx
is a centered Gaussian with variance given by (5.29). By the Lebesgue differentia-
tion theorem, we deduce that, for every f ∈ L2(Rd), the sequence of random vari-
ables (Wn(f))n∈N converges in law to a centered Gaussian with variance ∥f∥2

L2(Rd).

Step 2. Let α ∈ (0, d2)∖N. In this step, we show that Wn is a Cauchy sequence in
W −α,∞

loc (Rd), and estimate the rate of convergence. When testing against functions
with compact support in D0, we may as well replace Wn by

W′
n ∶=X(0)

0,0 χ
(0) + n−1∑

k=0

∑
z∈Zk

1⩽i<2d

X
(i)
k,z χ

(i)
k (⋅ − z),

where we denote
Zk ∶= {z ∈ Rd ∶ 2kz ∈ {0, . . . ,2k − 1}d} .
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We therefore focus on proving that (W′
n)n∈N is, almost surely, a Cauchy sequence

in W −α,∞(Rd). More precisely, setting

β ∶= (α − d
2
) ∧ 1, (5.32)

we aim to show that there exists C(α, d) < ∞ such that

∥W′
n+1 −W′

n∥W−α,∞(Rd) ⩽ 2−βn (Cn 1
2 +O2(C)) . (5.33)

By Lemma A.4 and the fact that β > 0, this implies that (W′
n)n∈N is almost surely

a Cauchy sequence in W −α,∞(Rd). Since
∥W′

0∥W−α,∞(Rd) ⩽ O2(C),
it also implies (5.20) for the limit W. Hence, the proof of Proposition 5.9 is reduced
to showing (5.33).

For each n ∈ N, let un = un(t, x) be the solution of the Cauchy problem

{∂tun −∆un = 0 in Rd × (0,∞),
un(0, ⋅) =W′

n+1 −W′
n in Rd.

By Proposition D.4, in order to prove (5.33), it suffices to show that

∫ 1

0
t
α
2
−1∥un(t, ⋅)∥L∞(Rd) dt ⩽ 2−βn (Cn 1

2 +O2(C)) . (5.34)

We decompose the proof of this statement into five substeps.
Step 2.a. Denoting

X̃n ∶= sup{∣X(i)
n,z∣ ∶ z ∈ Zn, 0 ⩽ i < 2d} ,

we show that there exists C(d) < ∞ such that

X̃n ⩽ Cn 1
2 +O2(C). (5.35)

Indeed, since X(i)
n,z are standard Gaussians, we have, for every C0 ∈ (0,∞) and z ⩾ 1,

P [X(i)
n,z ⩾ C0n

1
2 + z] ⩽ exp(−(C0n

1
2 + z)2

2
) ⩽ exp(−C2

0n + z2

2
) ,

and therefore, by a union bound,

P [X̃n ⩾ C0n
1
2 + z] ⩽ 2(n+1)d exp(−C2

0n + z2

2
) ⩽ exp(−z2

2
) ,
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provided that the constant C0 is sufficiently large. By Lemma A.1, this shows (5.35).
Step 2.b. We show that there exists C(α, d) < ∞ such that

∫ 2−2n

0
t
α
2
−1∥un(t, ⋅)∥L∞(Rd) dt ⩽ 2−n(α−

d
2
) (Cn 1

2 +O2(C)) . (5.36)

By (5.35), (5.30) and the maximum principle, we have

∥un(t, ⋅)∥L∞(Rd) ⩽ 2
nd
2 (Cn 1

2 +O2(C)) . (5.37)

Using also Lemma A.4, we obtain (5.36).
Step 2.c. We show that there exists C(d) < ∞ such that, for every x ∈ Rd and

t ⩾ 2−2n,

un(t, x) = O2 (C2−nt−
2+d
4 exp(−(∣x∣∞ − 1)2

+
Ct

)) , (5.38)

where we denote, for x = (x1, . . . , xd) ∈ Rd, the norm ∣x∣∞ ∶= max1⩽i⩽d ∣xi∣. By the
definition of un, we have, for every x ∈ Rd and t > 0,

un(t, x) = ∑
z∈Zn

1⩽i<2d

X
(i)
n,z ∫

Rd
χ

(i)
n (y)Φ(t, x + z − y)dy. (5.39)

Moreover, recall that, for i ⩾ 1, the function χ(i)
n is of mean zero. Therefore, for

every t ⩾ 2−2n, we have

∣∫
Rd
χ

(i)
n (y)Φ(t, x + z − y)dy∣ = ∣∫

Rd
χ

(i)
n (y) (Φ(t, x + z − y) −Φ(t, x + z)) dy∣

⩽ C2−(1+ d
2
)nt−(

1
2
+ d

2
) exp(−∣x + z∣2

Ct
) .

By independence of the (X(i)
n,z), we deduce from this and (5.39) that un(t, x) is a

centered Gaussian with variance bounded by

C ∑
z∈Zn

1⩽i<2d

2−(2+d)nt−(1+d) exp(−∣x + z∣2
Ct

) ⩽ C2−2nt−(1+ d
2
) exp(−(∣x∣∞ − 1)2

+
Ct

) .
Since a Gaussian of unit variance is O2(C), this yields (5.38) by homogeneity.

Step 2.d. We show that there exists C(d) < ∞ such that, for every t ∈ [2−2n,1],
∥un(t, ⋅)∥L∞(Rd) ⩽ 2−nt−

2+d
4 (Cn 1

2 +O2 (C)) . (5.40)

Using elementary heat kernel bounds, we see that there exists C(d) < ∞ such that,
for every x, y ∈ Rd and t > 0,

∣un(x, t) − un(y, t)∣ ⩽ Ct− 1
2 ∣x − y∣ ∥un (⋅,0)∥L∞(Rd) .
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Using also (5.37), we deduce that, for every δ > 0 and t > 0,

∥un(t, ⋅)∥L∞(Rd) ⩽ sup
x∈δZd

∣un(x, t)∣ +Cδt− 1
2 2

nd
2 (Cn 1

2 +O2(C)) . (5.41)

Taking
δ ∶= 2−(2+ d

2
)n, (5.42)

we deduce that, for every t ∈ (0,1],
δt−

1
2 2

nd
2 (Cn 1

2 +O2(C)) ⩽ O2 (C2−nt−
2+d
4 ) . (5.43)

We now estimate the first term on the right side of (5.41) by a union bound, (5.38)
and Lemma A.1: for every z ∈ (0,∞), we have

P [ sup
x∈δZd

∣un(x, t)∣ ⩾ z] ⩽ ∑
x∈δZd

P [∣un(x, t)∣ ⩾ z]
⩽ 2 ∑

x∈δZd
exp(−C−122nt1+

d
2 exp((∣x∣∞ − 1)2

+
Ct

) z2) .
Replacing z by 2−nt1+

d
2 (C1n

1
2 + z) in the expression above, with C1(d) sufficiently

large, and using (5.42), we obtain the existence of C(d) < ∞ such that, for every
t ∈ (0,1],

sup
x∈δZd

∣un(x, t)∣ ⩽ 2−nt−
2+d
4 (Cn 1

2 +O2(C)) .
Combining this with (5.41) and (5.43) yields (5.40).

Step 2.e. We conclude the proof of (5.34), and therefore of the theorem. By
the maximum principle, (5.40) and the definition of β in (5.32), we have

∫ 1

2−2n
t
α
2
−1∥un(t, ⋅)∥L∞(Rd) dt ⩽ C 2n∑

k=1

2−
αk
2 ∥un(⋅,2−k)∥L∞(Rd)

⩽ C 2n∑
k=1

2(1+ d
2
−α) k

2 2−n (Cn 1
2 +O2(C))

⩽ 2−βn (Cn 1
2 +O2(C)) .

This and (5.36) yield (5.34) and thus complete the proof.

Exercise 5.7. Generalizing Proposition 5.9, construct vector white noise as a
random element of W −α,∞

loc (Rd;Rn). That is, show that, for every n ∈ N, α > d
2 and

every symmetric nonnegative matrix Q ∈ Rn×n, there exists a random element W of
W −α,∞

loc (Rd;Rn) such that, for every f ∈Wα,1(Rd;Rn) with compact support, the
evaluation of W against f , denoted by W(f), is a centered Gaussian with variance

∫
Rd

f ⋅Qf ,
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and moreover, that there exists a constant C(d,n) < ∞ such that

sup{W(f) ∶ ∥f∥Wα,1(Rd;Rn) ⩽ 1 and supp f ⊆ B1} ⩽ O2 (C ∣Q∣ 12) . (5.44)

We now turn to the construction of the gradient Gaussian free field. For every
α ∈ R and p ∈ [1,∞], we denote

Wα,p
pot, loc(Rd) ∶= {G ∈Wα,p

loc (Rd)
∶ ∀f ∈ C∞

c (Rd;Rd), ∇ ⋅ f = 0 Ô⇒ G(f) = 0}. (5.45)

Using Lemma 5.7, one may represent any element of Wα,p
pot, loc(Rd) as the gradient

of a distribution, although a canonical choice of the distribution can only be made
up to an additive constant, as was explained below this lemma.

We fix a symmetric positive definite matrix a ∈ Rd×d, which we assume for
convenience to satisfy the uniform ellipticity condition

∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ aξ. (5.46)

Under this assumption, we have

∥Pā(f)∥L2(Rd) ⩽ ∥f∥L2(Rd). (5.47)

We also remark that, by standard estimates for the Poisson equation,

f ∈ C∞
c (Rd;Rd) Ô⇒ Pā(f) ∈ C∞(Rd;Rd).

Proposition 5.14 (Construction of gradient GFF). Let a ∈ Rd×d be a symmetric
matrix satisfying (5.46), Q ∈ Rd×d be a nonnegative symmetric matrix, and α > d

2 .
There exists a random element ∇Ψ of W −α,∞

pot, loc(Rd) such that the evaluation of ∇Ψ
against f ∈ Wα,1(Rd;Rd) with compact support, denoted by ∇Ψ(f), is a centered
Gaussian with variance ∫

Rd
(Pāf) ⋅Q (Pāf) .

Moreover, there exists a constant C(d) < ∞ such that

sup{∇Ψ(f) ∶ ∥f∥Wα,1(Rd;Rd) ⩽ 1 and supp f ⊆ B1} ⩽ O2 (C ∣Q∣ 12) . (5.48)

Proof. Let W be a vector white noise of covariance matrix Q, as given by Proposi-
tion 5.9 and Exercise 5.7. Without loss of generality, we assume that ∣Q∣ ⩽ 1. In
view of (5.12), the goal is to justify that the definition of

∇Ψ(f) ∶=W (Pā(f)) (5.49)
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makes sense and satisfies the requirements of Proposition 5.14. The main difficulty
is that Pā(f) has long tails—in particular, it is not compactly supported.

We select a cutoff function χ ∈ C∞
c (Rd) such that χ ≡ 1 on B1 and χ ≡ 0 outside

of B2. For every r > 0, we set χr ∶= χ(r−1 ⋅), and for every f ∈ C∞
c (Rd;Rd), define

∇Ψr(f) ∶=W (χr Pā(f)) .
We aim to study the convergence, as r → ∞, of the distribution ∇Ψr in the
space W −α,∞

pot, loc(Rd). This distribution is a potential field, that is, we have, almost
surely, ∀f ∈ C∞

c (Rd;Rd), ∇ ⋅ f = 0 Ô⇒ ∇Ψr(f) = 0.

Indeed, this is clear from the definition of the Helmholtz-Hodge projection Pā and
it justifies the use of the notation ∇Ψr. By the translation invariance of the law
of ∇Ψr, we may localize the field ∇Ψr in a neighborhood of the origin by setting

Gr(f) ∶= ∇Ψr(χf),
and reduce the proof of Proposition 5.14 to the demonstration that

∥G4∥W−α,∞(Rd) ⩽ O2(C), (5.50)

and that, for every r ⩾ 4,

∥G2r −Gr∥W−α,∞(Rd) ⩽ O2 (Cr− d2 log
1
2 r) . (5.51)

We decompose the proof of these two statements into three steps.
Step 1. We show (5.50). By Proposition D.4, it suffices to show that

∫ 1

0
t
α
2
−1 sup

x∈Rd
∣W (χ4Pā (χΦ(t, ⋅ − x)))∣ dt ⩽ O2(C). (5.52)

By (5.47), we have, for every x ∈ Rd and t ∈ (0,1],
∣W (χ4Pā (χΦ(t, ⋅ − x)))∣ ⩽ O2 (C ∥χΦ(t, ⋅ − x)∥L2(Rd))

⩽ O2 (Ct− d4 exp(−(∣x∣ − 2)2
+

Ct
)) . (5.53)

We also observe that, for every x, y ∈ Rd satisfying ∣y − x∣ ⩽ 1 and t ∈ (0,1],
∣W (χ4Pā (χ [Φ(t, ⋅ − y) −Φ(t, ⋅ − x)]))∣⩽ X ∥χ [Φ(t, ⋅ − y) −Φ(t, ⋅ − x)]∥W d,1(Rd) (5.54)

⩽ CX t− d+12 ∣x − y∣,
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where the random variable X satisfies, by Proposition 5.9,

X ⩽ O2 (C) .
We thus deduce that

sup
x∈Rd

∣W (χ4Pā (χΦ(t, ⋅ − x)))∣ ⩽ sup
x∈t−dZd

∣W (χ4Pā (χΦ(t, ⋅ − x)))∣ + O2 (C) .
Arguing as in Step 2.a of the proof of Proposition 5.9, one can check using (5.53)
that the supremum on the right side above is bounded by

O2 (Ct− d4 log
1
2 (1 + t−1)) ,

and therefore the proof of (5.52) is complete.
Step 2. Preparing the ground for the proof of (5.51), we show that there exists

a constant C(d) such that, for every r ⩾ 4,

sup{W ((χ2r − χr)f) ∶ ∥(χ2r − χr)f∥W d,1(Rd) ⩽ 1} ⩽ O2 (C log
1
2 r) . (5.55)

As in (5.54), the exponent d in the norm W d,1(Rd) appearing in the above display
is so chosen for simplicity, but could be reduced to any exponent larger than d

2 . In
order to show (5.55), we use a partition of unity θ ∈ C∞

c (Rd;Rd) such that

∑
z∈Zd

θ(⋅ − z) = 1,

and decompose f accordingly:

W ((χ2r − χr)f) = ∑
z∈Zd

W ((χ2r − χr)fθ(⋅ − z))
⩽ ∑
z∈Z
X(z) ∥(χ2r − χr)fθ(⋅ − z)∥W d,1(Rd),

where
Z ∶= {z ∈ Zd ∶ supp θ(⋅ − z) ∩ supp(χ2r − χr) ≠ ∅}

and

X(z) ∶= sup{W(f) ∶ ∥f∥W d,1(Rd) ⩽ 1 and supp f ⊆ supp θ(⋅ − z)} .
By Proposition 5.9, there exists a constant C depending only on our choice of the
function θ and the dimension d such that, for every z ∈ Zd,

X(z) ⩽ O2(C).
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Since moreover, we have ∣Z ∣ ⩽ Crd, we can argue as in Step 2.a of the proof of
Proposition 5.9 to obtain that

sup
z∈Z
X(z) ⩽ O2 (C log

1
2 r) ,

and therefore that

W ((χ2r − χr)f) ⩽ O2 (C log
1
2 r)∑

z∈Z
∥(χ2r − χr)fθ(⋅ − z)∥W d,1(Rd)

⩽ O2 (C log
1
2 r) ∥(χ2r − χr)f∥W d,1(Rd).

This completes the proof of (5.55).
Step 3. We now show (5.51), which by Proposition D.4 is implied by

∫ 1

0
t
α
2
−1 sup

x∈Rd
∣W ((χ2r − χr)Pā (χΦ(t, ⋅ − x)))∣ dt ⩽ O2 (Cr− d2 log

1
2 r) . (5.56)

For each x ∈ Rd and t ∈ (0,1], we denote

∇ux,t ∶= Pā (χΦ(t, ⋅ − x)) .
By Green’s representation formula, for each k ∈ N, there exists a constant C
depending only on k, d and our choice for the function χ such that, for every
z ∈ Rd ∖B3 and t ∈ (0,1],

∣∇k(ux,t − uy,t)(z)∣ ⩽ C ∣z∣−(d+k)∥χ [Φ(t, ⋅ − x) −Φ(t, ⋅ − y)] ∥L1(Rd)⩽ C ∣z∣−(d+k)t− 1
2 ∣x − y∣.

Combining this with (5.55), we deduce that, for every t ∈ (0,1] and r ⩾ 4,

sup
x∈Rd

∣W ((χ2r − χr)∇ux,t)∣ ⩽ sup
x∈tZd

∣W ((χ2r − χr)∇ux,t)∣ + O2 (Cr− d2 log
1
2 r) . (5.57)

Moreover, using Green’s representation formula again, we have, for every x ∈ Rd,
t ∈ (0,1] and z ∈ Rd ∖B3, ∣∇ux,t(z)∣ ⩽ C ∣z∣−d,
and therefore,

∣W ((χ2r − χr)∇ux,t)∣ ⩽ O2 (C∥(χ2r − χr)∇ux,t∥L2(Rd)) ⩽ O2 (Cr− d2 ) .
From this, we deduce as before that the supremum on the right side of (5.57) is
bounded by O2 (Cr− d2 log

1
2 (1 + t−1)) .

This implies (5.56), and thus (5.51), thereby completing the proof.
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Exercise 5.8. Adapt Lemma 5.11 and then Exercise 5.6 to the case in which
white noise is replaced by a gradient GFF. That is, show that if ∇Ψ is a random
distribution such that, for every f ∈ C∞

c (Rd), the evaluation of ∇Ψ against f is a
centered Gaussian with variance

∫
Rd

(Pāf) ⋅Q (Pāf) ,
then the event that ∇Ψ belongs to W − d

2
,p

loc (Rd) has null probability, where p = 1 if d
is odd, and p > 1 if d is even.

5.3 Heuristic derivation of the scaling limit

We henceforth return to the context of the homogenization problem. In this section,
we explain heuristically why we should expect the energy quantity J1 to converge
to a convolution of white noise, and why this should imply the convergence of the
rescaled corrector to a Gaussian free field.

We showed in Theorem 4.6 that, for every s ∈ (0,2), there exists a constant
C(s, d,Λ) < ∞ such that, for every r ⩾ 1, z ∈ Rd and p, q ∈ B1,

J1(Φz,r, p, q) = 1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q +Os (Cr− d2 ) . (5.58)

By (4.20)–(4.21), this implies that, for every r ⩾ 1, z ∈ Rd and p ∈ B1,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫

Φz,r
∇v(⋅,Φz,r,−p,0) = p +Os (Cr− d2 ) , and

∫
Φz,r

a∇v(⋅,Φz,r,−p,0) = ap +Os (Cr− d2 ) . (5.59)

In other words, the homogenized matrix identifies the correspondence between the
spatial averages on scale r of gradients and fluxes of elements of A1, up to an error
of Os (Cr− d2 ). The natural problem which then arises is to identify the next-order
term in the description of this correspondence. In this section, we first rephrase
(rigorously) this question in terms of the quantity J1; we then describe in heuristic
terms the next-order behavior of J1 and the correctors.

The next-order correction in the correspondence between spatial averages of
gradients and fluxes of elements of A1 is captured by the quantity

∫
Φz,r

p ⋅ (a − a)∇v(⋅,Φz,r, p
′,0), (5.60)

for p, p′ ranging in B1. Naturally, this quantity can be rewritten in terms of J1. In-
deed, using (4.20)–(4.21) and then the fact that (p, q) ↦ J1(Φz,r, p, q) is a quadratic
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form, we obtain

∫
Φz,r

p ⋅ (a − a)∇v(⋅,Φz,r, p
′,0) = p ⋅DpJ1(Φz,r, p

′,0) + ap ⋅DqJ1(Φz,r, p
′,0) (5.61)

= 1

2
(J1(Φz,r, p + p′,ap) − J1(Φz,r, p − p′,ap)) .

This motivates the following definition and lemma, which can be compared with
Lemma 4.13.

Definition 5.15 (Coarsened coefficients). For every r ⩾ 1 and z ∈ Rd, we let br(z)
be the random d-by-d matrix such that, for every p, p′ ∈ Rd,

p ⋅ br(z)p′ = 1

2
(J1(Φz,r, p + p′,ap) − J1(Φz,r, p − p′,ap)) . (5.62)

Lemma 5.16. Fix s ∈ (0, 2). There exists C(s, d,Λ) < ∞ such that, for every r ⩾ 1
and z ∈ Rd, we have ∣br(z)∣ ⩽ Os (Cr− d2 ) , (5.63)

and

sup
u∈A1(Φz,r)

∣∫
Φz,r

a(x)∇u(x)dx − (a + br(z))∫
Φz,r

∇u(x)dx∣ ⩽ Os/2 (Cr−d) . (5.64)

Proof. We obtain (5.63) directly from the definition of br(z) and (5.58). The
estimate (5.64) then follows from (5.62) and Lemma 4.25.

By the additivity and localization properties of J1 given in the statement
of Theorem 4.6, it is natural to expect J1 to display CLT-like fluctuations. In
fact, we have already used this intuition in the paragraph preceding (4.111): that
J1(Φz,r, p, q) should resemble the average against Φz,r of a random field with finite
range of dependence. Recalling also the estimate of the expectation of J1 in
Theorem 4.6(ii), it seems reasonable to expect that

J1(Φz,r, p, q) ≃ 1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q + ∫

Φz,r
W(⋅, p, q), (5.65)

where W(⋅, p, q) is a white noise with quadratic dependence in (p, q), and where
the integral on the right side of (5.65) is an informal notation for the evaluation
of W(⋅, p, q) against the test function Φz,r. By the basic properties of white noise,
this integral is a centered Gaussian, and its fluctuations are of the order of r−

d
2 .

The informal statement (5.65) should be understood as an approximate identity
between the laws of the quantities on each side, and up to an error of lower order
compared with r−

d
2 . Note that this approximate identity is meant to be consistent

as we vary the parameters z ∈ Rd, r ⩾ 1 and p, q ∈ B1.
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In addition, Lemma 5.16 strongly suggests that locally averaged elements of A1

solve a coarsened equation with diffusion coefficients given by a + br. That is, we
expect that the equation

−∇ ⋅ (a + br) [(e +∇φe) ∗Φr] = 0 (5.66)

holds approximately. Rearranging, we get

−∇ ⋅ (a + br)∇(φe ∗Φr) = ∇ ⋅ (bre). (5.67)

By Lemma 5.16, the coefficients br are of the order of r−
d
2 . Hence, we expect∇(φe ∗Φr) to be also of this order of magnitude (in fact this is essentially how we

proved (4.2)), and thus the term br∇(φe ∗Φr) should be of lower order. Discarding
this term, we arrive at the following equation, which should approximately hold
for large r: −∇ ⋅ a∇(φe ∗Φr) = ∇ ⋅ (bre). (5.68)

By the definition of br and (5.65), we also expect

p ⋅ br(z)e ≃ 1

2 ∫Φz,r
(W(⋅, p + e,ap) −W(⋅, p − e,ap)) , (5.69)

where the approximate identity is understood as in (5.65); or equivalently,

p ⋅ bre ≃ 1

2
(W(⋅, p + e,ap) −W(⋅, p − e,ap)) ∗Φr.

In other words, the law of the vector field bre is close to that of a vector white
noise convolved with the heat kernel on scale r. With this interpretation in mind,
we see that equation (5.68) has the same form as the defining equation for the
gradient Gaussian free field, see (5.12), up to a convolution with the heat kernel
on scale r. This strongly suggests that the spatial averages of ∇φe should resemble
those of a gradient GFF, and this is indeed what will be proved in Theorem 5.24
using an argument inspired by the heuristics in this section.

5.4 Central limit theorem for J1

The goal of this section is to give a next-order description of the energy quantity J1

introduced in (4.8). This is achieved in Theorem 5.18 below. As explained in the
paragraph around (4.111), in order to describe the precise behavior of J1, the main
point is to identify the behavior of quantities of the form

⨏◻R J1(Φz,r, p, q)dz, (5.70)



5.4 Central limit theorem for J1 201

where r ⩽ R is a relatively large mesoscale. We have seen in Theorem 4.6(ii) that

∣⨏◻R E [J1(Φz,r, p, q)] dz − (1

2
p ⋅ ap + 1

2
q ⋅ a−1q − p ⋅ q)∣ ⩽ Cr−d.

Since we aim for a description of the quantity in (5.70) only up to a precision
of o(R− d

2 ), the previous estimate gives us a sufficient understanding of its expec-
tation. We focus therefore on analyzing its fluctuations, which is the purpose of
the next proposition. Before giving the statement, we introduce the notion of
Gaussian quadratic form, which is a random quadratic form such that the entries
of its associated symmetric matrix form a centered Gaussian vector (see also (5.74)
below).

Proposition 5.17. There exist η1(d) ∈ (1
2 ,1) and a Gaussian quadratic form Q

on Rd ×Rd such that, for every η ∈ [η1,1) and z, p, q ∈ Rd,

Q(p,ap) = 0

and

r
d
2 ⨏◻r(z) (J1(Φx,rη , p, q) −E [J1(Φx,rη , p, q)])dx (law)ÐÐ→

r→∞
Q(p, q). (5.71)

Moreover the convergence in law holds jointly over p, q ∈ Rd.

Here and throughout, we say that a convergence in law of the form

Xr(p) (law)ÐÐ→
r→∞

X(p) (5.72)

holds jointly over the index p if, for every finite family of such indices p1, . . . , pn,
we have (Xr(p1), . . . ,Xr(pn)) (law)ÐÐ→

r→∞
(X(p1), . . . ,X(pn)) .

If we have a second family of random variables Yr(q) such that

Yr(q) (law)ÐÐ→
r→∞

Y (q), (5.73)

then we say that the convergences in law in (5.72) and (5.73) hold jointly over p, q
if, for every finite sequence of parameters p1, . . . , pn, q1, . . . , qn, we have

(Xr(p1), . . . ,Xr(pn), Yr(q1), . . . , Yr(qn))
(law)ÐÐ→
r→∞

(X(p1), . . . ,X(pn), Y (q1), . . . , Y (qn)) .
Just as a Gaussian quadratic form can be seen a particular type of Gaussian

vector, we can define a quadratic form white noise as a particular type of vector
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white noise. More precisely, let Q denote the random 2d-by-2d matrix such that,
for every p, q ∈ Rd,

Q(p, q) = 1

2
(p
q
) ⋅Q(p

q
) , (5.74)

where Q is the Gaussian quadratic form appearing in the statement of Proposi-
tion 5.17. By definition, the family of random variables (Qij)1⩽i,j⩽2d is a centered
Gaussian vector, with a certain covariance matrix. We can then define (Wij)1⩽i,j⩽2d

to be the vector white noise having the same covariance matrix as (Qij)1⩽i,j⩽2d, and
then, for every p, q ∈ Rd, consider the random distribution

W(⋅, p, q) ∶= 1

2
(p
q
) ⋅W (p

q
) ,

or more explicitly,

W(⋅, p, q) ∶= 1

2

d∑
i,j=1

(pipjWij(⋅) + qiqjWd+i,d+j(⋅) + 2piqjWi,d+j(⋅)) .
We call such W a quadratic form white noise. Abusing notation slightly, for a
sufficiently regular test function f , we write

∫
Rd
f(x)W(x, p, q)dx (5.75)

to denote the evaluation of W(⋅, p, q) against f . By the construction of W,
the random variable in (5.75) is a centered Gaussian, and has the same law
as ∥f∥L2(Rd)Q(p, q).

With the definition of W now in place, we can state the following consequence
of Proposition 5.17, which is the main result of this section.

Theorem 5.18. Let Q be as in the statement of Proposition 5.17 and W be as
defined above. There exists η′(d) ∈ (1

2 ,1) such that, for every η ∈ (η′, 1), p, q, z ∈ Rd

and f ∈ L1(Rd) ∩L∞(Rd),
r
d
2 ∫

Rd
f (x) (J1(Φrx,rη , p, q) −E [J1(Φrx,rη , p, q)]) dx

(law)ÐÐ→
r→∞ ∫

Rd
f(x)W(x, p, q)dx, (5.76)

and
r
d
2 (J1(Φrz,r, p, q) −E [J1(Φrz,r, p, q)]) (law)ÐÐ→

r→∞ ∫
Φz,1

W(⋅, p, q). (5.77)

Moreover, the convergences in law in (5.76) and (5.77) hold jointly over p, q, z ∈ Rd

and f ∈ L1(Rd) ∩L∞(Rd).
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The rest of this section is devoted to the proofs of Proposition 5.17 and Theo-
rem 5.18.

In order to present the proof of Proposition 5.17, it is convenient to introduce
the following notation for quantifying how close a random variable X is to being a
Gaussian. For every real random variable X and σ,λ1,c ⩾ 0, we write

X = N(σ2, λ1,c)
to mean that, for every λ ∈ (−λ1, λ1),

∣logE [exp (λX)] − σ2λ2

2
∣ ⩽ cλ2. (5.78)

By the injectivity of the Laplace transform (cf. [23, Theorem 26.2]), the statement
that X = N(σ2,∞, 0) is equivalent to the statement that X is a centered Gaussian
random variable of variance σ2.

As in the paragraph preceding (4.111), it is useful to think first about the simpler
situation where J1(Φz,r, p, q) is replaced by the spatial average over Φz,r of a random
field with finite range of dependence, or even by the normalized sum over boxes of
an i.i.d. random field indexed by Zd. We thus seek a renormalization-type argument
to prove a central limit theorem for such quantities. As an initialization step, we
observe that, for every centered and sufficiently integrable random variable X and
c > 0, there exists a possibly very small λ1 > 0 such that X = N(E[X2], λ1,c). For
the induction, if we can decompose the large-scale quantity as the normalized sum
of k independent random variables which are each N(σ2, λ1,c), then the large-scale
quantity is N(σ2,

√
kλ1,c).

If these two steps can be justified, then it is clear that over larger and larger
scales, the quantity of interest becomes arbitrarily close to N(σ2,∞,0). More
precisely, for any λ1 < ∞ and c > 0, there exists σ2 ⩾ 0 such that the quantity of
interest becomes N(σ2, λ1,c) over sufficiently large scales. For the quantity J1, the
difficulty is that the induction step is not exact: additivity is only true up to an
error, which becomes negligible as we move to larger and larger scales. The proof
consists therefore in initializing the renormalization argument at a sufficiently large
scale, so that the cumulative error due to the additivity defect remains small.

The initialization step mentioned above is formalized in the next lemma.

Lemma 5.19. There exists C < ∞ such that if a random variable X satisfies

E[exp (2∣X ∣)] ⩽ 2 and E[X] = 0, (5.79)

then for every λ1 ∈ (0,1],
X = N (E [X2] , λ1,Cλ1) .
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Proof. This is a direct consequence of Lemma A.6.

As already stated above, the basis of the induction step lies in the following
elementary observation.

Lemma 5.20. Let σ,λ1,c ⩾ 0, and let X1, . . . ,Xk be independent random variables
satisfying, for every i ∈ {1, . . . , k},

Xi = N (σ2, λ1,c) . (5.80)

We have

k−
1
2

k∑
i=1

Xi = N (σ2,
√
kλ1,c) .

Proof. By the independence assumption, if ∣λ∣ < k 1
2λ1, then

logE [exp(λk− 1
2

k∑
i=1

Xi)] = k∑
i=1

logE [exp (λk− 1
2Xi)] .

The conclusion is then immediate from the definition of (5.80), see (5.78).

For the rest of this section, we fix s ∈ (1,2), δ > 0 sufficiently small and α ∈ R
such that

d

2
(1 + δ) < α < d

s
∧ [d

2
(1 + δ) + δ] . (5.81)

Since α > d
2(1 + δ), we can also fix 1

2 < η1 < η2 < 1 such that

η1α > d
2

and η2(1 + δ) < 1. (5.82)

The exponent η1 is that which appears in Proposition 5.17, while the exponent η′
in Theorem 5.18 is η′ = η1(1 + δ) < 1.

With this in place, we now recall some of the results proved in Chapter 4. By
Theorem 4.6(iv), there exists a constant C(s, δ, α, d,Λ) < ∞ and, for every r ⩾ 1,
z ∈ Rd and p, q ∈ B1, an F(Br1+δ(z))-measurable random variable J(δ)

1 (z, r, p, q)
such that ∣J1(Φz,r, p, q) − J(δ)

1 (z, r, p, q)∣ ⩽ Os (Cr−α) . (5.83)

Since (p, q) ↦ J1(Φz,r, p, q) is a quadratic form and is bounded by a deterministic
constant on B1 ×B1, we may and will assume that the same properties also hold
for (p, q) ↦ J

(δ)
1 (z, r, p, q). As in (4.105), we center J(δ)

1 by setting

J̃
(δ)
1 (z, r, p, q) ∶= J(δ)

1 (z, r, p, q) −E [J(δ)
1 (z, r, p, q)] . (5.84)
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Since α < d
s , we infer from Theorem 4.6(i) and Lemma A.3(i) that there exists

C(s, δ, α, d,Λ) < ∞ such that, for every R > r ⩾ 1, z ∈ Rd and p, q ∈ B1,RRRRRRRRRRRJ1(Φz,R, p, q) − ∫
Φ
z,
√

R2−r2

J1(Φx,r, p, q)dxRRRRRRRRRRR ⩽ Os (Cr
−α) . (5.85)

By (5.83) and the triangle inequality, we deduce the following additivity property
for J̃(δ)

1 : RRRRRRRRRRRJ̃
(δ)
1 (z,R, p, q) − ∫

Φ
z,
√

R2−r2

J̃
(δ)
1 (⋅, r, p, q)RRRRRRRRRRR ⩽ Os (Cr

−α) . (5.86)

We also recall from (4.115) that there exists a constant C(s, δ, α, η1, η2, d,Λ) < ∞
such that, for every R ⩾ 1, r ∈ [Rη1 ,Rη2], z ∈ Rd, p, q ∈ B1 and every function
f ∈ L∞(Rd) satisfying ∥f∥L∞(Rd) ⩽ 1, we have

⨏◻R(z)
f J̃

(δ)
1 (⋅, r, p, q) = Os (CR− d

2 ) . (5.87)

The restriction r ⩽ Rη2 was convenient for the proof of (5.87), but can easily be
lifted using the additivity property. This is the purpose of the first part of the next
lemma; the other parts provide similar stability estimates for the quantity on the
left side of (5.87).

Lemma 5.21. (i) There exists a constant C(s, δ, η1, d,Λ) < ∞ such that, for every
R ⩾ 1, r ∈ [Rη1 ,R], z ∈ Rd, p, q ∈ B1 and every function f ∈ L∞(Rd) satisfying∥f∥L∞(Rd) ⩽ 1, we have

⨏◻R(z)
f J̃

(δ)
1 (⋅, r, p, q) = Os (CR− d

2 ) . (5.88)

(ii) For each β ∈ [0,1], there exists a constant C(β, s, δ, η1, d,Λ) < ∞ such that,
for every R ⩾ 1, r ∈ [Rβη1 ,R

β
1+δ ], z ∈ Rd, p, q ∈ B1 and every function f ∈ L∞(Rd)

satisfying ∥f∥L∞(Rd) ⩽ 1 and supp f ⊆ ◻R(z) ∖ ◻R−Rβ(z), (5.89)

we have the improved estimate

⨏◻R(z)
f J̃

(δ)
1 (⋅, r, p, q) = Os (CR− d

2
− 1−β

2 ) . (5.90)

(iii) For each β ∈ [η1,1), there exists an exponent ε(β, s, δ, η1, d) > 0 and a
constant C(β, ε, s, δ, η1, d,Λ) < ∞ such that, for every R ⩾ 1, r ∈ [Rη1 ,Rβ], z ∈ Rd

and p, q ∈ B1, we have

⨏◻R(z)
J̃

(δ)
1 (⋅, r, p, q) = ⨏◻R(z)

J̃
(δ)
1 (⋅,Rη1 , p, q) + Os (CR− d

2
−ε) .
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Proof. We fix z = 0 throughout for notational convenience, and start with the proof
of part (i). By the additivity property in (5.86), we have

⨏◻R f(x) J̃(δ)
1 (x, r, p, q)dx
= ⨏◻R f(x) ∫Φ

x,
√

r2−R2η1

J̃
(δ)
1 (y,Rη1 , p, q)dy dx +Os (CR−η1α) . (5.91)

By (5.82), we have η1α > d
2 , and thus the error term is of lower order. We set

g ∶= (f1◻R) ∗Φ(r2 −R2η1 , ⋅), (5.92)

and observe that, for every x ∈ Rd,

g(x) ⩽ C exp(−(∣x∣∞ −R)2
+

Cr2
) , (5.93)

where we recall that, for x = (x1, . . . , xd) ∈ Rd, we write ∣x∣∞ = max1⩽i⩽d ∣xi∣. By
Fubini’s theorem, the double integral on the right side of (5.91) is equal to

R−d∫
Rd
g J̃

(δ)
1 (⋅,Rη1 , p, q),

which we decompose into

∑
z∈RZd

⨏◻R(z)
g J̃

(δ)
1 (⋅,Rη1 , p, q).

The estimate (5.88) therefore follows from (5.87) and (5.93).
We now turn to the proof of part (ii). We decompose the integral on the left

side of (5.90) into subcubes of side length Rβ:

∫◻R f J̃(δ)
1 (⋅, r, p, q) = ∑

z∈RβZd
∫◻

Rβ
(z)
f J̃

(δ)
1 (⋅, r, p, q).

By the assumption (5.89) on the support of f , there are no more than CR(1−β)(d−1)

non-zero summands in the sum above. Applying the result of part (i) to each of
these summands yields

R−βd∫◻
Rβ

(z)
f J̃

(δ)
1 (⋅, r, p, q) ⩽ Os (CR−β d

2 ) .
Moreover, since we impose r ⩽ R

β
1+δ , the quantity on the left side above isF(◻2Rβ(z))-measurable. We can therefore appeal to Lemmas A.7 and A.10 to

obtain that ∫◻R f J̃(δ)
1 (⋅, r, p, q) ⩽ Os (R(1−β) d−1

2
+β d

2 ) .
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Dividing by R−d, we obtain (5.90).
We now turn to part (iii). Using the additivity of J̃(δ)

1 as in the beginning of
the proof but with f ≡ 1, we get that for

g ∶= 1◻R ∗Φ(r2 −R2η1 , ⋅),
we have

⨏◻R J̃(δ)
1 (⋅, r, p, q) = R−d∫

Rd
g J̃

(δ)
1 (⋅,Rη1 , p, q) + Os (CR−η1α) ,

and we recall that η1α > d
2 . We now decompose the integral on the right side into

∑
z∈RZd

∫◻R(z)
g J̃

(δ)
1 (⋅,Rη1 , p, q),

and proceed to show that, for some small ε(β, s, δ, η1, d) > 0,

∫◻R g J̃(δ)
1 (⋅,Rη1 , p, q) = ∫◻R(z)

J̃
(δ)
1 (⋅,Rη1 , p, q) + Os (CR− d

2
−ε) , (5.94)

while ∑
z∈RZd∖{0}

∫◻R(z)
g J̃

(δ)
1 (⋅,Rη1 , p, q) = Os (CR− d

2
−ε) . (5.95)

The estimate (5.94) follows from the observations that 0 ⩽ g ⩽ 1,

sup{∣1 − g(x)∣ ∶ x ∈ ◻
R−R

1+β
2

} ⩽ CR−100d,

and an application of parts (i) and (ii) of the lemma. The proof of (5.95) is obtained
similarly, using that, for every x ∈ Rd,

0 ⩽ g(x) ⩽ C exp(−(2∣x∣∞ −R)2
+

CR2β
) .

This completes the proof of part (iii) of the lemma.

Finally, we need a technical lemma justifying that the statement that X =N(σ2, λ1,c) is stable to perturbations by Os (θ)-bounded random variables, if θ is
sufficiently small.

Lemma 5.22. Fix λ2 > 0. There exists C(s, λ2) < ∞ such that, for every σ,c > 0,
λ1 ∈ [0, λ2] and θ ∈ [0,1], if X1, X2 are two centered random variables satisfying

X1 = N (σ2, λ1,c) and X2 = Os (θ) , (5.96)

then
X1 +X2 = N (σ2, (1 −√

θ)λ1,c +C√
θ(1 + σ2 + c)) . (5.97)
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Proof. Write X ∶=X1+X2, and let ζ, ζ ′ ∈ (1,∞) be such that 1
ζ + 1

ζ′ = 1. By Hölder’s
inequality,

logE [exp (λX)] ⩽ 1

ζ
logE [exp (ζλX1)] + 1

ζ ′
logE [exp (ζ ′λX2)] , (5.98)

and conversely,

logE [exp (λX1)] ⩽ 1

ζ
logE [exp (ζλX)] + 1

ζ ′
logE [exp (−ζ ′λX2)] . (5.99)

By the first part of (5.96), for every ∣λ∣ < ζ−1 λ1,

logE [exp (ζλX1)] ⩽ (σ2

2
+ c) (ζλ)2. (5.100)

By the second part of (5.96) and Lemma A.7, there exists C(s) < ∞ such that, for
every λ ∈ R,

logE [exp (C−1ζ ′λX2)] ⩽ (ζ ′θλ)2 ∨ ∣ζ ′θλ∣ s
s−1 .

Specializing to the case in which ζ = (1−θ 1
2 )−1 and ζ ′ = θ− 1

2 , we deduce the existence
of a constant C(s, λ2) < ∞ such that, for every ∣λ∣ ⩽ λ2,

logE [exp (ζ ′λX2)] ⩽ C (√θλ)2
.

Using (5.98) with (5.100) and the previous display yields, for every ∣λ∣ < (1− θ 1
2 )λ1,

logE [exp (λX)] ⩽ (σ2

2
+ c) ζλ2 +Cθ 1

2λ2.

Since
ζ − 1 = (1 − θ 1

2)−1 − 1 ⩽ Cθ 1
2 ,

we obtain one side of the two-sided inequality implicit in (5.97). The other inequality
is proved in a similar way, using (5.99) instead of (5.98).

Proof of Proposition 5.17. We first observe that the statement of Q(p,ap) = 0 is a
consequence of the claimed convergence (5.71) and the results of Chapter 4. Indeed,
by Lemma 4.17 and (4.14), there exists C(s, d,Λ) < ∞ such that, for every r ⩾ 1,
z ∈ Rd and p ∈ B1,

J(Φz,r, p,ap) ⩽ Os/2 (Cr−d) ,
and therefore Q(p,ap) = 0 follows from (5.71) and the fact that η1 > 1

2 .
We turn to the proof of (5.71). By (5.83), Lemma 5.21(iii) and η1α > d

2 , it
suffices to show that

r
d
2 ⨏◻r(z) J̃(δ)

1 (⋅, rη1 , p, q) (law)ÐÐ→
r→∞

Q(p, q),
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with the convergence holding jointly over p, q ∈ Rd. Since (p, q) ↦ J̃
(δ)
1 (x, r, p, q)

is a quadratic form, this amounts to showing the joint convergence of the entries
of the associated random 2d-by-2d matrix. By Lemma 5.2, it suffices to show the
convergence in law of arbitrary linear combinations of these entries. These entries
can be computed from the bilinear form associated with J̃(δ)

1 , that is,

(p, q, p′, q′) ↦ 1

4
(J̃(δ)

1 (x, r, p + p′, q + q′) − J̃(δ)
1 (x, r, p − p′, q − q′)) ,

for particular choices of p, q, p′, q′ in the set

B0 ∶= {ei ∶ 1 ⩽ i ⩽ d} ∪ {0} ⊆ Rd.

We define B1 ∶= {v ± v′ ∶ v, v′ ∈ B0}. (5.101)

Using also Remark 5.3, it therefore suffices to show that, for each fixed finite family
of scalars {λ(v, v′)}v,v′∈B1 ∈ [−1,1]B2

1 , (5.102)

we have the convergence in law, as r →∞, of the random variable

∑
v,v′∈B1

λ(v, v′) r d2 ⨏◻r(z) J̃(δ)
1 (⋅, rη1 , v, v′)

to a Gaussian random variable.
We henceforth fix {λ(v, v′)}v,v′∈B1 as in (5.102) and, for every x ∈ Rd and r ⩾ 1,

use the shorthand notation

J̃
(δ)
1 (x, r) ∶= ∑

v,v′∈B1
λ(v, v′)J̃(δ)

1 (x, r, v, v′). (5.103)

Since the number of terms in the sum on the right side is bounded by C(d) < ∞
and the coefficients themselves belong to [−1,1], it is clear that the estimates we
proved for J̃(δ)

1 (x, r, p, q) with p, q ∈ B1 transfer to the quantity J̃(δ)
1 (x, r), after

adjusting the multiplicative constant.
In order to prove that, for every z ∈ Rd, the random variable

r
d
2 ⨏◻r(z) J̃(δ)

1 (⋅, rη1)
converges in law to a Gaussian as r tends to infinity, it suffices to show that, for
any given λ2 < ∞ and c > 0, there exists σ ∈ [0,∞) such that, for every z ∈ Rd and
r sufficiently large,

r
d
2 ⨏◻r(z) J̃(δ)

1 (⋅, rη1) = N (σ2, λ2,c) . (5.104)
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Indeed, this statement implies that, for any given bounded interval, the Laplace
transform of the random variable on the left side of (5.104) converges to a parabola
as r tends to infinity; and this suffices to prove the desired convergence in law.

Let us therefore fix λ2 ∈ [1,∞) and proceed to prove (5.104) by an induction
on the scale. For every r1 ⩾ 2 and σ ⩾ 0, λ1 ∈ (0, λ2) and c ⩾ 0, we denote by
A(r1, σ2, λ1,c) the statement that, for every r ∈ [ r1

2 , r1] and z ∈ Rd, we have

r
d
2 ⨏◻r(z) J̃(δ)

1 (⋅, rη1) = N(σ2, λ1,c). (5.105)

Note that by Lemmas 5.21(i) and A.7, there exists C0(λ2, s, δ, η1, d,Λ) < ∞ such
that, for every r ⩾ 1, z ∈ Rd and λ ∈ (0, λ2),

logE [exp(λr d2 ⨏◻r(z) J̃(δ)
1 (⋅, rη1))] ⩽ C0λ2

4
.

We can therefore restrict a priori the range of values of interest for the parameters σ2

and c to the interval [0,C0].
In the course of the argument, the value of the exponent ε(s, δ, α, η1, η2, d) > 0

and of the constant C(s, δ, α, η1, η2, λ2, d,Λ) < ∞ may change from one occurrence
to the next without further mention.

We decompose the rest of the proof into four steps.
Step 1. In this step, we show that, for every r sufficiently large (depending

on the parameters (s, δ, η1, d,Λ)), there exists σ2(r) ∈ [0,C0] such that, for every
z ∈ Rd and λ1 ∈ (0, 1

2
],
r
d
2 ⨏◻r(z) J̃(δ)

1 (⋅, rη1) = N(σ2, λ1,Cλ1 +Cr−ε). (5.106)

By Lemmas 5.19 and 5.21, for each r ⩾ 1, there exists σ2(r) ∈ [0,C0] such that, for
every λ1 ∈ (0,1],

r
d
2 ⨏◻r J̃(δ)

1 (⋅, rη1) = N (σ2, λ1,Cλ1) .
This shows the claim with the additional constraint of z = 0. In order to obtain
the full result, we first note that by Zd-stationarity, it suffices to show that (5.106)
holds uniformly over z ∈ [0,1)d. In this case, applying Lemma 5.21(ii) twice, we
can replace integration over ◻r by integration over ◻r ∩◻r(z) and then over ◻r(z),
at the price of an error of Os (Cr− d2−ε). By Lemma 5.22, this completes the proof
of (5.106).

Step 2. We now complete the initialization of the induction argument by
showing that, for every r1 sufficiently large, there exists σ2(r1) ∈ [0,C0] such that

for every λ1 ∈ (0, 1
2
] , A(r1, σ

2, λ1,Cλ1 +Cr−ε1 ) holds. (5.107)
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Let γ > 1 be selected sufficiently close to 1 as a function of η1 and δ so that

γη1(1 + δ) < 1. (5.108)

We fix r0 sufficiently large, let σ2(r0) ∈ [0,C0] be as given by the previous step,
and aim to show that, for every r ∈ [1

2r
γ
0 , r

γ
0 ], z ∈ Rd and λ1 ∈ (0, 1

2
], we have

r−
d
2 ∫◻r(z) J̃(δ)

1 (⋅, rη1) = N (σ2, λ1,Cλ1 +Cr−ε) . (5.109)

The argument for (5.109) and the rest of the proof will be completely translation-
invariant, so we focus on showing the statement with the additional constraint of z =
0 for notational convenience. For every r ∈ [ rγ02 , rγ0], we consider the decomposition

r−
d
2 ∫◻r J̃(δ)

1 (⋅, rη1) = r− d2 ∑
z∈r0Zd∩◻r

∫◻r0(z) J̃(δ)
1 (⋅, rη1).

We denote by ⧈r(z) the trimmed cube

⧈r(z) ∶= ◻r−rη1(1+δ)(z), (5.110)

By the choice of the exponent γ in (5.108), we can appeal to Lemma 5.21(ii) and
get that, for every z ∈ Rd,

∫◻r0(z) J̃(δ)
1 (⋅, rη1) − ∫⧈r0(z) J̃(δ)

1 (⋅, rη1) = Os (Cr d2−ε0 ) . (5.111)

Moreover, the random variable on the left side above is F(◻2r0(z))-measurable.
By Lemmas A.7 and A.10, we deduce that

r−
d
2 ∑
z∈r0Zd∩◻r

(∫◻r0(z) J̃(δ)
1 (⋅, rη1) − ∫⧈r0(z) J̃(δ)

1 (⋅, rη1)) = Os (Cr− d2 r−ε0 ) .
In other words, this difference is of lower order. We also note that, by the result of
the previous step, (5.111) and Lemma 5.22, we have

r
− d

2
0 ∫⧈r0(z) J̃(δ)

1 (⋅, rη1) = N (σ2, (1 −Cr−ε)λ1,Cλ1 +Cr−ε) . (5.112)

Lemma 5.20 then yields

r−
d
2 ∑
z∈r0Zd∩◻r

∫◻r0(z) J̃(δ)
1 (⋅, rη1) = N (σ2,2λ1,Cλ1 +Cr−ε) .

Another application of Lemma 5.22 completes the proof of (5.109).
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Step 3. In this step, we show the induction statement, namely that, for every
r1 sufficiently large, λ1 ∈ (0, λ2) and σ2,c ∈ [0,C0], we have

A (r1, σ
2, λ1,c) Ô⇒ A (2r1, σ

2,2
d
2λ1(1 −Cr−ε1 ),c +Cr−ε1 ) . (5.113)

Let r ∈ [1
2r1, r1]. We decompose

(2r)− d2 ∫◻2r

J̃
(δ)
1 (⋅, (2r)η1) = (2r)− d2 ∑

z∈Z
∫◻r(z) J̃(δ)

1 (⋅, (2r)η1), (5.114)

where we denote

Z ∶= {−r
2
,
r

2
}d .

Recall the definition of the trimmed cube ⧈r(z) in (5.110). By Lemma 5.21(ii) and
(iii), we have

r−
d
2 ∣∫◻r(z) J̃(δ)

1 (⋅, (2r)η1) − ∫⧈r(z) J̃(δ)
1 (⋅, rη1)∣ = Os (Cr− d2−ε) . (5.115)

By the assumption of A(r1, σ2, λ1,c) and Lemma 5.21(ii), we have

r−
d
2 ∫⧈r(z) J̃(δ)

1 (⋅, rη1) = N (σ2, (1 −Cr−ε)λ1,c +Cr−ε) .
Applying Lemma 5.20, we get

(2r)− d2 ∑
z∈Z
∫◻r(z) J̃(δ)

1 (⋅, (2r)η1) = N (σ2,2
d
2λ1(1 −Cr−ε),c +Cr−ε) .

Combining this with (5.114), (5.115) and Lemma 5.22 yields the announced impli-
cation (5.113).

Step 4. We conclude for the proof of (5.104). Let c ∈ (0,1]. By the result of
Step 2, for every r1 sufficiently large, there exists σ2 ∈ [0,C0] and λ1 > 0 sufficiently
small such that

A (r1, σ
2, λ1,c) holds.

Applying the induction step (5.113) repeatedly, we obtain that, for every k suffi-
ciently large,

A (2kr1, σ
2, λ2,c +Cr−ε1 ) holds.

Choosing r1 sufficiently large in terms of c, it follows that, for every k sufficiently
large,

A (2kr1, σ
2, λ2,2c) holds.

This is (5.104), up to a redefinition of c. The proof is therefore complete.
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Remark 5.23. It follows from the proof of Proposition 5.17 that, for each λ2 < ∞
and c > 0, there exists a sufficiently large scale r0 such that, for every r ⩾ r0 and
z ∈ Rd,

r
d
2 ⨏◻r(z) J̃(δ)

1 (⋅, rη) = N (σ2, λ2,c) ,
using the notation from (5.103). For a fixed z ∈ Rd, this can also be proved directly
from the statement of Proposition 5.17 and the a priori stochastic integrability
bound given by Lemma 5.21(i). The statement with arbritrary z ∈ Rd can then be
recovered by stationarity and Lemma 5.21(ii).

We now proceed with the proof of Theorem 5.18, which is deduced from
Proposition 5.17 using the approximate additivity and locality of J1.

Proof of Theorem 5.18. The exponent η′ appearing in the statement is defined by

η′ ∶= η1(1 + δ) < 1. (5.116)

We first prove (5.76), and then obtain (5.77) as a consequence. By (5.83), in order
to prove (5.76), it suffices to show that

r
d
2 ∫

Rd
f (x) J̃(δ)

1 (rx, rη, p, q)dx (law)ÐÐ→
r→∞ ∫

Rd
f(x)W(x, p, q)dx, (5.117)

and that the convergence in law holds jointly over f ∈ L1(Rd)∩L∞(Rd) and p, q ∈ Rd.
We fix a family of scalars (λ(v, v′))v,v′∈B1 ∈ [−1, 1]B2

1 , with B1 as in (5.101), and recall
the shorthand notation J̃

(δ)
1 (⋅, r) from (5.103). We know from Proposition 5.17

that as r tends to infinity, the random variable

r
d
2 ⨏◻r J̃(δ)

1 (⋅, rη1)
converges in law to a centered Gaussian; we denote the variance of this Gaussian
by σ2. As in the beginning of the proof of Proposition 5.17, by appealing to
Lemma 5.2, we see that in order to prove the joint convergence in (5.117), it suffices
to show that as r tends to infinity, the individual random variable

r
d
2 ∫

Rd
f (x) J̃(δ)

1 (rx, rη)dx (5.118)

converges in law to a centered Gaussian of variance σ2∥f∥2
L2(Rd).

We now proceed to prove this convergence in law. Without loss of generality,
we assume that ∥f∥L1(Rd) + ∥f∥L∞(Rd) ⩽ 1. (5.119)
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By the additivity property in (5.86), Lemma A.4 and (5.119), we have

∫
Rd
f (x) J̃(δ)

1 (rx, rη)dx
= ∫

Rd
f (x)∫

Φ
rx,
√

r2η−r2η1

J̃
(δ)
1 (y, rη1)dy dx +Os (Cr−η1α) ,

and we recall that η1α > d
2 . The error term is therefore of lower order, and the

double integral on the right side above can be rewritten as

r−d∫
Rd
∫
Rd
f (x

r
)Φ (r2η − r2η1 , x − y) J̃(δ)

1 (y, rη1)dxdy
= r−d∫

Rd
g(y, r) J̃(δ)

1 (y, rη1)dy,
where we set

g(y, r) ∶= ∫
Rd
f (x

r
)Φ (r2η − r2η1 , x − y) dx.

We fix an exponent κ function of η1, η and δ in such a way that

η′ = η1(1 + δ) < κ < η, (5.120)

and use the decomposition

∫
Rd
g(y, r) J̃(δ)

1 (y, rη1)dy = ∑
z∈rκZd

∫◻rκ(z) g(y, r) J̃(δ)
1 (y, rη1)dy. (5.121)

By (5.119) and the definition of g, there exists a constant C(d) < ∞ such that, for
every r ⩾ 1 and y, y′ ∈ Rd satisfying ∣y − y′∣ ⩽ rη, we have

∣g(y, r) − g(y′, r)∣ ⩽ C ∣y − y′∣
r(d+1)η ∫Rd

∣f (x
r
)∣ exp(−∣x − y∣2

Cr2η
) dx. (5.122)

Moreover, by (5.120), each summand on the right side of (5.121) is F(◻2rκ)-
measurable. By Lemmas 5.21(i), A.7 and A.10, we get

∣ ∑
z∈rκZd

∫◻rκ(z) g(y, r) J̃(δ)
1 (y, rη1)dy − ∑

z∈rκZd
g(z, r)∫◻rκ(z) J̃(δ)

1 (y, rη1)dy∣
⩽ Os ⎛⎜⎝Cr

dκ
2 [ ∑

z∈rκZd
( rκ

r(d+1)η ∫Rd
∣f (x

r
)∣ exp(−∣x − z∣2

Cr2η
) dx)2]

1
2⎞⎟⎠ . (5.123)

By Jensen’s inequality, the sum on the right side above is bounded by

C ∑
z∈rκZd

r2κ

r(d+2)η ∫Rd
∣f (x

r
)∣2 exp(−∣x − z∣2

Cr2η
) dx ⩽ C r2κ

r(d+2)η r
d(η−κ)∫

Rd
∣f (x

r
)∣2 dx.



5.4 Central limit theorem for J1 215

By the normalization (5.119), we have ∥f∥L2(Rd) ⩽ 1, and thus the left side of (5.123)
is bounded by Os (Cr− d2−(η−κ)) ,
and we recall that η − κ > 0.

By a very similar reasoning, using part (ii) of Lemma 5.21 instead of part (i),
we also have

∣ ∑
z∈rκZd

g(z, r)∫◻rκ(z) J̃(δ)
1 (y, rη1)dy − ∑

z∈rκZd
g(z, r)∫⧈rκ(z) J̃(δ)

1 (y, rη1)dy∣
⩽ Os (Cr− d2−ε) , (5.124)

where here we define the trimmed cube to be

⧈rκ(z) ∶= ◻rκ−rη1(1+δ)(z).
This definition ensures that the summands in the second sum on the right of (5.124)
are independent random variables. Moreover, by Proposition 5.17 (more precisely
Remark 5.23), for each fixed λ2 < ∞ and c > 0, we have for every r sufficiently large
and z ∈ Rd,

r−
κd
2 ∫⧈rκ(z) J̃(δ)

1 (⋅, rη1) = N (σ2, λ2,c) .
We deduce that

r−
d
2 g(z, r)∫⧈rκ(z) J̃(δ)

1 (⋅, rη1) = N (r−(1−κ)dg2(z, r)σ2, λ2, r
−(1−κ)dg2(z, r)c) ,

and by an immediate generalization of Lemma 5.20,

r−
d
2 ∑
z∈rκZd

g(z, r)∫⧈rκ(z) J̃(δ)
1 (y, rη1)dy

= N (r−(1−κ)d ∑
z∈rκZd

g2(z, r)σ2, λ2, r
−(1−κ)d ∑

z∈rκZd
g2(z, r)c) .

Using (5.122) again, we verify that

∣r−(1−κ)d ∑
z∈rκZd

g2(z, r) − r−d∫
Rd
g2(⋅, r)∣ ⩽ Cr−2(η−κ),

and that, for r sufficiently large,

∣r−d∫
Rd
g2(⋅, r) − ∥f∥2

L2(Rd)∣ ⩽ c.
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Using also the elementary observation that, for ∣x∣ ⩽ c′,

N(σ2 + x,λ2,c) = N(σ2, λ2,c + c′),
and that ∥f∥L2(Rd) ⩽ 1, we have thus shown that, for r sufficiently large,

r−
d
2 g(z, r)∫⧈rκ(z) J̃(δ)

1 (⋅, rη1) = N (σ2∥f∥2
L2(Rd), λ2,3c) .

This completes the proof of the fact that as r tends to infinity, the random variable
in (5.118) converges to a centered Gaussian of variance σ2∥f∥2

L2(Rd).
In order to complete the proof of Theorem 5.18, there remains to show the

convergence in (5.77). By the additivity property of J1 recalled in (5.85), we have

RRRRRRRRRRR (J1(Φrz,r, p, q) −E [J1(Φrz,r, p, q)])
− ∫

Rd
Φ(r2 − r2η, x − rz) (J1(Φx,rη , p, q) −E [J1(Φx,rη , p, q)]) dxRRRRRRRRRRR ⩽ Os (Cr

−ηα) ,
with ηα > d

2 . Using Theorem 4.6(iii), we see that in the integral above, we can
replace Φ(r2−r2η, ⋅ −rz) by Φ(r2, ⋅ −rz) = Φ (1, ⋅r − z), up to an error of lower order.
Up to a change of variables, the resulting integral is then of the form of the left side
of (5.76), with f ∶= Φ(1, ⋅ − z). The announced convergence (5.77) is thus proved.
That the convergences in law in (5.76) and (5.77) hold jointly as stated in the
proposition is a consequence of Remark 5.4.

5.5 Convergence of the correctors to a Gaussian free field

In this section, we describe the scaling limit of the corrector. Let W(⋅, p, q) be the
quadratic form white noise appearing in the statement of Theorem 5.18. Inspired
by (5.69), we define, for each e ∈ Rd, the vector white noise V(⋅, e) such that, for
every p ∈ Rd,

p ⋅V(⋅, e) = 1

2
(W(⋅, p + e,ap) −W(⋅, p − e,ap)) .

This definition makes sense since the right side depends linearly on p ∈ Rd, as
follows from the fact that (p, q) ↦ W(⋅, p, q) is a quadratic form. For the same
reason, the mapping e↦ V(⋅, e) is linear. Following up on the heuristic argument
in (5.68), we then define the gradient GFF ∇Ψe as solving

−∇ ⋅ a∇Ψe = ∇ ⋅ (V(⋅, e)) . (5.125)

This is understood as in (5.12) and (5.49). The following theorem, which is the
main result of the chapter, shows the correctness of the heuristic argument of
Section 5.3. See Figure 5.3 for a visualization of the theorem.
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Theorem 5.24 (Scaling limit of the corrector). Let γ > d
2 . For every e ∈ Rd, we

have
r
d
2 (∇φe) (r ⋅) (law)ÐÐ→

r→∞
∇Ψe, (5.126)

with respect to the topology of H−γ
loc(Rd). Moreover, the convergences in law in

(5.76), (5.77) and (5.126) hold jointly over z, p, q, e ∈ Rd and f ∈ L1(Rd) ∩L∞(Rd).
We recall that the functional convergence in law stated in (5.126) means that,

for every bounded and continous functional F ∶H−γ
loc(Rd) → R, we have

E [F (r d2 (∇φe) (r ⋅))] ÐÐ→
r→∞

E [F (∇Ψe)] .
Exercise 5.9. Deduce from (5.126) that, for each compactly supported function
f ∈ Hγ(Rd), γ > d

2 , the evaluation of the distribution r
d
2 (∇φe) (r ⋅) against f

converges in law to the evaluation of ∇Ψe against f .

Exercise 5.10. Recall that ζ denotes the standard mollifier. Using Theorems 4.24
and 5.24, show that, for each γ > d

2 and p ∈ [2,∞), the convergence in law

r
d
2 (∇φe ∗ ζ) (r ⋅) (law)ÐÐ→

r→∞
∇Ψe

holds with respect to the topology of W −γ,p
loc (Rd).

We start by restating the central limit theorem of the previous section in terms
of the coarsened coefficients br(z). This is immediate from Theorem 5.18 and the
definition of br(z), see Definition 5.15.

Lemma 5.25. There exists η′(d) ∈ (1
2 ,1) such that, for every η ∈ (η′,1), e ∈ Rd

and F ∈ L1(Rd;Rd) ∩L∞(Rd;Rd), we have

r
d
2 ∫

Rd
F (x) ⋅ brη(rx)e dx (law)ÐÐ→

r→∞ ∫
Rd
F (x) ⋅V(x, e)dx. (5.127)

Moreover, the convergences in law in (5.76), (5.77) and (5.127) hold jointly over
e, p, q, z ∈ Rd, f ∈ L1(Rd) ∩L∞(Rd) and F ∈ L1(Rd;Rd) ∩L∞(Rd;Rd).

In the next lemma, we give a refinement of Lemma 4.14 and a rigorous version
of (5.66) by showing that locally averaged elements of A1 are approximately (a+br)-
harmonic.

Lemma 5.26. There exists an exponent κ(s, d) > 0 and a constant C(s, d,Λ) < ∞
such that, for every ψ ∈ C1(Rd) satisfying

∀x ∈ Rd, ∣x∣d∣ψ(x)∣ + ∣x∣d+1 ∣∇ψ(x)∣ ⩽ 1, (5.128)

and every e ∈ B1, we have

∣∫
Rd
∇ψ(x) ⋅ (a + br(x)) [e +∇(φe ∗Φr)(x)] dx∣ ⩽ Os (Cr− d2−κ) . (5.129)
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Figure 5.3 A graph of the first-order correctors, which can be compared to Figure 5.1.
The coefficient field a is a scalar random checkerboard, with checkerboard squares sampled
independently from the uniform distribution on [1,11]. In this case, by symmetry we
have that a is also scalar. The top picture is φe1 and the bottom picture is of φe2 . One
can see from the picture that the correlation structures appear to be strongly anisotropic.
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Proof. The proof follows closely that of Lemma 4.14. We define

Hr(z) ∶= sup
u∈A1(Φz,r)

∣∫
Φz,r

a(x)∇u(x)dx − (a + br(z))∫
Φz,r

∇u(x)dx∣ .
By the definition of A1(Φz,r), we have Hr(x) ⩽ C. Setting s′ ∶= s+2

2 , we recall from
Lemma 5.16 that, for every r ⩾ 1 and z ∈ Rd,

Hr(z) ⩽ C ∧Os′/2 (Cr−d) . (5.130)

By Lemma A.3, this implies

Hr(z) ⩽ Os (Cr− d2−κ) , (5.131)

for κ(s, d) > 0 such that d
2 + κ = ds′

2s . We then compute, for every u ∈ A1,

∣∫
Rd
∇ψ(x) ⋅ (a + br(x))∇(u ∗Φr) (x)dx∣
= ∣∫

Rd
∇ψ(x) ⋅ (a + br(x)) (∫

Φx,r
∇u) dx∣

⩽ ∣∫
Rd
∇ψ(x) ⋅ (∫

Φx,r
a∇u) dx∣ + ∫

Rd
∣∇ψ(x)∣ ∥∇u∥L2(Φx,r)Hr(x)dx

= ∣∫
Rd
∇(ψ ∗Φr) (x) ⋅ a(x)∇u(x)dx∣ + ∫

Rd
∣∇ψ(x)∣ ∥∇u∥L2(Φx,r)Hr(x)dx.

The conclusion then follows by specializing to u ∶ x↦ x ⋅ e+φe(x), provided we can
show that ∫

Rd
∇(ψ ∗Φr) (x) ⋅ a(x)(e +∇φe)(x)dx = 0 (5.132)

and that ∫
Rd

∣∇ψ(x)∣ ∥e +∇φe∥L2(Φx,r)Hr(x)dx = Os (Cr− d2−κ) . (5.133)

Let χ ∈ C∞
c (Rd;R) be such that χ ≡ 1 on B1 and χ ≡ 0 outside of B2. The left side

of (5.132) is the limit as R tends to infinity of

∫
Rd
∇(χ ( ⋅

R
)ψ ∗Φr) (x) ⋅ a(x)(e +∇φe)(x)dx. (5.134)

Indeed, the difference between this term and the left side of (5.132) can be bounded
using (5.128) by a constant times

R−(d+1)∫
B2R

∣e +∇φe∣(x)dx.
and by Theorem 4.1 and Jensen’s inequality, this is bounded by

R−(d+1)Os (CRd log
1
2 R) ,
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which tends to 0 as R tends to infinity. Moreover, the quantity in (5.134) is in fact
zero for every R, since x↦ x ⋅ e + φe(x) ∈ A1. This justifies (5.132).

There remains to show (5.133). By (5.128) and (5.131), we clearly have

∫
Rd

∣∇ψ(x)∣Hr(x)dx = Os (Cr− d2−κ) .
We also recall from Theorem 4.1 that

∥∇φ∥L2(Φx,r) ⩽ Os′ (Cr− d2 ) .
The conclusion therefore follows from (5.130) and Lemma A.3.

We can now complete the proof of Theorem 5.24.

Proof of Theorem 5.24. We fix γ > γ′ > d
2 . By Theorem 4.24, there exists a constant

C(s, γ′, d,Λ) < ∞ such that, for every r ⩾ 1,

∥r d2 (∇φe) (r ⋅)∥
H−γ′(B1)

⩽ Os (C) . (5.135)

In particular, by Chebyshev’s inequality, we have for every r,M ⩾ 1 that

P [∥r d2 (∇φe) (r ⋅)∥
H−γ′(B1)

⩾M] ⩽ C

M
.

By translation invariance of the law of ∇φe and the fact that the embedding
H−γ′

loc (Rd) ↪H−γ
loc(Rd) is compact, this ensures that the family of random distribu-

tions {r d2 (∇φe) (r ⋅), r ⩾ 1} is tight in H−γ
loc(Rd). By Prohorov’s theorem (see [24,

Theorem 5.1]), it thus remains to verify the uniqueness of the limit law. In order
to do so, it suffices to show that, for every F ∈ C∞

c (Rd;Rd), we have

r
d
2 ∫

Rd
F (x) ⋅ (∇φe)(rx)dx (law)ÐÐ→

r→∞ ∫
Rd
F (x) ⋅ (∇Ψe)(x)dx. (5.136)

Since this convergence in law will be deduced deterministically from that of
Lemma 5.25, the joint convergence with (5.76) and (5.77) will be clear (see Re-
mark 5.4).

Let κ(s, d) > 0 be as given by Lemma 5.26, let η′(d) ∈ (0,1) be as given by
Lemma 5.25, and let η(s, d) ∈ (η′, 1) be an exponent to be chosen sufficiently close
to 1 in the course of the proof. We first observe that in order to show (5.136), it
suffices to show that

r
d
2 ∫

Rd
F (x) ⋅ ∇(φe ∗Φrη)(rx)dx (law)ÐÐ→

r→∞ ∫
Rd
F (x) ⋅ (∇Ψe)(x)dx. (5.137)

Indeed, this follows from

r
d
2 ∫

Rd
F (x) ⋅ ∇(φe ∗Φrη − φe)(rx)dx = r d2 ∫

Rd
(F ∗Φrη−1 − F )(x) ⋅ (∇φe)(rx)dx,
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the bound (5.135), and elementary estimates on the convergence of F ∗Φrη−1 to F
in Hγ(Rd) as r tends to infinity.

We first show (5.137) assuming furthermore that the function F is of zero mean.
We introduce the Helmholtz-Hodge decomposition of F :

F = a∇h + g, (5.138)

where h ∈ L2(Rd) is the unique solution of

∇ ⋅ a∇h = ∇ ⋅ F in Rd

satisfying lim∣x∣→∞ ∣h(x)∣ = 0, and g ∶= F − a∇h ∈ L2
sol(Rd). The existence of h is a

straightforward consequence of the Green representation formula. Using also the
fact that F is of zero mean and Lemma 5.19, we infer that

sup
x∈Rd

(∣x∣d∣h(x)∣ + ∣x∣d+1∣∇h(x)∣) < ∞. (5.139)

Recalling (5.49) or (5.125), we see that (5.137) is equivalent to

r
d
2 ∫

Rd
F (x) ⋅ ∇(φe ∗Φrη)(rx)dx (law)ÐÐ→

r→∞
−∫

Rd
F (x) ⋅V(x, e)dx. (5.140)

By Lemma 5.26 and (5.139), we have

∫
Rd
∇h(x) ⋅ (a + brη(x))) [e +∇(φe ∗Φrη)(x)] dx = Os (Cr−η( d2+κ)) .

Moreover, an integration by parts gives

∫
Rd
∇h(x) ⋅ ae dx = 0.

By Lemma 5.16 and Theorem 4.1, we also have

∫
Rd
∇h(x) ⋅ brη(x)∇(φe ∗Φrη)(x)dx ⩽ Os/2 (Cr−ηd) ,

and thus

∣∫
Rd

a∇h(x) ⋅ ∇(φe ∗Φrη)(x)dx − ∫
Rd
∇h(x) ⋅ brη(x)e dx∣

⩽ Os (Cr−η( d2+κ)) +Os/2 (Cr−ηd) .
Provided that we choose η < 1 sufficiently close to 1, we therefore deduce from this
inequality and Lemma 5.25 that

∫
Rd

a∇h(x) ⋅ ∇(φe ∗Φrη)(x)dx (law)ÐÐ→
r→∞ ∫

Rd
∇h ⋅V(x, e)dx.
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In order to conclude for (5.140), it suffices to verify that

∫
Rd

g ⋅ ∇(φe ∗Φrη)(x)dx = 0.

This follows from the fact that g ∈ L2
sol(Rd), (5.139) and Theorem 4.1, by arguments

very similar to those for (5.132).
We have thus verified that (5.136) holds for every F ∈ C∞

c (Rd;Rd) of zero mean.
We now wish to extend the convergence in (5.136) to a possibly non-zero-mean
vector field F ∈ C∞

c (Rd;Rd). For this purpose, we introduce the vector field

Fm(x) ∶= F (x) −Φm(x)∫
Rd
F. (5.141)

While this vector field is of zero mean, it is not compactly supported. However,
it has Gaussian tails, and therefore it is elementary to verify that the arguments
exposed above also apply to Fm (in particular, the decomposition (5.138) with F
replaced by Fm, and the estimate (5.139), remain valid). That is, for every m ⩾ 1,
we have the convergence

r
d
2 ∫

Rd
Fm(x) ⋅ (∇φe)(rx)dx (law)ÐÐ→

r→∞ ∫
Rd
Fm(x) ⋅ (∇Ψe)(x)dx.

Moreover, since ∥Fm − F ∥L2(Rd) → 0 as m→∞, we also have

∫
Rd
Fm(x) ⋅ (∇Ψe)(x)dx (prob)ÐÐÐ→

m→∞ ∫
Rd
F (x) ⋅ (∇Ψe)(x)dx.

In order to complete the proof, we thus wish to interchange the limits m→∞ and
r →∞. By [24, Theorem 3.2], it suffices to verify that, for every c > 0,

lim
m→∞

lim sup
r⩾1

P [∣r d2 ∫
Rd

(F − Fm) (x) ⋅ (∇φe)(rx)dx∣ ⩾ c] = 0. (5.142)

The quantity between absolute values above can be rewritten as

r
d
2 (∫

Rd
F) ⋅ (∫

Φmr
∇φe) ,

and, by Theorem 4.1, there exists a constant C(s, d,Λ) < ∞ such that, for every
r ⩾ 1 and m ⩾ 1,

r
d
2 (∫

Φmr
∇φe) = Os (Cm− d

2 ) .
By Chebyshev’s inequality, this implies (5.142), and thus completes the proof.
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Exercise 5.11. Let h ∈ C∞
c (Rd) be such that supph ⊆ B1 and ∫Rd h = 1. Replace

the definition of Fm in (5.141) by

Fm(x) ∶= F (x) −m−d h (m−1x)∫
Rd
F,

and show that the rest of the proof can be adapted to yield the same conclusion.
As an intermediate step, show using Theorem 4.24 and Lemma A.1 that, for each
γ > d

2 , there exists C(γ, s, d,Λ) < ∞ such that, for every r ⩾ 1 and m ⩾ 2,

∥r d2 (∇φe) (r ⋅)∥
H−γ(Bm)

⩽ Os (C log
1
s (m)) .

Notes and references

The first non-perturbative proof of convergence of a class of objects to the Gaussian
free field was obtained by Naddaf and Spencer in [98]. They studied discrete
random fields (φ(x))x∈Zd formally obtained as Gibbs measures with Hamiltonian∑x∼y V (φ(y) − φ(x)), where V is a uniformly convex and C1,1 function. Note that
the corrector is obtained as the minimizer of a random convex functional, while
here the functional is deterministic, but randomness is then added according to
the Gibbs principle. One of the main tools in [98] is the Helffer-Sjöstrand identity
(which implies the Efron-Stein or “spectral gap” inequality). They used it to
map the problem of understanding the large-scale behavior of this model to the
homogenization of a differential operator in infinite dimensions.

The first results showing that the fluctuations of spatial averages of the energy
density of the corrector have Gaussian fluctuations were obtained in [101, 109, 25,
102, 64]. The proofs there are based on “nonlinear” sensitivity estimates such as
the Chatterjee-Stein method of normal approximation [31, 32, 103]. The rescaled
corrector was shown to converge in law to a Gaussian free field in [97, 96] in
a discrete setting, using similar tools. It was realized there that the notion of
Gaussian free field needed to be extended. Indeed, the definition we adopt in this
book is more general than the standard one [110], see Remark 5.8 and [71]. The
limit law of the fluctuations of the solution uε of

−∇ ⋅ a ( ⋅
ε
)∇uε = f in Rd

was identified in [70, 41], still using “nonlinear” methods and for discrete equations.
The heuristic argument of Section 5.3 is from [92, 70] and was first made rigorous
in [12]. Sections 5.4 and 5.5 are based on the approach of [12]. A similar argument
was also presented later in [68].



Chapter 6

Quantitative two-scale expansions

In this chapter, we move beyond estimates on the first-order correctors to consider
the homogenization of boundary-value problems. In particular, we consider the
convergence, as ε→ 0, of the solution uε ∈H1(U) of the Dirichlet problem

{ −∇ ⋅ (aε(x)∇uε) = f in U,
uε = g on ∂U,

(6.1)

where we denote aε ∶= a ( ⋅
ε
), to that of the limiting homogenized problem

{ −∇ ⋅ (a∇u) = f in U,
u = g on ∂U.

(6.2)

The goal is to not only obtain sharp estimates on the homogenization error∥uε − u∥L2(U) and on ∥∇uε −∇u∥H−1(U), which quantifies the weak convergence
of the gradients, but to obtain estimates in the strong L2(U) norm of the corrected
gradients. That is, we study the difference between uε and the two-scale expansion
of u denoted by

w̃ε(x) ∶= u(x) + ε d∑
k=1

∂xku(x)φεek(x) (6.3)

where {φe ∶ e ∈ ∂B1} is the family of first-order correctors studied in Chapter 4
and we define the rescaled corrector φεe, for each ε ∈ (0, 1

2
] and e ∈ ∂B1, by

φεe(x) ∶= φe (xε) − (φe ∗Φε−1) (0).
We have subtracted the constant φe∗Φε−1(0) from φe since this makes the expression
on the right unambiguously defined; recall that φe is defined a priori only up to a
constant.

We will prove estimates which quantify the limit ∥∇uε −∇w̃ε∥L2(U) → 0, justify-
ing the rough expectation that “uε should look like u plus microscopic-scale wiggles

224
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characterized (at first order) by the first-order correctors.” The main results are
stated in Theorems 6.9 and 6.14. We also obtain a result for the Neumann problem
in Theorem 6.13.

While the details of the estimates depend of course on the smoothness of the
data (in particular the boundary of the domain U as well as the regularity of the
functions f and g), what we roughly show for the Dirichlet problem—neglecting
logarithmic corrections appearing in the case d = 2 and being vague about stochastic
integrability—is that ⎧⎪⎪⎨⎪⎪⎩

∥uε − u∥L2(U) ≲ O(ε),
∥∇uε −∇wε∥L2(U) ≲ O(ε 1

2 ). (6.4)

These estimates match the error estimates obtained in periodic homogenization.
The larger O(ε 1

2 ) error in the second estimate is due to boundary layer effects. That
is, near ∂U , the Dirichlet boundary condition has a stronger effect on the behavior
of the solutions than the PDE does, and this unsurprisingly breaks the validity
of the two-scale expansion approximation. We also obtain estimates on the size
of these boundary layers, showing in particular that in any compactly–contained
subdomain V ⊆ U , the two-scale expansion error is roughly of order ε.

In Section 6.2, we plug the two-scale expansion into the heterogeneous operator
and measure the resulting error in H−1. It is here that the corrector estimates
obtained in Chapter 4 play a decisive role. Section 6.3 is devoted to the proof of
the second estimate in (6.4), which is precisely stated in Theorem 6.9. Estimates
of the boundary layers are the focus of Section 6.4, where in particular we prove
the first estimate of (6.4) in Theorem 6.14. Note that quantitative estimates of
the two-scale expansion and of the boundary layer errors are also studied later in
Section 7.3, where even sharper bounds are obtained.

6.1 The flux correctors

We have seen one of the main ideas in this chapter already in Section 1.5, where
we first encountered the two-scale expansion argument. There we showed that
quantitative estimates on the sublinearity of the correctors and of their fluxes (in
weak norms) imply—by a purely deterministic, analytic argument—estimates on
the homogenization error. The goal of this chapter is to refine the arguments
in Section 1.5. In particular, we will be much more careful in how we estimate
boundary layer errors (compared to the crude use of Hölder’s inequality in (1.64))
and optimize our assumptions on the regularity of the homogenized solution.

In this section, we prepare for this analysis by introducing the concept of flux
corrector, which is a vector potential for the flux of the correctors. Roughly speaking,
a vector potential for a solenoidal vector field g ∈ L2

sol(U) is a skew-symmetric
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matrix-valued function A ∶ U → Rd×d such that, for some constant ξ ∈ Rd,

g = ξ +∇ ⋅A.
Here Aij are the entries of A and ∇ ⋅A is the vector field whose ith component is

(∇ ⋅A)i ∶= d∑
j=1

∂xjAij.

There are some situations in which it is useful to refer to the vector potential, just
as it is sometimes useful to refer to the scalar potential of a gradient field. As
scalar potentials are unique only up to additive constants, vector potentials are
not necessarily unique, and compared to scalar potentials there are actually many
more degrees of freedom. A canonical choice is to take Aij to solve the equation

−∆Aij = ∂xjgi − ∂xigj in U, (6.5)

with suitable boundary conditions on ∂U .
We want to define a vector potential for the flux of the correctors—in the case

that g(x) = a(x) (e +∇φe(x)) − ae. That is, for each e ∈ Rd, we seek a stationary
random field Se, taking values in Rd×d, such that

∀i, j ∈ {1, . . . , d}, Se,ij = −Se,ji,
and

a (e +∇φe) − ae = ∇ ⋅ Se. (6.6)

Once defined, we will call Se a flux corrector since it plays a similar role for the
fluxes of the solutions as the corrector plays for the gradients of solutions. Similar
to the usual correctors φe, we will see that Se is a priori well-defined only up to
additive constants.

As we will see in the next section, writing the flux in divergence form in terms
of Se allows us to use the information concerning the weak convergence of the
fluxes in a more direct and efficient manner in the two-scale expansion argument.
This will lead to two-scale expansion estimates which are optimal in the assumed
regularity of the homogenized solution, improving the argument in Section 1.5 by
roughly one derivative.

Proceeding with the definition of Se, we first let ge denote the difference of the
heterogeneous and homogenized fluxes of the first-order corrector φe:

ge(x) ∶= a(x) (e +∇φe(x)) − ae.

Motivated by (6.5), we define a family of stationary potential fields

{∇Se,ij ∶ e ∈ Rd, i, j ∈ {1, . . . , d}}
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by

∇Se,ij(x) ∶= ∫ ∞

0
∫
Rd

(ge,j(y)∇∂xiΦ(t, y − x) − ge,i(y)∇∂xjΦ(t, y − x)) dy dt, (6.7)

where as usual Φ is the standard heat kernel. We next check that this definition
makes sense and that (6.6) holds. (Recall that the space L2

pot was introduced in
Definition 3.11.)

Lemma 6.1. For each e ∈ Rd and i, j ∈ {1, . . . , d}, we have that ∇Se,ij ∈ L2
pot and

there exist δ(d,Λ) > 0 and C(d,Λ) < ∞ such that, for every e ∈ ∂B1,

∥∇Se,ij∥L2(B1) ⩽ O2+δ(C). (6.8)

Moreover, for each s ∈ (0,2), there exists C(s, d,Λ) < ∞ such that, for each r ⩾ 1
and x ∈ Rd, ∣(∇Se,ij ∗Φr) (x)∣ ⩽ Os (Cr− d2 ) . (6.9)

We also have that, with g(x) ∶= a(x) (e +∇φe(x)) − ae,

−∆Se,ij = ∂xjgi − ∂xigj in Rd. (6.10)

Finally, the identity (6.6) holds.

Proof. Let us first check that the integral in (6.7) is convergent. We have

∫
B1

∣∇Se,ij(x)∣2 dx
= ∫

B1

∣∫ ∞

0
∫
Rd

(ge,i(y)∇∂xjΦ(t, y − x) − ge,j(y)∇∂xiΦ(t, y − x)) dy dt∣2 dx.
We aim at proving (6.8), and for this, we split the time integral into two pieces
and estimate them in the following two steps.

Step 1. Let us first treat the case t ∈ (1,∞). According to Theorem 4.24, for
each x ∈ Rd, t > 0 and i, j ∈ {1, . . . , d},

∣∫
Rd

ge,i(y)∇∂xjΦ(t, y − x)dy∣ ⩽ Os (Ct−1− d
4 ) ∧O2+δ (Ct−1− 1

4) . (6.11)

In particular, by the previous inequality and Lemma A.4,

∫
B1

∣∫ ∞

1
∫
Rd

(ge,i(y)∇∂xjΦ(t, y − x) − ge,j(y)∇∂xiΦ(t, y − x)) dy dt∣2 dx
⩽ O1+δ/2(C).
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Step 2. We next analyze the case t ∈ (0,1), which is more subtle and requires
some results from the theory of singular integral operators. Let i, j ∈ {1, . . . , d}.
For each x ∈ B1, split

∫ 1

0
∫
Rd

ge,i(y)∇∂xjΦ(t, y − x)dy dt
= ∫ 1

0
∫
B2

ge,i(y)∇∂xjΦ(t, y − x)dy dt + ∫ 1

0
∫
Rd∖B2

ge,i(y)∇∂xjΦ(t, y − x)dy dt.
The latter term is easy to control:

∣∫ 1

0
∫
Rd∖B2

ge,i(y)∇∂xjΦ(t, y − x)dy dt∣
⩽ C ∞∑

j=1

2j(d+2) exp(−4j)⨏
B

2j+1
∖B

2j

∣ge,i(y)∣dy ⩽ O2+δ(C).
The first, local term, needs more effort. Let G be the Green function for the
Laplacian operator in Rd:

G(x) = { − c2 log ∣x∣ if d = 2,

cd∣x∣2−d if d > 2.

Then, for x, y ∈ B2,

∇∂xjΦ(t, y − x) = −p.v.∫
B3

∆G(y − z)∇∂xjΦ(t, z − x)dz
= −p.v.∫

B3

∇∂xjG(y − z)∆Φ(t, z − x)dz +R(x, z, t)
= −p.v.∫

B3

∇∂xjG(y − z)∂tΦ(t, z − x)dz +R(x, y, t),
where the integrals are taken in the sense of principal value, that is

p.v.∫
U
g(x, y)dy = lim

σ→0
∫
U∖Bσ(x)

g(x, y)dy,
and the residual term R comes from boundary terms on ∂B3 when integrating by
parts. For small t, R is small by means of t:

∣R(x, y, t)∣ ⩽ Ct−2 exp(− 1

4t
) .

We then have

∫ 1

0
∫
B2

ge,i(x)∇∂xjΦ(t, x − z)dx = ∫
B2

p.v.∫
B3

∇∂xjG(y − x)ge,i(y)dy dx
− ∫

B2
∫
B3

∇∂xjG(y − z)ge,i(x)Φ(1, z − x)dz dx
+ ∫ 1

0
∫
B2

ge,i(y)R(x, y, t)dy dt.
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For the first part we use the fact that singular integrals as above map L2 to L2. In
particular,

∥p.v.∫
B3

∇∂xjG(y − ⋅)ge,i(y)dy∥
L2(B2)

⩽ C ∥ge,i∥L2(B3) ⩽ O2+δ(C). (6.12)

To prove (6.12), we apply Plancherel’s formula. Indeed, ∥ ̂∂xi∂xjG∥
L∞(Rd) ⩽ C, and

hence

∥p.v.∫
B3

∇∂xjG(y − ⋅)ge,i(y)dy∥
L2(B2)⩽ ∥∇∂xjG ∗ (1B3ge,i)∥L2(Rd) ⩽ ∥∇̂∂xjG∥

L∞(Rd) ∥1̂B3ge,i∥L2(Rd) ⩽ C ∥ge,i∥L2(B3) .

The second term can be estimated similarly as

∥∫
B2
∫
B3

∇∂xjG(z, y)ge,i(y)Φ(1, z − ⋅)dz dy∥
L2(B2)⩽ C ∥Φ(1, ⋅) ∗ ge,i∥L2(B3) ⩽ O2+δ(C).

The third term can be controlled by the strong bound on R:

∥∫ 1

0
∫
B2

ge,i(y)R(⋅, y, t)dy dt∥
L2(B1)

⩽ C ∫ 1

0
t−2 exp(− 1

4t
) dt ∥ge,i∥L2(B3) ⩽ O2+δ(C).

Combining,

∥∫ 1

0
∫
Rd

ge,i(y)∇∂xjΦ(t, y − x)dy dt∥
L2(B1)

⩽ O2+δ(C),
and this together with the first step yields (6.8). The fact that ∇Se,ij ∈ L2

pot follows
from (6.8) and the stationarity of the vector field ge.

Step 3. To prove (6.9), we use the semigroup property of the heat kernel:

(∇Se,ij ∗Φr) (x)
= ∫ ∞

0
∫
Rd

(ge,j(y)∇∂xiΦ(t + r2, y − x) − ge,i(y)∇∂xjΦ(t + r2, y − x)) dy dt.
Thus (6.9) follows from (6.11) after integration in t.

Step 4. The identity (6.6) follows directly from the definition, which gives

(∇ ⋅ Se)i (x) = ∫ ∞

0
∫
Rd

(ge(y) ⋅ ∇∂xiΦ(t, y − x) − ge,i(y)∆Φ(t, y − x)) dy dt.
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Indeed, since ge is solenoidal and ∂xjΦ(t, ⋅ − x) has sufficient decay at infinity, the
integral of the first term in the integrand vanishes. As for the second term, we use
that ge has zero mean to deduce that, for almost every x ∈ Rd,

∫ ∞

0
∫
Rd

ge,i(y)∆Φ(t, y − x)dy dt = ∫ ∞

0
∂t∫

Rd
ge,i(y)Φ(t, y − x)dy dt = −ge,i(x).

This completes the proof.

Essentially all of the estimates we have proved for the first-order correctors φe can
also be obtained for the flux correctors Se. Instead of integrating the gradients ∇φe,
we instead integrate the (corrected) fluxes ge ∶= a (e +∇φe)−ae. The only estimates
we really need for our purposes on Se are the following analogues of (3.85) as well
as (4.5), (4.6) and (4.7), which are stated in the following proposition.

Proposition 6.2 (Flux corrector estimates). There exist an exponent β(d,Λ) > 0, a
constant C(d,Λ) < ∞ and, for each s ∈ (0, d), a random variable Xs satisfying (3.39)
such that, for every r ⩾ Xs,

sup
e∈∂B1

∥Se − (Se)Br∥L2(Br)
⩽ Cr1−β(d−s). (6.13)

In dimensions d > 2, for every e ∈ ∂B1, the flux corrector Se exists as a Zd-stationary
Rd×d-valued random field which is identified uniquely by the choice E [⨏◻0

Se] = 0;
moreover, there exist δ(d,Λ) > 0 and C(d,Λ) < ∞ such that

∥Se∥2
L2(◻0) ⩽ O2+δ(C). (6.14)

In dimension d = 2, for each s ∈ (0,2), there exists C(s, d,Λ) < ∞ such that, for
every e ∈ ∂B1, 1 ⩽ r < R/√2 and x ∈ Rd,

∥Se − (Se ∗Φr) (0)∥2
L2(Br) ⩽ Os (C log

1
2 r) (6.15)

and

∣(Se ∗Φr) (x) − (Se ∗ΦR) (y)∣ ⩽ Os (C log
1
2 (2 + R + ∣x − y∣

r
)) . (6.16)

Proof. The second and third statements follow from (6.9), (6.8) and Lemma 4.19
in exactly the same way as (4.5) and (4.6) are proved from (4.2), (3.87) and
Lemma 4.19. We omit the details, referring the reader to the argument beginning
in the second paragraph of the proof of Theorem 4.1 in Section 4.6. Similarly, we
obtain (6.16) by mirroring the proof of (4.7), in particular analysis in Section 4.7
in the proof of Proposition 4.27.

The bound (6.13) is proved by the same argument as Lemma 6.1, except that
instead of appealing to Theorem 4.24 we instead use the corrector bounds in
Proposition 3.15.
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6.2 Quantitative two-scale expansion without boundaries

Recall that, for each ε ∈ (0, 1
2
] and e ∈ ∂B1, the rescaled corrector φεe is defined by

φεe(x) ∶= φe (xε) − (φe ∗Φε−1) (0). (6.17)

Likewise, we define the rescaled flux correctors by

Sεe ∶= Se (xε) − (Se ∗Φε−1) (0). (6.18)

Given u ∈H1(Rd) and ε ∈ (0, 1
2
], we introduce a function wε ∈H1(Rd) defined by

wε(x) ∶= u(x) + ε d∑
k=1

(∂xku ∗ ζε) (x)φεek(x). (6.19)

Here as usual we set ζε(x) ∶= ε−dζ(x/ε), where ζ is the standard mollifier, see (0.15).
We call wε the two-scale expansion of u, and the goal is to show, under appropriate
regularity assumptions on u, that it is a good approximation of the solution uε of
the equation −∇ ⋅ (aε∇uε) = −∇ ⋅ (a∇u) in Rd. (6.20)

This reflects the expectation that the difference of uε and u should be, at leading
order, the rescaled corrector with the local slope given by ∇u. We have already
encountered this idea previously in the proof of Theorem 1.12.

Notice that wε is defined slightly differently than the function w̃ε introduced
in (6.3), since we have mollified ∇u on the microscopic scale. This is necessary
because otherwise ∇u may be too irregular to give a suitable notion of macroscopic
(or mesoscopic) slope. Indeed, without regularizing ∇u, we cannot ensure that wε
is even an H1 function: if u is merely an H1 function, the expression defining w̃ε
may only be slightly better than L1

loc(Rd). On the other hand, if u ∈ W 2,∞(Rd),
then this mollification makes essentially no difference, since in this case we have
the bound

∥wε − w̃ε∥H1(B1) ⩽ C ∥u∥W 2,∞(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
Os (Cε ∣log ε∣ 12) if d = 2,

O2+δ (Cε) if d > 2.
(6.21)

This follows from (3.87), (4.5), (4.6) and basic properties of the convolution, which
tell us that, for every p ∈ [1,∞],

∥∇2 (u ∗ ζε)∥Lp(Rd) ⩽ ∥∇2u∥
Lp(Rd)

and, for every α ∈ (0,1],
∥∇u −∇(u ∗ ζε)∥Lp(Rd) ⩽ Cεα ∥∇u∥Wα,p(Rd) . (6.22)
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Exercise 6.1. Check that (6.21) is valid for u ∈W 2,∞(Rd).
To show that wε is a good approximation of uε, we plug wε into the left side

of (6.20) and estimate how close the result is to the right side, with the error
measured in the H−1 norm. This leads to the statement given in the following
theorem, which is the main result of this section. It is perhaps the most succinct
summary of the principle that good bounds on the correctors can be transferred
into good bounds on the homogenization error by a deterministic argument (in fact
by a direct computation).

Theorem 6.3 (Quantitative two-scale expansion). Fix α ∈ (0,1], p ∈ (2,∞] and
ε ∈ (0, 1

2
] and define the random variable

Xε,p ∶= sup
e∈∂B1

⎛⎝εd ∑
z∈εZd∩B1

(∥Sεe∥L2(z+2ε◻0) + ∥φεe∥L2(z+2ε◻0)) 2p
p−2

⎞⎠
p−2
2p

. (6.23)

There exists C(α, p, d,Λ) < ∞ such that, for every u ∈W 1+α,p(Rd), if we define the
function wε ∈H1(B1) by (6.19), then we have the estimate

∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1) ⩽ CεαXε,p∥u∥W 1+α,p(Rd). (6.24)

Remark 6.4. For future reference, we record here some estimates on the random
variable Xε,p defined in (6.23) which are consequences of bounds on the correctors
and flux correctors we have already proved.

By Theorem 4.1, Proposition 6.2 and Lemma A.4, we have the following estimate:
there exist δ(d,Λ) > 0 and, for every s ∈ (0,2), a constant C(s, p, d,Λ) < ∞ such
that

Xε,p ⩽ ⎧⎪⎪⎨⎪⎪⎩
Os (C ∣log ε∣ 12) if d = 2,

O2+δ (C) if d > 2.
(6.25)

This is an optimal bound on the size of Xε,p. Combining it with (6.24), we obtain,
for every s ∈ (0,2), α ∈ (0,1] and p ∈ (2,∞], a constant C(s, p, d,Λ) < ∞ such that

∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1) ⩽ C ∥u∥W 1+α,p(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
Os (εα ∣log ε∣ 12) if d = 2,

O2+δ (εα) if d > 2.
(6.26)

Remark 6.5. In order to make sense of wε in B1, we need that u be defined
over B1 + Bε. For simplicity, we assume that u ∈ W 1+α,p(Rd) in Theorem 6.3.
Note however that this is not restrictive, since by the Sobolev extension theorem
(Proposition B.14), every u ∈W 1+α,p(B1) admits an extension Ext(u) ∈W 1+α,p(Rd)
which coincides with u in B1 and satisfies

∥Ext(u)∥W 1+α,p(Rd) ⩽ C∥u∥W 1+α,p(B1).
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We begin the proof of Theorem 6.3 by rewriting the left side of (6.24) in terms
of the correctors and flux correctors.

Lemma 6.6. Fix u ∈ H1(Rd) and ε ∈ (0, 1
2
] and let wε ∈ H1(B1) be defined

by (6.19). Then we have the identity

∇ ⋅ (aε∇wε − a∇u) = ∇ ⋅Fε, (6.27)

where the ith component of the vector field Fε is given by

Fε
i(x) ∶= d∑

j=1

(aεij(x) − aij)∂xj(u − ζε ∗ u)(x)
+ ε d∑

j,k=1

∂xj∂xk (ζε ∗ u) (x) (−Sεek,ij(x) + aεij(x)φεek(x)) . (6.28)

In particular, there is a constant C(d) < ∞ such that

∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1) ⩽ C ∥Fε∥L2(B1) . (6.29)

Proof. Denote

ŵε(x) ∶= (ζε ∗ u) (x) + ε d∑
k=1

∂xk (ζε ∗ u) (x)φεek (x) .
Then

∇ ⋅ (aε∇wε − a∇u) = ∇ ⋅ (aε − a)∇(u − ζε ∗ u) + ∇ ⋅ (aε∇ŵε − a∇(ζε ∗ u)) ,
and in view of the definition of F, we only need to prove the formula for the last
term, that is

∇ ⋅ (aε∇ŵε − a∇(ζε ∗ u)) = d∑
i,j,k=1

∂xi (ε∂xj∂xk (ζε ∗ u) (−Sεek,ij + aεijφ
ε
ek
)) . (6.30)

For this, we have that

∂xj ŵ
ε(x) = d∑

k=1

(δjk + ∂xjφεek(x))∂xk (ζε ∗ u) (x) + ε d∑
k=1

φεek(x)∂xj∂xk (ζε ∗ u) (x).
Thus

d∑
j=1

aεij (x)∂xj ŵε(x) = d∑
j,k=1

aεij (x) (δjk + ∂xjφεek(x))∂xk (ζε ∗ u) (x)
+ ε d∑

j,k=1

aεij (x)φek (xε)∂xj∂xk (ζε ∗ u) (x).
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By the definition of the flux corrector, we have, for every i, k ∈ {1, . . . , d},
d∑
j=1

aεij (x) (δjk + ∂xjφεek(x)) − d∑
j=1

aijδjk = d∑
j=1

∂xjS
ε
ek,ij

(x) ,
and therefore

∇ ⋅ (aε∇ŵε − a∇(ζε ∗ u)) = d∑
i,j,k=1

∂xi (∂xjSεek,ij∂xk (ζε ∗ u))
+ ε d∑

i,j,k=1

∂xi (aεijφεek∂xj∂xk (ζε ∗ u)) .
By the skew-symmetry of Se, we have

d∑
i,j,k=1

∂xi (∂xjSεek,ij∂xk (ζε ∗ u))
= d∑
i,j,k=1

(∂xi∂xj (εSεek,ij∂xk (ζε ∗ u)) − ∂xi (εSεek,ij∂xj∂xk (ζε ∗ u)))
= − d∑

i,j,k=1

∂xi (εSεek,ij∂xj∂xk (ζε ∗ u)) ,
since, for all i, j, k ∈ {1, . . . , d},

∂xi∂xj (εSεek,ij∂xk (ζε ∗ u)) = −∂xi∂xj (εSεek,ij∂xk (ζε ∗ u)) .
Combining the previous displays gives us (6.30), finishing the proof.

The previous lemma motivates us to estimate ∥Fε∥L2(Rd). Inspecting the def-
inition (6.28) of Fε, we see that this should depend on the assumed regularity
of u and the sizes of Sεe and φεe, of which we already possess good estimates. The
next two lemmas provide the technical labor involved in transferring the regularity
assumptions on u and the bounds on the correctors into an estimate on ∥Fε∥L2(Rd).
Since we perform similar computations in the next section and require some flexi-
bility, and because it makes it easier to follow the proof, the statements of these
lemmas are somewhat general.

Lemma 6.7. Fix 1 ⩽ q ⩽ p < ∞ and 0 < α ⩽ β ⩽ 1. There exists C(α,β, p,U, d) < ∞
such that for every g ∈Wα,p(U + 2ε◻0),

∥g − (g ∗ ζε)∥Lq(U) ⩽ C ∣U ∣ 1q− 1
p εα∥g∥Wα,p(U+2ε◻0), (6.31)

as well as ∥g ∗ ζε∥Wβ,p(U) ⩽ Cεα−β ∥g∥Wα,p(U+2ε◻0) . (6.32)
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Proof. Step 1. We first prove (6.31). We only prove it in the case α ∈ (0,1), the
case α = 1 being similar. We first localize as

∥g − (g ∗ ζε)∥pLp(U) ⩽ ∑
z∈εZd∩U

∥g − (g ∗ ζε)∥pLp(z+ε◻0) .

Since (a ∗ ζε) = a for all a ∈ R, we observe that, for z ∈ εZd ∩U ,
∥g − (g ∗ ζε)∥Lp(z+ε◻0) ⩽ 2 ∥g − (g)z+2ε◻0∥Lp(z+2ε◻0) .

The fractional Poincaré inequality (Proposition B.11) implies

∥g − (g)z+2ε◻0∥pLp(z+2ε◻0) ⩽ Cεαp [g]pWα,p(z+2ε◻0) .

Moreover, note that

[g]pWα,p(z+2ε◻0) ⩽ (1 − α)∫
z+2ε◻0

∫
U+2ε◻0

∣g(x) − g(y)∣p∣x − y∣d+αp dxdy,

and therefore ∑
z∈εZd∩U

[g]pWα,p(z+2ε◻0) ⩽ C [g]pWα,p(U+2ε◻0) .

By Hölder’s inequality, we deduce (6.31).

Step 2. We now prove (6.32) assuming β < 1 (the case β = 1 is similar).
For x, y ∈ U such that ∣x − y∣ ⩽ ε, we have by the fractional Poincaré inequality
(Proposition B.11) that

∣(g ∗ ζε)(y) − (g ∗ ζε)(x)∣p ⩽ ∣y − x∣p sup
z∈Bε(x)

∣∇(g ∗ ζε)(z)∣p
⩽ C (∣y − x∣

ε
)p⨏

x+2ε◻0

∣g(z) − (g)x+2ε◻0 ∣p dz
⩽ Cεp(α−1)−d∣y − x∣p [g]pWα,p(x+2ε◻0) .

Integration thus gives that

∫
Bε(x)

∣(g ∗ ζε)(y) − (g ∗ ζε)(x)∣p∣x − y∣d+βp dy ⩽ C

1 − β ε−d+p(α−β) [g]pWα,p(x+2ε◻0) ,

and hence

(1 − β)∫
U
∫
Bε(x)

∣(g ∗ ζε)(y) − (g ∗ ζε)(x)∣p∣x − y∣d+βp dy dx ⩽ Cεp(α−β) [g]pWα,p(U+2ε◻0) .



236 Chapter 6 Quantitative two-scale expansions

The rest of the fractional seminorm can be easily estimated with the aid of the
triangle inequality as

∫
U
∫
U∖Bε(x)

∣(g ∗ ζε)(y) − (g ∗ ζε)(x)∣p∣x − y∣d+βp dy dx

⩽ C ∫
U
∫
U

∣(g ∗ ζε)(y) − (g ∗ ζε)(x)∣p(ε + ∣x − y∣)d+βp dy dx

⩽ Cεp(α−β) [g]Wα,p(U) +C ∫
U
∫
U

∣(g ∗ ζε)(x) − g(x)∣p(ε + ∣x − y∣)d+βp dy dx.

After first integrating in y, Step 1 yields

∫
U
∫
U

∣(g ∗ ζε)(x) − g(x)∣p(ε + ∣x − y∣)d+βp dy dx

⩽ Cε−βp∫
U
∣(g ∗ ζε)(x) − g(x)∣p dx ⩽ Cεp(α−β) [g]pWα,p(U+2ε◻0) .

Combining the above estimates yields the result.

Lemma 6.8. Fix α ∈ (0,1] and p ∈ (2,∞). There exists C(α, p,U, d) < ∞ such
that for every f ∈ L2(U + 2ε◻0) and g ∈ Lp(U + 2ε◻0),

∥f ∣g ∗ ζε∣∥L2(U) ⩽ C (εd ∑
z∈εZd∩U

∥f∥ 2p
p−2

L2(z+2ε◻0)
)
p−2
2p ∥g∥Lp(U+2ε◻0) , (6.33)

and moreover, for every f ∈ L2(U + 2ε◻0) and g ∈Wα,p(U + 2ε◻0),
∥f ∣∇(g ∗ ζε)∣∥L2(U) ⩽ Cεα−1 (εd ∑

z∈εZd∩U
∥f∥ 2p

p−2

L2(z+2ε◻0)
)
p−2
2p ∥g∥Wα,p(U+2ε◻0) . (6.34)

The last estimate also holds for α = 0 with ∥g∥Wα,p(U+2ε◻0) replaced by ∥g∥Lp(U+2ε◻0).

Proof. We will only prove (6.34) for α ∈ (0,1). The proof of the case α = 1 and
of (6.33) are analogous, but simpler. The basic observation is that, for each
z ∈ εZd ∩U ,

∥g ∗ ∇ζε∥L∞(z+ε◻0) ⩽ ∥∇ζε∥L∞(Rd)∥g∥L1(z+2ε◻0) ⩽ Cε−1ε−
d
2 ∥g∥L2(z+2ε◻0).

Since ∇((g)z+2ε◻0 ∗ ζε) = 0, we thus have that

∥f∇(g ∗ ζε)∥2
L2(z+ε◻0) ⩽ Cε−2 ∥f∥2

L2(z+2ε◻0) ∥g − (g)z+2ε◻0∥2
L2(z+2ε◻0) .

It follows that

∥f∇(g ∗ ζε)∥2
L2(U) ⩽ ∑

z∈εZd∩U
∥f∇(g ∗ ζε)∥2

L2(z+ε◻0)

⩽ Cε−2 ∑
z∈εZd∩U

∥f∥2
L2(z+2ε◻0) ∥g − (g)z+2ε◻0∥2

L2(z+2ε◻0) .
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The sum on the right side can be estimated using Hölder’s inequality:

∑
z∈εZd∩U

∥f∥2
L2(z+2ε◻0) ∥g − (g)z+2ε◻0∥2

L2(z+2ε◻0)

⩽ ( ∑
z∈εZd∩U

∥f∥ 2p
p−2

L2(z+2ε◻0)
)
p−2
p ( ∑

z∈εZd∩U
∥g − (g)z+2ε◻0∥pL2(z+2ε◻0))

2
p

⩽ ( ∑
zεZd∩U

∥f∥ 2p
p−2

L2(z+2ε◻0)
)
p−2
p ( ∑

z∈εZd∩U
∣2ε◻0∣ p−22 ∥g − (g)z+2ε◻0∥pLp(z+2ε◻0))

2
p

⩽ 4d (εd ∑
z∈εZd∩U

∥f∥ 2p
p−2

L2(z+2ε◻0)
)
p−2
p ( ∑

z∈εZd∩U
∥g − (g)z+2ε◻0∥pLp(z+2ε◻0))

2
p

.

Finally, the fractional Poincaré inequality (Proposition B.11) gives us

∥g − (g)z+2ε◻0∥pLp(z+2ε◻0) ⩽ Cεpα [g]pWα,p(z+2ε◻0) ,

and hence we obtain

( ∑
z∈εZd∩U

∥g − (g)z+2ε◻0∥pLp(z+2ε◻0))
2
p ⩽ ε2α [g]2

Wα,p(U+2ε◻0) .

Combining the previous displays yields the lemma.

We now complete the proof of Theorem 6.3.

Proof of Theorem 6.3. By (6.29), it suffices to show that

∥Fε∥L2(B1) ⩽ Cεα ∥u∥W 1+α,p(Rd)Xε,p, (6.35)

where Xε,p is defined in (6.23). By the formula (6.28) for Fε, we have

∥Fε
i∥L2(B1) ⩽ ε d∑

k=1

∥ ∣∇∇(ζε ∗ u)∣ (−Sεek + aεφεek)∥L2(Rd) +C ∥∇(ζε ∗ u − u)∥L2(Rd) .

According to Lemma 6.8, namely (6.34), and the assumption that u ∈W 1+α,p(Rd),
we have that, for every e ∈ ∂B1,

∥ ∣∇∇(ζε ∗ u)∣ (Sεe − aεφεe)∥L2(B1)

⩽ Cεα−1
⎛⎝εd ∑

z∈εZd∩B1

∥Sεe − aεφεe∥ 2p
p−2

L2(z+2ε◻0)
⎞⎠
p−2
2p ∥u∥W 1+α,p(Rd)

⩽ Cεα−1Xε,p ∥u∥W 1+α,p(Rd) .

By Lemma 6.7, namely (6.31), we have

∥∇(ζε ∗ u − u)∥Lp(B1) ⩽ Cεα∥∇u∥Wα,p(Rd) ⩽ Cεα∥u∥W 1+α,p(Rd).

Combining the above, we obtain (6.35).
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Exercise 6.2. Prove the following statement, which is a variant of Theorem 6.3
for p = 2. Fix α ∈ (0, 1], s ∈ (0, 2), ε ∈ (0, 1

2
], u ∈H1+α(Rd), and let wε ∈H1(B1) be

defined by (6.19). There exist C(s,α, d,Λ) < ∞ and δ(d,Λ) > 0 such that

∥∇ ⋅ (a ( ⋅
ε
)∇wε) − ∇ ⋅ a∇u∥

H−1(B1)

⩽ ⎧⎪⎪⎨⎪⎪⎩
Os (C ∥u∥H1+α(Rd) ε

α ∣log ε∣ 12) if d = 2,

O2+δ (C ∥u∥H1+α(Rd) ε
α) if d > 2.

(6.36)

An important advantage to Theorem 6.3 compared to the result of Exercise 6.2,
is that the former gives an estimate which, for every p > 2, is uniform for functions
u ∈W 1+α,p(Rd) with ∥u∥W 1+α,p(Rd) ⩽ 1. In other words, the random variable defined
in (6.23), which governs the right side of (6.24), clearly does not depend on u. In
contrast, the random variable on the left side of (6.36) does depend on u in the
sense that it is not bounded uniformly for ∥u∥H2(Rd) ⩽ 1. We emphasize this by
writing the factor ∥u∥H2(Rd) inside the O on the right of (6.36), rather than outside
the O as in (6.26).

6.3 Two-scale expansions for the Dirichlet problem

In this section, we present an estimate for the H1 difference between a solution uε
of the Dirichlet problem and the two-scale expansion wε of the solution of the
corresponding homogenized Dirichlet problem. This result is an application of
Theorem 6.3 and a boundary layer estimate. Under sufficient regularity, the
main result (6.39) gives a bound of O2(ε 1

2 ) for this difference (with a logarithmic
correction in d = 2). This estimate is optimal in terms of the exponent of ε, even for
smooth data, and agrees with the scaling in the case of periodic homogenization.

Theorem 6.9 (Quantitative two-scale expansion for the Dirichlet problem).
Fix s ∈ (0,2), α ∈ (0,∞), p ∈ (2,∞], a bounded Lipschitz domain U ⊆ Rd and
ε ∈ (0, 1

2
]. There exist δ(d,Λ) > 0, C(s,α, p,U, d,Λ) < ∞ and a random variable Xε

satisfying

Xε ⩽
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Os (Cεα ∣log ε∣ 12) if d = 2, α ∈ (0, 1
2
] ,

Os (Cε 1
2 ∣log ε∣ 14) if d = 2, α ∈ (1

2 ,∞) ,
O2+δ (Cεα∧ 1

2) if d > 2, α ∈ (0,∞),
(6.37)

such that the following holds: for every u ∈ W 1+α,p(Rd), if we let wε ∈ H1(U) be
defined by (6.19) and uε ∈H1(U) be the solution of the Dirichlet problem

{ −∇ ⋅ (aε(x)∇uε) = −∇ ⋅ (a∇u) in U,
uε = u on ∂U,

(6.38)
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then we have ∥uε −wε∥H1(U) ⩽ Xε ∥u∥W 1+α,p(Rd) . (6.39)

Remark 6.10. As already pointed out in Remark 6.5, given a function u ∈
W 1+α,p(U), we can use Proposition B.14 to extend it to a function u ∈W 1+α,p(Rd)
with comparable norm, then make sense of wε ∈ H1(U) and apply Theorem 6.9.
Therefore there is no restriction in assuming u ∈W 1+α,p(Rd) in Theorem 6.9.

There are two contributions to the error (the size of the random variables Xε)
in (6.39): the fact that wε is not an exact solution of the equation (in other words,
the error inherited from Theorem 6.3) and the fact that wε does not have the
same boundary condition as uε because of the perturbation caused by adding the
correctors. We consider these to be separate issues, and remark that it is actually
the latter that is responsible for the scaling of the error at leading order.

To correct the boundary condition, it is natural to introduce vε ∈H1(U) to be
the solution of the Dirichlet problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ ⋅ (aε(x)∇vε) = 0 in U,

vε = ε d∑
k=1

φεek∂xk (u ∗ ζε) on ∂U.
(6.40)

Note that wε −uε −vε ∈H1
0(U). We are interested therefore in estimating ∥vε∥H1(U).

This is done by introducing an explicit test function Tε ∈ vε+H1
0(U) and computing

the energy of Tε. This provides an upper bound for the energy of vε (and hence
of ∥vε∥H1(U)) by the variational principle.

Since the boundary condition for vε is highly oscillating, it is natural to expect
that these oscillations will dampen as one moves away from the boundary and that
therefore most of the energy of vε should be confined to a “boundary layer”, that
is, concentrated near the boundary. This expectation is reflected in our definition
of Tε, which can be thought of as a rough guess for vε. It is

Tε(x) ∶= (1Rd∖U2R(ε)
∗ ζR(ε)) (x) d∑

k=1

εφεek(x)∂xk (u ∗ ζε) (x), (6.41)

where we recall that Ur ∶= {x ∈ U ∶ dist(x, ∂U) > r} and the width R(ε) of the
boundary layer is given by

R(ε) ∶= ⎧⎪⎪⎨⎪⎪⎩
ε ∣log ε∣ 12 if d = 2,

ε if d > 2.
(6.42)

Observe that the support of Tε belongs to Rd ∖U3R(ε).
The next lemma records the estimates of Tε which are needed in the proof of

Theorem 6.9.
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Lemma 6.11. Let s ∈ (0,2), p ∈ (2,∞), α ∈ (0,∞) and

β ∈ (0, 1
2
] ∩ (0, 1

2 + α − 1
p) . (6.43)

There exist δ(d,Λ) > 0, C(s, p,α, β,U, d,Λ) < ∞ and, for every ε ∈ (0, 1
2
], a random

variable Zε satisfying

Zε ⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Os (Cε 1
2 ∣log ε∣ 14) if d = 2 and α > 1

p ,Os (Cεβ) if d = 2 and α ⩽ 1
p ,O2+δ (Cεβ) if d > 2,

(6.44)

such that for every u ∈W 1+α,p(Rd) and Tε as defined by (6.41),

R(ε)−1 ∥Tε∥L2(U) + ∥∇Tε∥L2(U) ⩽ Zε ∥u∥W 1+α,p(Rd) . (6.45)

Proof. Step 1. Our first goal is to prove the desired estimate for ∥∇Tε∥L2(U). There
are two random variables appearing in the proof, namely

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃ 1
ε ∶= d∑

k=1

⎛⎝ εd

R(ε) ∑
z∈εZd∩(U∖U3R(ε))

∥φεek∥ 2p
p−2

L2(z+2ε◻0)
⎞⎠
p−2
2p

,

X̃ 2
ε ∶= d∑

k=1

⎛⎝ εd

R(ε) ∑
z∈εZd∩(U∖U3R(ε))

∥∇φek ( ⋅
ε
)∥ 2p

p−2

L2(z+2ε◻0)
⎞⎠
p−2
2p

.

(6.46)

By Theorem 4.1, (3.87) and Lemma A.4, we have that

X̃ 1
ε ⩽ ⎧⎪⎪⎨⎪⎪⎩

Os (C ∣log ε∣ 12) if d = 2,

O2+δ (C) if d > 2,
and X̃ 2

ε ⩽ O2+δ (C) . (6.47)

We next compute

∥∇Tε∥L2(U) ⩽ d∑
k=1

ε ∥∇((1Rd∖U2R(ε)
∗ ζR(ε))φεek∂xk (u ∗ ζε))∥L2(U)

⩽ C d∑
k=1

∥(ε ∣∇u ∗ ζε∣
R(ε) + ε ∣∇ (∇u ∗ ζε)∣) ∣φεek ∣ + ∣∇u ∗ ζε∣ ∣∇φek ( ⋅

ε
)∣∥

L2(U∖U3R(ε))
.

The right side will be estimated with the aid of Lemma 6.8. Using (6.34), we get

ε ∥ ∣∇(∇u ∗ ζε)∣ ∣φεek ∣∥L2(U∖U3R(ε))
⩽ CR(ε) p−22p εαX̃ 1

ε ∥∇u∥Wα,p(Rd) .
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On the other hand, (6.33) implies both

ε

R(ε) ∥∣(∇u ∗ ζε)∣ ∣φεek ∣∥L2(U∖U3R(ε))
⩽ C ε

R(ε)R(ε) p−22p X̃ 1
ε ∥∇u∥Lp(Vε) (6.48)

and ∥ ∣(∇u ∗ ζε)∣ ∣∇φek ( ⋅
ε
)∣∥

L2(U∖U3R(ε))
⩽ CR(ε) p−22p X̃ 2

ε ∥∇u∥Lp(Vε) ,
where we have set

Vε ∶= U ∖U3R(ε) + 2ε◻0.

Lemma 6.12 below asserts that, for each σ > 0, there exists C(σ,α, p,U, d) < ∞
such that ∥∇u∥Lp(Vε) ⩽ CR(ε) 1

p
∧(α−σ) ∥∇u∥Wα,p(Rd) . (6.49)

For α > 1
p , we fix σ = α − 1

p > 0 and thus obtain

∥∇Tε∥L2(U) ⩽ CR(ε) 1
2 [εαR(ε)− 1

p X̃ 1
ε + ε

R(ε)X̃ 1
ε + X̃ 2

ε ] ∥∇u∥Wα,p(Rd).

In view of (6.47), this is the sought-after estimate for ∥∇Tε∥L2(U). If instead α ⩽ 1
p ,

then the estimate becomes

∥∇Tε∥L2(U) ⩽ CR(ε) 1
2 [εαR(ε)− 1

p X̃ 1
ε +R(ε)α− 1

p
−σ ( ε

R(ε)X̃ 1
ε + X̃ 2

ε )] ∥∇u∥Wα,p(Rd).

Noting that

R(ε) 1
2 [εαR(ε)− 1

p +R(ε)α− 1
p
−σ ( ε

R(ε) + 1)] ⩽ Cε 1
2
+α− 1

p
−2σ,

selecting σ > 0 such that

β = 1

2
+ α − 1

p
− 3σ,

and using (6.47), we obtain the desired estimate for ∥∇Tε∥L2(U) in this case as well.
Step 2. We prove the bound for ∥Tε∥L2(U). Notice that

∥Tε∥L2(U) ⩽ ε d∑
k=1

∥φεek(∇u ∗ ζε)∥L2(U∖U3R(ε))
.

The term on the right side has already been estimated above in (6.48). We
therefore obtain an upper bound for R(ε)−1∥Tε∥L2(U) which matches the upper
bound obtained for ∥∇Tε∥L2(U) in the previous step. This completes the proof.
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Above we made use of the following lemma, which answers a simple question
regarding estimates for Sobolev functions in boundary layers: given α ∈ (0,1]
and p ∈ (2,∞) such that 1

p < α < d
p and a function u ∈ W 1+α,p(U), what is the

best estimate for ∥∇u∥L2(U∖Ur) (for small r)? It might be tempting to guess
that one should use the fractional Sobolev inequality (Proposition B.11) to get
that ∇u ∈ L dp

d−pα (U) and then use this improvement of integrability with Hölder’s
inequality to take advantage of the small measure of U ∖Ur. This however leads to
a suboptimal bound, especially in large dimensions, where we obtain an estimate
which scales like a small power of r. But a boundary layer is not any set of
small measure, and a better estimate can be found by using the Sobolev trace
theorem, Proposition B.15, which gives the same estimate as for smooth functions,
namely ≲ O(r 1

2 ), provided that α > 1
p . Indeed, the question we posed is essentially

equivalent to one concerning the image of the trace operator.

Lemma 6.12. Let U ⊆ Rd be a bounded Lipschitz domain. Fix α ∈ (0,∞), p ∈(1,∞], q ∈ [1, p], and
β ∈ (0, 1

q ] ∩ (0, 1
q − 1

p + α) .
There exists C(β,U, d,α, p, q) < ∞ such that for every f ∈Wα,p(Rd) and r ∈ (0,1],

∥f∥Lq(∂U+Br) ⩽ Crβ ∥f∥Wα,p(Rd) . (6.50)

Proof. Step 1. We prove the result in the case β = 1
q and α > 1

p . First, by Hölder’s
inequality we have that

∥f∥Lq(∂U+Br) ⩽ Cr 1
q
− 1
p ∥f∥Lp(∂U+Br) .

By the coarea formula we have

∥f∥pLp(∂U+Br) = ∫ r

0
∥f∥pLp({x ∶dist(x,∂U)=t}) dt,

and by Proposition B.15 and the assumption of α > 1
p , for each t ∈ (0, r), we have

∥f∥pLp({x ∶dist(x,∂U)=t}) ⩽ C ∥f∥p
Wα,p(Rd) .

We thus obtain ∥f∥Lq(∂U+Br) ⩽ Cr 1
p ∥f∥Wα,p(Rd) ,

as announced.
Step 2. We obtain the general statement of the lemma by using the result of

Step 1 and an interpolation argument. Let α, p, q and β be as in the statement of
the lemma. We suppose that α ⩽ 1

p . First, Lemma 6.7 gives

∥f − (f ∗ ζr)∥Lp(∂U+Br) ⩽ Crα ∥f∥Wα,p(Rd) .
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On the other hand, the result of the first step ensures, for every σ > 0, the existence
of a constant C(σ, p,U, d) < ∞ such that

∥f ∗ ζr∥Lp(∂U+Br) ⩽ Cr 1
p ∥f ∗ ζr∥

W
σ+ 1

p ,p(Rd)
.

Lemma 6.7 implies that

∥f ∗ ζr∥
W
σ+ 1

p ,p(Rd)
⩽ Crα− 1

p
−σ ∥f∥Wα,p(Rd) .

By Hölder’s inequality and the triangle inequality, we thus have

∥f∥Lq(∂U+Br) ⩽ Cσr 1
q
− 1
p
+α−σ ∥f∥Wα,p(Rd) .

One may now choose σ > 0 so that β = 1
q− 1

p+α−σ. This completes the argument.

We now give the proof of Theorem 6.9.

Proof of Theorem 6.9. Without loss of generality, we assume that α ⩽ 1. Denoting
by vε the boundary layer corrector defined in (6.40), we use the triangle inequality
to write ∥∇uε −∇wε∥L2(U) ⩽ ∥∇vε∥L2(U) + ∥∇(uε + vε −wε)∥L2(U) . (6.51)

We decompose the proof into two steps, each estimating one of the terms above.
As will be seen, the dominant error comes from the first term when α > 1

2 , and
comes from the second term otherwise.

Step 1. We first estimate the contribution of the boundary layer corrector vε.
The claim is that, for every

β ∈ (0, 1
2
] ∩ (0, 1

2 − 1
p + α) ,

we have ∥∇vε∥L2(U) ⩽ CZε ∥u∥W 1+α,p(Rd) , (6.52)

where Zε is the random variable from Lemma 6.11. We use the variational formu-
lation to see that

∥∇vε∥2
L2(U) ⩽ ∫

U
∇vε ⋅ aε∇vε (6.53)

⩽ inf
v∈(wε−u)+H1

0(U)
∫
U
∇v ⋅ aε∇v ⩽ C inf

v∈(wε−u)+H1
0(U)

∥∇v∥2
L2(U) ,

and test it with the function v = Tε defined in (6.41). Observe that, by the definition
of wε, we have Tε ∈ (wε − u) +H1

0(U). Moreover, Lemma 6.11 gives us

R(ε)−1 ∥Tε∥L2(U) + ∥∇Tε∥L2(U) ⩽ Zε ∥u∥W 1+α,p(Rd) , (6.54)
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which combined with (6.53) yields (6.52).
Step 2. We complete the proof that

∥∇uε −∇wε∥L2(U) ⩽ ∥u∥W 1+α,p(Rd) ⋅
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Os (Cεα ∣log ε∣ 12) if d = 2, α ∈ (0, 1
2
] ,

Os (Cε 1
2 ∣log ε∣ 14) if d = 2, α ∈ (1

2 ,∞) ,
O2+δ (Cεα∧ 1

2) if d > 2, α ∈ (0,∞).
(6.55)

Define
zε ∶= uε + vε −wε ∈H1

0(U).
Testing the equations for uε and vε by zε and summing the results, we get

∫
U
∇zε(x) ⋅ aε(x) (∇uε(x) + ∇vε(x)) dx = ∫

U
∇zε(x) ⋅ a∇u(x)dx.

On the other hand,

∣∫
U
∇zε(x) ⋅ aε(x)∇wε(x)dx − ∫

U
∇zε(x) ⋅ a∇u(x)dx∣
⩽ C ∥∇zε∥L2(U) ∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1) .

Combining these yields

∥∇zε∥2
L2(U) ⩽ C ∫

U
∇zε(x) ⋅ aε(x)∇zε(x)dx

⩽ C ∥∇zε∥L2(U) ∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1) ,

and therefore, by Theorem 6.3,

∥∇(uε + vε −wε)∥L2(U) = ∥∇zε∥L2(U)⩽ C ∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1)

⩽ C ∥u∥W 1+α,p(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
Os (Cεα ∣log ε∣ 12) if d = 2,

O2+δ (Cεα) if d > 2.
(6.56)

With (6.51) and the result of the previous step, this yields (6.55).
Step 3. We complete the proof of the theorem. The remaining task is to obtain

an estimate on ∥uε −wε∥L2(U). For this we use the triangle inequality and the
Poincaré inequality to get

∥uε −wε∥L2(U) ⩽ ∥Tε∥L2(U) + ∥vε − Tε∥L2(U) + ∥zε∥L2(U)⩽ ∥Tε∥L2(U) + ∥∇vε −∇Tε∥L2(U) + ∥∇zε∥L2(U)⩽ ∥Tε∥L2(U) + ∥∇vε∥L2(U) + ∥∇Tε∥L2(U) + ∥∇zε∥L2(U) .

Each of the four terms on the right side of the previous inequality has been already
estimated above, in (6.45), (6.52) and (6.55). This completes the proof of the
theorem.
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We now present an H1 estimate of the two-scale expansion for the Neumann
problem. The proof is an adaptation of the one for Theorem 6.9 and is left to the
reader.

Theorem 6.13 (Quantitative two-scale expansion for the Neumann problem).
Fix s ∈ (0,2), α ∈ (0, 1

2], p ∈ (2,∞], a bounded Lipschitz domain U ⊆ Rd and
ε ∈ (0, 1

2
]. There exist δ(d,Λ) > 0, C(s,α, p,U, d,Λ) < ∞ and a random variable Xε

satisfying (6.37) such that the following holds: for every u ∈W 1+α,p(Rd), if we let
wε ∈ H1(U) be defined by (6.19) and uε ∈ H1(U) be the solution of the Neumann
problem

{ −∇ ⋅ (aε(x)∇uε) = −∇ ⋅ (a∇u) in U,

n ⋅ a ( ⋅
ε
)∇uε = n ⋅ a∇u on ∂U,

then we have the following H1–type estimate for the error of the two-scale expansion:

∥∇uε −∇wε∥L2(U) ⩽ Xε ∥u∥W 1+α,p(Rd) . (6.57)

Exercise 6.3. Prove Theorem 6.13.

6.4 Boundary layer estimates

Reinspecting the proof of Theorem 6.9, we see that, for smooth data, there are two
sources of error:

• The size of the boundary layer solution vε. The estimate we have is

∥∇vε∥L2(U) ≲ O(ε 1
2 ),

up to the logarithmic correction in d = 2. This error arises because near the
boundary, the homogenization process gives way to the enforcement of the
Dirichlet condition—and we have perturbed the boundary condition in our
definition of wε. The estimate is optimal: indeed, we should expect that,
in at least an O(ε)-thick boundary layer, the gradient of uε is essentially
tracking the boundary condition, and thus that ∣∇uε −∇wε∣ is of order one
there. This already leads to an L2 norm of at least O(ε 1

2 ).
• The second source of error is the responsibility of homogenization, and it is
captured by the quantity ∥∇ ⋅ aε∇wε −∇ ⋅ a∇u∥H−1(B1), which we estimated
in Theorem 6.3. This error is much smaller than the boundary layer error:
up to logarithmic corrections in d = 2, it is O(ε).

While the boundary layer solution vε is the leading source of the H1 error, there
is good reason to expect it to make a lower-order contribution to the L2 error.
Indeed, a rough guess informed by the maximum principle is that (up to logarithmic
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corrections in d = 2), since vε(x) has boundary values of size O(ε), it should be
of order ε in the whole domain. We would also like to show that the contribution
of ∇vε to the error in the two-scale expansion is mostly confined to boundary layers
and is much smaller than O(ε 1

2 ) in the interior of the domain.
It is the purpose of this section to improve our estimates of vε and consequently

obtain a weighted H1 estimate for the error in the two-scale expansion as well as
an L2 estimate for the homogenization error. Both of these estimates, stated in the
following theorem, are optimal in the scaling of ε for smooth data. It is convenient
to denote

ρεU(x) ∶= ε ∨ dist(x, ∂U), x ∈ U. (6.58)

Theorem 6.14 (Optimal L2 homogenization error estimate). Fix s ∈ (0,2), α ∈(0,1], p ∈ (2,∞], a bounded domain U ⊆ Rd which is either convex or C1,1, and
ε ∈ (0, 1

2
]. There exist δ(d,Λ) > 0, C(s,α, p,U, d,Λ) < ∞ and a random variable Xε

satisfying

Xε ⩽ ⎧⎪⎪⎨⎪⎪⎩
Os/2 (Cεα ∣log ε∣ 12) if d = 2,

O1+δ (Cεα) if d > 2,

such that the following holds: for every u ∈ W 1+α,p(Rd), if we let wε be given
by (6.19) and uε ∈H1(U) be the solution of (6.38), then we have

∥(∇uε −∇wε)ρεU∥L2(U) ⩽ Xε ∥u∥W 1+α,p(Rd) (6.59)

and ∥uε − u∥L2(U) ⩽ Xε ∥u∥W 1+α,p(Rd) . (6.60)

Notice that (6.59) provides a much stronger estimate than Theorem 6.9 in the
subdomain Ur, for ε

1
2 ≪ r ⩽ 1. In particular, if u ∈W 2,p(Rd) with p > 2 and V ⊆ U

is a given compact subdomain, then there exists C(V, s, p,U, d,Λ) < ∞ such that

∥∇uε −∇wε∥L2(V ) ⩽ C ∥u∥W 2,p(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
Os/2 (Cε ∣log ε∣ 12) if d = 2,

O1+δ (Cε) if d > 2.
(6.61)

However, (6.59) is still not optimal in terms of estimates of the boundary layer
errors: ignoring the stochastic integrability exponent, the correct estimate should
be roughly

∥(∇uε −∇wε) (ρεU) 1
2 ∥
L2(U)

⩽ ∥u∥W 2,p(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
O(Cε ∣log ε∣ 12) if d = 2,

O(Cε) if d > 2.
(6.62)

Compared to (6.9) and (6.59), this estimate gives improved bounds in every
subdomain Ur for ε ≪ r ≪ 1. The proof of (6.62) is more involved than that
of (6.59) and requires estimates for ∇uε −∇wε in Lp(U) for p > d.
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Regarding the assumptions on U : Theorem 6.14 requires the boundary of U to
have quite a bit more regularity than just that it is Lipschitz, namely that it be
convex or C1,1. This can be relaxed: what we really need is that, for some δ > 0,
the estimate (6.78) holds for solutions of (6.76). In general Lipschitz domains,
this estimate is borderline, as unfortunately the best estimate—which is known
to be sharp—is that (6.78) holds with δ = 0 (see [73]). However, and this will
be clear from the proof of Theorem 6.14, we can obtain a statement in a general
Lipschitz domain by giving up an arbitrarily small power of ε in the estimates (6.59)
and (6.60). We expect this estimate to be true in general C1,γ domains for any
γ ∈ (0,1], but have not found a proof in the literature.

We begin the proof of Theorem 6.14 with an extension of Lemma 6.12 for
solutions of the Dirichlet problem (6.38). Like in Chapter 3, the idea is to “borrow”
the regularity of the homogenized solution given in Lemma 6.12 by using the
two-scale expansion result of Theorem 6.9.

Proposition 6.15 (Dirichlet boundary layer estimate). Fix s ∈ (0,2), α ∈ (0, 1
2
],

p ∈ (2,∞], a bounded Lipschitz domain U ⊆ Rd, ε ∈ (0, 1
2
], and let R(ε) be given

by (6.42). There exist δ(d,Λ) > 0, C(s,α, p,U, d,Λ) < ∞ and, for each r ∈ [R(ε),1],
a random variable Yr,ε satisfying

Yr,ε ⩽ {Os (C) if d = 2,O2+δ (C) if d > 2,
(6.63)

such that the following holds: for every u ∈W 1+α,p(Rd), if we let uε ∈H1(U) be the
solution of the Dirichlet problem (6.38), then we have

∥∇uε∥L2(U∖Ur) ⩽ Yr,εrα− 1
2 ∥u∥W 1+α,p(Rd) . (6.64)

Proof. For wε defined in (6.19), the triangle inequality gives

∥∇uε∥L2(U∖Ur) ⩽ ∥∇wε∥L2(U∖Ur) + ∥∇wε −∇uε∥L2(U∖Ur) .

By Theorem 6.9, with Xε as in the statement of that theorem, we have, for every
r ∈ [R(ε),1],

∥∇wε −∇uε∥L2(U∖Ur) = C (1

r ∫U∖Ur ∣∇wε −∇uε∣2)
1
2

⩽ Cr− 1
2 ∥∇wε −∇uε∥L2(U) ⩽ C(R(ε))− 1

2Xε ∥u∥W 1+α,p(Rd) .

As (R(ε))− 1
2Xε is a random variable with the desired integrability, by (6.37), it

remains to bound ∥∇wε∥L2(U∖Ur). We break this up by the triangle inequality:

∥∇wε∥L2(U∖Ur) ⩽ ∥∇u∥L2(U∖Ur) + d∑
k=1

∥(∂xku ∗ ζε)∇φek ( ⋅
ε
)∥
L2(U∖Ur)

+ ε d∑
k=1

∥φεek∇(∂xku ∗ ζε)∥L2(U∖Ur)
. (6.65)
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Each term on the right side of (6.65) will be estimated separately. For the remainder
of the proof, we fix

q ∶= 1

2
(p + 2) ∈ (2, p).

Step 1. We show that, for every r ∈ (0,1],
∥∇u∥Lq(Ur∖Ur) ⩽ Crα− 1

2 ∥u∥W 1+α,p(Rd) . (6.66)

(Recall that U r is defined in (0.13).) Lemma 6.12 with β = 1
q ∧ α yields, for every

r ∈ (0,1], ∥∇u∥Lq(Ur∖Ur) ⩽ Crβ− 1
q ∥u∥W 1+α,p(Rd) . (6.67)

Since β − 1
q ⩾ α − 1

2 , we deduce that (6.66) holds.
Step 2. We show that, for every r ∈ [ε,1] and k ∈ {1, . . . , d},

∥(∂xku ∗ ζε)∇φek ( ⋅
ε
)∥
L2(U∖Ur)⩽ Crα− 1

2 ∥u∥W 1+α,p(Rd) ∥ ∣∇φek ( ⋅
ε
)∣ ∗ ζε∥Lq/(q−2)(Ur∖U2r)

. (6.68)

Fix r ∈ [ε,1]. Using Hölder’s inequality and (6.66), we get

∥(∂xku ∗ ζε)∇φek ( ⋅
ε
)∥
L2(U∖Ur)

⩽ ∥ ∣∇u∣ (∣∇φek ( ⋅
ε
)∣ ∗ ζε)∥L2(Ur∖U2r)⩽ ∥∇u∥Lq(Ur∖U2r) ∥ ∣∇φek ( ⋅

ε
)∣ ∗ ζε∥Lq/(q−2)(Ur∖U2r)⩽ Crα− 1

2 ∥u∥W 1+α,p(Rd) ∥ ∣∇φek ( ⋅
ε
)∣ ∗ ζε∥Lq/(q−2)(Ur∖U2r)

.

This is (6.68).
Step 3. We show that, for every r ∈ [ε,1] and k ∈ {1, . . . , d},
ε ∥φεek∇(∂xku ∗ ζε)∥L2(U∖Ur)⩽ Crα− 1

2 ∥u∥W 1+α,p(Rd) (ε ∥ ∣φεek ∣ ∗ ζε∥Lq/(q−2)(Ur∖U2r)
) . (6.69)

The proof of (6.69) is almost identical to that of (6.68), so we omit it.
Step 4. The conclusion. Combining the previous steps yields

∥∇uε∥L2(U∖Ur) ⩽ ∥∇wε∥L2(U∖Ur) + ∥∇wε −∇uε∥L2(U∖Ur) ⩽ rα− 1
2Yr,ε ∥u∥W 1+α,p(U) ,

where we define the random variable Yr,ε by
Yr,ε ∶= C(R(ε))− 1

2Xε +C(1 + ∥ ∣∇φek ( ⋅
ε
)∣ ∗ ζε∥Lq/(q−2)(Ur∖U2r)

+ ε ∥ ∣φεek ∣ ∗ ζε∥Lq/(q−2)(Ur∖U2r)
),

and where Xε is as in Theorem 6.9. The estimates (3.87), (4.5), (4.6) and (6.37)
imply that Yr,ε satisfies (6.63). This completes the proof.
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The previous proposition allows us to improve the L2 estimate for the boundary
layer solution vε encountered in the proof of Theorem 6.9 and obtain a weighted L2

estimate for its gradient.

Proposition 6.16 (Estimates for vε). Fix exponents s ∈ (0,2), p ∈ (2,∞), α ∈(0,∞),
β ∈ (0,1] ∩ (0,1 + α − 1

p) , (6.70)

a bounded domain U ⊆ Rd which is either convex or C1,1, and ε ∈ (0, 1
2
]. There exist

δ(d,Λ) > 0, C(s,α, p, β,U, d,Λ) < ∞ and a random variable Xε satisfying the bound

Xε ⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Os/2 (Cε ∣log ε∣ 12) if d = 2 and α > 1
p ,

Os/2 (Cεβ ∣log ε∣ 14) if d = 2 and α ⩽ 1
p ,O1+δ (Cεβ) if d > 2,

such that the following holds: for every u ∈W 1+α,p(Rd), if we let vε ∈H1(U) be the
solution of (6.40), then

∥vε∥L2(U) + ∥∇vερεU∥L2(U) ⩽ Xε ∥u∥W 1+α,p(Rd) . (6.71)

Proof. The main part of the argument concerns the estimate of the first term on
the left side of (6.71). The estimate for the second term follows relatively easily
from this and Caccioppoli’s inequality.

Step 1. The estimate for ∥vε∥L2(U). We fix h ∈ L2(U) and seek to estimate

∫
U
h(x)vε(x)dx.

Let ψε ∈H1
0(U) be the solution of

{ −∇ ⋅ (aε(x)∇ψε) = h in U,
ψε = 0 on ∂U.

(6.72)

We also let Tε be as defined in (6.41) and R(ε) be as defined in (6.42). Since
vε − Tε ∈H1

0(U), we can rewrite the Dirichlet problem for vε as

{ −∇ ⋅ (aε(x)∇vε) = 0 in U,
vε = Tε on ∂U.

(6.73)

Testing (6.72) with vε − Tε ∈H1
0(U) yields

∫
U
h(x) (vε(x) − Tε(x)) dx = ∫

U
(∇vε(x) − ∇Tε(x)) ⋅ aε(x)∇ψε(x)dx.
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Testing (6.73) with ψε ∈H1
0(U) yields

∫
U
∇ψε(x) ⋅ aε(x)∇vε(x)dx = 0.

Combining the previous two displays, we get

∫
U
h(x)vε(x)dx = ∫

U
h(x)Tε(x)dx − ∫

U
∇Tε(x) ⋅ aε(x)∇ψε(x)dx. (6.74)

Since Tε is supported in U ∖U3R(ε), an application of Hölder’s inequality yields

∣∫
U
h(x)vε(x)dx∣ ⩽ ∥h∥L2(U) ∥Tε∥L2(U) + ∥∇ψε∥L2(U∖U3R(ε)) ∥∇Tε∥L2(U) . (6.75)

Since we assume U to be either convex or C1,1, we have by Proposition B.18 that
the solution ψ ∈H1

0(U) of the homogenized Dirichlet problem

⎧⎪⎪⎨⎪⎪⎩
−∇ ⋅ (a∇ψ) = h in U,

ψ = 0 on ∂U,
(6.76)

satisfies the H2 estimate ∥ψ∥
H2(U) ⩽ C ∥h∥L2(U) . (6.77)

In particular, by the fractional Sobolev embedding (cf. [1, Theorem 7.58]), we
obtain that, for an exponent δ(d) > 0,

∥ψ∥
W

3
2 ,2+δ(U) ⩽ C ∥h∥L2(U) . (6.78)

An application of Proposition 6.15 therefore yields that, for every r ∈ [R(ε),1],
∥∇ψε∥L2(U∖Ur) ⩽ CYr,εr 1

2 ∥ψ∥
W

3
2 ,2+δ(U) ⩽ CYr,εr 1

2 ∥h∥L2(U) . (6.79)

Combining the previous inequality and (6.75) yields

∣∫
U
h(x)vε(x)dx∣ ⩽ ∥h∥L2(U) (∥Tε∥L2(U) +CYR(ε),εR(ε) 1

2 ∥∇Tε∥L2(U)) . (6.80)

By Lemma 6.11 and (6.63), we see that

∥Tε∥L2(U) + YR(ε),εR(ε) 1
2 ∥∇Tε∥L2(U)

⩽ ∥u∥W 1+α,p(Rd) ⋅
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Os/2 (Cε ∣log ε∣ 12) if d = 2 and α > 1
p ,

Os/2 (Cεβ ∣log ε∣ 12) if d = 2 and α ⩽ 1
p ,O1+δ (Cεβ) if d > 2.
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We take Xε to be the random variable implicitly defined in the line above. Now
taking the choice h = vε and combining the previous two estimates completes the
proof of the estimate for ∥vε∥L2(U).

Step 2. The estimate for ∥∇vερεU∥L2(U). The Caccioppoli inequality yields, for
every r ∈ [ε,1] and x ∈ U2r,

∫
Br/2(x)

∣∇vε(y)∣2 dy ⩽ C
r2 ∫Br(x) ∣vε(y)∣2 dy.

Using a covering of U2r ∖U4r with balls of radius r/2 and centers in U2r ∖U4r with
the property that any point of U2r ∖U4r belongs to at most C(d) < ∞ of the balls
in the covering, we obtain

∫
U2r∖U4r

∣∇vε(x)∣2 dist2(x, ∂U)dx ⩽ C ∫
Ur∖U5r

∣vε(x)∣2 dx.
Summing over r ∈ {r′ ∶ r′ = 2−k diam(U) ⩾ 1

4ε, k ∈ N} and applying the result of
Step 1, with Xε the random variable defined there, we obtain

∫
Uε

∣∇vε(x)∣2 ρεU(x)2 dx ⩽ C ∫
U
∣vε(x)∣2 dx ⩽ CX 2

ε ∥u∥2
W 1+α,p(Rd) .

On the other hand, by (6.52), we have

∫
U∖Uε

∣∇vε∣2 (ρεU)2 = ε2∫
U∖Uε

∣∇vε∣2 ⩽ ε2∫
U
∣∇vε∣2 ⩽ ε2Z2

ε ∥u∥2
W 1+α,p(Rd) ,

where Zε is the random variable given in the statement of Lemma 6.11 which
satisfies (6.44). Summing the previous two displays and replacing Xε by the
random variable CXε + εZε, which is less than CXε, completes the proof.

We now present the proof of Theorem 6.14.

Proof of Theorem 6.14. Step 1. The proof of (6.59). Using the triangle inequality
and ρεU ⩽ C, we have

∥(∇uε −∇wε)ρεU∥L2(U) ⩽ ∥(∇uε +∇vε −∇wε)ρεU∥L2(U) + ∥∇vερεU∥L2(U)⩽ ∥∇uε +∇vε −∇wε∥L2(U) + ∥∇vερεU∥L2(U) .

The estimate now follows from (6.56) and (6.71).
Step 2. The proof of (6.60). Let wε be given by (6.19) and vε ∈H1(U) be the

solution of (6.40). Observe that

uε − u = (uε + vε −wε) − vε + (wε − u).
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Thus by the triangle inequality,

∥uε − u∥L2(U) ⩽ ∥uε + vε −wε∥L2(U) + ∥vε∥L2(U) + ∥wε − u∥L2(U) .

By the Poincaré inequality and (6.56), we have

∥uε + vε −wε∥L2(U) ⩽ C ∥∇(uε + vε −wε)∥L2(U)

⩽ C ∥u∥W 1+α,p(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
Os (Cεα ∣log ε∣ 12) if d = 2,

O2+δ (Cεα) if d > 2.

According to Proposition 6.16,

∥vε∥L2(U) ⩽ C ∥u∥W 1+α,p(Rd) ⋅
⎧⎪⎪⎨⎪⎪⎩
Os (Cεα ∣log ε∣ 12) if d = 2,

O2+δ (Cεα) if d > 2.

(Actually, Proposition 6.16 gives a stronger estimate for ∥vε∥L2(U), but it cannot
improve the result we prove here.) Finally, we estimate wε − u using Lemma 6.8,

∥wε − u∥L2(U) ⩽ ε d∑
k=1

∥φεek(∂xku ∗ ζε)∥L2(U)

⩽ Cεα d∑
k=1

(εd ∑
z∈εZd∩U

∥φεek∥ 2p
p−2

L2(z+2ε◻0)
)
p−2
p ∥∇u∥Wα,p(Rd) . (6.81)

By Theorem 4.1, we have

(εd ∑
z∈εZd∩U

∥φεek∥ 2p
p−2

L2(z+2ε◻0)
)
p−2
p ⩽ ⎧⎪⎪⎨⎪⎪⎩

Os (C ∣log ε∣ 12) if d = 2,

O2+δ (C) if d > 2.

This completes the proof of (6.60).

Notes and references

The results in Sections 6.2 and 6.3 are essentially well-known in the case of periodic
coefficient fields (cf. [22]), although the statements are usually somewhat different.
Finer estimates on the homogenization error and two-scale expansion have been
obtained more recently in [78, 76].

Many of the results in this chapter are new in the stochastic setting, including
the optimal O(ε 1

2 ) error estimate (up to logarithmic corrections in d = 2) for the
two-scale expansion for the Dirichlet problem, the boundary layers estimates and
the O(ε) estimate for the homogenization error for the Dirichlet problem. The



6.4 Boundary layer estimates 253

estimates with respect to fractional Sobolev norms also appear to be new, even in the
case of periodic coefficients. Two-scale expansions in stochastic homogenization in
situations without boundaries, similar to the results in Section 6.2, have previously
appeared in [61, 68]. Section 6.4 follows the method introduced by Shen [111] for
periodic coefficients; see also [77].



Chapter 7

Calderón-Zygmund gradient Lp estimates

The large-scale regularity results proved in Chapter 3 are analogous to Schauder-
type pointwise estimates. In this chapter, we give complimentary large-scale
regularity results in Sobolev-type norms which can be considered as analogous to
the classical Calderón-Zygmund estimates. In particular, we are interested in Lp-
type bounds on the gradients of solutions to equations with a divergence-form right
side. As an application, we give an improvement in the (spatial) integrability of
the error in the two-scale expansion for the Dirichlet problem proved in Chapter 6.

7.1 Interior Calderón-Zygmund estimates

The classical Calderón-Zygmund estimate for the Poisson equation states that
for every p ∈ (1,∞), there exists a constant C(p, d) < ∞ such that, for every
f ∈W −1,p(B1) and solution u ∈H1(B1) of the equation

−∆u = f in B1, (7.1)

we have that ∇u ∈ Lploc(B1) and the estimate

∥∇u∥Lp(B1/2) ⩽ C (∥f∥W−1,p(B1) + ∥∇u∥L2(B1)) . (7.2)

This estimate is a cornerstone of elliptic regularity theory (we will give a complete
proof of it in this section, see Proposition 7.3 below). The purpose of this section
is to obtain an analogue of it for the operator −∇ ⋅ a∇. The statement is presented
below in Theorem 7.1.

Like the Hölder-type regularity results from Chapter 3, the version of (7.2) we
give is valid “only on scales larger than the minimal scale,” which we formalize by
mollifying the small scales. As usual, we take (ζδ)δ>0 to be the standard mollifier
defined in (0.15) and (0.16). For p ∈ [1,∞] and f ∈ Lp(Rd), we define ζδ(⋅) ∗ f

254
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pointwise as

(ζδ(⋅) ∗ f) (x) ∶= (ζδ(x) ∗ f) (x) = δ(x)−d∫
Rd
ζ (x − y

δ(x) ) f(y)dy.
For f ∈ L1(Rd), we define a maximal function

Mf(x) ∶= sup
r>0

∥f∥L1(Br(x))

and a truncated version

Mδ(⋅)f(x) ∶= sup
r>δ(x)

∥f∥L1(Br(x)) .

Observe that Mδ(⋅) takes into account only scales larger than δ(⋅), and thus we refer
to it as a coarsened maximal function.

Theorem 7.1 (Gradient Lp-type estimates). Fix s ∈ (0, 2), p ∈ [2,∞) and ε ∈ (0, 1
2
].

Let X(x) denote the random variable Xsd/2(x) defined in Remark 3.9. There
exists C(s, p, d,Λ) < ∞ such that, for every F ∈ L2(B1;Rd) and solution uε ∈H1(B1)
of the equation −∇ ⋅ (aε∇uε) = ∇ ⋅F in B1, (7.3)

we have the estimate

∥MεX( ⋅

ε
) (1B1 ∣∇uε∣2)∥

Lp/2(B1/2)⩽ C ∥∇uε∥2
L2(B1) +C ∥ζεX( ⋅

ε
) ∗ (1B1 ∣F∣2)∥

Lp/2(B1)
. (7.4)

Moreover, for every q ∈ [2, p), there exists C(q, s, p, d,Λ) < ∞ and a random variableYε,s satisfying Yε,s = Os(C)
such that, for every F ∈ L2(B1;Rd) and uε solving (7.3), we have

∥ζε ∗ ∣∇uε∣2∥
Lq/2(B1/2)

⩽ C ∥∇uε∥2
L2(B1) + Yε,s ∥ζε ∗ ∣F∣2∥

Lp/2(B1)
. (7.5)

Recall that the random variable X(⋅) in Theorem 7.1 satisfies X(x) ⩽ O sd
2
(C),

is 2-Lipschitz continuous (see (3.84)) and can be used as the random minimal scale
in the Lipschitz bound (3.17): that is, it satisfies the conclusion of Theorem 3.3.

Every proof of the Calderón-Zygmund estimates uses some kind of measure-
theoretic covering argument in order to control the level sets of the function
whose Lp norm is being estimated. The original result, stated in terms of the
boundedness from Lp to Lp of singular integral operators (arising for instance in the
analysis of the Poisson equation (7.1)), was formalized using the Calderón-Zygmund
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decomposition. This measure-theoretic tool was later widely used in many different
contexts in harmonic analysis and the analysis of PDEs. Here we prefer to use the
Vitali covering lemma, Lemma C.5.

The Calderón-Zygmund-type gradient Lp estimates for equations with a right-
hand side are typically consequences of gradient L∞ (Lipschitz) estimates for the
same equation with zero right-hand side. There is a more general principle at work
here, which roughly asserts that if an L2 function u can be well-approximated in
L2, on every scale, by Lq functions (with q > p), with local L2 errors controlled
by an Lp function g, then this function u must belong to Lp (with an appropriate
estimate). We formalize this fact as a pure real analysis lemma. This is where the
Vitali covering lemma is used.

Lemma 7.2. For each p ∈ (2,∞), q ∈ (p,∞] and A ⩾ 1, there exists δ0(p, q,A, d) > 0
and C(p, q,A, d) < ∞ such that the following holds for every δ ∈ (0, δ0]. Let
f ∈ L2(B1) and g ∈ Lp(B1) be such that for every x ∈ B 1

2
and r ∈ (0, 1

4
], there

exists fx,r ∈ Lq(Br(x)) satisfying both

∥fx,r∥Lq(Br(x)) ⩽ A ∥g∥L2(B2r(x)) +A ∥f∥L2(B2r(x)) (7.6)

and ∥f − fx,r∥L2(Br(x)) ⩽ A ∥g∥L2(B2r(x)) + δ ∥f∥L2(B2r(x)) . (7.7)

Then f ∈ Lp(B1/2) and we have the estimate

∥f∥Lp(B1/2) ⩽ C (∥f∥L2(B1) + ∥g∥Lp(B1)) . (7.8)

Proof. We fix 2 < p < q ⩽ ∞.
For m ∈ (0,∞), we denote fm ∶= ∣f ∣ ∧m. By Lemma C.6, it suffices to show that

there exists C(p, q,A, d) < ∞ such that, for every m ∈ (1,∞) and 1
2 ⩽ s < t ⩽ 1,

∥fm∥pLp(Bs) ⩽ 1

2
∥fm∥pLp(Bt) + C

(t − s) d2 (∥f∥L2(B1) + ∥g∥Lp(B1))p . (7.9)

Indeed, after we prove (7.9), we can apply the lemma to obtain

∥fm∥Lp(B1/2) ⩽ C (∥f∥L2(B1) + ∥g∥Lp(B1)) .
We may then send m→∞ to obtain (7.8).

We fix 1
2 ⩽ s < t ⩽ 1 for the remainder of the argument. In order to prove (7.9),

we study the measure of the super level sets of f . In fact, it is useful to define the
following measures: for each Borel set F ⊆ B1, we set

µf(F ) ∶= ∫
F∩Bt

∣f(x)∣2 dx and µg(F ) ∶= ∫
F∩Bt

∣g(x)∣2 dx.
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The main step in the proof of (7.9) is to show that there exists C(d) < ∞ such
that, for every ε ∈ (0, 1

2A
), M ∈ [4A,∞) and λ ∈ (0,∞) satisfying

λ ⩾ λ0 ∶= 8d(t − s)− d2 (∥f∥L2(Bt) + ε−1 ∥g∥L2(Bt)) ,
we have a good λ type inequality

µf ({∣f ∣ >Mλ} ∩Bs) ⩽ C ((εA + δ)2 + (4A)q
M q−2

)µf ({∣f ∣ > 1
2λ} ∩Bt)

+Cε−2 ((εA + δ)2 + (4A)q
M q−2

)µg ({∣g∣ > ε
2λ} ∩Bt) . (7.10)

Let us see that (7.10) implies (7.9): using a layer-cake formula and a change of
variables (recall that p > 2), we see that, with ε andM as above, for every m ⩾Mλ0,

∥fm∥pLp(Bs)
Mp−2

⩽ ∫
Bs

(fm(x)
M

)p−2

f(x)2 dx

= (p − 2)∫ ∞

0
λp−3µf ({fm >Mλ} ∩Bs) dλ

⩽ µf(Bs)λp−2
0 + (p − 2)∫ m/M

λ0
λp−3µf ({fm >Mλ} ∩Bs) dλ.

We next use the estimate (7.10) to bound the second term on the right side:

(p − 2)∫ m/M

λ0
λp−3µf ({fm >Mλ} ∩Bs) dλ

⩽ C ((εA + δ)2 + (4A)q
M q−2

) (p − 2)∫ m/M

0
λp−3µf ({∣f ∣ > 1

2λ ∩Bt}) dλ
+Cε−2 ((εA + δ)2 + (4A)q

M q−2
) (p − 2)∫ ∞

0
λp−3µg ({∣g∣ > ε

2λ} ∩Bt) dλ
⩽ C ((εA + δ)2 + (4A)q

M q−2
)(∥fm∥pLp(Bt) + ε−p ∥g∥pLp(Bt)) .

Putting these together, we obtain

∥fm∥pLp(Bs) ⩽ CMp−2 ((εA + δ)2 + (4A)q
M q−2

)(∥fm∥pLp(Bt) + ε−p ∥g∥pLp(Bt)) .
+Mp−2µf(Bt)λp−2

0 .

We next select the parameters so that the prefactor of ∥fm∥pLp(Bt) is less than 1
2 . We

first choose M large enough, depending only on (p, q,A, d), so that CMp−qAq ⩽ 1
4 .

We then take ε and δ0 small enough, depending only the choice ofM and (p, q,A, d),
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so that CMp−2(εA + δ0)2 ⩽ 1
4 . This yields a constant C(p, q,A, d) < ∞ such that,

for every δ ∈ (0, δ0],
∥fm∥pLp(Bs) ⩽ 1

2
∥fm∥pLp(Bt) +Cµf(Bt)λp−2

0 +C ∥g∥pLp(Bt) .
Next, we note that

µf(Bt)λp−2
0 ⩽ C(t − s)− d2 ∥f∥2

L2(Bt) (∥f∥L2(Bt) + ∥g∥L2(Bt))p−2

⩽ C(t − s)− d2 (∥f∥L2(Bt) + ∥g∥L2(Bt))p .
Combining these yields (7.9).

We therefore focus on the proof of (7.10) and fix, for the remainder of the
argument, the parameters ε ∈ (0, 1

2A
), M ∈ [4A,∞), δ > 0 and λ ∈ (λ0,∞). We

define, for every x ∈ B1 and r ∈ (0,1),
E(x, r) ∶= ∥f∥L2(Br(x)∩B1) + ε−1 ∥g∥L2(Br(x)∩BR)

and the set
G ∶= {x ∈ Bs ∶ lim

r→0
E(x, r) = ∣f(x)∣ + ε−1∣g(x)∣} .

Notice that, by the Lebesgue differentiation theorem, we have ∣Bs ∖G∣ = 0.
Step 1. We show that, for every x ∈ {∣f ∣ > λ} ∩G, there exists rx ∈ (0, t−s64 R)

satisfying
E(x, rx) = λ and sup

r∈(rx,(t−s)R)
E(x, r) ⩽ λ. (7.11)

Indeed, we have

sup
r∈( t−s

64
,(t−s))

sup
x∈Bs

E(x, r) ⩽ 8d sup
x∈Bs

E(x, (t − s)) = λ0

and, since λ > λ0, for every x ∈ {∣f ∣ > λ} ∩G,

lim
r→0

E(x, r) = ∣f(x)∣ + ε−1∣g(x)∣ > λ ⩾ λ0.

Therefore (7.11) follows from the intermediate value theorem.
Step 2. Fix x ∈ {∣f ∣ > λ}∩G and let rx ∈ (0, t−s64

) be as in the previous step. The
stopping time information can be used to transfer information between levels λ
and radii rx. Indeed, we show that

λ2 ∣Brx ∣ ⩽ 2µf ({∣f ∣ > 1
2λ} ∩Brx(x)) + 2ε−2µg ({∣g∣ > ε

2λ} ∩Brx(x)) , (7.12)

and letting fx ∶= fx,5rx be as in the hypothesis of the lemma,

∥fx∥Lq(B5rx(x)) ⩽ 2Aλ (7.13)



7.1 Interior Calderón-Zygmund estimates 259

and ∥f − fx∥L2(B5rx(x)) ⩽ (εA + δ)λ. (7.14)

To deduce (7.12), rephrasing (7.11) by means of µf and µg, we get that

λ2 ∣Brx ∣ = µf(Brx(x)) + ε−2µg(Brx(x))
⩽ µf ({∣f ∣ > 1

2λ} ∩Brx(x)) + ε−2µg ({∣g∣ > ε
2λ} ∩Brx(x)) + 1

2
λ2 ∣Brx ∣ ,

from which (7.12) follows. On the other hand, (7.13) is a direct consequence of (7.6)
and (7.11), because

∥fx∥Lq(B5rx(x)) ⩽ A ∥f∥L2(B10rx(x)) +A ∥g∥L2(B10rx(x)) ⩽ A(1 + ε)E(x,10rx) ⩽ 2Aλ,

and (7.14) follows by (7.7) and (7.11):

∥f − fx∥L2(B5rx(x)) ⩽ A ∥g∥L2(B10rx(x)) + δ ∥f∥L2(B10rx(x))⩽ (εA + δ)E (x,10rx)⩽ (εA + δ)λ.
Step 3. Fix x ∈ {∣f ∣ > λ} ∩G, rx ∈ (0, t−s64

) and fx be as in Steps 1 and 2. We
show that there exists C(d) < ∞ such that,

µf ({∣f ∣ >Mλ} ∩B5rx(x)) ⩽ C ((εA + δ)2 + (4A)q
M q−2

)µf ({∣f ∣ > 1
2λ} ∩Brx(x))

+Cε−2 ((εA + δ)2 + (4A)q
M q−2

)µg ({∣g∣ > ε
2λ} ∩Brx(x)) . (7.15)

We begin by observing that

{∣f ∣ >Mλ} ∩B5rx(x) ⊆ ({∣fx∣ > 1
2Mλ} ∪ {∣f ∣ ⩽ 2∣f − fx∣}) ∩B5rx(x),

and thus

µf ({∣f ∣ >Mλ} ∩B5rx(x))⩽ µf ({∣fx∣ > 1
2Mλ} ∩B5rx(x)) + µf ({∣f ∣ ⩽ 2∣f − fx∣} ∩B5rx(x)) .

The second term can be easily estimated using (7.14) as

µf ({∣f ∣ ⩽ 2 ∣f − fx∣} ∩B5rx(x)) ⩽ 4∣B5rx(x)∣ ∥f − fx∥2
L2(B5rx(x))⩽ Cλ2∣Brx ∣ (εA + δ)2
.

For the first one, on the other hand, we first use the triangle inequality to get

µf ({∣fx∣ > 1
2Mλ} ∩B5rx(x)) ⩽ 2∫

{∣fx∣> 1
2
Mλ}∩B5rx(x)

(∣fx(y)∣2 + ∣f(y) − fx(y)∣2) dy,
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and to estimate the two terms on the right we apply Chebyshev’s inequality
and (7.13) to obtain

2∫
{∣fx∣> 1

2
Mλ}∩B5rx(x)

∣fx(y)∣2 dy ⩽ (1
2Mλ)2−q ∣B5rx(x)∣ ∥fx∥qLq(B5rx(x))

⩽ Cλ2 ∣Brx ∣ (4A)q
M q−2

and, by (7.14),

2∫
{∣fx∣> 1

2
Mλ}∩B5rx(x)

∣f(y) − fx(y)∣2 dy ⩽ Cλ2 ∣Brx ∣ (εA + δ)2
.

Therefore, we obtain that, for C(d) < ∞,

µf ({∣f ∣ >Mλ} ∩B5rx(x)) ⩽ Cλ2 ∣Brx ∣ ((εA + δ)2 + (4A)q
M q−2

) .
Plugging in (7.12) then yields (7.15).

Step 4. The covering argument and conclusion. Applying the Vitali covering
lemma (Lemma C.5) to the open cover

{Brx(x) ∶ x ∈ {∣f ∣ >Mλ} ∩G}
of {∣f ∣ >Mλ} ∩ G now yields (7.10) by (7.15), and completes the proof of the
lemma.

Before proceeding to the proof of Theorem 7.1, we present, as a warm-up
exercise, the derivation of the classical Calderón-Zygmund estimate (7.2) from
Lemma 7.2. In fact, we give a proof of the following more general statement.

Proposition 7.3. For each p ∈ (2,∞), there exist δ0(p, d,Λ) > 0 and C(p, d,Λ) < ∞
such that the following holds for every δ ∈ (0, δ0]. Let a ∈ Ω be such that, for some
constant matrix a0 ∈ Rd×d

sym,
sup
x∈B1

∣a(x) − a0∣ ⩽ δ.
For every u ∈H1(B1), we have the estimate

∥∇u∥Lp(B1/2) ⩽ C (∥∇u∥L2(B1) + ∥∇ ⋅ (a∇u)∥W−1,p(B1)) . (7.16)

Proof. If ∇ ⋅ (a(⋅)∇u) ∈W −1,p(B1), then by the Riesz representation theorem (see
Remark B.6) there exists a vector field F ∈ Lp(B1;Rd) such that

−∇ ⋅ (a(⋅)∇u) = ∇ ⋅F in B1

and ∥F∥Lp(B1) ⩽ ∥∇ ⋅ (a(⋅)∇u)∥W−1,p(B1) .
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We assume δ0 ⩽ 1
2 so that 1

2Id ⩽ a0 ⩽ 2ΛId. We will show that the assumptions of
Lemma 7.2 are valid with f ∶= ∇u and fx,r ∶= ∇ux,r, where ux,r ∈ u +H1

0(B2r(x)) is
the solution of

{ −∇ ⋅ (a0∇ux,r) = 0 in B2r(x),
ux,r = u on ∂B2r(x).

Since a0 is constant, we deduce that ux,r satisfies the estimate, for C(d,Λ) < ∞,

∥∇ux,r∥L∞(Br(x)) ⩽ C ∥∇ux,r∥L2(B2r(x)) . (7.17)

Indeed, this estimate follows from (3.7) after a change of variables. Now, testing
the equations for u and ux,r with u − ux,r and subtracting, we obtain

∫
B2r(x)

(∇u −∇ux,r) ⋅ a (∇u −∇ux,r)
= ∫

B2r(x)
(∇u −∇ux,r) ⋅ (a0 − a)∇ux,r + ∫

B2r(x)
F ⋅ (∇u −∇ux,r) .

Applying Young’s inequality, we obtain

∥∇u −∇ux,r∥2
L2(B2r(x)) ⩽ Cδ2 ∥∇ux,r∥2

L2(B2r(x)) +C ∥F∥2
L2(B2r(x)) .

Using the triangle inequality, we get

∥∇ux,r∥L2(B2r(x)) ⩽ ∥∇u −∇ux,r∥L2(B2r(x)) + ∥∇u∥L2(B2r(x))⩽ Cδ ∥∇ux,r∥L2(B2r(x)) +C ∥F∥L2(B2r(x)) + ∥∇u∥L2(B2r(x)) .

Therefore, taking δ0 > 0 sufficiently small, we may reabsorb the first term on right
side, and so we obtain

∥∇ux,r∥L2(B2r(x)) ⩽ C ∥∇u∥L2(B2r(x)) +C ∥F∥L2(B2r(x)) .

Combining this with (7.17), we get

∥∇ux,r∥L∞(Br(x)) ⩽ C ∥∇u∥L2(B2r(x)) +C ∥F∥L2(B2r(x)) .

We may therefore apply Lemma 7.2 with q = ∞, f ∶= ∇u, fx,r ∶= ∇ux,r and g = F,
to obtain the conclusion of the proposition.

Exercise 7.1. Use Proposition 7.3 to obtain the following statement: suppose a ∈ Ω
is uniformly continuous in B1 with modulus ρ, that is,

∣a(x) − a(y)∣ ⩽ ρ (∣x − y∣) ∀x, y ∈ B1,

for some continuous function ρ ∶ [0,2) → R+ with ρ(0) = 0. Then, for every
exponent p ∈ (2,∞), there exists C(ρ, p, d,Λ) < ∞ such that (7.16) holds.
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Remark 7.4 (Counterexample for p = ∞). Proposition 7.3 is false, in general, for
p = ∞, even in the case of the Laplace operator −∆. The standard counterexample
(taken from [83, Example 10.2]) in dimension d = 2 is, for x = (x1, x2) ∈ R2 ∖ {0},

u(x) ∶= x1x2 log log
1∣x∣ .

One can check that −∆u ∈ L∞(B1) but ∂x1∂x2u /∈ L∞(Br) for any r > 0. Therefore,
if we take v ∶= ∂x1u, then

−∆v = ∇ ⋅ f for f ∶= (∆u
0

) .
We thus have f ∈ L∞(B1;R2), but ∇v /∈ L∞(Br;R2) for any r > 0.

Interior Calderón-Zygmund estimates may also be formulated for p < 2. For the
Laplacian operator, the estimates are true for p ∈ (1,2), but false for p = 1: see
Exercise 7.6 below.

We now focus on the proof of Theorem 7.1. The following lemma together with
Lemma D.3 gives the first statement of Theorem 7.1. The proof of the lemma is
similar to that of Proposition 7.3: the main difference is that, rather than freezing
the coefficients and using pointwise bounds for harmonic functions, we use the
C0,1-type estimate from Chapter 3. Another difference is technical: since the latter
is not a true pointwise estimate, we have to work with the coarsened maximal
function. Here and throughout the rest of this section, X(⋅) is the random variable
in the statement of Theorem 7.1.

Lemma 7.5. For each p ∈ [2,∞), there exists a constant C(d, p) < ∞ such that
for every F ∈ L2(B1;Rd) and uε ∈H1(B1) solution of

−∇ ⋅ (aε∇uε) = ∇ ⋅F in B1,

we have the estimate

∥MεX( ⋅
ε
) (1B1 ∣∇uε∣2)∥L p2 (B1/2)⩽ C ∥∇uε∥2

L2(B1) +C ∥MεX( ⋅
ε
)(1B1 ∣F∣2)∥

L
p
2 (B1)

. (7.18)

Proof. Step 1. We set up the argument. For each x ∈ B1/2, define

f(x) ∶= max
r∈[εXs(xε )∧

1
2
, 1
2
]
(1

r
∥uε − (uε)Br(x)∥L2(Br(x))

) + ∥∇uε∥L2(B1) .

Observe that the Caccioppoli inequality gives

∥∇uε∥L2(Br/2(x)) ⩽ Cr ∥uε − (uε)Br(x)∥L2(Br(x))
+C ∥F∥L2(Br(x)) , (7.19)
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and hence we have a pointwise bound

(MεX( ⋅
ε
) (1B1 ∣∇uε∣2)) (x) ⩽ Cf 2(x) +C (MεX( ⋅

ε
) (1B1 ∣F∣2)) (x), (7.20)

for every x ∈ B1/2. We set

g(x) ∶= (MεX( ⋅
ε
) (1B1 ∣F∣2)) 1

2 (x).
Now, it is enough to establish Lp-integrability for f . We aim at applying Lemma 7.2,
and hence, for any fixed x and r, we need to find fx,r as in Lemma 7.2. For this,
fix x ∈ B1/2 and r ∈ (0, 1

4
].

Step 2. We claim that, if εX(xε ) ⩾ 4r, then

sup
z∈Br(x)

f(z) ⩽ C inf
z∈Br(x)

f(z) ⩽ C ∥f∥L2(Br(x)) , (7.21)

and in this case we simply set fx,r ∶= f . Since X(⋅) is 2-Lipschitz continuous and
εX(xε ) ⩾ 4r, we have that infz∈Br(x) εX ( z

ε
) ⩾ 2r. We obtain, for all y, z ∈ Br(x) and

t ∈ [r,1/20],
1

t
∥uε − (uε)Bt(y)∥L2(Bt(y))

⩽ C

t + 2r
∥uε − (uε)Bt+2r(z)∥L2(Bt+2r(z))

,

and from this it is easy to verify (7.21).
Step 3. For the rest of the proof, we assume that εX(xε ) ⩽ 4r. By the 2-Lipschitz

continuity, we also have supz∈B2r(x) εX ( z
ε
) ⩽ 8r. We define

fx,r(y) ∶= max
r′∈[εXs( yε )∧

1
2
, 1
2
]
( 1

r′
∥vεr − (vεr)Br′(y)∥L2(Br′(y))

) + ∥∇uε∥L2(B1) ,

where vεr ∈ uε +H1
0(B2r(x)) solves −∇ ⋅ (a∇vε) = 0 in B2r(x), and vεr is extended to

be uε outside of B2r(x). We will show that

sup
y∈Br(x)

fx,r(y) ⩽ C inf
y∈Br(x)

f(y) +C ∥g∥L2(B2r(x)) (7.22)

and ∥f − fx,r∥L2(Br(x)) ⩽ C ∥g∥L2(B2r(x)) . (7.23)

Step 4. We show (7.22). By testing the subtracted equations of uε and vε with
uε − vε, we obtain

∥∇uε −∇vε∥L2(B2r(x)) ⩽ C ∥F∥L2(B2r(x)) . (7.24)

Furthermore, since supz∈B2r(x) εX ( z
ε
) ⩽ 8r, we have

∥F∥L2(B2r(x)) ⩽ C ∥M8r (1B1 ∣F∣2)∥
L1(B2r(x))

⩽ C ∥g∥L2(B2r(x)) . (7.25)
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By Theorem 3.3 we have that, for every y, z ∈ Br(x) and r′ ∈ [εXs (yε) , r ∧ 1
4
],

1

r′
∥vεr − (vεr)Br′(y)∥L2(Br′(y))

⩽ C

2r
∥vεr − (vεr)B2r(z)∥L2(B2r(z))

. (7.26)

By the triangle inequality and Poincaré’s inequality, together with (7.24) and (7.25),
recalling that r ⩽ 1

4 ,

1

2r
∥vεr − (vεr)B2r(z)∥L2(B2r(z))

⩽ f(z) +C ∥g∥L2(B2r(x)) ,

and similarly, for any z ∈ Br(x),
sup

r′∈[r∧ 1
4
, 1
2
]

1

r′
∥vεr − (vεr)Br′(y)∥L2(Br′(y))

⩽ Cf(z) + ∥g∥L2(B2r(x)) .

Combining the last two displays yields (7.22).
Step 5. We show (7.23). The triangle inequality yields

∣f(y) − fx,r(y)∣ ⩽ max
r′∈[(εXs( yε )∧

1
2
), 1

2
]
( 1

r′
∥uε − vε − (uε − vε)Br′(y)∥L2(Br′(y))

) ,
and hence the Sobolev-Poincaré inequality with the exponent

2∗ ∶= { 2d
d+2 , d > 2,
3
2 , d = 2,

gives, for some constant C(d) < ∞, the bound

∣f(y) − fx,r(y)∣2∗ ⩽ C (MεX( ⋅

ε
) ∣∇uε −∇vε∣2∗) (y). (7.27)

The strong-type ( 2
2∗
, 2

2∗
) estimate for maximal functions in Lemma D.3 yields

∥MεX( ⋅

ε
) ∣∇uε −∇vε∣2∗∥

L
2
2∗ (Rd)⩽ C ∥∣∇uε −∇vε∣2∗∥

L
2
2∗ (Rd)

= C ∥∇uε −∇vε∥2∗
L2(B2r(x)) .

Combining this with (7.24), (7.25) and (7.27), we obtain (7.23).
Step 6. The conclusion. We have verified assumptions (7.6) and (7.7) of

Lemma 7.2 with (7.22) and (7.23), respectively, and hence we obtain

∥f∥Lp(B1/2) ⩽ C (∥g∥Lp(B1) + ∥f∥L2(B1)) .
This together with (7.20) finishes the proof.
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We now complete the proof of Theorem 7.1.

Proof of Theorem 7.1. To prove (7.5), fix s ∈ [1,2) and take the random variableX sd
2
accordingly. Fix also p ∈ (2,∞) and q ∈ [2, p). We denote, in short, X = X sd

2
.

We apply Lemma 7.5 and start estimating terms appearing in (7.18). We have

MεX( ⋅
ε
) (1B1 ∣F∣2) (x) ⩽ C sup

t>0
⨏
Bt(x)

(ζεX(x
ε
) ∗ (1B1 ∣F∣2)) (y)dy

⩽ CM (ζεX( ⋅
ε
) ∗ (1B1 ∣F∣2)) (x).

Therefore, the strong (p
2 ,

p
2
)-type estimate for maximal functions in Lemma D.3

yields ∥MεX( ⋅
ε
) (1B1 ∣F∣2)∥

L
p
2 (B1)

⩽ C ∥ζεX( ⋅
ε
) ∗ (1B1 ∣F∣2)∥

L
p
2 (B1)

.

This implies (7.4) by Lemma 7.5. Note that a similar argument also gives

∥MεX( ⋅
ε
) (1B1 ∣F∣2)∥

L
p
2 (B1)

⩽ C ∥ζε ∗ (1B1 ∣F∣2)∥
L
p
2 (B1)

.

Using this we proceed to prove (7.5), and in view of the previous display and
Lemma 7.5, we only need to estimate the integral on left in (7.18). We first have a
pointwise bound

Mε (1B1 ∣∇uε∣2) (x) ⩽ X d (x
ε
)MεX( ⋅

ε
) (1B1 ∣∇uε∣2) (x).

Therefore, Hölder’s inequality gives

∥Mε (1B1 ∣∇uε∣2)∥L q2 (B1/2)
⩽ ∥MεX( ⋅

ε
) (1B1 ∣∇uε∣2)∥

L
p
2 (B1/2)

∥X ( ⋅
ε
)∥ d2
L
d
2
qp
p−q (B1/2)

.

By Lemma A.4, we have ∥Xs ( ⋅
ε
)∥
L
d
2
qp
p−q (B1/2)

⩽ O sd
2
(C(p, q, d,Λ)), and hence

Ys ∶= C ∥X ( ⋅
ε
)∥ d2
L
d
2
qp
p−q (B1/2)

⩽ Os(C).
The proof is complete.

7.2 Global Calderón-Zygmund estimates

In this section, we prove the following global version of the Calderón-Zygmund
gradient Lp-type estimates for Dirichlet boundary conditions. The argument is a
variation of the one from the previous section.
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Theorem 7.6 (Global gradient Lp-type estimates). Fix s ∈ (0,2), γ ∈ (0,1],
p ∈ [2,∞), ε ∈ (0, 1

2
] and a bounded C1,γ-domain U ⊆ Rd. Let X(x) denote the

random variable Xsd/2(x) defined in Remark 3.9. There exists C(s, p,U, d,Λ) < ∞
such that, for every F ∈ L2(B1∩U ;Rd) and solution uε ∈H1(B1∩U) of the equation

{ −∇ ⋅ (aε∇uε) = ∇ ⋅F in B1 ∩U,
uε = 0 on B1 ∩ ∂U, (7.28)

we have the estimate

∥MεX( ⋅

ε
) (1B1∩U ∣∇uε∣2)∥

Lp/2(B1/2∩U)

⩽ C ∥∇uε∥2
L2(B1∩U) +C ∥ζεX( ⋅

ε
) ∗ (1B1∩U ∣F∣2)∥

Lp/2(B1∩U)
. (7.29)

We begin the proof of Theorem 7.6 by giving a global version of Lemma 7.2.
The main difference is that since the statement is now global, there is no need for
a localization argument. The only regularity requirement we impose on ∂U is a
mild geometric condition (7.30), which provides a suitable doubling condition.

Lemma 7.7. For each p ∈ [2,∞), q ∈ (p,∞], A ⩾ 1, and bounded domain U ⊆ Rd

satisfying the geometric condition

sup
x∈U

sup
r>0

(∣B2r(x) ∩U ∣∣Br(x) ∩U ∣ ) ⩽ CU < ∞, (7.30)

there exist δ0(p, q,A,CU , d) > 0 and C(p, q,A,CU , d) < ∞ such that the following
holds for every δ ∈ (0, δ0]. Let f ∈ L2(U) and g ∈ Lp(U) be such that for every
x ∈ U and r ∈ (0, 1

8 diam(U)], there exists fx,r ∈ Lq(Br(x) ∩U) satisfying both

∥fx,r∥Lq(Br(x)∩U) ⩽ A ∥g∥L2(B2r(x)∩U) +A ∥f∥L2(B2r(x)∩U) (7.31)

and ∥f − fx,r∥L2(Br(x)∩U) ⩽ A ∥g∥L2(B2r(x)∩U) + δ ∥f∥L2(B2r(x)∩U) . (7.32)

Then f ∈ Lp(U) and we have the estimate

∥f∥Lp(U) ⩽ C (∥g∥Lp(U) + ∣U ∣− p−2p ∥f∥L2(U)) . (7.33)

Proof. Assume without loss of generality that p > 2 and q < ∞. The proof closely
follows the lines of the proof of Lemma 7.2. Consider δ ∈ (0, 1] to be a free parameter
in the proof. Fix also a parameter ε ∈ (0, 1

2A
) to be selected below and define, for

every x ∈ U and r > 0,

E(x, r) ∶= ∥f∥L2(Br(x)∩U) + ε−1 ∥g∥L2(Br(x)∩U) .
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Let R ∶= diam(U) and define

λ0 ∶= sup
x∈U

(16dC8
UE(x,R)2) 1

2 ⩽ 8dC4
U (∥f∥L2(U) + ε−1 ∥g∥L2(U)) . (7.34)

Proceeding as in the proof of Lemma 7.2, by introducing pointwise exit radii as in
the proof of Lemma 7.2 using (7.30) to control volumes close to the boundary, and
finally applying Vitali’s covering theorem, one deduces, for λ > λ0, that

µf ({∣f ∣ >Mλ})
⩽ C ((εA + δ)2 + (4A)q

M q−2
)(µf ({∣f ∣ > 1

2λ}) + ε−2µg ({∣g∣ > ε
2λ})) , (7.35)

where, for each Borel set F ⊆ U , we set

µf(F ) ∶= ∫
F∩U

∣f(x)∣2 dx and µg(F ) ∶= ∫
F∩U

∣g(x)∣2 dx.
Using a layer-cake formula, for p > 2, to get

∥f∥pLp(U)

Mp−2
= (p − 2)∫ ∞

0
λp−3µf ({∣f ∣ >Mλ}) dλ

⩽ µf(U)λp−2
0 + (p − 2)∫ ∞

λ0
λp−3µf ({∣f ∣ >Mλ}) dλ.

we then obtain by (7.35) that

(p − 2)∫ ∞

λ0
λp−3µf ({∣f ∣ >Mλ}) dλ

⩽ C ((εA + δ)2 + (4A)q
M q−2

)(∥f∥pLp(U) + ε−p ∥g∥pLp(U)) .
Thus, we arrive at

∥f∥pLp(U) ⩽ CMp−2 ((εA + δ)2 + (4A)q
M q−2

)(∥f∥pLp(U) + ε−p ∥g∥pLp(U))
+Mp−2µ(U)λp−2

0 .

Consequently, we may choose first M large and δ small, and then ε accordingly
small, all by means of (p, q,A,CU , d), and then reabsorb the first term on the right.
This is possible since q > p > 2. Thus, for C(p, q,A,CU , d) < ∞, we have

∥f∥Lp(U) ⩽ C ∣U ∣− p−2p ∥f∥L2(U) +C ∥g∥Lp(U) .

To make the argument rigorous, one repeats the computation of the last step with
fm ∶= ∣f ∣ ∧m instead, and after reabsorption pass to the limit m → ∞ using the
monotone convergence theorem. The proof is complete.
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Exercise 7.2. Show that if ∣U ∣ = ∞, then the conclusion of Lemma 7.7 becomes

∥f∥Lp(U) ⩽ C ∥g∥Lp(U) .

Exercise 7.3. By mimicking the proof of Proposition 7.3, use Lemma 7.7 to
prove a global Calderón-Zygmund estimate for Dirichlet boundary conditions. The
statement is: fix a bounded domain U ⊆ Rd satisfying the geometric condition (7.30),
p ∈ (2,∞) and δ > 0. Suppose that a ∈ Ω satisfies, for some constant matrix
a0 ∈ Rd×d

sym,
sup
x∈U

∣a(x) − a0∣ ⩽ δ.
Then there exists δ0(U, p, d,Λ) > 0 and C(U, p, d,Λ) < ∞ such that δ ⩽ δ0 implies
that, for every u ∈H1(B1), f ∈W −1,p(U) and g ∈W 1,p(U) satisfying

{ −∇ ⋅ (a(x)∇u) = f in U,
u = g on ∂U,

we have the estimate

∥∇u∥Lp(U) ⩽ C (∥f∥W−1,p(B1) + ∥∇g∥Lp(U)) . (7.36)

Exercise 7.4. State and prove a version of the global Calderón-Zygmund estimates
for Neumann boundary conditions.

Exercise 7.5. State and prove a global version of Exercise 7.1 for Dirichlet bound-
ary conditions.

Remark 7.8 (Duality for Calderón-Zygmund exponents). The statement proved
in Exercise 7.3 can be extended to all p ∈ (1,∞). Indeed, the global Calderón-
Zygmund estimate for p ∈ [1,∞] is equivalent to the same statement for the Hölder
conjugate exponent p′. To see this, we suppose the statement is true for some
p ∈ [1,∞] and seek to prove the estimate for p′. We therefore consider, for a given
f ∈ C∞(U ;Rd), a solution u ∈H1(U) of the problem

{ −∇ ⋅ (a(x)∇u) = ∇ ⋅ f in U,
u = 0 on ∂U,

To obtain a bound on ∥∇u∥Lp′(U), we argue by duality. We fix a vector field
g ∈ Lp(U ;Rd) and seek to bound the quantity ∣∫U g ⋅ ∇u∣. We let v be the solution
of

{ −∇ ⋅ (a(x)∇v) = ∇ ⋅ g in U,
v = 0 on ∂U.

By assumption, we have ∥∇v∥Lp(U) ⩽ C ∥g∥Lp(U) .
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Testing the equations for u and v with each other and using the Hölder inequality,
we get

∣∫
U
g ⋅ ∇u∣ = ∣∫

U
∇v ⋅ ∇u∣ = ∣∫

U
f ⋅ ∇v∣ ⩽ ∥f∥Lp′(U) ∥∇v∥Lp(U) ⩽ C ∥f∥Lp′(U) ∥g∥Lp(U) .

By duality, this yields ∥∇u∥Lp′(U) ⩽ C ∥f∥Lp′(U)

and completes the proof of the claim.
In particular, in view of the example given in Remark 7.4, the global Calderón-

Zygmund statement proved in Exercise 7.3 is false, even for the Laplacian operator,
for the exponents p = 1 and p = ∞.

Exercise 7.6. Using the previous remark, extend the interior estimate of Proposi-
tion 7.3 to all exponents p ∈ (1,∞). Since (7.16) is trivial for p < 2, replace this
inequality with

∥∇u∥Lp(B1/2) ⩽ C (∥u∥Lp(B1) + ∥∇ ⋅ (a∇u)∥W−1,p(B1)) .
Returning to the context of homogenization and continuing with the proof of

Theorem 7.6, we next give a global analogue of Lemma 7.5.

Lemma 7.9. For each s ∈ (0,2), γ ∈ (0,1], p ∈ [2,∞), ε ∈ (0, 1
2
]. and C1,γ

domain U ⊆ Rd, there exists a constant C(s, p, d,U,Λ) < ∞ such that for every
F ∈ L2(B1 ∩U) and solution uε ∈H1(B1 ∩U) of the equation

{ −∇ ⋅ (aε∇uε) = ∇ ⋅F in B1 ∩U,
uε = 0 on B1 ∩ ∂U,

we have the estimate

∥MεX( ⋅
ε
) (1B1∩U ∣∇uε∣2)∥L p2 (B1/2∩U)⩽ C ∥∇uε∥2

L2(B1∩U) +C ∥MεX( ⋅
ε
) (1B1∩U ∣F∣2)∥

L
p
2 (B1∩U) . (7.37)

Proof. Since the estimate we are looking for is localized in B1/2 ∩U , we let Ũ be a
C1,γ domain such that

B3/4 ∩U ⊆ Ũ ⊆ B1 ∩U and B3/4 ∩ ∂U = B3/4 ∩ ∂Ũ.
Step 1. It is convenient to decompose uε = uε1 + uε2, where uε1 ∈H1

0(Ũ) has zero
boundary values and solves −∇ ⋅ (aε∇uε1) = ∇ ⋅ F in Ũ , whereas uε2 ∈ uε +H1

0(Ũ)
solves the homogeneous problem −∇ ⋅ (aε∇uε2) = 0 with boundary values given by
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uε. Extend uε1 to be zero outside of Ũ . Due to the subadditivity of the maximal
function, we have

∥MεX( ⋅
ε
) (1Ũ ∣∇uε∣2)∥L p2 (B1/2∩U)⩽ ∥MεX( ⋅

ε
) (1Ũ ∣∇uε1∣2)∥L p2 (B1/2∩U) + ∥MεX( ⋅

ε
) (1Ũ ∣∇uε2∣2)∥L p2 (B1/2∩U) .

We prove that the two maximal functions on the right can be controlled by the
right-hand side of (7.37). The estimate (7.37) then follows easily. We treat the
terms separately in the following two steps.

Step 2. As in the local case, for a given x ∈ Ũ , we define

f(x) ∶= max
r′∈[εXs(xε )∧1,1]

( 1

r′
∥uε1 − (uε1)Br′(x)∥L2(Br′(x))

) .
Recall that uε1 is extended to be zero outside of Ũ . Then the Caccioppoli estimate
gives the pointwise bound

(MεX( ⋅
ε
)(1Ũ ∣∇uε1∣2)) (x) ⩽ Cf 2(x) +C (MεX( ⋅

ε
) (1B1 ∣F∣2)) (x). (7.38)

Note here that the global Caccioppoli estimate, Lemma C.8, is applicable, since if
Br′(x) intersects ∂Ũ , then we simply estimate

1

r′
∥uε1∥L2(Br′(x)) ⩽ Cr′ ∥uε1∥L2(B2r′(x)) ⩽ Cr′ ∥uε1 − (uε1)B2r′(x)∥L2(B2r′(x))

⩽ Cf(x).
We again set

g(x) ∶= (MεX( ⋅
ε
)(1Ũ ∣F∣2)) 1

2 (x).
In view of (7.38), we need to establish Lp-integrability for f . We will apply
Lemma 7.7, and for this, fix x ∈ B1/2 and r ∈ [εX(xε ) ∧ 1,1], and define

fx,r(y) ∶= max
r′∈[εXs( yε )∧1,1]

( 1

r′
∥vεr − (vεr)Br′(y)∥L2(Br′(y))

) ,
where vεr ∈ uε1 +H1

0(B2r(x) ∩ Ũ) solves ∇ ⋅ (aε∇vεr) = 0 in B2r(x) ∩ Ũ , vεr is extended
to be uε1 outside of B2r(x)∩Ũ . With these definitions, it is analogous to the proof of
Lemma 7.2, using this time Theorem 3.18, to check assumptions (7.31) and (7.32)
of Lemma 7.7. We obtain

∥f∥Lp(B1/2) ⩽ C (∥g∥Lp(B1) + ∥f∥L2(B1)) ,
and this together with (7.38) gives the desired estimate for the first maximal
function.
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Step 3. The estimate for uε2 follows easily from (3.19) and (3.113). Indeed, since
uε2 has zero boundary values on ∂Ũ , we have, for x ∈ Ũ , that

max
r′∈[εXs(x)∧1,1]

∥∇uε2∥L2(Br′(x)∩Ũ) ⩽ C ∥∇uε2∥L2(Ũ) .

This readily implies that

∥MεX( ⋅
ε
) (1Ũ ∣∇uε2∣2)∥L∞(Ũ) ⩽ C ∥∇uε2∥L2(Ũ) .

Finally, since uε2 agrees with uε on ∂Ũ , we have that

∥∇uε2∥L2(Ũ) ⩽ C (∥∇uε∥L2(Ũ) + ∥F ∥L2(Ũ)) ,
which can in turn be estimated with the right-hand side in (7.37). The proof is
now complete.

Proof of Theorem 7.6. Using Lemma 7.9, the proof is completely analogous to the
one of Theorem 7.1. We omit the details.

7.3 W 1,p-type estimates for the two-scale expansion error

As an application the Lp-type gradient bounds proved in the previous sections, we
are in a position to improve the quantitative estimates on the two-scale expansion
obtained in Chapter 6 from L2 to Lp, for p ∈ (2,∞). The main result of this section
is summarized in the following theorem. As usual, we set aε ∶= a ( ⋅

ε
).

Theorem 7.10 (Two-scale expansion, Lp estimates). Fix s ∈ (0,2), α, γ ∈ (0,1],
p ∈ [2,∞), q ∈ (p,∞], a bounded C1,γ domain U ⊆ Rd and ε ∈ (0, 1

2
]. Let X be as

in Theorem 7.6. There exist δ(d,Λ) > 0, C(s,α, p, q,U, d,Λ) < ∞ and a random
variable Yε,p,q satisfying

Yε,p,q ⩽
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Os (Cεα ∣log ε∣ 12) if d = 2, α ∈ (0, 1
p] ,

Os (Cε 1
p ∣log ε∣ 1

2p) if d = 2, α ∈ (1
p ,∞) ,

O2+δ (Cεα∧ 1
p) if d > 2, α ∈ (0,∞),

(7.39)

such that the following holds: for every u ∈ W 1+α,q(Rd), if we let wε ∈ H1(U) be
defined by (6.19) and uε ∈H1(U) be the solution of the Dirichlet problem

{ −∇ ⋅ (aε∇uε) = −∇ ⋅ (a∇u) in U,
uε = u on ∂U,

(7.40)

then we have the estimate

∥MεX( ⋅

ε
) ∣∇ (uε −wε)∣2∥ 1

2

Lp/2(U)
⩽ Yε,p,q ∥u∥W 1+α,q(Rd) . (7.41)
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We first present an improvement of Theorem 6.3 by upgrading the H−1 norm
on the left side of (6.24) to a W −1,p-type norm.

Proposition 7.11 (Lp-type estimates for the two-scale expansion). Fix s ∈ (0,2),
α ∈ (0, 1], p ∈ (2,∞), q ∈ (p,∞] and ε ∈ (0, 1

2
]. There exist an exponent δ(d,Λ) > 0,

a constant C(s,α, p, q, d,Λ) < ∞ and a random variable Zε,p,q satisfying
Zε,p,q ⩽ ⎧⎪⎪⎨⎪⎪⎩

Os (C ∣log ε∣ 12) if d = 2,

O2+δ (C) if d > 2,
(7.42)

such that the following holds: for every u ∈W 1+α,q(Rd), if we define wε ∈H1
loc(Rd)

by (6.19), then there exists Fε ∈ L2
loc(Rd;Rd) satisfying

∇ ⋅Fε = ∇ ⋅ (aε∇wε − a∇u) (7.43)

as well as the estimate

∥∣Fε∣2 ∗ ζε∥ 1
2

L
p
2 (B2)

⩽ εαZε,p,q ∥u∥W 1+α,q(Rd) . (7.44)

The statement of Proposition 7.11 should indeed be compared to that of
Theorem 6.3 since (7.43) implies

∥(∇ ⋅ (aε∇wε) − ∇ ⋅ a∇u) ∗ ζε∥W−1,p(B2) ⩽ ∥∣Fε∣2 ∗ ζε∥ 1
2

L
p
2 (B2)

,

and therefore the bound (7.44) gives us a W −1,p-type estimate which general-
izes (6.24), after convolution with ζε. However, splitting this estimate into (7.43)
and (7.44) gives a slightly stronger statement which is required in order for Propo-
sition 7.11 to be used in combination with the Calderón-Zygmund-type estimate in
Theorem 7.6.

Proof of Proposition 7.11. According to Lemma 6.6, we have

∇ ⋅ (aε∇wε − a∇u) = ∇ ⋅Fε, (7.45)

where Fε is the vector field defined in (6.28), φεe and Sεe are defined in (6.17)
and (6.18), respectively, and Se is the flux corrector defined in (6.6).

In view of the definition of Fε in (6.28), we have

∥ζε ∗ (∣Fε∣2)∥
L
p
2 (B2)

⩽ C ∥ζε ∗ ∇u −∇u∥2
Lp(B2)

+Cε2
d∑
k=1

∥ζε ∗ ((∣Sεek ∣2 + ∣φεek ∣2) ∣∇(ζε ∗ ∇u)∣2)∥
L
p
2 (B2)

.
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The first term on the right side can be bounded using Lemma 6.7: we have

∥ζε ∗ ∇u −∇u∥Lp(B2) ⩽ Cεα ∥∇u∥Wα,p(Rd) .

Next, applying Lemma 6.8 (with U = B2ε(z)), we obtain, for q > p,
ε ∣ζε ∗ ((∣Sεek ∣2 + ∣φεek ∣2) ∣∇(ζε ∗ ∇u)∣2) (z)∣ 12

⩽ Cεα ∥∇u∥Wα,q(z+3ε◻0) ∥∣Sεek ∣ + ∣φεek ∣∥L2(z+3ε◻0)
.

Hence, by Hölder’s inequality,

ε2
d∑
k=1

∥ζε ∗ ((∣Sεek ∣2 + ∣φεek ∣2) ∣∇(ζε ∗ ∇u)∣2)∥
L
p
2 (B2)

⩽ Cε2α ∥∥∇u∥Wα,q(⋅+3ε◻0)∥2

Lq(B2)
∥∥∣Sεek ∣ + ∣φεek ∣∥L2(⋅+3ε◻0)

∥2

L
qp
q−p (B2)

.

As explained in Remark 6.4—see (6.25)—we have

∥∥∣Sεek ∣ + ∣φεek ∣∥L2(⋅+3ε◻0)
∥
L
qp
q−p (B3)

⩽ ⎧⎪⎪⎨⎪⎪⎩
Os (C ∣log ε∣ 12) if d = 2,

O2+δ (C) if d > 2.

On the other hand, by Jensen’s inequality,

∥∥∇u∥Wα,q(⋅+3ε◻0)∥Lq(B3)
⩽ C ∥u∥W 1+α,q(Rd) .

This completes the proof of (7.44) and of the proposition.

By combining Proposition 7.11 and the Lp-type estimates of Theorem 7.6,
we can upgrade the estimates of Theorem 6.9 for the two-scale expansion of the
Dirichlet problem from H1-type bounds to the W 1,p-type bounds of Theorem 7.10.
The argument begins by formulating an appropriate version of Lemma 6.11.

Lemma 7.12. Let s ∈ (0,2), p ∈ (2,∞), q ∈ (p,∞), α ∈ (0,∞), and
β ∈ (0, 1

p] ∩ (0, 1
p + α − 1

q) . (7.46)

There exist δ(d,Λ) > 0, C(s, p, q, α, β,U, d,Λ) < ∞ and, for every ε ∈ (0, 1
2
], a

random variable Zε satisfying
Zε ⩽

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Os (Cε 1
p ∣log ε∣ 1

2p) if d = 2 and α > 1
q ,Os (Cεβ) if d = 2 and α ⩽ 1
q ,O2+δ (Cεβ) if d > 2,

(7.47)

such that for every u ∈W 1+α,q(Rd) and Tε as defined in (6.41),

∥ζε ∗ ∣∇Tε∣2∥ 1
2

L
p
2 (U)

⩽ Zε ∥u∥W 1+α,q(Rd) . (7.48)
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Proof. As usual we let φεe and Sεe be defined as in (6.17) and (6.18), respectively.
Recall that T ε is defined by the formula

T ε(x) = (1Rd∖U2R(ε)
∗ ζR(ε)) (x) d∑

k=1

εφεek(x)∂k (u ∗ ζε) (x). (7.49)

Taking the gradient gives us

∣∇T ε∣ ⩽ 1Rd∖U3R(ε)

d∑
k=1

( Cε

R(ε) ∣φεek ∣ + ∣∇φek ( ⋅
ε
)∣) ∣∂k (u ∗ ζε)∣

+ 1Rd∖U3R(ε)

d∑
k=1

ε ∣φεek ∣ ∣∇∂k (u ∗ ζε)∣ . (7.50)

To treat the first term on the right, Lemma 6.8 (with U = Bε(z)) yields that
ζε ∗ ( d∑

k=1

( Cε

R(ε) ∣φεek ∣ + ∣∇φek ( ⋅
ε
)∣) ∣∂k (u ∗ ζε)∣)2 (z)

⩽ C d∑
k=1

( ε

R(ε) ∥φεek∥L2(z+3ε◻0)
+ ∥∇φek ( ⋅

ε
)∥
L2(z+3ε◻0)

)2 ∥∇u∥2
L2(z+3ε◻0) .

Denote

g(z) ∶= d∑
k=1

( ε

R(ε) ∥φεek∥L2(z+3ε◻0)
+ ∥∇φek ( ⋅

ε
)∥
L2(z+3ε◻0)

) .
By the Hölder inequality, we get

∥g ∥∇u∥L2(⋅+3ε◻0)∥Lp(Rd∖U2R(ε))
⩽ C ∥g∥

L
qp
q−p (Rd∖U3R(ε))

∥∇u∥Lq(Rd∖U5R(ε)) .

Lemma 6.12 implies that, for β as in (7.46),

∥∇u∥Lq(Rd∖U5R(ε)) ⩽ CR(ε)β− 1
p
+ 1
q ∥u∥W 1+α,q(Rd) .

Moreover, defining

X̂ 1
ε ∶= d∑

k=1

∥∥φεek∥L2(⋅+3ε◻0)
∥
L
q−p
qp (Rd∖U3R(ε))

X̂ 2
ε ∶= d∑

k=1

∥∥∇φek ( ⋅
ε
)∥ qp

q−p

L2(⋅+3ε◻0)
∥
L
q−p
qp (Rd∖U3R(ε))

,

we have that

∥g∥
L
qp
q−p (Rd∖U2R(ε))

⩽ CR(ε) 1
p
− 1
q ( ε

R(ε)X̂ 1
ε + X̂ 2

ε ) .
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Summarizing, we arrive at the inequality

XXXXXXXXXXXζε ∗ ( d∑
k=1

( Cε

R(ε) ∣φεek ∣ + ∣∇φek ( ⋅
ε
)∣) ∣∂k (u ∗ ζε)∣)2XXXXXXXXXXX

1
2

L
p
2 (Rd∖U2R(ε))

⩽ CR(ε)β ( ε

R(ε)X̂ 1
ε + X̂ 2

ε )∥u∥W 1+α,q(Rd) . (7.51)

Notice that, as in the proof of Lemma 6.11, we have

X̂ 1
ε ⩽ ⎧⎪⎪⎨⎪⎪⎩

Os (C ∣log ε∣ 12) if d = 2,

O2+δ (C) if d > 2,
and X̂ 2

ε ⩽ O2+δ (C) . (7.52)

We now turn our focus on the last term in (7.50). Details are very similar to
Step 2 of the proof of Lemma 6.11 and the above reasoning, so we only provide a
sketch of the proof. We have that

ε ∣ζε ∗ (∣φεek ∣2 ∣∇ (ζε ∗ ∇u)∣2) (z)∣ 12 ⩽ Cεα ∥∇u∥Wα,q(z+3ε◻0) ∥φεek∥L2(z+3ε◻0)
,

and hence, as above, we get

ε ∥ζε ∗ (∣φεek ∣2 ∣∇ (ζε ∗ ∇u)∣2)∥
L
p
2 (Rd∖U2R(ε))

⩽ CεαR(ε) 1
p
− 1
q X̂ 1

ε ∥∇u∥Wα,q(Rd) .

Connecting the above estimate with (7.50) and (7.51) leads to (7.48), similarly to
the proof of Lemma 6.11, and thus completes the proof.

Proof of Theorem 7.10. To correct for the boundary values, we consider, as in the
previous chapter, the solution vε ∈H1(U) of the Dirichlet problem

{ −∇ ⋅ (aε∇vε) = 0 in U,
vε = T ε on ∂U,

(7.53)

which can be written equivalently as an equation for vε − T ε:
{ −∇ ⋅ (aε∇(vε − T ε)) = ∇ ⋅ (aε∇T ε) in U,
vε − T ε = 0 on ∂U.

(7.54)

Subtracting (7.53) from (7.40) and using (7.43), we also get an equation for the
function uε −wε + vε:

{ −∇ ⋅ (aε∇(uε −wε + vε)) = ∇ ⋅Fε in U,
uε −wε + vε = 0 on ∂U,

(7.55)
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where Fε is defined in (6.28) and estimated in Proposition 7.11. Applying the
global Calderón-Zygmund estimate, Theorem 7.6, to the previous two displays, we
obtain

∥MεX( ⋅

ε
) ∣∇ (uε −wε + vε)∣2∥

Lp/2(U)

⩽ C ∥∇(uε −wε + vε)∥2
L2(U) +C ∥ζεX( ⋅

ε
) ∗ (1U ∣Fε∣2)∥

Lp/2(U)
(7.56)

and

∥MεX( ⋅

ε
) ∣∇ (vε − T ε)∣2∥

Lp/2(U)

⩽ C ∥∇(vε − T ε)∥2
L2(U) +C ∥ζεX( ⋅

ε
) ∗ (1U ∣∇Tε∣2)∥

Lp/2(U)
. (7.57)

The first terms on the right sides of (7.56) and (7.57) are controlled by testing (7.54)
with vε − T ε and (7.55) with uε −wε + vε. We get

∥∇(uε −wε + vε)∥L2(U) ⩽ C ∥Fε∥L2(U)

and ∥∇(vε − T ε)∥L2(U) ⩽ C ∥∇T ε∥L2(U) .

Furthermore, it is easy to see from the properties of X that

∥ζεX( ⋅

ε
) ∗ (1U ∣Fε∣2)∥

Lp/2(U)
⩽ C ∥ζε ∗ (1U ∣Fε∣2)∥

Lp/2(U) ,

and similarly for ∇T ε. Combining these, we therefore obtain

∥MεX( ⋅

ε
) ∣∇ (uε −wε + vε)∣2∥

Lp/2(U)
⩽ C ∥ζεX( ⋅

ε
) ∗ (1U ∣Fε∣2)∥

Lp/2(U)
(7.58)

and ∥MεX( ⋅

ε
) ∣∇vε∣2∥

Lp/2(U)
⩽ C ∥MεX( ⋅

ε
) ∣∇T ε∣2∥

Lp/2(U)
. (7.59)

Combining these yields

∥MεX( ⋅

ε
) ∣∇ (uε −wε)∣2∥

Lp/2(U)

⩽ C ∥ζεX( ⋅

ε
) ∗ (1U ∣Fε∣2)∥

Lp/2(U)
+ ∥MεX( ⋅

ε
) ∣∇T ε∣2∥

Lp/2(U)
. (7.60)

We may now apply Proposition 7.11 and Lemma 7.12 to obtain (7.41). This
completes the proof.
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Notes and references

Calderón-Zygmund-type gradient Lp estimates were obtained in the context of
periodic homogenization by Avellaneda and Lin [16], who derived them from
singular integral estimates for the elliptic Green function. Such estimates were first
proved in the stochastic case in [8, 41] using similar arguments as the ones here.
Lemma 7.2 is an efficient formalization of the method introduced by Caffarelli
and Peral [29] for obtaining Lp estimates by approximating on small scales in Lq
for some q > p. Proposition 7.3 is essentially due to [29]. The optimal estimates
for the two-scale expansion error proved in Section 7.3, like most of the results of
Chapter 6, are presented here for the first time.



Chapter 8

Estimates for parabolic problems

We present quantitative estimates for the homogenization of the parabolic equation

∂tu −∇ ⋅ a(x)∇u = 0 in I ×U ⊆ R ×Rd. (8.1)

The coefficients a(x) are assumed to depend only on the spatial variable x rather
than (t, x).1 The main purpose of this chapter is to illustrate that the parabolic
equation (8.1) can be treated satisfactorily using the elliptic estimates we have
already obtained in earlier chapters. In particular, we present error estimates
for general Cauchy-Dirichlet problems in bounded domains, two-scale expansion
estimates, a parabolic large-scale regularity theory. We conclude, in the last two
sections, with L∞–type estimates for the homogenization error and the two-scale
expansion error for both the parabolic and elliptic Green functions. The statements
of these estimates are given below in Theorem 8.17 and Corollary 8.18. Like the
estimates in Chapter 2, these estimates are suboptimal in the scaling of the error
but optimal in stochastic integrability (i.e., the scaling of the error is given by a
small exponent α > 0 and the stochastic integrability is Od−-type). In the next
chapter, we present complementary estimates which are optimal in the scaling of
the error and consistent with the bounds on the first-order correctors proved in
Chapter 4. See Theorem 9.11.

The arguments in this chapter are deterministic, with the only probabilistic
inputs being the regularity theory and the sub-optimal estimates on the first-
order correctors presented in Chapter 3. In particular, the optimal bounds on the
first-order correctors proved in Chapter 4 are not needed here.

We begin in the first section by reviewing the basic setup for parabolic equations,
defining the parabolic Sobolev spaces and giving the parabolic version of some
basic estimates such as the Caccioppoli inequality. In Section 8.2, we prove the

1Quantitative homogenization results for parabolic equations with space-time random coeffi-
cients can also be obtained from the ideas presented in this book: see [7].

278
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quantitative homogenization results. The large-scale regularity theory is presented
in Sections 8.3 and 8.4. We conclude with the estimates on the parabolic and
elliptic Green functions in Sections 8.5 and 8.6.

In Sections 8.5 and 8.6 we will deviate from the convention maintained in the
rest of the book by allowing ourselves to use estimates which are available only for
scalar equations : namely the De Giorgi-Nash L∞ estimates and the Nash-Aronson
pointwise upper bound on the parabolic Green function. Without these estimates
to control the small scales, it is not straightforward to even define the Green
functions. However, the reader should not interpret this choice to mean that the
arguments here will not extend to the case of elliptic systems. Indeed, for systems,
these deterministic estimates can be replaced by the C0,1-type regularity proved in
Chapters 3 and 8, which also implies Nash-Aronson-type bounds valid for times
larger than a minimal time (i.e., for

√
t ⩾ X , where X is the minimal scale for the

C0,1-type estimate). We can also replace the δ0 distribution in the definition of the
Green functions by a smooth, positive bump function with characteristic length
scale of order one (which makes no essential difference since, as we have explained
many times previously, homogenization results “should not be concerned with scales
smaller than the correlation length scale”). This does however complicate the
argument on a technical level, and therefore for readability we present only the
scalar case here.

8.1 Function spaces and some basic estimates

The purpose of this section is to introduce the basic functional analytic framework
for parabolic equations. We also record some basic estimates, such as parabolic
versions of the Caccioppoli and Meyers estimates.

We begin with the definitions of the parabolic Sobolev spaces. For every
bounded Lipschitz domain U ⊆ Rd, Banach space X and p ∈ [1,∞), we denote
by Lp(U ;X) the Banach space of Lebesgue-measurable mappings u ∶ U →X with
(volume-normalized) norm

∥u∥Lp(U ;X) ∶= (⨏
U
∥u(x)∥pX dx) 1

p < ∞.
For every interval I = (I−, I+) ⊆ R and bounded Lipschitz domain U ⊆ Rd, we define
the parabolic boundary ∂⊔(I ×U) of the cylinder I ×U by

∂⊔(I ×U) ∶= ({I−} ×U) ∪ (I × ∂U) .
We define the function space

H1
par(I ×U) ∶= {u ∈ L2(I;H1(U)) ∶ ∂tu ∈ L2(I;H−1(U))} , (8.2)



280 Chapter 8 Estimates for parabolic problems

which is the closure of bounded smooth functions on I ×U equipped with the norm

∥u∥H1
par(I×U) ∶= ∥u∥L2(I;H1(U)) + ∥∂tu∥L2(I;H−1(U)). (8.3)

We denote by H1
par,⊔(I ×U) the closure in H1

par(I ×U) of the set of smooth functions
with compact support in (I × U) ∖ ∂⊔(I × U). In other words, a function in
H1

par,⊔(I × U) has zero trace on the lateral boundary I × ∂U and the initial time{I−} ×U but does not necessarily vanish at the final time.
We sometimes work with generalizations of H1

par(I ×U) in which the exponent
of integrability p ∈ (1,∞) is not necessarily equal to 2. Therefore we introduce the
function space

W 1,p
par(I ×U) ∶= {u ∈ Lp (I;W 1,p(U)) ∶ ∂tu ∈ Lp (I;W −1,p(U))} , (8.4)

equipped with the (volume-normalized) norm

∥u∥W 1,p
par(I×U) ∶= ∥u∥Lp(I;W 1,p(U)) + ∥∂tu∥Lp(I;W−1,p(U)). (8.5)

Similarly to H1
par,⊔(I ×U), we denote by W 1,p

par,⊔(I ×U) the closure in W 1,p
par(I ×U)

of the set of smooth functions with compact support in (I−, I+] ×U . Finally, for
every parabolic cylinder V , we denote by W 1,p

par, loc(V ), H1
par, loc(V ), and so forth,

the functions on V which are, respectively, elements of W 1,p
par(W ) and H1

par(W ), etc,
for every subcylinder W ⊆ V with ∂⊔W ⊆ V .

We give a weak interpretation of the parabolic equation

∂tu −∇ ⋅ a∇u = u∗ in I ×U (8.6)

for right-hand sides u∗ belonging to L2(I;H−1(U)). We say that u ∈H1
par(I ×U)

is a weak solution (or just solution) of (8.6) if

∀φ ∈ L2(I;H1
0(U)), ∫

I×U
(φ∂tu +∇φ ⋅ a∇u) = ∫

I×U
φu∗.

The integral expression ∫I×U φ∂tu is a shorthand for the canonical pairing between
φ ∈ L2(I;H1

0(U)) and ∂tu ∈ L2(I;H−1(U)) which extends the integral of the product
of bounded smooth functions (cf. the explanation just below (B.4)).

We next present a parabolic version of the Caccioppoli inequality. For each
r ∈ (0,∞], we set Ir ∶= (−r2,0] and let Qr be the parabolic cylinder

Qr ∶= Ir ×Br.

We also write Qr(t, x) ∶= (t, x) +Qr for each (t, x) ∈ R ×Rd and r > 0.
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Lemma 8.1 (parabolic Caccioppoli inequality). There exists C(d,Λ) < ∞ such
that, for every u ∈H1

par(Q2r) and u∗ ∈ L2(I2r;H−1(B2r)) satisfying

∂tu −∇ ⋅ (a∇u) = u∗ in Q2r, (8.7)

we have ∥∇u∥L2(Qr) ⩽ Cr−1 ∥u∥L2(Q2r) +C ∥u∗∥L2(I2r;H−1(B2r)) (8.8)

and
sup
s∈Ir

∥u(s, ⋅)∥L2(Br) ⩽ C ∥∇u∥L2(Q2r) +C ∥u∗∥L2(I2r;H−1(B2r)) . (8.9)

Proof. Select ηr ∈ C∞
c (Q2r) satisfying

0 ⩽ η ⩽ 1, η ≡ 1 on Qr, ∣∂tη∣ + ∣∇η∣2 ⩽ Cr−2.

Testing (8.7) with φ ∶= η2
ru ∈ L2(I2r;H1

0(B2r)) gives

∫
Q2r

φ (u∗ − ∂tu) = ∫
Q2r

∇φ ⋅ a∇u.
Estimating the right side, we find that

∫
Q2r

∇φ ⋅ a∇u ⩾ ∫
Q2r

η2
r ∣∇u∣2 −C ∫

Q2r

ηr ∣∇ηr∣ ∣u∣ ∣∇u∣
⩾ 1

2 ∫Q2r

η2
r ∣∇u∣2 −C ∫

Q2r

∣∇ηr∣2 ∣u∣2
⩾ 1

2 ∫Q2r

η2
r ∣∇u∣2 −Cr−2∫

Q2r

∣u∣2.
Next we estimate the left side:

∫
Q2r

η2
ru (u∗ − ∂tu) ⩽ −∫

Q2r

∂t (1

2
η2
ru

2) + ∫
Q2r

ηr ∣∂tηr∣u2

+ ∫ 0

−4r2
∥(η2

ru)(t, ⋅)∥H1(B2r)
∥u∗(t, ⋅)∥H−1(B2r) dt

⩽ −1

2 ∫B2r

η2
r(0, x)u2(0, x)dx +Cr−2∫

Q2r

u2

+C ∥η2
ru∥L2(I2r;H1(B2r))

∥u∗∥L2(I2r;H−1(B2r)) .

Using also that

∥η2
ru∥L2(I2r;H1(B2r))

⩽ Cr−1 ∥u∥L2(I2r×B2r) +C ∥ηr∇u∥L2(I2r×B2r) ,

we obtain

∥η2
ru∥L2(I2r;H1(B2r))

∥u∗∥L2(I2r;H−1(B2r))

⩽ r−2 ∥u∥2
L2(I2r×B2r) + 1

4
∥ηr∇u∥2

L2(I2r×B2r) +C ∥u∗∥2
L2(I2r;H−1(B2r)) .
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Combining the above, we finally obtain

1

2 ∫B2r

η2
r(0, x)u2(0, x)dx + 1

4 ∫Q2r

η2
r ∣∇u∣2 ⩽ Cr−2∫

Q2r

∣u∣2 +C ∥u∗∥2
L2(I2r;H−1(B2r)) .

This yields (8.8).
By repeating the above computation but using instead the test function φ ∶=

η2
ru1{t<s} for fixed s ∈ I2r, and estimating the right side of the weak formulation
from below differently, namely

∫
Q2r

∇φ ⋅ a∇u ⩾ −C ∥ηr∇u∥2
L2(Q2r) −C ∥∇ηr∇u∥L2(Q2r) ∥uηr∥L2(Q2r)

⩾ −C ∥∇u∥2
L2(Q2r) − 1

16
r−2∫

Q2r

η2
ru

2

⩾ −C ∥∇u∥2
L2(Q2r) − 1

4
sup
t∈I2r

∫
B2r

η2
r(t, x)u2(t, x)dx,

we get

1

2 ∫B2r

η2
r(s, x)u2(s, x)dx
⩽ C ∥∇u∥2

L2(Q2r) + 1

4
sup
t∈I2r

∫
B2r

η2
r(t, x)u2(t, x)dx +C ∥u∗∥2

L2(I2r;H−1(B2r)) .

Taking the supremum over s ∈ I2r and rearranging yields (8.9).

Since the parabolic equation (8.1) does not depend on time, we may upgrade L2

gradient bounds to L∞t L2
x gradient bounds.

Lemma 8.2 (L2 gradient estimate in time slices). Fix r > 0 and suppose that
u ∈H1

par(Q2r) satisfies
∂tu −∇ ⋅ a∇u = 0 in Q2r.

There exists a constant C(d,Λ) < ∞ such that

sup
t∈(−r2,0)

∥∇u(t, ⋅)∥L2(Br) ⩽ C ∥∇u∥L2(Q2r) . (8.10)

Proof. Since ∂tu is also a solution of the equation, the Caccioppoli inequality yields

⨏
Qr

∣∇∂tu∣2 ⩽ C
r2 ⨏Q2r

∣∂tu∣2 . (8.11)

(Strictly speaking, we need to justify that ∂tu belongs to H1
par(I × U). One may

justify this by considering difference quotients in time, obtaining a version of (8.11)
by the Caccioppoli inequality for these difference quotients, which then allows to
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pass to weak limits in the difference quotient parameter to obtain that ∂tu does
indeed belong to H1

par and is a solution of the equation. We leave the details of
this standard argument to the reader.) Differentiating gives

∂t⨏
Br

∣∇u∣2 = 2⨏
Br
∇u ⋅ ∇∂tu,

and thus we have, after an integration in time, that

sup
t∈(−r2,0)

⨏
Br

∣∇u(t, ⋅)∣2 ⩽ ⨏
Qr

∣∇u∣2 + 2r2⨏
Qr

∣∇u ⋅ ∇∂tu∣
⩽ 2⨏

Qr
∣∇u∣2 + r4⨏

Qr
∣∇∂tu∣2 .

Combining this with (8.11) yields

sup
t∈(−r2,0)

⨏
Br

∣∇u(t, ⋅)∣2 ⩽ 2⨏
Qr

∣∇u∣2 +Cr2⨏
Q2r

∣∂tu∣2 . (8.12)

The next goal is hence to estimate the second term on the right side of (8.12).
For this, fix s < r and η ∈ C∞

0 (B2s) such that η = 1 in Bs, 0 ⩽ η ⩽ 1, and ∣∇η∣ ⩽ 2
s .

Testing the equation for u with the function η∂tu, we obtain

⨏
Qs

∣∂tu∣2 ⩽ 2d+2⨏
Q2s

η∂tu∇ ⋅ (a∇u) ⩽ 2d+2Λ(⨏
Q2s

∣∇(η∂tu)∣2) 1
2 (⨏

Q2s

∣∇u∣2) 1
2

.

Therefore

⨏
Qs

∣∂tu∣2 ⩽ C
s

(⨏
Q2s

∣∂tu∣2) 1
2 (⨏

Q2s

∣∇u∣2) 1
2

.

Choosing now 1
2 ⩽ σ′ < σ ⩽ 1 we obtain by a covering argument (with s = (σ − σ′) r2

and translations of Qs) that

⨏
Qσ′4r

∣∂tu∣2 ⩽ C(σ − σ′)d+3r
(⨏

Qσ4r
∣∂tu∣2) 1

2 (⨏
Q4r

∣∇u∣2) 1
2

.

Thus, by Young’s inequality,

⨏
Qσ′4r

∣∂tu∣2 ⩽ 1

2 ⨏Qσ4r ∣∂tu∣2 + C(σ − σ′)2(d+3) r
−2⨏

Q4r

∣∇u∣2 .
Lemma C.6 then implies that

⨏
Q2r

∣∂tu∣2 ⩽ Cr−2⨏
Q4r

∣∇u∣2 .
Combining this with (8.12) gives

sup
t∈(−r2,0)

⨏
Br

∣∇u(t, ⋅)∣2 ⩽ C ⨏
Q4r

∣∇u∣2.
We conclude the proof by a covering argument by considering r/4 instead r.
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8.2 Homogenization of the Cauchy-Dirichlet problem

The purpose of this section is to generalize Theorem 2.15 by estimating the
homogenization error for the Cauchy-Dirichlet problem. As in that previous
theorem, we are interested in an estimate which is suboptimal in the size of the
error but optimal in stochastic integrability and allows for relatively rough boundary
data. It is also possible (and relatively straightforward) to obtain error estimates
for the Cauchy-Dirichlet problem which are sharper in the size of the error and
generalize those of Chapter 6 for the Dirichlet problem (e.g., Theorems 6.9 and 6.14),
but we do not give such estimates here.

Theorem 8.3. Fix exponents δ > 0, σ ∈ (0, d), an interval I ⊆ (−1
2 ,0) and a

Lipschitz domain U ⊆ B1/2. There exist an exponent β(δ, d,Λ) > 0, a constant
C(s, I,U, δ, d,Λ) < ∞ and a random variable Xσ satisfying

Xσ = O1(C)
such that the following holds. For each ε ∈ (0, 1

2
], f ∈ W 1,2+δ

par (I × U) if we let
u,uε ∈ f +H1

par,⊔(I ×U) respectively denote the solutions of the Cauchy-Dirichlet
problems

{(∂t −∇ ⋅ aε∇)uε = 0 in I ×U,
uε = f on ∂⊔(I ×U),

and

{(∂t −∇ ⋅ a∇)u = 0 in I ×U,
u = f on ∂⊔(I ×U),

then we have the estimate

∥uε − u∥L2(I×U) + ∥∇(uε − u)∥L2(I;H−1(U)) + ∥aε∇uε − a∇u∥L2(I;H−1(U))⩽ C ∥f∥W 1,2+δ
par (I×U) (εβ(d−σ) + Xσεσ) . (8.13)

The proof of Theorem 8.3 closely follows the one of Theorem 2.15, most of
which is formalized in Theorem 1.12. We henceforth fix I, U , ε, δ, f , u and uε as
in the statement of the theorem. We also fix a parameter r ∈ [ε, 1) to be selected in
the last paragraph of the proof, which represents a mesoscopic scale (it will depend
on ε in such a way that ε≪ r ≪ 1). We set I ∶= (I−, I+) and denote, for s > 0,

Is ∶= (I− + s2, I+] and Us ∶= {x ∈ U ∶ dist(x, ∂U) > s} .
We work with the modified two-scale expansion wε defined by

wε(t, x) ∶= u(t, x) + εη(t, x) d∑
k=1

∂xku(t, x)φεek(x), (8.14)
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where φεe is defined in (6.17) and η ∈ C∞(I ×U) is a cutoff function satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ⩽ η ⩽ 1, η ≡ 1 in I2r ×U2r,

η ≡ 0 in (I ×U) ∖ (Ir ×Ur),∀k, l ∈ N, ∣∇k∂ltη∣ ⩽ Ck+2lr
−(k+2l).

(8.15)

In other words, wε(t, ⋅) is the product of the cutoff function η and two-scale
expansion of the function u(t, ⋅), with the time variable playing no role. Note that
we suppress the dependence of η on the parameter r > 0.

As in the proof of Theorem 2.15, the strategy of the argument is, roughly
speaking, to plug wε into the equation for uε and estimate the error which arises,
here with respect to ∥ ⋅ ∥L2(I;H1(U)). This estimate is presented in Lemma 8.4,
below. As usual, the error is controlled by a random variable which measures how
“well-behaved” the first-order correctors are: we define

E(ε) ∶= d∑
k=1

(∥∇φek ( ⋅
ε
)∥
H−1(B1)

+ ∥aε (ek +∇φek ( ⋅
ε
)) − aek∥H−1(B1)

) .
We then obtain in Lemma 8.5 an estimate on the difference between uε and wε
in the (strong) norm ∥ ⋅ ∥H1

par(I×U), and finally on the homogenization error in
Lemma 8.6. Note that the argument here is completely deterministic, the only
stochastic ingredient being the bounds on the random variable E(ε) we get from
estimates on the first-order correctors proved in earlier chapters.

We recall first some classical pointwise estimates for the homogenized solution u.
Up to an affine change of variables, the equation for u is of course the standard
heat equation. Therefore at each point (t, x) ∈ Ir ×Ur, we have, for every k, l ∈ N,
∣∇k∂ltu(t, x)∣ ⩽ Ck+2lr

−(k+2l)+1 ∥∇u∥L2(Qr(t,x)) ⩽ Ck+2lr
−(k+2l)+1−(2+d)/2 ∥∇u∥L2(Ir×Ur) .

(See [46, Theorem 9 in Section 2.3] for a proof of this standard pointwise estimate.)
We deduce therefore that

∥∇k∂ltu∥L∞(Ir×Ur)
⩽ Ck+2lr

−(k+2l)+1−(d+2)/2 ∥∇f∥L2(I×U) . (8.16)

We also need the parabolic version of the global Meyers estimate, which states
that, if δ(d,Λ) > 0 is sufficiently small, then

∥u∥W 1,2+δ
par (I×U) ⩽ C ∥f∥W 1,2+δ

par (I×U) . (8.17)

Although we do not give the proof of the parabolic version of the Meyers estimate
here, it is quite close to that of the elliptic version presented in Appendix C (cf.
Theorem C.7). A complete proof of the parabolic Meyers estimate can be found
in [7, Proposition B.2].
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Lemma 8.4. There exists C(δ, d,Λ) < ∞ such that

∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U)) ⩽ C (r δ
4+2δ + r−3−(2+d)/2E(ε)) ∥f∥W 1,2+δ

par (I×U) . (8.18)

Proof. For the computations below, we note that ε∇φε = ∇φ ( ⋅
ε
). We compute

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇wε = η d∑
k=1

(ek +∇φek ( ⋅
ε
))∂xku + d∑

k=1

φεek∇(η∂xku) + (1 − η)∇u,
∂tw

ε = ∂tu + d∑
k=1

φεek∂t (η∂xku) .
Using the equation for φεek , we therefore obtain

(∂t −∇ ⋅ aε∇)wε = ∂tu + d∑
k=1

φεek∂t (η∂xku) − d∑
k=1

∇(η∂xku) ⋅ aε (ek +∇φek ( ⋅
ε
))

− ∇ ⋅ (aε ( d∑
k=1

φεek∇(η∂xku) + (1 − η)∇u)) .
Writing the homogenized equation for u in the form

∂tu = ∇ ⋅ a∇u = d∑
k=1

∇(η∂xku) ⋅ aek +∇ ⋅ ((1 − η)a∇u) ,
we obtain the identity

(∂t −∇ ⋅ aε∇)wε = d∑
k=1

φεek∂t (η∂xku) − d∑
k=1

∇(η∂xku) ⋅ (aε (ek +∇φek ( ⋅
ε
)) − aek)

− ∇ ⋅ (aε d∑
k=1

φεek∇(η∂xku)) − ∇ ⋅ ((aε − a) (1 − η)∇u) .
We therefore obtain the bound

∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U))

⩽ C d∑
k=1

ε ∥φεek∂t (η∂xku)∥L2(I×U)

+ d∑
k=1

∥∇(η∂xku) ⋅ (aε (ek +∇φek ( ⋅
ε
)) − aek)∥L2(I;H−1(U))

+C d∑
k=1

ε ∥φεek∇(η∂xku)∥L2(I×U) +C ∥(1 − η)∇u∥L2(I×U) .
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We will now estimate each of the four terms appearing on the right side of the
previous inequality using (8.15), (8.16), (8.17) and the definition of E(ε). For the
first term, we use (8.15) and (8.16) to get, for each k ∈ {1, . . . , d},

ε ∥φεek∂t (η∂xku)∥L2(I×U) ⩽ C ∥∂t (η∂xku)∥L∞(Ir×Ur) ε ∥φεek∥L2(U)⩽ Cr−3−(2+d)/2E(ε) ∥f∥H1
par(I×U) ,

where here we also use that

ε ∥φε∥L2(U) ⩽ Cε ∥∇φε∥H−1(U) = C ∥∇φ ( ⋅
ε
)∥
H−1(U) ⩽ CE(ε). (8.19)

We estimate the second term similarly, to find

∥∇(η∂xku) ⋅ (aε (ek +∇φek ( ⋅
ε
)) − aek)∥L2(I;H−1(U))⩽ ∥∇(η∂xku)∥L∞(I;W 1,∞(U)) ∥aε (ek +∇φek ( ⋅

ε
)) − aek∥H−1(U)⩽ Cr−2−(2+d)/2E(ε) ∥f∥H1

par(I×U) .

For the third term

ε ∥φεek∇(η∂xku)∥L2(I×U) ⩽ ∥∇(η∂xku)∥L∞(I×U) ε ∥φεek∥L2(U)⩽ Cr−2−(2+d)/2E(ε) ∥f∥H1
par(I×U) .

Finally, we estimate the fourth term using Hölder’s inequality and (8.17):

∥(1 − η)∇u∥L2(I×U) ⩽ C ∣{x ∈ I ×U ∶ η ≠ 1}∣ δ
4+2δ ∥∇u∥L2+δ(I×U)⩽ Cr δ

4+2δ ∥f∥W 1,2+δ
par (I×U) .

This completes the proof of the lemma.

We next deduce from the previous lemma an estimate on ∥uε −wε∥H1
par(I×U).

Lemma 8.5. There exists C(δ, d,Λ) < ∞ such that

∥uε −wε∥H1
par(I×U) ⩽ C (r δ

4+2δ + r−3−(2+d)/2E(ε)) ∥f∥W 1,2+δ
par (I×U) .

Proof. We compute

∥∇(uε −wε)∥2
L2(I×U) ⩽ C ∫

I×U
∇(uε −wε) ⋅ aε∇(uε −wε)

⩽ C ∫
I×U

(uε −wε) (∂t −∇ ⋅ aε∇)(uε −wε)
= C ∫

I×U
(uε −wε) (∂t −∇ ⋅ aε∇)wε

⩽ C ∥uε −wε∥L2(I;H1(U)) ∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U)) .
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This yields

∥uε −wε∥L2(I;H1(U)) ⩽ C ∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U)) .

For the time derivative, we have

∥∂t (uε −wε)∥L2(I;H−1(U))⩽ ∥(∂t −∇ ⋅ aε∇)(uε −wε)∥L2(I;H−1(U)) + ∥∇ ⋅ aε∇(uε −wε)∥L2(I;H−1(U))⩽ ∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U)) +C ∥uε −wε∥L2(I;H1(U))⩽ C ∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U)) .

Combining these yields

∥uε −wε∥H1
par(I×U) ⩽ C ∥(∂t −∇ ⋅ aε∇)wε∥L2(I;H−1(U)) .

An appeal to Lemma 8.4 completes the proof.

We next estimate the difference wε − u in weak norms.

Lemma 8.6. There exists C(δ, d,Λ) < ∞ such that

∥wε − u∥L2(I×U) + ∥∇(wε − u)∥L2(I;H−1(U)) + ∥aε∇wε − a∇u∥L2(I;H−1(U))

⩽ C (r δ
4+2δ + r−2−(2+d)/2E(ε)) ∥f∥W 1,2+δ

par (I×U) . (8.20)

Proof. Observe that

∇wε −∇u = ε d∑
k=1

∇(η∂xku)φεek(x) + η d∑
k=1

∂xku∇φek ( ⋅
ε
) .

Thus we have, by (8.15), (8.16), the definition of E(ε) and (8.19),

∥∇wε −∇u∥L2(I;H−1(U))

⩽ ∥∇(η∇u)∥L∞(I×U)

d∑
k=1

ε ∥φεek∥L2(U) +C ∥η∇u∥L∞(I;W 1,∞(U)) ∥∇φek ( ⋅
ε
)∥
H−1(U)

⩽ Cr−2−(2+d)/2 ∥f∥H1
par(I×U) E(ε).

Notice that since ∥wε − u∥L2(I×U) ⩽ C ∥∇wε −∇u∥L2(I;H−1(U)), this also gives the
estimate for ∥wε − u∥L2(I×U).

We turn to the estimate for the fluxes. For clarity, we perform the computations
using coordinates. The ith component of the flux vector aε∇wε is given by

(aε∇wε)i = d∑
j,k=1

ηaεij∂xku (δjk + ∂xjφek ( ⋅
ε
)) + ε d∑

j,k=1

aεij∂xj (η∂xku)φεek .
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Thus

(aε∇wε)i − (a∇u)i = d∑
j,k=1

η∂xku (aεij (δjk + ∂xjφek ( ⋅
ε
)) − aik)

+ ε d∑
j,k=1

aεij∂xj (η∂xku)φεek + d∑
j,k=1

(1 − η)aik∂xku.
We next estimate each of the ∥ ⋅ ∥L2(I;H−1(U)) norm of the three terms on the right
side of the previous display. For the first term, we have, by (8.15), (8.16) and the
definition of E(ε),

∥η∂xku (aεij (δjk + ∂xjφek ( ⋅
ε
)) − aik)∥L2(I;H−1(U))⩽ C ∥η∇u∥L∞(I;W 1,∞(U)) ∥aε (ek +∇φek ( ⋅

ε
)) − aek∥L2(I;H−1(U))⩽ Cr−2−(2+d)/2E(ε).

For the second term, we use (8.15), (8.16), the definition of E(ε) and (8.19) to
obtain

ε ∥aεij∂xj (η∂xku)φεek∥L2(I;H−1(U)) ⩽ Cε ∥aεij∂xj (η∂xku)φεek∥L2(I×U)⩽ C ∥∇(η∇u)∥L∞(I×U) ε ∥φεek∥L2(U)⩽ Cr−2−(2+d)/2E(ε).
For the third term, we use Hölder’s inequality, (8.15) and (8.17) to find

∥(1 − η)a∇u∥L2(I;H−1(U)) ⩽ ∥(1 − η)a∇u∥L2(I×U)

⩽ C ∣{x ∈ I ×U ∶ η ≠ 1}∣ δ
4+2δ ∥∇u∥L2+δ(I×U)⩽ Cr δ

4+2δ ∥f∥W 1,2+δ
par (I×U) .

Combining the last four displays yields the desired estimate on the fluxes. This
completes the proof.

We now complete the proof of Theorem 8.3.

Proof of Theorem 8.3. We deduce from Lemmas 8.5 and 8.6 the estimate

∥uε − u∥L2(I×U) + ∥∇(uε − u)∥L2(I;H−1(U)) + ∥aε∇uε − a∇u∥L2(I;H−1(U))

⩽ C (r δ
4+2δ + r−3−(2+d)/2E(ε)) ∥f∥W 1,2+δ

par (I×U) . (8.21)

This is valid for any choice of the mesoscale r ∈ [ε,1). In other words, we have
proved the parabolic version of Theorem 1.12: compare the estimate (8.13) to the
one in (1.60). The passage from (8.21) now follows exactly the same argument as
the passage from Theorem 1.12 to Theorem 2.15. Indeed, there are no differences
in the argument, since what is left concerns how to choose the mesoscale r, define
the random variable Xs and estimate it in terms of E(ε).
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8.3 Parabolic C0,1-type estimate

In this section, we prove the following interior C0,1-type estimate for the parabolic
equation (8.1), which is a generalization of the elliptic version given in Theorem 3.3.

Theorem 8.7 (Parabolic C0,1-type estimate). Fix s ∈ (0, d). There exist a constant
C(s, d,Λ) < ∞ and a random variable Xs ∶ Ω→ [1,∞] satisfying

Xs = Os (C) , (8.22)

such that the following holds: for every R ⩾ Xs and weak solution u ∈H1
par(QR) of

∂tu −∇ ⋅ (a∇u) = 0 in QR, (8.23)

we have, for every r ∈ [Xs,R], the estimate

1

r
∥u − (u)Qr∥L2(Qr)

⩽ C
R

∥u − (u)QR∥L2(QR) . (8.24)

Remark 8.8. We can use the parabolic versions of the Caccioppoli and Poincaré’s
inequalities to deduce, for r ∈ [Xs,R],

∥∇u∥L2(Qr) ⩽ C ∥∇u∥L2(QR) . (8.25)

Indeed, the Caccioppoli estimate yields that

∥∇u∥L2(Qr) ⩽ Cr ∥u − (u)Q2r
∥
L2(Q2r)

.

For the other direction we use the equation. Let R̃ ∈ (1
2R,R) be such that

∫ 0

−R2
∫
∂BR̃

∣∇u(t, x)∣dHd−1(x)dt ⩽ C
R ∫

0

−R2
∫
BR

∣∇u(t, x)∣dxdt.
Then integration by parts provides us, for t1, t2 ∈ (−R2,0),

1

R
∣⨏

BR̃

u(t1, x)dx − ⨏
BR̃

u(t2, x)dx∣ ⩽ C ⨏
QR

∣∇u(t, x)∣dxdt ⩽ C ∥∇u∥L2(QR) .

It also follows that

sup
t∈(−R2,0)

1

R
∣⨏

BR̃

u(t, x)dx − (u)QR̃∣ ⩽ C ∥∇u∥L2(QR)

Therefore Poincaré’s inequality yields

C

R̃
∥u − (u)QR̃∥L2(QR̃)

⩽ C ∥∇u∥L2(QR) .

In view of Lemma 8.2, we also obtain from (8.24) the bound, for every r ∈ [Xs, 1
2R]

and t ∈ [−1
2R

2,0], ∥∇u(t, ⋅)∥L2(Br) ⩽ C ∥∇u∥L2(QR) . (8.26)
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The proof of Theorem 8.7 requires the following parabolic version of Lemma 3.4.

Lemma 8.9. Fix α ∈ (0,1], K ⩾ 1 and X ⩾ 1. Let R ⩾ 2X and u ∈ L2(QR) have
the property that, for every r ∈ [X, 1

2R], there exists w ∈H1
par(Qr) which is a weak

solution of
∂tw −∇ ⋅ (a∇w) = 0 in Qr,

satisfying ∥u −w∥L2(QR) ⩽Kr−α ∥u − (u)Qr∥L2(Qr)
. (8.27)

Then there exists C(α,K, d,Λ) < ∞ such that, for every r ∈ [X,R],
1

r
∥u − (u)Qr∥L2(Qr)

⩽ C
R

∥u − (u)QR∥L2(QR) . (8.28)

The proof of Lemma 8.9 requires only typographical changes to the proof of
Lemma 3.4, provided we have a suitable parabolic version of Lemma 3.5. The latter
is given in Lemma 8.10, below. Before giving the statement of this lemma, we
must first introduce the notion of a-caloric polynomials and discuss the pointwise
regularity of caloric functions. This requires some new notation and definitions.

The parabolic analogue of the pointwise estimate (3.7) states (see for instance [46,
Section 2.3.3.c]) that, for every k, l ∈ N, there exists C(k + 2l, d,Λ) < ∞ such that,
for every R > 0 and a-caloric function u on QR, we have the estimate

∥∇k∂ltu∥L∞(QR/2)
⩽ C

Rk+2l
∥u∥L1(QR) . (8.29)

Just like in Chapter 3, we next write some consequences of (8.29) which tell us
that a-caloric functions can be locally well-approximated by polynomials.

We denote polynomials in the variables t, x1, . . . , xd by P(R×Rd). The parabolic
order degp(w) of an element w ∈ P(R ×Rd) is the order of the polynomial (t, x) ↦
w(t2, x). Slightly abusing notation, for each k ∈ N we let Pk(R ×Rd) be the subset
of P(R×Rd) of polynomials with parabolic order at most k. For α > 0, we say that
a function φ ∶ R ×Rd → R is parabolically α-homogeneous if

∀λ ∈ R, φ(λ2t, λx) = λαφ(t, x).
It is clear that any element of Pk(R×Rd) can be written as a sum of parabolically

homogeneous polynomials. We denote by Ak(Q∞) the set of a-caloric functions
on Q∞ with growth which is slower than a polynomial of parabolic degree k + 1:

Ak(Q∞) ∶=
{w ∈H1

par(Q∞) ∶ lim sup
r→∞

r−(k+1) ∥w∥L2(Qr) = 0, ∂tw −∇ ⋅ (a∇w) = 0 in Q∞} .
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It turns out that Ak(Q∞) coincides with the set of a-caloric polynomials2 of
parabolic degree at most k. That is,

Ak(Q∞) = {w∣Q∞
∶ w ∈ Pk(R ×Rd), ∂tw −∇ ⋅ (a∇w) = 0 in R ×Rd} . (8.30)

Let us comment briefly on the case of the homogeneous heat equation. We denote
by vk(t, s) the parabolically k-homogeneous heat polynomial in the one-dimensional
case, which satisfies the heat equation, ∂tvk(t, s) = ∂2

svk(t, s). It can be written as

vn(t, s) = ⌊n/2⌋∑
k=0

sn−2ktk(n − 2k)!k!
.

It turns out that the vector space of heat polynomials can be characterized as

{w∣Q∞
∶ w ∈ Pk(R ×Rd), ∂tw −∆w = 0 in R ×Rd}

= span{ d∏
j=1

vβj(t, xj) ∶ β1 + . . . + βd ⩽ k} .
To see this, letting yβ = ∏d

j=1 y
βj
j , ∣β∣ = n ∈ N, be the initial values for the heat

equation, we have by the binomial formula and symmetry that the solution has
the form, up to a multiplicative constant,

u(t, x) = ∫
Rd
yβt−

d
2 exp(−∣x − y∣2

4t
) dy

= ∫
Rd

(x +√
ty)β exp(−∣y∣2

4
) dy

= d∏
j=1
∫
R
(xj +√

tyj)βj exp(−∣yj ∣2
4

) dyj
= d∏
j=1

βj∑
k=0

(βj
k
)xβj−kj t

k
2 ∫

R
ykj exp(−∣yj ∣2

4
) dyj

= d∏
j=1

⌊βj/2⌋∑
k=0

(βj
2k

)xβj−2k
j tk ∫

R
y2k
j exp(−∣yj ∣2

4
) dyj.

Since

∫
R
y2k
j exp(−∣yj ∣2

4
) dyj = (2k)!

k!
,

we conclude that u ∈ span{∏d
j=1 vβj(t, xj) ∶ β1 + . . . + βd = n}.

Conversely, by the uniqueness of the backwards heat equation, see e.g. [116]
and the references therein, in the class

Hδ ∶= {u ∈H2((0,1) ×Rd) ∶ ∥u exp (−δ∣ ⋅ ∣2)∥
L∞

< ∞}
2a-caloric polynomials are often called heat polynomials in the literature, in the case a = Id
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for small δ ∈ (0,1), we have that if there are two heat polynomials, say u1 and
u2, agreeing at the time t, then u1 ≡ u2. Taking w to be a n-homogeneous heat
polynomial, we have that w(0, ⋅) ∈ Pn(Rd), and by the previous computation we
find w̃ ∈ span{∏d

j=1 vβj(t, xj) ∶ β1 + . . . + βd = n} such that w̃(0, ⋅) = w(0, ⋅). Thus
the uniqueness implies that w̃ ≡ w and w ∈ span{∏d

j=1 vβj(t, xj) ∶ β1 + . . . + βd = n}.
As a consequence, the class of n-homogeneous heat polynomials is isomorphic to
the n-homogeneous polynomials of Rd.

Exercise 8.1. Show that (8.30) is a consequence of (8.29). Show moreover that,
for every k ∈ N, there exists C(k, d,Λ) < ∞ such that, for every r > 0 and a-caloric
function w ∈H1

par(Qr), there exists an a-caloric polynomial p of parabolic order at
most k such that, for every s ∈ (0, 1

2r],
∥w − p∥L∞(Qs) ⩽ C (s

r
)k+1 ∥w∥L2(Qr) . (8.31)

Hint: Prove the second statement first. Take p to be the kth (parabolic) order
Taylor polynomial to w at (0,0) and use a blow-up argument to show that p
is a-caloric. Apply (8.29) and Taylor’s remainder theorem to get the desired
estimate.

We next state a parabolic counterpart of Lemma 3.5.

Lemma 8.10. Fix α ∈ [0,1], K ⩾ 1 and X ⩾ 1. Let R ⩾ 2X and u ∈ L2(QR)
have the property that, for every r ∈ [X,R], there exists wr ∈H1

par(Qr/2) which is a
solution of

∂twr −∇ ⋅ (a∇wr) = 0 in Qr/2

and satisfies ∥u −wr∥L2(Qr/2) ⩽Kr−α ∥u − (u)Qr∥L2(Qr)
. (8.32)

Then, for every k ∈ N, there exists θ(α, k, d,Λ) ∈ (0, 1
2) and C(α, k, d,Λ) < ∞ such

that, for every r ∈ [X,R],
inf

p∈Ak(Q∞)
∥u − p∥L2(Qθr)

⩽ 1

4
θk+1−α/2 inf

p∈Ak(Q∞)
∥u − p∥L2(Qr) +CKr−α ∥u − (u)Qr∥L2(Qr) . (8.33)

Proof. The proof is similar to that of Lemma 3.5 and we omit it.

Proof of Lemma 8.9. The proof is similar to that of Lemma 3.4 and is omitted.
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8.4 Parabolic higher regularity and Liouville theorems

In this section, we generalize the parabolic Liouville theorem implicit in (8.30) and
the pointwise bounds given in (8.31) to a(x)-caloric functions. Denote, for every
r ∈ (0,∞],

A(Qr) ∶= {w ∈H1
par(Qr) ∶ ∂tw −∇ ⋅ (a∇w) = 0 in Qr} ,

and, for every k ∈ N,
Ak(Q∞) ∶= {w ∈ A(Q∞) ∶ lim sup

r→∞
r−(k+1) ∥w∥L2(Qr) = 0} .

The following theorem is a parabolic analogue of Theorem 3.6.

Theorem 8.11 (Parabolic higher regularity theory). Fix s ∈ (0, d). There exist an
exponent δ(s, d,Λ) ∈ (0, 1

2
] and a random variable Xs satisfying the estimate

Xs ⩽ Os (C(s, d,Λ)) (8.34)

such that the following statements hold, for every k ∈ N:
(i)k There exists C(k, d,Λ) < ∞ such that, for every u ∈ Ak(Q∞), there exists

p ∈ Ak(Q∞) such that, for every R ⩾ Xs,
∥u − p∥L2(QR) ⩽ CR−δ ∥p∥L2(QR) . (8.35)

(ii)k For every p ∈ Ak(Q∞), there exists u ∈ Ak(Q∞) satisfying (8.35) for every
R ⩾ Xs.

(iii)k There exists C(k, d,Λ) < ∞ such that, for every R ⩾ Xs and u ∈ A(QR), there
exists φ ∈ Ak(Q∞) such that, for every r ∈ [Xs,R], we have the estimate

∥u − φ∥L2(Qr) ⩽ C ( r
R

)k+1 ∥u∥L2(QR) . (8.36)

In particular, P-almost surely, we have for every k ∈ N that

dim(Ak(Q∞)) = dim(Ak(Q∞)) = (d + k
d

). (8.37)

The proof of Theorem 8.11 is almost the same as the one of Theorem 3.6. With
Lemma 8.10 in hand, we just needs to replace balls by parabolic cylinders in the
argument. We therefore omit the details.

Exercise 8.2. Formulate and prove a parabolic version of Corollary 3.8 and the
result of Exercise 3.5.



8.5 Decay of the Green functions and their gradients 295

8.5 Decay of the Green functions and their gradients

We begin this section by introducing the elliptic and parabolic Green functions and
reviewing some of their basic properties. A complete construction of the Green
functions is given in Appendix E, where we also prove the Nash-Aronson estimates
mentioned below. Here we briefly summarize the deterministic estimates presented
there, before presenting gradient decay estimates which are consequences of the
(stochastic, large-scale) regularity theory.

We denote by P = P (t, x, y) the parabolic Green function for the operator−∇ ⋅ a∇. We can characterize P by the fact that, for each fixed y ∈ R × Rd, the
function (t, x) ↦ P (t, x, y) is the solution of the initial-value problem

{∂tP (⋅, y) − ∇ ⋅ (a∇P (⋅, y)) = 0 in (s,∞) ×Rd,

P (0, x, y) = δ0(x − y) in Rd,
(8.38)

where δ0 is the Dirac delta distribution. Likewise, for each fixed (t, x) ∈ R×Rd, the
map (s, y) ↦ P ∗(s, y, x) ∶= P (−s, x, y) is the solution of the terminal-value problem
for the backwards parabolic equation

{ − ∂tP ∗(⋅, x) − ∇ ⋅ (a∇P ∗(⋅, x)) = 0 in (−∞,0) ×Rd,

P ∗(0, y, x) = δ0(x − y) in Rd.
(8.39)

Since we are working in the case of symmetric coefficients (i.e., a = at), we have
that P ∗(s, y, x) = P (−s, y, x), that is, the parabolic Green function is symmetric in
the variables x and y. If the matrix a were not symmetric, then P ∗(⋅, x) would be
the solution of (8.39) with at in place of a.

The Duhamel formula allows us to write a formula for the solution of the Cauchy
problem: given s ∈ R, we consider

{∂tu −∇ ⋅ (a(x)∇u) = ∇ ⋅ f in (s,∞) ×Rd,

u(s, ⋅) = g in Rd.
(8.40)

The Duhamel formula for the solution u is

u(t, x) = ∫
Rd
g(y)P (t − s, x, y)dy + ∫ t

s
∫
Rd

f(s′, y) ⋅ ∇yP (t − s′, x, y)dy ds′. (8.41)

It is sometimes convenient to refer to the rescaled parabolic Green function P ε,
defined for ε > 0 by

P ε(t, x, y) ∶= ε−dP (t − s
ε2

,
x

ε
,
y

ε
) ,

which is the parabolic Green function for the operator −∇ ⋅ a ( ⋅
ε
)∇.
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Note that the parabolic Green function for a is given by the formula

P (t, x) ∶= (4πt)− d2 (deta)− 1
2 exp(− x ⋅ a −1x

4t
) . (8.42)

It is the solution of

⎧⎪⎪⎨⎪⎪⎩
∂tP −∇ ⋅ (a∇P ) = 0 in Rd × (0,∞),
P = δ0 on Rd × {0}. (8.43)

The Nash-Aronson estimate states that, for every choice of α ∈ (0,Λ−1), there
exist 0 < β(d,Λ) < ∞ and constants 0 < c(d,Λ) ⩽ C(α, d,Λ) < ∞ such that, for
every t > 0 and x, y ∈ Rd ×Rd,

ct−
d
2 exp(−β ∣x − y∣2

4t
) ⩽ P (t, x, s, y) ⩽ Ct− d2 exp(−α ∣x − y∣2

4t
) . (8.44)

As the parameters depend only on d, Λ and the choice of α, this estimate is
independent of any structural assumption on the coefficients besides uniform
ellipticity (such as our probabilistic assumptions). In this chapter (and the rest of
the book) we need only the upper bound in (8.44), a proof of which is presented in
Appendix E (and which relies on the Nash Hölder estimate for parabolic equations).
We refer the reader to [49] for an efficient and direct demonstration of (8.44),
including the lower bound.

The elliptic Green function for −∇ ⋅ a∇ is denoted by G = G(x, y). We can
characterize it for every y ∈ Rd as the solution of

−∇ ⋅ (a∇G(⋅, y)) = δ0(⋅ − y) in Rd. (8.45)

Recall that the elliptic and parabolic Green functions are related by the formula

G(x, y) = ∫ ∞

0
P (t, x, y)dt. (8.46)

Actually, we see from (8.44) that the integral on the right of (8.46) is only finite in
dimensions d > 2. Therefore we need to be slightly more precise in d = 2. In this
case we can define

G(x, y) ∶= lim
T→∞∫ T

0
(P (t, x, y) − (P (t, ⋅, y) ∗Φ(1, ⋅)(0))) dt. (8.47)

The convergence of this limit is a consequence of Nash’s Hölder estimate for
parabolic equations, as we show in (8.56) below. The definition (8.47) will agree
with the usual Green function definition, up to an additive constant.
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Using (8.46) (and (8.47) in the case d = 2), decay estimates for the parabolic
Green function P immediately imply corresponding bounds for the elliptic Green
function G.

In the rest of this section, we present estimates on the decay of the gradient of
the parabolic and elliptic Green functions. Such estimates are not valid for general
coefficient fields without further assumption. The extra ingredient in our setting is
probabilistic, and it is encoded in the minimal scales which prescribe the validity
of the large-scale regularity theory. Before giving the bounds on the gradient of the
Green functions, we pause to record some facts concerning these random scales Xσ,
which appear not only in this section but also repeatedly throughout the chapter.
We collect them in the following remark for ease of reference.

We emphasize that, throughout the rest of the chapter, Xσ(x) denotes the
random variable defined in the following remark.

Remark 8.12 (Random variables Xσ(x)). Let X ′
σ denote, for each fixed σ ∈ (0, d),

the maximum of the minimal scales Xσ appearing in Theorems 3.6 and 8.11,
Lemma 3.13 and Proposition 6.2. We let X ′

σ(z) denote, for z ∈ Zd, its stationary
extension. In particular, we have that X ′

σ(z) ⩽ Oσ(C) for a constant C(σ, d,Λ) < ∞.
We then (re-)define, for every x ∈ Rd,

Xσ(x) ∶= sup
z∈Zd

(2dX ′
σ+d
2

(z) − ∣x − z∣) .
We see then that Xσ(z) ⩾ X ′

σ(z) for every z ∈ Zd and that x↦ Xσ(x) is 1-Lipschitz
continuous (P–almost surely), which is very convenient. We will argue that, for
some C(σ, d,Λ) < ∞, Xs(x) ⩽ Oσ(C).
Fix r ∈ [1

2 ,∞) and observe that

(2dX ′
σ+d
2

(z) − r)+ ⩽ ∞∑
k=0

2kr1
{2dX ′

σ+d
2

(z)>2kr}

⩽ ∞∑
k=0

2kr
⎛⎝

2dX ′
σ+d
2

(z)
2kr

⎞⎠
σ+d
2σ

= ∞∑
k=0

(2kr)− d−σ2σ (2dX ′
σ+d
2

(z))σ+d2σ

⩽ Cr− d−σ2σ (X ′
σ+d
2

(z))σ+d2σ

.

Thus, for x ∈ Rd and z ∈ Zd, we have

(1 + ∣x − z∣) d−σ2σ (2dXσ+d
2
(z) − ∣x − z∣)+ ⩽ Oσ(C).
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We can now bound Xσ(x), using Lemma A.4 and taking q = 4dσ
d−σ , as

Xσ(x) ⩽ (∑
z∈Zd

(2dX ′
σ+d
2

(z) − ∣x − z∣)q+)
1
q

= (∑
z∈Zd

((1 + ∣x − z∣) d−σ2σ (2dXσ+d
2
(z) − ∣x − z∣)+)q (1 + ∣x − z∣)−2d)

1
q

⩽ Oσ(C),
as claimed. Finally, we note that, since Xσ(z) ⩾ X ′

σ(z) for every z ∈ Zd, each of the
results mentioned above (Theorems 3.6 and 8.11, Lemma 3.13 and Proposition 6.2)
hold with the Xσ we have defined above replacing the one in the statements.

Theorem 8.13 (Parabolic Green function decay bounds). Fix σ ∈ (0, d) and
α ∈ (0,Λ−1). There exists a constant C(σ,α, d,Λ) < ∞ such that, for every x, y ∈ Rd

and t > 0 with
√
t ⩾ Xσ(x),

sup
r∈[Xσ(x),

√
t]
∥∇xP (t, ⋅, y)∥L2(Br(x)) ⩽ Ct− d2− 1

2 exp(−α ∣x − y∣2
4t

) , (8.48)

for every x, y ∈ Rd and t > 0 with
√
t ⩾ Xσ(y),

sup
r∈[Xσ(y),

√
t]
∥∇yP (t, x, ⋅)∥L2(Br(y)) ⩽ Ct− d2− 1

2 exp(−α ∣x − y∣2
4t

) , (8.49)

and, for every x, y ∈ Rd and t > 0 with
√
t ⩾ Xσ(x) ∨ Xσ(y),

sup
r′∈[Xσ(x),

√
t], r∈[Xσ(y),

√
t]
∥∇x∇yP (t, ⋅, ⋅)∥L2(Br′(x)×Br(y))

⩽ Ct− d2−1 exp(−α ∣x − y∣2
4t

) . (8.50)

Like many of the statements we have presented previously in this book, the
previous theorem gives deterministic estimates which are valid on length scales
larger than a certain random scale. It is easy to see however that this implies
estimates which are valid on every scale (larger than the unit scale) but have
random right-hand sides. For instance, the first estimate (8.48) implies that, for
every σ ∈ (0,2) and α ∈ (0,Λ−1), there exists C(σ,α, d,Λ) < ∞ such that, for
every x, y ∈ Rd and t ⩾ 1,

∥∇xP (t, ⋅, y)∥L2(B1(x)) ⩽ Oσ (Ct− d2− 1
2 exp(−α ∣x − y∣2

4t
)) . (8.51)
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This will be explained below in Remark 8.15.
We also mention that, similarly to the discussion just below the statement of

Theorem 3.6, the gradient bounds above should be thought of as “almost pointwise”
estimates since we are integrating only over the small scales. In particular, under
the additional assumption that the coefficients are uniformly Hölder continuous,
then they can be combined with the classical Schauder estimates to obtain true
pointwise bounds on ∇xP , ∇yP and ∇x∇yP .

We next present an analogue of the previous theorem for the elliptic Green
function, which is an immediate consequence of Theorem 8.13 by formula (8.46)
and an integration in time.

Theorem 8.14 (Elliptic Green function decay bounds). There exists C(d,Λ) < ∞
such that, for every x, y ∈ Rd with 1

2 ∣x − y∣ > Xs(x),
sup

r∈[Xs(x), 12 ∣x−y∣]
∥∇xG(⋅, y)∥L2(Br(x)) ⩽ C ∣x − y∣1−d, (8.52)

for every x, y ∈ Rd with 1
2 ∣x − y∣ > Xs(y),

sup
r∈[Xs(y), 12 ∣x−y∣]

∥∇yG(⋅, y)∥L2(Br(y)) ⩽ C ∣x − y∣1−d, (8.53)

and, for every x, y ∈ Rd with 1
2 ∣x − y∣ > Xs(x) ∨ Xs(y),

sup
r∈[Xs(x), 12 ∣x−y∣], r′∈[Xs(y),

1
2
∣x−y∣]

∥∇x∇yG∥L2(Br(y)×Br′(y))
⩽ C ∣x − y∣−d. (8.54)

Theorems 8.13 and 8.14 follow from the Lipschitz regularity developed in
Chapter 3. To apply Theorem 3.3, we use the Nash-Aronson estimate (8.44)
to bound the oscillation of the Green functions. We begin with the proof of
Theorem 8.13.

Proof of Theorem 8.13. We first prove (8.48). For notational convenience, for every
x, y ∈ Rd and t > s > 0, we denote P (t, x, s, y) ∶= P (t − s, x, y). An application of
Theorem 8.7 yields that, for every x, y ∈ Rd and t > s > 0 with 1

2

√
t − s ⩾ Xs(x),

sup
r∈[Xs(x), 12

√
t−s]

∥∇xP (t, x, s, y)∥L2(Qr(t,x)) ⩽ C(t − s)− 1
2 ∥P (⋅, s, y)∥

L2(Q 1
2

√

t−s
(t,x))

.

The Nash-Aronson estimate (8.44) gives us the bound for the right side:

∥P (⋅, s, y)∥
L2(Q 1

2

√

t−s
(t,x))

⩽ C sup
(t′,x′)∈Q 1

2

√

t−s
(t,x)

(t′ − s)− d2 exp(−α ∣x′ − y∣2
t′ − s )

⩽ C (t − s)− d2 exp(−α ∣x − y∣2
2(t − s) ) .



300 Chapter 8 Estimates for parabolic problems

Combining the previous two displays yields (8.48) after redefining α.

The statement (8.49) is an immediate consequence of (8.48), by the symmetry
P (t, x, y) = P (t, y, x).

To prove (8.50) we also argue in the same way after noticing that, for each
index j ∈ {1, . . . , d}, the function (s, y) ↦ ∂xiP (t, x, s, y) also solves the backwards
equation. Theorem 8.7 (see Remark 8.8) give us that, for every (t, x) ∈ (s,∞) ×Rd

and r′ ∈ [Xs(y), 1
2(t − s) 1

2 ],
∥∇y∂xiP (t, x, ⋅)∥L2(Qr′(s,y))

⩽ C(t − s)− 1
2 ∥∂xiP (t, x, ⋅)∥

L2(Q 1
2

√

t−s
(s,y))

.

Fixing (t, x) and r > 0 with Xs(x) ⩽ r ⩽ 1
2(t − s) 1

2 , integrating over Qr(t, x) and
applying (8.48) gives

∥∇y∂xiP ∥2
L2(Qr(t,x)×Qr′(s,y))= ⨏
Qr(t,x)

∥∇y∂xiP (t′, x′, ⋅)∥2
L2(Qr′(s,y))

dt′ dx′

⩽ C(t − s)−1⨏
Qr(t,x)

∥∂xiP (t′, x′, ⋅)∥2

L2(Q 1
2

√

t−s
(s,y))

dt′ dx′

= C(t − s)−1⨏
Qr′(s,y)

(⨏
Qr(t,x)

∣∂xiP (t′, x′, s′, y′)∣2 dt′ dx′) ds′ dy′
⩽ C(t − s)−1⨏

Qr′(s,y)
(C (t − s′)−d−1

exp(−2α ∣x − y′∣2(t − s′) )) ds′ dy′
⩽ C(t − s)−d−2 exp(−2α ∣x − y′∣2(t − s′) ) .

Summing over i ∈ {1, . . . , d} completes the proof of (8.50).

Exercise 8.3. Deduce Theorem 8.14 from (8.46) and Theorem 8.13.

In addition to Exercise 8.3, we offer another, perhaps more direct proof which
essentially just interchanges the order of the time integration and application of
the C0,1 estimate. Let us first show that the Nash-Aronson estimate (8.44) for
the parabolic Green function can be translated into oscillation bounds on the
elliptic Green function via the formula (8.46). We obtain that there exist constants
0 < c(d,Λ) ⩽ C(d,Λ) < ∞ such that, for every x ∈ Rd ∖ {0},

cG(x) ⩽ G(x,0) ⩽ CG(x). (8.55)



8.5 Decay of the Green functions and their gradients 301

Indeed, for every x ∈ B2r ∖Br,

G(x,0) = ∫ ∞

0
P (t, x,0)dt

⩽ C ∫ ∞

0
t−

d
2 exp(−α ∣x∣2

t
) dt

= C (α∣x∣2
r2

)1− d
2 ∫ ∞

0
t−

d
2 exp(−r2

4t
) dt

⩽ CG(x,0).
The lower bound is similar.

We need a more refined estimate in d = 2. In order to obtain gradient estimates,
the quantity we need to estimate is oscB2r∖Br G(⋅,0) and, while we can get an
estimate on this quantity from the upper bound in (8.55), the decay will be optimal
in r only in d > 2. In dimension d = 2, this oscillation is bounded by C, as we will
discover below, and yet (8.55) gives us only that it is bounded by ∣log r∣. To get a
better estimate, we return to (8.44) and combine it with Nash’s Hölder estimate to
obtain that, for every r > 0, y ∈ B2r ∖Br and t ⩾ r2,

osc
x∈Br/2(y)

P (t, x,0) ⩽ C (r2

t
)α t− d2 = Cr2αt−

d
2
−α.

For small times t ≲ r2, we will still use the bound (8.44). We deduce that, for every
r > 0, y ∈ B2r ∖Br and t ⩾ r2,

osc
x∈Br/2(y)

G(x,0) ⩽ ∫ ∞

0
osc

x∈Br/2(y)
P (t, x,0) dt

⩽ C ∫ r2

0
t−

d
2 exp(−cr2

t
) dt +Cr2α∫ ∞

r2
t−

d
2
−α dt.

Both integrals on the right side are bounded by Cr2−d and so we have proved that,
with r and y as above,

osc
x∈Br/2(y)

G(x,0) ⩽ Cr2−d.

Covering B2r ∖Br with C many such balls yields, for every r > 0,

osc
x∈B2r∖Br

G(x,0) ⩽ Cr2−d. (8.56)

Notice that, in d = 2, the estimate (8.56) is stronger than the upper bound in (8.55),
because we can sum the former over dyadic scales to obtain the latter.

Proof of Theorem 8.14. We prove only (8.52). Theorem 3.3, (8.56) and the inclu-
sion

B 1
2
∣x−y∣(x) ⊆ B∣x−y∣(y) ∖B 1

2
∣x−y∣(y)
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yield

sup
r∈[Xs(x), 12 ∣x−y∣]

∥∇xG(⋅, y)∥L2(Br(x))

⩽ C ∣x − y∣−1∥G(⋅, y) − (G(⋅, y))B 1
2 ∣x−y∣

(x) ∥
L2(B 1

2 ∣x−y∣
(x))

⩽ C ∣x − y∣−1 osc
B
∣x−y∣∖B 1

2 ∣x−y∣

G(⋅, y)
⩽ C ∣x − y∣1−d.

Remark 8.15. In this remark, we demonstrate, as promised, how to obtain (8.51)
from the statement of Theorem 8.13. Analogous bounds to (8.51) can be proved
for ∇yP and ∇x∇yP via a similar computation.

We first use Lemma 8.2, the parabolic Caccioppoli inequality (Lemma 8.1) and
the Nash-Aronson estimate (8.44) and take ε(α,Λ) > 0 sufficiently small to obtain,
for every time t such that

√
t ⩾ 2ε−1, the crude deterministic bound

∥∇xP (t, ⋅, y)∥L2(B1(x)) ⩽ Ct d4 ∥∇xP (t, ⋅, y)∥L2(Bε√t/2(x))⩽ Ct d4 ∥∇xP (⋅, y)∥L2(Qε√t(t,x))

⩽ Ct− d4− 1
2 exp(−α ∣x − y∣2

4t
) .

Using then that
1{

√
t⩽Xσd/2(x)} ⩽ Oσ (Ct− d4 ) ,

we therefore obtain

∥∇xP (t, ⋅, y)∥L2(B1(x)) 1{
√
t⩽Xσd/2(x)} ⩽ Ct− d4− 1

2 exp(−α ∣x − y∣2
4t

)1{
√
t⩾Xσd/2(x)}

⩽ Oσ (Ct− d2− 1
2 exp(−α ∣x − y∣2

4t
)) .

On the other hand, by the statement of Theorem 8.13, namely (8.48), we have

∥∇xP (t, ⋅, y)∥L2(B1(x)) 1{
√
t⩾Xσd/2(x)} ⩽ CXσd/2(x) d2 ∥∇xP (t, ⋅, y)∥L2(B

Xσd/2(x)
(x))

⩽ CXσd/2(x) d2 t− d2− 1
2 exp(−α ∣x − y∣2

4t
) .

Since Xσd/2(x) d2 ⩽ Oσ(C), this completes the proof of (8.51) for times t ⩾ C(α,Λ).
For t satisfying 1 ⩽ t ⩽ C(α,Λ), no argument is required since Lemmas 8.1, 8.2 and
the Nash-Aronson bound give us ∥∇xP (t, ⋅, y)∥L2(B1(x)) ⩽ C.
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We conclude this section with a technical lemma which formalizes a compu-
tation that we need to perform several in this chapter and the next one. Since
this computation comes in several variations, the statement of this lemma must
(unfortunately) be rather general.

Lemma 8.16. Fix σ ∈ (0, d), p ∈ [2,∞], α ∈ (0,Λ−1), and β ∈ (α,Λ−1). There
exists a constant C(σ, p,α, β, d,Λ) < ∞ such that, for every x, y ∈ Rd, t ∈ (0,∞),
s ∈ [Xσ(y)2,∞) and g ∈ Lploc(Rd), we have

∣(Φ( s
β
, ⋅) ∗ (∣g(⋅)∣ (P (t, x, ⋅) + t 12 ∣∇yP (t, x, ⋅)∣))) (y)∣

⩽ CΨp[g](t + s)− d2 exp(−α ∣x − y∣2
4(t + s)) , (8.57)

where Ψp is defined, for p ∈ [2,∞), as
Ψp[g] ∶= ⎛⎝(t + st ) d2 ∫ ∞

1
rd+1 exp(−p(β − α)r2

8
) ∥g∥p

Lp(Br√s(y))
dr

⎞⎠
1
p

∧ ⎛⎝(t + ss ) d2 ∫ ∞

1
rd+1 exp(−p(β − α)r2

8
) ∥g∥p

Lp(Br√t(x))
dr

⎞⎠
1
p

.

and, for p = ∞, as

Ψ∞[g] ∶= sup
r∈[1,∞)

(exp(−(β − α)r2

8
) ∥g∥

L∞(Br√s(y))
)

∧ sup
r∈[1,∞)

(exp(−(β − α)r2

8
) ∥g∥

L∞(Br√t(x))
) .

Proof. Throughout the proof, we fix σ ∈ (0, d), p ∈ [2,∞], α ∈ (0,Λ−1), and
β ∈ (α,Λ−1). We decompose the proof into four steps.

Step 1. We show that there exists a constant C(β, d) ∈ (0,∞) such that for
every f ∈ L1

loc(Rd), t′ > 0 and z ∈ Rd,

(Φ(t′
β
, ⋅) ∗ f(⋅)) (z) = C ∫ ∞

0
rd+1 exp(−β r2

4
)⨏

B
r
√

t′
(z)
f(z′)dz′ dr. (8.58)

To see this, write first

Φ(t′
β
, y − z′) = C(t′)− d2 exp(−β ∣z − z′∣2

4t′
) = C ∫ ∞

0
1
{(t′)−

d
2 exp(−β ∣z−z′∣2

4t′
)>λ}

dλ.
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The change of variables

λ = (t′)− d2 exp(−β r2

4
) , dλ = −β

2
r(t′)− d2 exp(−β r2

4
) dr,

leads to

(t′)− d2 exp(−β ∣z − z′∣2
4t′

) = β
2 ∫

∞

0
r exp(−β r2

4
) (t′)− d21{∣z′−z∣<r√s} dr.

Applying Fubini’s theorem yields (8.58).
Step 2. We show that there exists a constant C(α,β, d) < ∞ such that, for

every s, t > 0 and x, y, z ∈ Rd, we have

XXXXXXXXXXXXXX
Φ ( sβ , y − ⋅)
Φ ( s

α , y − z)
XXXXXXXXXXXXXXL∞(B√s(z))

+
XXXXXXXXXXXXXX

Φ ( tβ , x − z)
Φ ( t

α , x − ⋅)
XXXXXXXXXXXXXXL∞(B√t(z))

⩽ C. (8.59)

To see this, observe that, for z̃ ∈ B√
t(z), we have

∣x − z̃∣2 ⩽ β
α

∣x − z∣2 + β

β − α ∣z̃ − z∣2 ⩽ β
α

∣x − z∣2 + β

β − αt
and ∣y − z̃∣2 ⩾ α

β
∣y − z∣2 − α

β − α ∣z̃ − z∣2 ⩾ α
β

∣x − z∣2 − α

β − αt.
Therefore, (8.59) follows easily with C = 2 (β

α
) d2 exp ( βα

β−α).
Step 3. For the rest of the proof, we also fix x, y ∈ Rd, t ∈ (0,∞), and s ∈[Xσ(y)2,∞). In this step, we prove the version of (8.57) when the ball Br

√
s(y)

appears in the estimate. We consider only the term involving t
1
2∇yP (t, x, ⋅), since

it is easy to check that the term involving P (t, x, ⋅) has the same estimate using
directly the Nash-Aronson bound. By (8.58), we obtain, for q = p

p−1 ∈ [1,2],
(Φ( s

β
, ⋅) ∗ (∣g(⋅)∣ ∣∇yP (t, x, ⋅)∣)) (y)

⩽ C ∫ ∞

1
rd+1 exp(−β r2

4
) ∥g∥

Lp(Br√s(y))
∥∇yP (t, x, ⋅)∥

Lq(Br√s(y))
dr

⩽ C (∫ ∞

1
rd+1 exp(−qαr2

4
) ∥∇yP (t, x, ⋅)∥q

Lq(Br√s(y))
dr) 1

q

× (∫ ∞

1
rd+1 exp(−p(β − α)r2

4
) ∥g∥p

Lp(Br√s(y))
dr) 1

p

. (8.60)
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The interpretation for the second term on the right in the case p = ∞ is as in (8.57).
We now have, for R ⩾ √

s ⩾ Xσ(y), that
∥∇yP (t, x, ⋅)∥qLq(BR(y)) ⩽ C ⨏

BR(y)
∥∇yP (t, x, ⋅)∥q

Lq(BR∧√t(z))
dz

⩽ C ⨏
BR(y)

∥∇yP (t, x, ⋅)∥q
L2(BR∧√t(z))

dz

⩽ Ct− q2−(q−1) d
2 ⨏

BR(y)
t−

d
2 exp(−qα ∣z − x∣2

4t
) dz. (8.61)

Indeed, the first inequality is a triviality, and the second one we get from Hölder’s
inequality. The third inequality follows, in the case

√
t ⩽ R, from the Caccioppoli

estimate (Lemma E.4) after integration in time, together with (E.8), and in the
case R ⩽ √

t, from (8.49). We also made use of the fact that since y ↦ Xσ(y) is
1-Lipschitz continuous, we have that

sup
z∈BR(y)

Xσ(z) ⩽ Xσ(y) +R ⩽ 2R.

Using once more (8.58) and the semigroup property yields

∫ ∞

1
rd+1 exp(−qαr2

4
) ∥∇yP (t, x, ⋅)∥q

Lq(Br√s(y))
dr

⩽ Ct− q2−(q−1) d
2 ∫ ∞

1
rd+1 exp(−qαr2

4
)∥t− d2 exp(−qα ∣ ⋅ −x∣2

4t
)∥

L1(Br√s(y))
dr

⩽ C ⎛⎝t− 1
2 (t + s

t
) d

2p (t + s)− d2 exp(−α ∣z − x∣2
4(t + s))⎞⎠

q

.

Combining this with (8.60) gives (8.57).

Step 4. We finally prove (8.57) when now we have the ball Br
√
t(x) instead

of Br
√
s(y) appearing in the estimate. Consider again only the term involving

t
1
2∇yP (t, x, ⋅). We set, for z ∈ Rd,

g̃(z) ∶= exp(−(β − α′) ∣z − y∣2
4s

) ∣g(z)∣ and h(z) ∶= Φ ( s
α′ , y − z)

Φ ( tβ , x − z) ∣∇yP (t, x, z)∣ ,
so that

Φ( s
β
, y − z) ∣g(z)∣ ∣∇yP (t, x, z)∣ = CΦ( t

β
, x − z) g̃(z)h(z).
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Then, as in (8.60), we get by Hölder’s inequality that

(Φ( s
β
, ⋅) ∗ (∣g(⋅)∣ ∣∇yP (t, x, ⋅)∣)) (y)

⩽ C (∫ ∞

1
rd+1 exp(−qαr2

4
) ∥h∥q

Lq(Br√t(x))
dr) 1

q

× (∫ ∞

1
rd+1 exp(−p(β − α)r2

8
) ∥g̃∥p

Lp(Br√t(x))
dr) 1

p

. (8.62)

Following the computation in (8.61) and (8.59), we have, for β′ ∶= 1
2 (Λ−1 + β),

α′ = 1
2 (α + β) and R ⩾ √

t, that

∥h∥qLq(BR(x)) ⩽ C ⨏
BR(y)

XXXXXXXXXXXXXX
Φ ( sβ , y − ⋅)
Φ ( tβ , x − ⋅)

XXXXXXXXXXXXXX
q

L∞(B√t/4(z))

∥∇yP (t, x, ⋅)∥q
Lq(B√t/4(z))

dz

⩽ C ⨏
BR(x)

⎛⎜⎝
Φ ( s

α , y − z)
Φ ( tβ , x − z)

⎞⎟⎠
q

∥∇yP (t, x, ⋅)∥q
L2(Q√t/2(t,z))

dz

⩽ Ct− q2 s−(q−1) d
2 ⨏

BR(x)
s−

d
2 exp(−qα ∣z − y∣2

4s
) dz. (8.63)

The proof is now concluded by the same argument as in the end of Step 3.

8.6 Homogenization of the Green functions

In this section, we prove a quantitative estimate for the convergence of P to P at
large times which is suboptimal in the scaling (i.e., the rate is roughly O(t−ε)) but
optimal in stochastic integrability. The precise statement is given in the following
theorem, which is the main result of the section. We remark that the results of this
section depend only on the bounds for the first-order correctors and flux correctors
which are consequences of the suboptimal estimates proved in Chapters 2 and 3,
and summarized in Lemma 3.13, Proposition 3.15 (for the first-order correctors)
and (6.8) and (6.13) (for the flux correctors). In particular, we are not using here
the more involved, precise theory developed in Chapter 4 which gives the optimal
quantitative bounds on the first-order correctors.

For each t > 0 and x, y ∈ Rd, we define the two-scale expansion of P (in
the x-variable) by

H(t, x, y) ∶= P (t, x − y) + d∑
k=1

(φek(x) − (φek ∗Φ(t, ⋅)) (y))∂xkP (t, x − y). (8.64)



8.6 Homogenization of the Green functions 307

As in Chapter 6 (for example, see (6.17) and (6.19)), we have subtracted the
“constant” (φek ∗Φ(t, ⋅)) (y) from the first-order corrector φek in order to make the
definition of H unambiguous (at least in dimension d = 2) and because this is
actually needed in order for the bounds we prove below to be optimal in stochastic
integrability (even in d > 2). This function y ↦ (φek ∗Φ(t, ⋅)) (y) is obvious not
constant, but it has only small, low frequency oscillations which do not harm the
analysis.

Theorem 8.17 (Homogenization of the parabolic Green function). Fix σ ∈ (0, d).
There exist δ(d,Λ) > 0 and, for each y ∈ Rd, a random variable Yσ(y) satisfying

Yσ(y) ⩽ Oσ (C(σ, d,Λ)) (8.65)

and, for each α ∈ (0,Λ−1), a constant C(α,σ, d,Λ) < ∞ such that, for every x, y ∈ Rd

and
√
t ⩾ Yσ(y),

∣H(t, x, y) − P (t, x, y)∣ + ∣P (t, x, y) − P (t, x − y)∣
⩽ Ct−δ(d−σ)t− d2 exp(−α ∣x − y∣2

4t
) (8.66)

and additionally, if r ∈ [Yσ(x), 1
2

√
t], then

∥∇xP (t, ⋅, y) − ∇xH(t, ⋅, y)∥L2(Br(x)) ⩽ Ct−δ(d−σ)t− 1
2
− d

2 exp(−α ∣x − y∣2
4t

) . (8.67)

The first estimate (8.66) is a true pointwise estimate, which is possible due
to our use of (scalar) De Giorgi-Nash L∞ estimates in this chapter. The second
estimate (8.67) for the gradients should also be considered as “almost pointwise”,
similarly to the C0,1-type estimate (3.19) and as explained below (3.19), since the
integration is only over the correlation length scale. In particular, if we assume the
coefficients to be Hölder continuous on the microscopic scale, for instance, then
this two-scale expansion estimate can be upgraded to a true pointwise bound in
the same manner as (3.20). A two-scale expansion-type estimate for the mixed
second derivatives ∇x∇yP is also obtained below in Exercise 8.4.

In view of (8.46), we can integrate the result of Theorem 8.17 in time to obtain
the following quantitative homogenization result for the elliptic Green function G.
We denote the two-scale expansion of G by

F (x, y) ∶= G(x − y) + d∑
k=1

(φek(x) − (φek ∗Φ(∣x − y∣2, ⋅)) (y))∂xkG(x − y). (8.68)

Corollary 8.18 (Homogenization of the elliptic Green function). Fix σ ∈ (0, d) and
α ∈ (0,Λ−1) and let Yσ(y) be as in Theorem 8.17. There exist constants δ(d,Λ) > 0
and C(σ,α, d,Λ) < ∞ such that, for every x, y ∈ Rd with ∣x − y∣ ⩾ Yσ(y),

∣G(x, y) −G(x − y)∣ ⩽ C ∣x − y∣−δ ∣x − y∣2−d (8.69)
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and, if r ∈ [Yσ(x), 1
2 ∣x − y∣], then we also have

∥∇xG(x, y) − ∇xF (x, y)∥L2(Br(x)) ⩽ C ∣x − y∣−δ ∣x − y∣1−d . (8.70)

For future reference, we observe that, by the symmetry of the parabolic Green
function, the first estimate (8.66) of Theorem 8.17 also holds if

√
t ⩾ Yσ(x)∧Yσ(y).

That is, for every such t, we have

∣P (t, x, y) − P (t, x − y)∣ ⩽ Ct−δ(d−σ)t− d2 exp(−α ∣x − y∣2
4t

) . (8.71)

Most of the effort in the proof of Theorem 8.17 will be focused on obtaining
the first estimate (8.66). The second estimate (8.67) follows relatively easily from
it and the C1,1-type regularity estimate (the case k = 1 of the parabolic version
stated Theorem 8.11). The argument for (8.66) is similar in philosophy to the proof
of Theorem 1.12. We first approximate the parabolic Green function P (t, x, y)
by a function Q(t, x, s, y), which is the solution of an initial value problem with
a more regular initial condition. For fixed initial time s > 0 and y ∈ Rd, we take(t, x) ↦ Q(t, x, s, y) to be the solution of the initial-value problem

{(∂t −∇ ⋅ a∇)Q = 0 in (s,∞) ×Rd,

Q(s, ⋅) = P (s, ⋅ − y) on Rd.
(8.72)

The first step in the proof of Theorem 8.17 is to show that Q(t, x, s, y) is indeed
a good approximation to P (t, x, y) provided that s ≪ t, that is, whenever s is a
mesoscopic time compared to t. (This can be compared to the trimming of the
mesoscopic boundary layer of width r in the proof of Theorem 1.12.)

Lemma 8.19. Fix σ ∈ (0, d) and α ∈ (0,Λ−1). There exists C(σ,α, d,Λ) < ∞ such
that, for every x, y ∈ Rd, t ∈ [3Xσ(y)2,∞) and s ∈ [Xσ(y)2, 1

3t],
∣Q(t, x, s, y) − P (t, x, y)∣ ⩽ C (s

t
) 1

2

t−
d
2 exp(−α ∣x − y∣2

4t
) .

Proof. Fix σ ∈ (0, d), α ∈ (0,Λ−1), x, y ∈ Rd, t ∈ [3Xσ(y)2,∞) and s ∈ [Xσ(y)2, 1
3t].

By Duhamel’s formula, we have the representation

Q(t, x, s, y) − P (t, x, y) = ∫
Rd

(P (s, z − y) − P (s, z, y))P (t − s, x, z)dz.
Since P (s, ⋅−y)−P (s, ⋅, y) has zero mass, we also get, using the Aronson bound (E.7),

∣Q(t, x, s, y) − P (t, x, y)∣
= ∣∫

Rd
(P (s, z − y) − P (s, z, y)) (P (t − s, x, z) − (P (t − s, x, ⋅))B√s(y)) dz∣

⩽ C ∫
Rd

Φ( s
α
, z − y) ∣P (t − s, x, z) − (P (t − s, x, ⋅))B√s(y)∣ dz.



8.6 Homogenization of the Green functions 309

Using the layer-cake formula (8.58) with f(z) ∶= ∣P (t − s, x, z) − (P (t − s, x, ⋅))B√s(y)∣,
we obtain

∣Q(t, x, s, y) − P (t, x, y)∣
⩽ C ∫ ∞

0
rd+1 exp(−αr2

4
)⨏

Br
√
s(y)

∣P (t − s, x, z) − (P (t − s, x, ⋅))B√s(y)∣ dz dr.
Thus, by the triangle inequality and Poincaré’s inequality, we deduce that

rd⨏
Br
√
s(y)

∣P (t − s, x, z) − (P (t − s, x, ⋅))B√s(y)∣ dz
⩽ (r ∨ 1)d⨏

B
(r∨1)

√
s(y)

∣P (t − s, x, z) − (P (t − s, x, ⋅))Br√s(y)∣ dz
⩽ C√

s(r ∨ 1)d+1 ∥∇yP (t − s, x, z)∥
L1(B

(r∨1)
√
s(y))

.

Applying (8.61), we then obtain

∥∇yP (t − s, x, z)∥
L1(B

(r∨1)
√
s(y))

⩽ C(t − s)− 1
2
− d

2 ⨏
B
(r∨1)

√
s(y)

exp(−α ∣z − x∣2
4(t − s)) dz.

Putting thus the computations together yields

∣Q(t, x, s, y) − P (t, x, y)∣
⩽ C ( s

t − s)
1
2 ∫ ∞

1
rd+1 exp(−αr2

4
) (t − s)− d2 ⨏

Br
√
s(y)

exp(−α ∣z − x∣2
4(t − s)) dz dr.

Another application of (8.58) then gives the result, since t ⩾ 3s.

The final remaining step in the proof of Theorem 8.17 is to compare Q to the
two-scale expansion for P , which is denoted by H and defined above in (8.64). We
first define, for each x ∈ Rd and t ∈ (s,∞),
v(t, x, s, y)

∶= d∑
k=1
∫
Rd

(φek(z) − (φek ∗Φ(s, ⋅)) (y))∂xkP (s, z − y)P (t − s, x, z)dz, (8.73)

which is the solution of

{(∂t −∇x ⋅ a∇x) v(⋅, ⋅, s, y) = 0 in (s,∞) ×Rd,

v(s, ⋅, s, y) =H(s, ⋅, y) −Q(s, ⋅, s, y) on Rd.

The function v represents the error due to the fact that the initial condition for H
is not quite the same as P , because H has the additional perturbation caused by
the correctors. We will show that this function v is small (provided s≫ 1) since
the correctors grow sublinearly.
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Lemma 8.20. Fix σ ∈ (0, d), α ∈ [0,Λ−1), and let v be as in (8.73). There
exist constants C(σ,α, d,Λ) < ∞ and δ(d,Λ) > 0 such that for every x, y ∈ Rd,
s ∈ [Xσ(y)2,∞), and t > s, we have

∣v(t, x, s, y)∣ ⩽ Cs−δ(d−σ)t− d2 exp(−α ∣x − y∣2
4t

) . (8.74)

Proof. Since
√
s ⩾ Xσ(y), we have by Remark 3.14 that, for t′ ⩾ s and z ∈ Rd,

d∑
k=1

∣φek(z) − (φek ∗Φ(t′, ⋅)) (y)∣ ⩽ C(t′) 1
2
−δ(d−σ) (1 + ∣z − y∣√

t′
) . (8.75)

Hence, using also the Nash-Aronson bound (E.7), we have

d∑
k=1

∣(φek(z) − (φek ∗Φ(s, ⋅)) (y))∂xkP (s, z − y)∣P (t − s, x, z)
⩽ Cs−δ(d−σ)Φ( s

α
, z − y)Φ(t − s

α
, x − y) .

Now (8.74) follows by the semigroup property and the definition of v in (8.73).

We now compute the equation for H and estimate the corresponding errors.

Lemma 8.21. For each y ∈ Rd, there exist F(⋅, ⋅, y) ∈ L2
loc((0,∞) × Rd;Rd) and

f(⋅, ⋅, y) ∈ L2
loc((0,∞) ×Rd) such that, for every x ∈ Rd and t ∈ [1,∞),

((∂t −∇x ⋅ a∇x)H(⋅, ⋅, y)) (t, x) = (f(⋅, ⋅, y) + ∇x ⋅F(⋅, ⋅, y)) (t, x). (8.76)

Moreover, for each σ ∈ (0, d) and α ∈ [0,Λ−1), there exist constants C(σ,α, d,Λ) < ∞
and δ(d,Λ) ∈ (0,1) such that, for every y ∈ Rd and t ⩾ Xσ(y)2,

∥(∣F(t, ⋅, y)∣ + t 12 ∣f(t, ⋅, y)∣) exp(α ∣ ⋅ −y∣2
t

)∥
L2(Rd)

⩽ Ct− d2−1−δ(d−σ). (8.77)

Proof. By a computation very similar to the one in the proo of Lemma 6.6, we
obtain the identity (8.76) with

Fi(t, x, y) ∶= d∑
j,k=1

∂xj∂xkP (t, x − y) (Sek,ij(t, x, y) − aij(x)φek(t, x, y))
and

f(t, x, y) ∶= ∂t ( d∑
k=1

φek(t, x, y)∂xkP (t, x − y)) ,
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where we used the shorthand notation

⎧⎪⎪⎨⎪⎪⎩
φek(t, x, y) ∶= (φek(x) − (φek ∗Φ(t, ⋅)) (y)) ,
Sek,ij(t, x, y) ∶= Sek,ij(x) − (Sek,ij)B√t(y) .

We turn to the proof of (8.77). By Lemma 3.13 and Proposition 6.2, we have, for
every r ⩾ √

t ⩾ Xσ(y),
d∑

i,j,k=1

∥Sek,ij(t, ⋅, y)∥L2(Br(y)) + d∑
k=1

∥φek(t, ⋅, y)∥L2(Br(y)) ⩽ Cr1−δ

and
d∑
k=1

∥∂tφek(t, ⋅, y)∥L2(Br(y)) ⩽ Cr−1−δ.

On the other hand, there exists C(α, d,Λ) < ∞ such that

max
k∈{1,2,3}

tk ∣∇kP (t, x − y)∣2 exp(2α
∣x − y∣2
t

) ⩽ Ct− d2 Φ( t

Λ−1 − α,x − y)
Together with (8.58) from the proof of Lemma 8.16, the last three displays
yield (8.77). The proof is complete.

We next estimate the error arising from the fact that H is not an exact solution
of the equation (that is, from the error in the two-scale expansion). We define, for
each s, t ∈ [1,∞) with t > s and x, y ∈ Rd,

w(t, x, s, y) ∶=H(t, x, y) −Q(t, x, s, y) − v(t, x, s, y). (8.78)

Notice that w(s, z, s, y) = 0 and, according to Lemma 8.21, there exist f and F
satisfying (8.77) and such that

((∂t −∇x ⋅ a∇x)w(⋅, ⋅, s, y)) (t, x) = (f(⋅, ⋅, y) + ∇x ⋅F(⋅, ⋅, y)) (t, x). (8.79)

We next present Gaussian-type bounds on w.

Lemma 8.22. Fix σ ∈ (0, d), α ∈ [0,Λ−1), ε ∈ (0, 1
2
] and let w be defined as

in (8.78). There exist C(σ,α, ε, d,Λ) < ∞ and δ(d,Λ) > 0 such that, for every
s ∈ [Xσ(y)2,∞), t > s and y ∈ Rd, we have

∥w(t, ⋅, s, y) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Cs− d4−δ(d−σ) ( t
s
)ε . (8.80)
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Proof. Step 1. We derive a differential inequality for w. The claim is that, for
every ε ∈ (0, 1

2
] and ψ ∈ C∞(Rd),

1

2
∂t (w2ψ2) + ε

2
ψ2a∇w ⋅ ∇w ⩽ −∇ ⋅ (wψ2 (a∇w +F))

+w2 ( Λ

1 − 2ε
∣∇ψ∣2 + ψ∂tψ + ε

t
ψ2) + 2

ε
ψ2 (∣F∣2 + t ∣f ∣2) . (8.81)

By a direct computation we first get

wψ2 (∂t −∇ ⋅ a∇)w = 1

2
∂t (w2ψ2) − ∇ ⋅ (wψ2a∇w)
+ ψ2a∇w ⋅ ∇w + 2wψa∇w ⋅ ∇ψ −w2ψ∂tψ.

Applying Young’s inequality, we obtain, for any ε ∈ (0, 1
2
],

ψ2a∇w ⋅ ∇w + 2wψa∇w ⋅ ∇ψ ⩾ εψ2a∇w ⋅ ∇w − Λ

1 − εw2∣∇ψ∣2,
and hence we arrive at

wψ2 (∂t −∇ ⋅ a∇)w = 1

2
∂t (w2ψ2) − ∇ ⋅ (wψ2a∇w)

+ εψ2a∇w ⋅ ∇w −w2 ( Λ

1 − ε ∣∇ψ∣2 + ψ∂tψ) .
On the other hand, again by Young’s inequality, we have

wψ2 (∇ ⋅F + f) = ∇ ⋅ (wψ2F) − ψ2F ⋅ ∇w − 2ψwF ⋅ ∇ψ +wψ2f

⩽ ∇ ⋅ (wψ2F) + ε
2
ψ2a∇w ⋅ ∇w

+w2 ( ε

1 − ε ∣∇ψ∣2 + εtψ2) + 2

ε
ψ2 (∣F∣2 + t ∣f ∣2) .

Combining the above two inequalities and using the equation for w yields (8.81).
Step 2. We next claim that, for each ε ∈ (0, 1

2
], there exist C(σ, ε, d,Λ) < ∞

and δ(d,Λ) ∈ (0,1) such that, for every t ⩾ s and y ∈ Rd,

∥w(t, ⋅, y)∥L2(Rd) ⩽ Cs− d4−δ(d−σ) ( ts)
ε

. (8.82)

To see this, choose ψ = 1 in (8.81) and define

ρ(t) ∶= ∫
Rd
w2(t, x)dx and τ(t) ∶= 4

ε ∫Rd
(∣F(t, x, y)∣2 + t ∣f(t, x, y)∣2) dx.
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Then (8.81) reads as
∂tρ(t) ⩽ ε

t
ρ(t) + τ(t).

Since
√
s ⩾ Xσ(y), we have by (8.77) that, for every t ⩾ s,

τ(t) ⩽ C
ε
t−

d
2
−1−δ(d−σ).

Integrating and using the fact that ρ(s) = 0, we obtain

ρ(t) ⩽ ∫ t

s

ε

t′
ρ(t′)dt′ + C

ε
s−

d
2
−δ(d−σ).

Grönwall’s inequality now implies (8.82).
Step 3. We prove (8.80). Applying(8.81) with

ψ(t, x) ∶= exp(α ∣x − y∣2
4t

)
we obtain, for ε̃(α, d,Λ) > 0 sufficiently small (recall also that 0 < α < Λ−1),

( Λ

1 − 2ε̃
∣∇ψ∣2 + ψ∂tψ + ε̃

t
ψ2) (x, t)

= ψ2(x, t)
t

( Λ

1 − 2ε̃
α2 ∣x − y∣2

4t
− α ∣x − y∣2

4t
+ ε̃) ⩽ C

t
.

Thus, after integration with respect to x, we obtain by (8.81), (8.82) and (8.77)
that

∂t ∥w(t, ⋅, y) exp(α ∣ ⋅ −y∣2
4t

)∥2

L2(Rd)
⩽ Ct−1s−

d
4
−δ(d−σ) ( t

s
)ε .

Integrating with respect to t and recalling that w(s, ⋅, ⋅) = 0, we obtain (8.80).

We now combine the previous three lemmas to obtain Theorem 8.17.

Proof of Theorem 8.17. Throughout the proof, we fix α ∈ (0,Λ−1).
Step 1. We complete the proof of (8.66). We set, for θ ∈ (0, d−σ2σ ∧ 1),

Yσ(y) ∶= Xσ+d
2
(y)1+θ.

Clearly σ
1−θ < d, and hence Yσ(y) ⩽ Oσ(C). Taking s = t1−θ we see that

√
t ⩾ Yσ(y)

implies
√
s ⩾ Xσ+d

2
(y). We decompose P − P as

P (t, x, y) − P (t, x − y) = (P (t, x, y) −Q(t, x, s, y)) + (H(t, x, y) − P (t, x − y))
− (w(t, x, s, y) − v(t, x, s, y)) .
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We estimate the three terms in parentheses on the right using Lemmas 8.19, 8.20
and 8.22. Notice that these lemmas are applicable since

√
s ⩾ Xσ+d

2
(y). Lemma 8.20

implies that

∥v(t, ⋅, s, y) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Ct− d4−δ(1−θ)(d−σ).
Moreover, by Remark 3.14, there exist C(σ, d,Λ) < ∞ and γ(d,Λ) ∈ (0,1) such
that, for every r ⩾ √

s ⩾ Xσ(y), we have

∥φek − (φek ∗Φ(s, ⋅)) (y)∥L∞(Br(y)) ⩽ Cr1−γ(d−σ).

Using this, we also obtain, for α′ ∶= 1
2 (α +Λ−1), that

∣(φek(x) − (φek ∗Φ(t, ⋅)) (y))∂xkP (t, x − y)∣ ⩽ Ct− γ2 (d−σ)Φ( t
α′
, x − y) ,

and thus

∥(H(t, ⋅, y) − P (t, ⋅, y)) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Ct− d4− γ2 (d−σ).
Lemma 8.19 yields

∥(P (t, ⋅, y) −Q(t, ⋅, s, y)) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Ct− d4− θ2 (d−σ).
Lemma 8.22 implies

∥w(t, ⋅, s, y) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Ct− d4− δ2 (d−σ)+θ( d4+δ(d−σ)+ε).
Combining the above displays and choosing θ small enough, we get

∥(P (t, ⋅, y) − P (t, ⋅ − y)) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Ct− d4− δ∧γ∧θ4
(d−σ). (8.83)

We next turn this inequality into a pointwise estimate using the semigroup property.
We write

P (t, x, y) − P (t, x − y) = ∫
Rd

(P ( t
2 , z, y) − P ( t

2 , z − y))P ( t
2 , x − z) dz

+ ∫
Rd

(P ( t
2 , x, z) − P ( t

2 , x − z))P ( t
2 , z, y) dz. (8.84)
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Hölder’s inequality yields

∣∫
Rd

(P ( t
2 , z, y) − P ( t

2 , z − y))P ( t
2 , x − z) dz∣

⩽ ∥(P ( t
2 , ⋅, y) − P ( t

2 , ⋅ − y)) exp(α∣ ⋅ −y∣2
2t

)∥
L2(Rd)

× ∥P ( t
2 , x − ⋅) exp(−α∣ ⋅ −y∣2

2t
)∥

L2(Rd)
.

By the semigroup property and the Nash-Aronson estimate,

∥P ( t
2 , x − ⋅) exp(−α ∣ ⋅ −y∣2

2t
)∥

L2(Rd)
⩽ Ct d4 Φ( t

α
, x − y) .

The second term on the right in (8.84) can be estimated similarly. Thus, combining
the above two displays with (8.83) and (8.84) completes the proof of (8.66) by
taking δ smaller in the statement, if necessary.

Step 2. We use (8.66) and the C1,1 regularity estimate to obtain (8.67). Fix
α ∈ (0,Λ−1) and β ∶= 1

3 (Λ−1 − α) > 0 so that, by the Nash-Aronson bound, we have,
for every x, y ∈ Rd, and t > 0,

∥P (⋅, y)∥L∞(Qβ√t(t,x))
+ t ∥∇2P (⋅, y)∥

L∞(Qβ√t(t,x))
⩽ Ct− d2 exp(−α ∣x − y∣2

4t
) . (8.85)

Fix x, y ∈ Rd and t ∈ [1,∞) such that β
√
t ⩾ Yσ(x). By the parabolic C1,1-type

regularity estimate (Theorem 8.11 for k = 1), we may select ξ ∈ Rd and a ∈ R such
that, for every r ∈ [Xσ(x), β√t],

∥P (t, ⋅, y) − (`ξ + φξ + a)∥L2(Qr(t,x)) ⩽ C ( r√
t
)2 ∥P (t, ⋅, y)∥L2(Qβ√t(t,x)

⩽ Cr2t−1− d
2 exp(−α ∣x − y∣2

4t
) . (8.86)

Here `ξ(x) = ξ ⋅ x and φξ is the first-order stationary corrector. By the Caccioppoli
inequality (Lemma 8.1) and Lemma 8.2, this implies, for every such r,

∥∇xP (t, ⋅, y) − (ξ +∇φξ)∥L2(Br(x)) ⩽ Crt−1− d
2 exp(−α ∣x − y∣2

4t
) . (8.87)

By (8.66), (8.86) and the triangle inequality, we deduce that, for every such r,

∥P (⋅, ⋅ − y) − (`ξ + φξ + a)∥L2(Qr(t,x))
⩽ C (r2t−1− d

2 + t−δ(d−σ)− d2 ) exp(−α ∣x − y∣2
4t

) .
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Using, in view of (8.85), that

sup
(s,z)∈Qr(t,x)

∣P (s, z − y) − (P (t, x − y) + (z − x) ⋅ ∇P (t, x − y))∣
⩽ Cr2 ∥∇2P (⋅, y)∥

L∞(Qβ√t(t,x))
⩽ Cr2t−1− d

2 exp(−α ∣x − y∣2
4t

) ,
we deduce that

r ∣∇P (t, x − y) − ξ∣
⩽ ∥φξ − (φξ)Br(x)∥L2(Br(x))

+C (r2t−1− d
2 + t−δ(d−σ)− d2 ) exp(−α ∣x − y∣2

4t
)

⩽ Cr1−δ ∣ξ∣ +C (r2t−1− d
2 + t−δ(d−σ)− d2 ) exp(−α ∣x − y∣2

4t
) .

This implies that

∣∇P (t, x − y) − ξ∣ ⩽ C (rt−1− d
2 + r−1t−δ(d−σ)−

d
2 ) exp(−α ∣x − y∣2

4t
) .

Taking r = t 12 (1−δ(d−σ)) in the above expression yields, after shrinking δ,

∣∇P (t, x − y) − ξ∣ ⩽ Ct−δ(d−σ)− 1
2
− d

2 exp(−α ∣x − y∣2
4t

) .
From this, (8.87) and the fact that r ⩾ Yσ(x) ⩾ Xσ(x), we obtain

∥∇xP (t, ⋅, y) − (∇P (t, x − y) + ∇φ∇P (t,x−y))∥L2(Br(x))

⩽ ∥∇xP (t, ⋅, y) − (ξ +∇φξ)∥L2(Br(x)) + ∣∇P (t, x − y) − ξ∣ (1 + sup
e∈B1

∥∇φe∥L2(Br(x)))
⩽ C (rt−1− d

2 + t−δ(d−σ)− 1
2
− d

2 ) exp(−α ∣x − y∣2
4t

) .
Since

∥∇xH(t, ⋅, y) − (∇P (t, x − y) + ∇φ∇P (t,x−y))∥L2(Br(x))

⩽ ( sup
z∈Br(x)

∣∇P (t, x − y) − ∇P (t, z − y)∣)(1 + sup
e∈B1

∥∇φe∥L2(Br(x)))
⩽ C (rt−1− d

2 ) exp(−α ∣x − y∣2
4t

) ,
we obtain

∥∇xP (t, ⋅, y) − ∇xH(t, ⋅, y)∥L2(Br(x))

⩽ C (rt−1− d
2 + t−δ(d−σ)− 1

2
− d

2 ) exp(−α ∣x − y∣2
4t

) .
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After shrinking δ again, this completes the proof of (8.67) under the additional
restriction that

r ⩽ t 12− 1
2
δ(d−σ) ∧ β√t.

For r ∈ [t 12− 1
2
δ(d−σ), 1

2

√
t], however, the desired estimate follows immediately from

the Caccioppoli inequality and (8.66). Therefore the proof is complete.

We conclude this section with the proof of Corollary 8.18.

Proof of Corollary 8.18. We can immediately pass from (8.66) to (8.69) by inte-
gration in time, using formula (8.46) and, in d = 2, the formula (8.47). One can
pass from (8.67) to (8.70) in the same way, although it is necessary to control the
difference between the “additive constants” in the definitions of H and F , i.e., the
difference between

∫ ∞

0
φek ∗Φ(t, ⋅)(y)∂xkP (t, x − y)dt and φek ∗Φ(∣x − y∣2, ⋅)(y)∂xkG(x − y).

Alternatively, we can obtain (8.70) from (8.69) by repeating the argument of Step 2
in the proof of Theorem 8.17 above, using the (elliptic) C1,1 regularity estimate.
The details are left to the reader.

Exercise 8.4 (Quantitative two-scale expansion of ∇x∇yP ). In this exercise, we
extend the statement of Theorem 8.17 by proving a bound on the two-scale
expansion of the mixed second derivatives of the Green functions. To give the
statement, we must first modify the definition (8.64) of H so that it has the proper
oscillations in both variables. We define

H̃(t, x, y) (8.88)

∶= P (t, x − y) + d∑
k=1

(φek(x) − (φek ∗Φ(t, ⋅)) (y))∂xkP (t, x − y)
− d∑
l=1

(φel(y) − (φel ∗Φ(t, ⋅)) (x))∂xkP (t, x − y)
− d∑
k,l=1

(φek(x) − (φek ∗Φ(t, ⋅)) (y)) (φel(y) − (φel ∗Φ(t, ⋅)) (x))∂xk∂xlP (t, x − y).
Note that, neglecting terms of lower order, we have

∇x∇yH̃(t, x, y) = − d∑
k,l=1

(ek +∇φek(x)) (ek +∇φek(y))∂xk∂xlP (t, x − y)
+ lower order terms.
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The result is that there exists a random variable Yσ satisfying (8.65) such that, for
every

√
t ⩾ 2Yσ(y) ∨ Yσ(x) and r ∈ [Yσ(y) ∨ Yσ(x), 1

2

√
t], we have

∥∇x∇yP (t, ⋅, y) − ∇x∇yH̃(t, ⋅)∥
L2(Br(x)×Br(y))

⩽ Ct−δ(d−σ)t−1− d
2 exp(−α ∣x − y∣2

4t
) .

To prove this, we use the bounds already proved in Theorem 8.17 and then follow
the argument in Step 2 of the proof of Theorem 8.17 above, in the y variable.

Notes and references

In the case of periodic coefficients, estimates for the decay of the gradient of the
elliptic Green function (and the Green function itself for systems) was proved by
Avellaneda and Lin [16, 17] and the quantitative estimate for the decay of the error
of the two-scale expansion was proved by Kenig, Lin and Shen [77] for the elliptic
Green function and by Geng and Shen [56] for the parabolic Green function. Decay
estimates for the gradient of the elliptic Green function in the random setting
were first proved by Marahrens and Otto [84], although with suboptimal stochastic
integrability (i.e., with finite moments rather than the stronger Od−-type minimal
scale bounds of Theorem 8.14). A two-scale expansion estimate for the elliptic
Green function was proved by Bella, Giunti and Otto [19].



Chapter 9

Decay of the parabolic semigroup

Consider the parabolic initial-value problem

{∂tu −∇ ⋅ (a∇u) = 0 in (0,∞) ×Rd,

u(0, ⋅) = ∇ ⋅ g on Rd,
(9.1)

where the vector field g is a bounded, stationary random field with a unit range of
dependence. The solution of (9.1) can be written by the Green function formula

u(t, x) ∶= −∫
Rd

g(y) ⋅ ∇yP (t, x, y)dy. (9.2)

Since g is a stationary random field, the field u(t, ⋅) remains stationary for all
times t > 0. As we will see later in (9.33), since the parabolic equation preserves
mass, the function u satisfies, for every t > 0,

E [∫
[0,1]d

u(t, x)dx] = 0.

We can expect therefore that u(t, x) → 0 as t → ∞. The goal here is to obtain
quantitative bounds on the rate of decay of the solution u(t, x) to zero for large t.

If the heterogeneous operator ∂t −∇ ⋅a∇ is replaced by the heat operator ∂t −∆,
then the formula (9.2) becomes the convolution of the gradient of the standard
heat kernel against the random field g. It is easy to verify that, in this case,

∣u(t, x)∣ ⩽ O2 (Ct− 1
2
− d

4 ) .
To see this, we write

u(t, x) = ∫
Rd

g(y) ⋅ ∇Φ(t, x − y)dy = t− 1
2 ∫

Rd
g(y) ⋅ (t− d2∇Φ(1,

x − y√
t

)) dy
319
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and then observe that the integral on the right side represents a weighted average
of g over a length scale of order

√
t. That is, roughly speaking, it is an average

of O(t d2 ) many independent random variables, each of which is bounded by a
constant times the assumed bound on g. By Lemma A.10, this integral should
therefore be at most of size O2 (Ct− d4 ). The extra factor of t−

1
2 in front of the

integral therefore gives the claimed bound on ∣u(t, x)∣.
The first goal of this chapter is to obtain an analogous estimate for the hetero-

geneous parabolic operator. The statement is given in Theorem 9.1, below. Its
proof depends on the theory developed in the first three chapters, namely the (sub-
optimal) bounds on the first-order correctors which are summarized in Lemma 3.13
and the corresponding (still suboptimal) bounds on the flux correctors established
in Section 6.1. We also use the two-scale expansion result of Theorem 6.3 as well as
the estimates on the parabolic Green function proved earlier in Chapter 8. We do
not, however, use the optimal quantitative estimates on the first-order correctors
proved in Chapter 4.

In fact, Theorem 9.1 can be used to give a second, independent proof of the
results of Chapter 4. Indeed, by the Duhamel formula, the first-order corrector φe
can be written formally as the integral

φe(x) = ∫ ∞

0
ue(t, x)dt, (9.3)

where ue(t, x) is the solution of the parabolic initial-value problem

{∂tue −∇ ⋅ (a∇ue) = 0 in (0,∞) ×Rd,

u(0, ⋅) = ∇ ⋅ (a(⋅)e) on Rd.
(9.4)

The integral in (9.3) may not converge, which is related to the fact that the
correctors are only defined up to constants and may not exist as stationary objects
themselves. Therefore, to be more precise, we should define their gradients by

∇φe(x) = ∫ ∞

0
∇ue(t, x)dt. (9.5)

This integral is convergent, as we will see, and in fact the relation (9.5) allows us
to obtain from Theorem 9.1 all of the main results of Chapter 4, in particular the
optimal bounds on the first-order correctors given in Theorems 4.1 and 4.24. Since
the proof of Theorem 9.1 does not rely on the bootstrap arguments of Chapter 4,
we obtain a second, independent proof of these results.

In Section 9.2, we give quantitative estimates on the homogenization error of
the elliptic and parabolic Green functions. For the parabolic Green function, the
estimate is roughly that

∣P (t, x, y) − P (t, x − y)∣ = O2− (Ct− 1
2 t−

d
2 exp(−α∣x − y∣2

t
)) , (9.6)



9.1 Optimal decay of the parabolic semigroup 321

up to a logarithmic correction of log
1
2 t in dimension two. See Theorem 9.11 below

for the precise statement. This improves the scaling of the estimate proved in
the previous chapter, which has t−δ in place of t−

1
2 (cf. Theorem 8.17). Since the

characteristic length scale of P (t, ⋅) is of order t−
1
2 , the bound (9.6) matches the

order of the homogenization error found previously (e.g., in Theorems 4.1 or 6.14)
and therefore is optimal in scaling of t.

These Green function estimates are closely related to the semigroup decay
estimates. The connection arises because the center of mass of the parabolic Green
function, which unlike the mass itself is not preserved by the flow, can be expressed
in terms of the semigroup flow. It must be controlled precisely in order to have
sharp estimates, and the bounds on the decay of the parabolic semigroup gives
exactly what is needed to obtain (9.6).

Throughout this chapter, as in Sections 8.5 and 8.6 (but unlike in the rest of the
book), we allow ourselves to use estimates which are only valid for scalar elliptic
equations, but not for systems.

9.1 Optimal decay of the parabolic semigroup

This section is devoted to the proof of the following theorem.

Theorem 9.1 (Optimal decay of the parabolic semigroup). For every σ ∈ (0,2),
there exists a constant C(σ, d,Λ) < ∞ such that the following holds. Let g be
an Rd-valued, Zd–stationary random field (in the sense of Definition 3.10) such
that ∥g∥L∞(Rd) ⩽ 1 and, for every x ∈ Rd, g(x) is F(B1(x))–measurable. Let u be
the solution of the parabolic initial-value problem (9.1). Then, for every t ∈ [1,∞)
and x ∈ Rd, ∣u(t, x)∣ ⩽ Oσ (Ct− 1

2
− d

4 ) . (9.7)

Throughout this section, the function u is the solution of the initial-value
problem (9.1), where g is a random field satisfying the assumptions of Theorem 9.1.

We begin by recording a crude, deterministic bound on u which is an easy
consequence of the Nash-Aronson estimate. It will be useful below mostly for
technical reasons as well as for establishing the base case for the inductive proof of
Lemma 9.5 below.

Lemma 9.2. There exists C(d,Λ) < ∞ such that, for every t ∈ (0,∞),
∥u(t, ⋅)∥L∞(Rd) + t 12 ∥∇u(t, ⋅)∥L∞(Rd) ⩽ Ct− 1

2 . (9.8)

Proof. We combine the bound (E.8) with the time-slice gradient estimate for
parabolic equations with coefficients which are independent of time contained in
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Lemma 8.2 to obtain the existence of a constant C(d,Λ) < ∞ such that for every
t > 0 and x, y ∈ Rd,

∥∇yP (t, x, ⋅)∥
L2(B√t(y))

⩽ Ct− 1
2
− d

2 exp(−∣x − y∣2
Ct

) . (9.9)

Since we assume that ∥g∥L∞(Rd) ⩽ 1, we obtain the L∞ bound on u in (9.8) from the
previous line and (9.2). By the Caccioppoli inequality (Lemma 8.1) and Lemma 8.2,
we deduce the gradient bound on u in (9.8).

To prepare for the use of the independence assumption, we next show that the
parabolic Green function is well-approximated by a function with local dependence
on the coefficient field.

Lemma 9.3 (Localization of P ). There exist a constant C(d,Λ) < ∞ and, for each
r ∈ [2,∞), a random element of L∞loc((0, r2] ×Rd ×Rd), denoted by

(t, x, y) ↦ P ′
r(t, x, y)

which satisfies, for every t ∈ (0, r2] and x, y ∈ Rd, the following statements:

P ′
r(t, x, y) is F(Br(x))–measurable, (9.10)

P ′
r(t, x, ⋅) ≡ 0 in Rd ∖Br−1(x), (9.11)

∫
Rd
P ′
r(t, x′, y)dx′ = 1, (9.12)

∣P (t, x, y) − P ′
r(t, x, y)∣ ⩽ Ct− d2 exp(−r2 + ∣x − y∣2

Ct
) , (9.13)

and

∥∇P (t, x, ⋅) − ∇P ′
r(t, x, ⋅)∥L2(B√t(y))

⩽ Ct− 1
2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) . (9.14)

Proof. In place of (9.10) and (9.11), we will construct P ′
r so that P ′

r(t, x, y) isF(x+ 15r◻0)–measurable and P ′
r(t, x, ⋅) is supported in x+ 15r◻0. We then obtain

the statement of the proposition by reindexing the parameter r and performing a
standard covering argument to get the last estimate (9.14).

For each x′ ∈ Rd and r ∈ [1,∞), define the modified coefficient field

ãx′,r ∶= a1x′+2r◻0 + Id1Rd∖(x′+2r◻0).

Let P̃x′,r = P̃x′,r(t, x, y) denote the parabolic Green function corresponding to ãx′,r.
It is clear that P̃x′,r(t, x, y) is an F(x′ + 2r◻0)–measurable random variable for
each fixed x′, x, y ∈ Rd, r ∈ [2,∞) and t > 0.
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Step 1. We show that, for every x,x′, y ∈ Rd, r ∈ [2,∞) and t ∈ (0, r2] such that
x ∈ x′ + r◻0, we have

∣P (t, x, y) − P̃x′,r(t, x, y)∣ ⩽ Ct− d2 exp(−r2 + ∣x − y∣2
Ct

) . (9.15)

To estimate this, we begin from the identity

P (t, x, y) − P̃x′,r(t, x, y)
= ∫ t

0
∫
Rd
∇zP (s, y, z) ⋅ (ãx′,r(z) − a(z))∇zP̃x′,r(s, x, z)dz ds. (9.16)

This can be seen by computing the equation satisfied by P (t, x, ⋅) − P̃x′,r(t, x, ⋅) and
applying the Duhamel formula. Thus

∣P (t, x, y) − P̃x′,r(t, x, y)∣ ⩽ C ∫ t

0
∫
Rd∖(x′+2r◻0)

∣∇zP (s, y, z)∣ ∣∇zP̃x′,r(s, x, z)∣ dz ds.
Using Hölder’s inequality, Lemma 8.2, (E.8) and

√
t ⩽ r ⩽ dist (x, ∂(x′ + 2r◻0)),

we find that, for every s ∈ (0, t] and z′ ∈ Rd ∖ (x′ + 2r◻0),
(∫

B√s/2(z′)
∣∇zP (s, y, z)∣ ∣∇zP̃x′,r(s, x, z)∣ dz)2

⩽ ∫
B√s/2(z′)

∣∇zP (s, y, z)∣2 dz∫
B√s/2(z′)

∣∇zP̃x′,r(s, x, z)∣2 dz
⩽ Cs−2∫

Q√s(s,z′)
∣∇zP (s′, y, z)∣2 dz ds′∫

Q√s(s,z′)
∣∇zP̃x′,r(s′, x, z)∣2 dz ds′

⩽ Cs−d−2 exp(−∣y − z′∣2 + ∣x − z′∣2
Cs

)
⩽ Cs−d−2 exp(−∣x − z′∣2 + ∣x − y∣2

Cs
) .

By covering Rd ∖ (x′ + 2r◻0) with such balls B√
s/2(z′) and summing the previous

display over the covering, we obtain, for every x ∈ x′ + r◻0 and y ∈ Rd,

∫
Rd∖(x′+2r◻0)

∣∇zP (s, y, z)∣ ∣∇zP̃x′,r(s, x, z)∣ dz ⩽ Crds−d−1 exp(−r2 + ∣x − y∣2
Cs

) .
Integration over s ∈ (0, t] yields, in view of (9.16),

∣P (t, x, y) − P̃x′,r(t, x, y)∣ ⩽ Crdt−d exp(−r2 + ∣x − y∣2
Ct

) ⩽ Ct− d2 exp(−r2 + ∣x − y∣2
Ct

) .
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This is (9.15).
Step 2. We show that, for every x,x′, y ∈ Rd, r ∈ [2,∞) and t ∈ (0, r2] such that

x ∈ x′ + r◻0, we have

∥∇P (t, x, ⋅) − ∇P̃x′,r(t, x, ⋅)∥L2(B√t(y))
⩽ Ct− 1

2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) . (9.17)

By a standard covering argument, we may assume that
√
t ⩽ 1

8r. In the case that
y ∈ Rd ∖Br/2(x), we use (9.9) to obtain

∥∇P (t, x, ⋅) − ∇P̃x′,r(t, x, ⋅)∥L2(B√t(y))⩽ ∥∇P (t, x, ⋅)∥L2(B√t(y))
+ ∥∇P̃x′,r(t, x, ⋅)∥L2(B√t(y))

⩽ Ct− 1
2
− d

2 exp(−∣x − y∣2
Ct

) ⩽ Ct− 1
2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) .
In the alternative case that y ∈ Br/2(x), we have that B4

√
t(y) ⊆ x′ + 2r◻0 and

therefore (t, y) ↦H(t, y) ∶= P (t, x, y) − P̃x′,r(t, x, y) is a solution of

∂tH −∇ ⋅ a∇H = 0 in Q4
√
t.

Thus we may apply the parabolic Caccioppoli inequality (Lemma 8.1), the gradient
estimate for time slices (Lemma 8.2) and the estimate (9.15) above to obtain

∥∇P (t, x, ⋅) − ∇P̃x′,r(t, x, ⋅)∥L2(B√t(y))
⩽ Ct− 1

2 ∥P (t, x, ⋅) − P̃x′,r(t, x, ⋅)∥L2(Q√t(y))

⩽ Ct− 1
2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) .
This completes the proof of (9.17).

Step 3. We construct the localized approximation P ′
r of P . We first select a

function ψ ∈ C∞
c (2r◻0) such that 0 ⩽ ψ ⩽ 1, ∥∇ψ∥L∞(Rd) ⩽ Cr−1 and

∑
z∈rZd

ψ(x − z) = 1, ∀x ∈ Rd.

We can construct ψ by mollifying 1r◻0 , for instance. We also select a smooth cutoff
function ζ ∈ C∞

c (10r◻0) such that ζ ≡ 1 on 8r◻0 and ∥∇ζ∥L∞(Rd) ⩽ Cr−1.
We now define

P̃ ′
r(t, x, y) ∶= ∑

z∈rZd
ψ(x − z)ζ(y − z)P̃z,6r(t, x, y).
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We finally define P ′
r(t, x, y) by normalizing P̃ ′

r(t, x, y) in order to enforce the unit
mass condition (9.12):

P ′
r(t, x, y) ∶= (∫

Rd
P̃ ′
r(t, x, y)dx)−1

P̃ ′
r(t, x, y).

It is easy to check from the construction that P ′
r(t, x, y) is F(x+15r◻0)–measurable

and that P ′
r(t, x, ⋅) is supported in x + 15r◻0.

What remains is to prove (9.13) and (9.14). It is straightforward to obtain from
the construction above, (9.15), (9.17) and the triangle inequality that, for every
x, y ∈ Rd, r ∈ [2,∞) and t ∈ (0, r2],

∣P (t, x, y) − P̃ ′
r(t, x, y)∣ ⩽ Ct− d2 exp(−r2 + ∣x − y∣2

Ct
) . (9.18)

and

∥∇P (t, x, ⋅) − ∇P̃ ′
r(t, x, ⋅)∥L2(B√t(y))

⩽ Ct− 1
2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) . (9.19)

Therefore to complete the proof, it suffices by the triangle inequality to obtain the
estimates

∣P ′
r(t, x, y) − P̃ ′

r(t, x, y)∣ ⩽ Ct− d2 exp(−r2 + ∣x − y∣2
Ct

) (9.20)

and

∥∇P ′
r(t, x, ⋅) − ∇P̃ ′

r(t, x, ⋅)∥L2(B√t(y))
⩽ Ct− 1

2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) . (9.21)

We have that

∣P ′
r(t, x, y) − P̃ ′

r(t, x, y)∣ = ∣(∫
Rd
P̃ ′
r(t, x, y)dx)−1 − 1∣ P̃ ′

r(t, x, y)
⩽ ∣(∫

Rd
P̃ ′
r(t, x, y)dx)−1 − 1∣ t− d2 exp(−∣x − y∣2

Ct
) .
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Similarly, we find that

∥∇P ′
r(t, x, y) − ∇P̃ ′

r(t, x, ⋅)∥L2(B√t(y))

⩽ C ∣(∫
Rd
P̃ ′
r(t, x, y)dx)−1 − 1∣ ∥∇P ′

r(t, x, y) − ∇P̃ ′
r(t, x, ⋅)∥L2(B√t(y))

+C ∣∇y (∫
Rd
P̃ ′
r(t, x, y)dx)−1∣ ∥P ′

r(t, x, y) − P̃ ′
r(t, x, ⋅)∥L2(B√t(y))

⩽ C ∣(∫
Rd
P̃ ′
r(t, x, y)dx)−1 − 1∣ t− 1

2
− d

2 exp(−∣x − y∣2
Ct

)
+C ∣∇y (∫

Rd
P̃ ′
r(t, x, y)dx)−1∣ t− d2 exp(−∣x − y∣2

Ct
) .

Therefore what remains is to show that the normalizing constant is sufficiently
close to one, and this follows from (9.18) and (9.19). Indeed, we have

∣∫
Rd
P̃ ′
r(t, x, y)dx − 1∣ = ∣∫

Rd
(P̃ ′

r(t, x, y) − P (t, x, y)) dx∣
⩽ ∫

Rd
∣P̃ ′
r(t, x, y) − P (t, x, y)∣ dx

⩽ ∫
Rd
Ct−

d
2 exp(−r2 + ∣x − y∣2

Ct
) dx

= C exp(− r2

Ct
) ,

and, similarly,

∣∫
Rd
∇yP̃

′
r(t, x, y)dx∣ = ∣∫

Rd
∇y (P̃ ′

r(t, x, y) − P (t, x, y)) dx∣
⩽ ∫

Rd
∣∇yP̃

′
r(t, x, y) − ∇yP (t, x, y)∣ dx

⩽ ∫
Rd
Ct−

1
2
− d

2 exp(−r2 + ∣x − y∣2
Ct

) dx
= Ct− 1

2 exp(− r2

Ct
) .

This completes the proof.

Using the localized Green functions, we can localize the function u(t, x) itself.
For each r ∈ [2,∞), t ∈ (0, r2] and x ∈ Rd, we define

u′(r, t, x) ∶= −∫
Rd

g(y) ⋅ ∇yP
′
r(t, x, y)dy, (9.22)

where P ′
r(t, x, y) is the function given by Lemma 9.3.
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Lemma 9.4 (Localization of u). There exists a constant C(d,Λ) < ∞ such that
for every r ∈ [2,∞), t ∈ (0, r2] and x ∈ Rd, the random variable u′(r, t, x) isF(Br(x))-measurable and satisfies the estimates

∣u(t, x) − u′(r, t, x)∣ ⩽ Ct− 1
2 exp(− r2

Ct
) (9.23)

and ∣∇u(t, x) − ∇u′(r, t, x)∣ ⩽ Ct−1 exp(− r2

Ct
) . (9.24)

Proof. Since for every x ∈ Rd, the random variable g(x) is F(B1(x))-measurable,
we obtain that u′(r, t, x) is F(Br(x))-measurable from (9.10). The bounds (9.23)
and (9.24) are immediate consequences of the estimates (9.13) and (9.14) and the
fact that ∥g∥L∞(Rd) ⩽ 1.

The strategy for the proof of Theorem 9.1 is to propagate information on the
size of spatial averages of u(t, ⋅) to larger and larger times. The precise statement
to be propagated takes the following form: given σ ∈ (0,2), and T,K ∈ [1,∞), we
denote by S(T,K, σ) the statement that, for every t ∈ [1, T ], s ∈ [t,∞) and x ∈ Rd,

∫
Rd
u(t, y)P (s, x − y)dy = Oσ (Ks− 1

2
− d

4 ) . (9.25)

We show first that S(T,K, σ) implies pointwise estimates on u.

Lemma 9.5. Fix σ ∈ [1,2). There exists C(σ, d,Λ) < ∞ such that the following
implication holds for every T,K ⩾ 1:

S(T,K, σ) Ô⇒ ∀(t, x) ∈ [1,2T ] ×Rd, u(t, x) = Oσ (CKt− 1
2
− d

4 ) .
The following lemma is needed in the proof of Lemma 9.5, so we present it first.

It states roughly that, up to a lower-order error and assuming certain pointwise
bounds on u, we can replace the homogenized Green function P in the integral on
the left side of (9.25) with the heterogeneous Green function P .

Lemma 9.6. There exist an exponent δ(d,Λ) > 0 and, for each σ ∈ (0,2), a
constant C(σ, d,Λ) < ∞ such that the following holds. Assume that for some
K ∈ [1,∞) and t ∈ [1,∞), we have for every x ∈ Rd that

∣u(t, x)∣ ⩽ Kt−
1
2 ∧Oσ (Kt− 1

2
− d

4 ) . (9.26)

Then, for every s ∈ [t,∞) and x ∈ Rd, we have the estimate

∫
Rd
u(t, y) (P (s, x, y) − P (s, x − y)) dy = Oσ (Cs−δ(2−σ)Kt− 1

2
− d

4 ) . (9.27)
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Proof. We fix σ ∈ (0,2), K, t ∈ [1,∞) such that (9.26) holds, θ ∶= d(σ+2)
4 ∈ (0, d),

and denote by Yθ(y) the random variable given by Theorem 8.17. This theorem
guarantees the existence of an exponent δ(d,Λ) > 0 and a constant C(σ, d,Λ) < ∞
such that for every s ∈ [1,∞) and x, y ∈ Rd,

∣P (s, x, y) − P (s, x − y)∣1{Yθ(y)⩽
√
s} ⩽ Cs−δ(d−σ)s− d2 exp(−∣x − y∣2

Cs
) .

We thus deduce from (9.26) and Lemma A.4 that

∫
Rd
u(t, y) (P (s, x, y) − P (s, x − y))1{Yθ(y)⩽

√
s} dy = Oσ (Cs−δ(d−σ)Kt− 1

2
− d

4 ) .
On the other hand, by the Nash-Aronson bound (E.7), we have

∣P (s, x, y) − P (s, x − y)∣1{Yθ(y)>
√
s} ⩽ C (Yθ(y)√

s
)
θ
σ

s−
d
2 exp(−∣x − y∣2

Cs
) ,

and by our choice of σ, we have s−
θ
2σ = s− d4− 2−σ

8σ . Using also that Yθ = Oθ(C) and
the deterministic bound in (9.26), we thus obtain the result.

Proof of Lemma 9.5. For each T ′,K′ ∈ [1,∞), we denote by S ′(T ′,K′, σ) the state-
ment that, for every t ∈ [1, T ′] and x ∈ Rd, we have

u(t, x) = Oσ (K′t−
1
2
− d

4 ) .
We decompose the proof into two steps.

Step 1. In this first step, we show that there exists a constant T0(σ, d,Λ) < ∞
such that under the assumption of S(T,K, σ), we have for every T ′ ∈ [T0, T ] and
K′ ∈ [1,∞) that

S ′(T ′,K′, σ) Ô⇒ S ′ (2T ′,K′ ∨ (K + K′

2
) , σ) , (9.28)

We thus assume that S(T,K, σ) and S ′(T ′,K′, σ) hold, and fix t ∈ (T ′
2 , T

′] and
x ∈ Rd. The argument is based on the decomposition

u(2t, x) = ∫
Rd
u(t, y)P (t, x, y)dy

= ∫
Rd
u(t, y)P (t, x − y)dy + ∫

Rd
u(t, y) (P (t, x, y) − P (t, x − y)) dy. (9.29)

The first term on the right side can be easily controlled using the assumption
of S(T,K, σ), which gives us that

∫
Rd
u(t, y)P (t, x − y)dy = Oσ (Kt− 1

2
− d

4 ) .
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We now turn to the estimation of the second term on the right side of (9.29). By
Lemma 9.2 and the assumption of S ′(T ′,K′, σ), we have, for every z ∈ Rd, that

∣u(t, z)∣ ⩽ Ct− 1
2 ∧Oσ (K′t−

1
2
− d

4 ) .
By Lemma 9.6, we deduce that, for some δ(d,Λ) > 0 and C(σ, d,Λ) < ∞,

∫
Rd
u(t, y) (P (t, x, y) − P (t, x − y)) dy = Oσ (Ct−δ(2−σ)K′t−

1
2
− d

4 ) .
The implication (9.28) thus follows from these estimates and Lemma A.4, provided
that we choose T0(σ, d,Λ) < ∞ sufficiently large that, for the constant C(σ, d,Λ) < ∞
in the previous display,

C (T0

2
)−δ(2−σ) ⩽ 2−

3
2
− d

4 .

Step 2. We complete the proof. We fix the constant T0(σ, d,Λ) < ∞ identified in
the previous step. By Lemma 9.2, there exists K0(d,Λ) < ∞ such that S ′(T0,K0, σ)
holds. In particular, the statement S ′(T0, 2K+K0, σ) holds. A recursive application
of (9.28) then yields that S ′(2T,2K + K0, σ), and this implies the announced
result.

In the next lemma, we obtain the optimal decay in s−
1
2
− d

4 for spatial averages
of u(t, ⋅) on scales of order s

1
2 . At this stage we pay no attention to obtaining the

right scaling in the t variable. This lemma will serve us to establish the base case
for propagating the statement S(T,K, σ) forward in time.

Lemma 9.7. There exists C(d,Λ) < ∞ such that for every t ∈ [1,∞), s ∈ [t,∞)
and x ∈ Rd,

∫
Rd
u(t, y)P (s, x − y)dy = O2 (Ct d4 s− 1

2
− d

4 ) . (9.30)

Proof. Without loss of generality, we focus on proving (9.30) for x = 0. For every
t ∈ [1,∞) and r ⩾ t 12 , we write

w(t, x, y) ∶= g(y) ⋅ ∇yP (t, x, y) and w′(r, t, x, y) ∶= g(y) ⋅ ∇yP
′
r(t, x, y),

where P ′
r(t, x, y) is the function defined in Lemma 9.3. By (9.2) and (9.14), we

have
u(t, x) = −∫

Rd
w(t, x, y)dy = − lim

r→∞∫Rd
w′(r, t, x, y)dy.

Denoting
w̃′(r, t, x, y) ∶= w′(r, t, x, y) −E [w′(r, t, x, y)] ,
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we can thus split the left side of (9.30) using the identity

∫
Rd
u(t, y)P (s, y)dy
= ∫

Rd
E [u(t, y)]P (s, y)dy − ∫

Rd
∫
Rd
w̃′(t 12 , t, y, z)P (s, y)dz dy

− ∞∑
k=0
∫
Rd
∫
Rd

(w̃′(2k+1t
1
2 , t, y, z) − w̃′(2kt 12 , t, y, z))P (s, y)dz dy. (9.31)

We decompose the estimation of each of these terms into four steps.
Step 1. We show that there exists C(d,Λ) < ∞ such that for every s, t ∈ [1,∞),

∣∫
Rd

E[u(t, y)]P (s, y)dy∣ ⩽ Ct− 1
2 exp (−C−1s) . (9.32)

Note that the function y ↦ E[u(t, y)] is Zd-periodic, and by Lemma 9.2, it is
bounded by Ct−

1
2 . Arguing as in Exercise 3.7, we see that that proof of (9.32)

amounts to the verification of the fact that for every t > 0,

∫
[0,1]d

E[u(t, y)]dy = 0. (9.33)

Using again that the function y ↦ u(t, y) is Zd-stationary, the equation for u
and Lemma 9.2, we see that, for every t2 > t1 > 0, for ψ ∈ C∞

c (B1) with mass one
and ψR = R−dψ ( ⋅

R
), we have

∫
[0,1]d

E [u(t1, y)] dy − ∫
[0,1]d

E [u(t2, y)] dy
= lim
R→∞

E [∫ t2

t1
∫
Rd
∇u(t′, y) ⋅ a(y)∇ψR(y)dy dt′] = 0.

Hence, the quantity on the left side of (9.33) does not depend on t > 0. Since by
Lemma 9.2, this quantity decays to 0 as t tends to infinity, this proves (9.33).

Step 2. We next show, using the unit range of dependence assumption, that
there exists a constant C(d,Λ) < ∞ such that for every t ⩾ 1, r ⩾ t 12 and s ⩾ t,

∣∫
Rd
∫
Rd
w̃′(r, t, y, z)P (s, y)dz dy∣ ⩽ O2

⎛⎝C (r2

t
) 1

2 (r2

s
) d4 s− 1

2

⎞⎠ . (9.34)

To see this, we rewrite the left side as

∫
Rd
∫
Rd
w̃′(r, t, y, z)P (s, y)dz dy

= ∑
z′∈rZd

∫
Rd
∫
z′+r◻0

w̃′(r, t, y, z)dz P (s, y)dy
= ∑
z′∈rZd

∫
Rd
∫
z′+r◻0

w̃′(r, t, y, z)dz (P (s, y) − (P (s, ⋅))
z′+3r◻0

) dy
= ∑
z′∈rZd

∫
z′+3r◻0

∫
z′+r◻0

w̃′(r, t, y, z)dz (P (s, y) − (P (s, ⋅))
z′+3r◻0

) dy. (9.35)
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Indeed, the first equality is just splitting the integral; the second one follows
from (9.12), since

∫
Rd
w′(r, t, y, z)dy = ∫

Rd
g(z) ⋅ ∇zP

′
r(t, y, z)dy = g(z) ⋅ ∇z ∫

Rd
P ′
r(t, y, z)dy = 0;

and the third one follows from the fact that y ↦ ∇P ′
r(t, y, z) is supported in Br(z).

To estimate the resulting sum, we use the independence assumption by way of
Lemma A.10. To prepare for the application of this lemma, we observe that, for
every z′ ∈ rZd, the random variable

∫
z′+3r◻0

∫
z′+r◻0

w̃′(r, t, y, z)dz (P (s, y) − (P (s, ⋅))
z′+3r◻0

) dy
is F(z′ + 4r◻0)–measurable

and its expectation vanishes since E [w̃′(r, t, y, z)] = 0. The measurability follows
from (9.10) and the definition of w̃′ above. Next we observe that, by Lemma 9.3,
for every z′ ∈ rZd,

∣∫
z′+r◻0

w̃′(r, t, y, z)dz∣ ⩽ 2∥g∥L∞(Rd) ∥∇yP
′
r(t, y, ⋅)∥L1(Rd) ⩽ Ct− 1

2 . (9.36)

Thus, by the Poincaré inequality, we obtain that

∣∫
z′+3r◻0

∫
z′+r◻0

w̃′(r, t, y, z)dz (P (s, y) − (P (s, ⋅))
z′+3r◻0

) dy∣
⩽ C (r2

t
) 1

2 ∥∇P (s, ⋅)∥
L1(z′+3r◻0)

.

We now apply Lemma A.10 to obtain, for each of the 3d elements z′′ of rZd∩(3r◻0),
∣ ∑
z′∈z′′+3rZd

∫
z′+3r◻0

∫
z′+r◻0

w̃′(r, t, y, z)dz (P (s, y) − (P (s, ⋅))
z′+3r◻0

) dy∣
⩽ O2

⎛⎝C (r2

t
) 1

2 ( ∑
z′∈z′′+3rZd

∥∇P (s, ⋅)∥2

L1(z′+3r◻0)
)

1
2⎞⎠ .

Summing over z′′ ∈ rZd ∩ (3r◻0) and using the triangle inequality, we obtain

∣ ∑
z′∈3rZd

∫
z′+3r◻0

∫
z′+r◻0

w̃′(r, t, y, z)dz (P (s, y) − (P (s, ⋅))
z′+3r◻0

) dy∣
⩽ O2

⎛⎝C (r2

t
) 1

2 ( ∑
z′∈rZd

∥∇P (s, ⋅)∥2

L1(z′+3r◻0)
)

1
2⎞⎠ .
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The expression on the right can be further estimated using Hölder’s inequality by

( ∑
z′∈rZd

∥∇P (s, ⋅)∥2

L1(z′+3r◻0)
)

1
2 ⩽ Cr d2 ∥∇P (s, ⋅)∥

L2(Rd) ⩽ C (r2

s
) d4 s− 1

2 ,

which gives (9.34).

Step 3. We show that there exists C(d,Λ) < ∞ such that for every t ⩾ 1, r ⩾ t 12
and s ⩾ t,

∣∫
Rd
∫
Rd

(w̃′(2r, t, y, z) − w̃′(r, t, y, z))P (s, y)dz dy∣
⩽ O2

⎛⎝C (r2

t
) 1

2 (r2

s
) d4 s− 1

2 exp(− r2

Ct
)⎞⎠ . (9.37)

The proof is almost identical to that of the previous step, except that we use
Lemma 9.3 to improve the bound (9.36) to

∣∫
z′+r◻0

w̃′(r, t, y, z)dz∣ ⩽ Ct− 1
2 exp(− r2

Ct
) .

Step 4. Using the decomposition in (9.31) with (9.32), (9.34), (9.37) and
Lemma A.4, we obtain the announced result.

The propagation of the assumption S(T,K, σ) forward in time is based on the
following splitting of the left side of (9.25).

Lemma 9.8. For every t1, s ∈ [1,∞), t2 ∈ [t1,∞), and x ∈ Rd, we have

∫
Rd
u(t2, y)P (s, x − y)dy = ∫

Rd
u(t1, y)P (s + t2 − t1, x − y)dy

+ ∫ t2

t1
∫
Rd

(a − a(y))∇u (t, y) ⋅ ∇P (s + t2 − t, x − y)dy dt. (9.38)

Proof. We fix t1, s ∈ [1,∞) and t2 ∈ [t1,∞). For each t ∈ (0, s + t2) , and x ∈ Rd, we
set

f(t) ∶= ∫
Rd
u(t, y)P (s + t2 − t, x − y)dy,

and observe that

∂tf(t) = ∫
Rd

(∂tu(t, y)P (s + t2 − t, x − y) − u(t, y)∂tP (s + t2 − t, x − y)) dy.
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Using the equation for u in (9.1), we get

∫
Rd
∂tu(t, y)P (s + t2 − t, x − y)dy
= ∫

Rd
(a − a(y))∇u(t, y) ⋅ ∇P (s + t2 − t, x − y)dy

− ∫
Rd
∇u(t, y) ⋅ a∇P (s + t2 − t, x − y)dy

= ∫
Rd

(a − a(y))∇u(t, y) ⋅ ∇P (s + t2 − t, x − y)dy
+ ∫

Rd
u(t, y)∂tP (s + t2 − t, x − y)dy.

The result follows by combining the two previous displays and integrating over the
interval (t1, t2).

In order to propagate the assumption of S(T,K, σ), we will argue that the last
term on the right side of (9.38) is of lower order compared with the first term,
which is simply the spatial average of u at an earlier time. Intuitively, the reason
why the last term in (9.38) is of lower order is an idea we encountered already
many times throughout the book: the spatial averages of a∇u and a∇u should
be close (see e.g. Theorem 1.12 and Lemmas 4.13 and 5.16). We first show the
corresponding result for the parabolic Green function using a two-scale expansion
argument.

Lemma 9.9. Fix σ ∈ (0, d) and α ∈ (0,Λ−1). There exist an exponent δ(d,Λ) > 0, a
constant C(σ,α, d,Λ) < ∞, and, for each x ∈ Rd, a random variable Yσ(x) satisfying

Yσ(x) ⩽ Oσ (C) (9.39)

such that for every x, y ∈ Rd, t ⩾ 1 ∨ Y2
σ(y) and s ⩾ 1 ∨ Y2

σ(x), we have

∣∫
Rd

(a(z) − a)∇xP (t, z, y) ⋅ ∇P (s, x − z)dz∣
⩽ Ct−δ(d−σ)− 1

2 s−
1
2 (t + s)− d2 exp(−α ∣x − y∣2

4(t + s)) . (9.40)

Proof. We denote by Xσ the maximum of the two random variables appearing in
Lemma 3.13 and Proposition 6.2, and denote by (Xσ(x), x ∈ Rd) its stationary
extension, see Remark 3.9. We define Yσ(x) to be the maximum between Xσ(x)
and the random variable appearing in Theorem 8.17. Note that there exists
C(σ, d,Λ) < ∞ such that Yσ = Oσ(C).

Throughout the proof, we fix α ∈ (0,Λ−1), x, y ∈ Rd and t, s ∈ [1,∞) satisfying
t
1
2 ⩾ Yσ(y) and s 1

2 ⩾ Yσ(x). Let H be the two-scale expansion of P defined in (8.64).
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We write

∣∫
Rd

(a(z) − a)∇xP (t, z, y)P (s, x − z)dz∣
⩽ ∣∫

Rd
(a(z) − a)∇xH (t, z, y)P (s, x − z)dz∣

+ ∣∫
Rd

(a(z) − a) (∇xP (t, z, y) − ∇xH (t, z, y))P (s, x − z)dz∣ . (9.41)

We estimate the two terms appearing on the right side of (9.41) separately in the
following two steps.

Step 1. We show that there exist δ(d,Λ) > 0 and C(σ,α, d,Λ) < ∞ such that

∣∫
Rd

(a(z) − a)∇xH (t, z, y) ⋅ ∇P (s, x − z)dz∣
⩽ Ct−δ(d−σ)− 1

2 (t + s
s

) d4 (t + s)− d2 exp(−α ∣x − y∣2
4(t + s)) . (9.42)

By the definition of H, we see that

(a(z) − a)∇xH (t, z, y)
= d∑
k=1

(a(z) (ek +∇φek(z)) − aek − a∇φek(z))∂xkP (t, z − y)
+ d∑
k=1

(φek(z)− (φek∗Φ(t, ⋅)) (y)) (a(z) − a)∂xk∇P (t, z − y)
By the definition of the flux correctors, see (6.6), we have that

a(z) (ek +∇φek(z)) − aek = (∇ ⋅ Sek) (z),
and hence, reorganizing the terms, we get

(a(z) − a)∇xH (t, z, y) = d∑
k=1

[∇ ⋅ Sek] (z)∂xkP (t, z − y)
+ d∑
k=1

[a∇((φek − (φek∗Φ(t, ⋅)) (y))∂xkP (t, ⋅ − y))] (z)
+ d∑
k=1

(φek(z)− (φek∗Φ(t, ⋅)) (y))a(z)∂xk∇P (t, z − y).
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Therefore, after integrating by parts, we obtain, for β ∶= 1
2(Λ−1 + α),

∣∫
Rd

(a(z) − a)∇xH (t, z, y) ⋅ ∇P (s, x − z)dz∣
⩽ Ct−1s−

1
2

d∑
k=1
∫
Rd

∣φek(z) − (φek∗Φ(t, ⋅)) (y)∣Φ( t
β
, z − y)Φ( s

β
, z − x) dz

+Ct−1s−
1
2

d∑
k=1
∫
Rd

∣Sek(z) − (Sek)B√s(y)∣Φ( t
β
, z − y)Φ( s

β
, z − x) dz.

Writing

f(z) ∶= d∑
k=1

(∣φek(z) − (φek∗Φ(t, ⋅)) (y)∣ + ∣Sek(z) − (Sek)B√s(y)∣) ,
we use Step 1 of the proof of Lemma 8.16 to obtain

∣∫
Rd

(a(z) − a)∇xH (t, z, y)P (s, x − z)dz∣
⩽ Ct−1s−

1
2 ∫ ∞

0
rd+1 exp(−β r2

4
)∥fΦ( s

β
, ⋅ − x)∥

L1(B
rt1/2

(y))
dr.

By Lemma 3.13, Proposition 6.2 and the fact that Yσ(y) ⩽ t 12 , we have that

∥f∥
L2(B

rt1/2
(y)) ⩽ C (rt 12)1−δ(d−σ)

.

Thus, by Hölder’s inequality,

∥fΦ( s
β
, ⋅ − x)∥

L1(B
rt1/2

(y))
⩽ C (rt 12)1−δ(d−σ) ∥Φ( s

β
, ⋅ − x)∥

L2(B
rt1/2

(y))
,

and, by another application of Hölder’s inequality and Step 1 of the proof of
Lemma 8.16,

∫ ∞

0
rd+1 exp(−β r2

4
)∥fΦ( s

β
, ⋅ − x)∥

L1(B
rt1/2

(y))
dr

⩽ Ct 12 (1−δ(d−σ)) ⎛⎝s− d2 ∫
∞

0
rd+1 exp(−2α

r2

4
)∥Φ( s

2α
, ⋅ − x)∥

L1(B
rt1/2

(y))
dr

⎞⎠
1
2

= Ct 12 (1−δ(d−σ)) (t + s
s

) d4 Φ(t + s
α

, x − y) .
Combining the above displays and redefining δ > 0, we obtain (9.42).
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Step 2. We now estimate the second term in (9.42), and show that

∣∫
Rd

(a(z) − a) (∇xP (t, z, y) − ∇xH (t, z, y))P (s, x − z)dz∣
⩽ Cs−δ(d−σ)t− 1

2 (t + s)− d2 exp(−α ∣x − y∣2
4(t + s)) . (9.43)

This, follows directly from Theorem 8.17, because s
1
2 ⩾ Yσ(x).

We are now ready to state and prove the lemma that allows to control the last
term in (9.38) and therefore propagate the assumption of S(T,K, σ) forward in
time. The argument relies on Lemma 9.9 and CLT cancellations.

Lemma 9.10. The exist an exponent δ(d,Λ) > 0 and, for each σ ∈ (0, 2), a constant
C(σ, d,Λ) < ∞ such that the following holds. Assume that for some K ∈ [1,∞) and
t ∈ [1,∞), we have for every x ∈ Rd that

∣u ( t
2 , x)∣ ⩽ Kt−

1
2 ∧Oσ (Kt− 1

2
− d

4 ) . (9.44)

Then, for every s ∈ [t,∞) and x ∈ Rd, we have the estimate

∫
Rd

(a − a(y))∇u (t, y) ⋅ ∇P (s, x − y)dy = Oσ (CKt−δ(2−σ)−1s−
1
2
− d

4 ) . (9.45)

Proof. We fix σ ∈ (0,2) and decompose the proof into two steps.
Step 1. We first show that there exist δ(d,Λ) > 0 and C(σ, d,Λ) < ∞ such that,

for every t ∈ [1,∞), s ∈ [t,∞), and x,x′ ∈ Rd,

∫
x′+r◻0

(a − a(y))∇u (t, y) ⋅ ∇P (s, x − y)dy
= Oσ (CKt−δ(2−σ)−1− d

4 s−
1
2 ∥Φ ( t+s

α , ⋅ − x)∥L1(x′+r◻0)
) . (9.46)

To see this, we write

∫
x′+r◻0

(a − a(y))∇u (t, y) ⋅ ∇P (s, x − y)dy
= ∫

x′+r◻0

u ( t
2 , z)(∫Rd

(a − a(y))∇xP ( t
2 , y, z) ⋅ ∇P (s, x − y)dy) dz

Set θ ∶= d(σ+2)
4 and α ∶= 1

2Λ−1. By Lemma 9.9, there exist δ(d,Λ) > 0 and, for every
z ∈ Rd, a random variable Yθ(z) such that Yθ(z) ⩽ Oθ(C) and

∣∫
Rd

(a − a(y))∇xP ( t
2 , y, z) ⋅ ∇P (s, x − y)dy∣1

{Yθ(y)∨Yθ(x)⩽t
1
2 }

⩽ Ct−δ(d−σ)− 1
2 s−

1
2 Φ(t + s

α
, z − x) .
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Hence the assumption of (9.44) yields, via Lemma A.4, that

∣∫
x′+r◻0

u ( t
2 , z)∫Rd

(a−a(y))∇xP ( t
2 , y, z) ⋅ ∇P (s, x−y)dy1

{Yθ(y)∨Yθ(x)⩽t
1
2 }
dz∣

⩽ Oσ (CKt−δ(d−σ)−1− d
4 s−

1
2 ∥Φ ( t+s

α , ⋅ − x)∥L1(x′+r◻0)
) .

On the other hand, by Lemma 8.16 we have the quenched bound

∣∫
Rd

(a − a(y))∇xP ( t
2 , y, z) ⋅ ∇P (s, x − y)dy∣ ⩽ Ct− 1

2 s−
1
2 Φ(t + s

α
, z − x) .

Since
1
{Yθ(y)∨Yθ(x)>t

1
2 }

⩽ t− d4− d
8σ

(2−σ) (Yθ(x) θσ + Yθ(x) θσ ) ,
Lemma A.4 and the bound ∣u ( t

2 , z)∣ ⩽ Kt−
1
2 in (9.44) imply, after possibly reducing

the value of δ(d,Λ) > 0,

∣∫
x′+r◻0

u ( t
2 , z)∫Rd

(a−a(y))∇xP ( t
2 , y, z) ⋅ ∇P (s, x−y)dy1

{Yθ(y)∨Yθ(x)>t
1
2 }
dz∣

⩽ Oσ (CKt−δ(2−σ)−1− d
4 s−

1
2 ∥Φ ( t+s

α , ⋅ − x)∥L1(x′+r◻0)
) .

Combining these estimates yields (9.46).
Step 2. We now show (9.45) using the unit range of dependence assumption.

Set r ∶= t 1+ε2 with ε ∶= δ(2−σ)
d . Using the notation u′(r, t, x) introduced in (9.22), we

define

f(y) ∶= (a − a(y))∇u (t, y) , f ′(r, y) ∶= (a − a(y))∇u′ (r, t, y) ,
as well as

f̃(y) ∶= f(t, y) −E[f(t, y)] and f̃ ′(r, y) ∶= f ′(r, t, y) −E[f ′(r, t, y)].
Recall that, by Lemma 9.4, we have

∥f − f ′(r, ⋅)∥L∞(Rd) ⩽ Ct− 1
2 exp(−C−1 r

2

t
) = Ct− 1

2 exp (−C−1tε) .
Set also, for every k ∈ N,

g̃′k(r, y) ∶= f̃ ′(2k+1r, t, y) − f̃ ′(2kr, t, y),
and note using Lemma 9.4 again that

∥g̃′k(r, ⋅)∥L∞(Rd) ⩽ Ct− 1
2 exp (−C−14ktε) .
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We use the decomposition

∫
Rd

f̃(y) ⋅ ∇P (s, x − y)dy = ∑
x′∈rZd

∫
x′+r◻0

f̃ ′(r, y) ⋅ ∇P (s, x − y)dy
+ ∞∑
k=0

∑
x′∈2krZd

∫
x′+2kr◻0

g̃′k(r, y) ⋅ ∇P (s, x − y)dy. (9.47)

Let us now estimate the sizes of summands. First, we have that

∫
x′+r◻0

f̃ ′(r, y) ⋅ ∇P (s, x − y)dy = Oσ (CKt−δ(2−σ)−1− d
4 s−

1
2 ∥Φ ( t+s

α , ⋅ − x)∥L1(x′+r◻0)
) ,

which follows by (9.46) and

∣∫
x′+r◻0

(̃f(y) − f̃ ′(r, y)) ⋅ ∇P (s, x − y)dy∣
⩽ Ct− 1

2 exp (−C−1tε) s− 1
2 r

d
2 ∥Φ ( t+s

α , ⋅ − x)∥L1(x′+r◻0)
.

We also have that

∣∫
x′+2kr◻0

g̃′k(r, ⋅) ⋅ ∇P (s, x − y)dy∣
⩽ C2−k(d+2)t−δ(2−σ)−1− d

4 s−
1
2 ∥Φ ( t+s

α , ⋅ − x)∥L1(x′+2kr◻0)
.

For each y ∈ Rd, the random variables f̃ ′(r, y) and g′k(r, y) are F(Br(y))–measurable
and F(B2kr(y))–measurable, respectively. We thus obtain from Lemma A.10,
Lemma A.4 and the previous two displays the existence of C(σ, d,Λ) < ∞ such that

∣ ∑
z′∈rZd

∫
z′+r◻0

f̃ ′(r, y) ⋅ ∇P (s, x − y)dy∣
⩽ Oσ ⎛⎝CKt−δ(2−σ)−1− d

4 s−
1
2 ( ∑

z′∈rZd
∥Φ( s

α
, ⋅ − x)∥2

L1(z′+r◻0)
)

1
2⎞⎠

= Oσ (CKt−δ(2−σ)−1− d
4 s−

1
2 r

d
2 ∥Φ( s

α
, ⋅)∥

L2(Rd)
)

= Oσ (CKt− δ(2−σ)2
−1s−

1
2
− d

4 ) .
Similarly,

∞∑
k=0

∣ ∑
z′∈2krZd

∫
z′+2kr◻0

ṽ′k(r, y)∂tP (s, x − y)dy∣ ⩽ Oσ (CKt− δ(2−σ)2
−1s−

1
2
− d

4 ) .
Combining previous two displays with (9.47) and redefining δ completes the argu-
ment.
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We are now ready to complete the proof of Theorem 9.1.

Proof of Theorem 9.1. We decompose the proof into two steps.
Step 1. In the first step, we show that there exist an exponent ε(σ, d,Λ) > 0

and a constant C(σ, d,Λ) < ∞ such that for every T,K ⩾ 1,

S(T,K, σ) Ô⇒ S (2T,K(1 +CT −ε), σ) . (9.48)

In order to do so, we will use the decomposition provided by Lemma 9.8. To
start, by Lemma 9.5, there exists a constant C(σ, d,Λ) < ∞ such that, under the
assumption of S(T,K, σ), we have, for every t ∈ [1,2T ] and x ∈ Rd, that

u(t, x) = Oσ (CKt− 1
2
− d

4 ) . (9.49)

Using also Lemma 9.2, we obtain, for every t ∈ [1,2T ],
∣u(t, x)∣ ⩽ Ct− 1

2 ∧Oσ (CKt− 1
2
− d

4 ) . (9.50)

For each t ∈ (1
2T,T ] and s ⩾ t, we use Lemma 9.8 in the form of

∫
Rd
u(2t, y)P (s, x − y)dy = ∫

Rd
u(t, y)P (s + t, x − y)dy

+ ∫ 2t

t
∫
Rd

(a − a(y))∇u (t′, y) ⋅ ∇P (s + t − t′, x − y)dy dt′.
In view of (9.50), we can apply Lemma 9.10 and get that

∫ 2t

t
∫
Rd

(a − a(y))∇u (t′, y) ⋅ ∇P (s + t − t′, x − y)dy dt′ = Oσ (CKt−δ(2−σ)s− 1
2
− d

4 ) .
By our assumption of S(T,K, σ), we also have

∫
Rd
u(t, y)P (s + t, x − y)dy = Oσ (Ks− 1

2
− d

4 ) ,
and thus

∫
Rd
u(2t, y)P (s, x − y)dy ⩽ Oσ ((1 +CT −δ(2−σ))Ks− 1

2
− d

4 ) .
This proves (9.48) with ε ∶= δ(2 − σ) > 0.

Step 2. We conclude the proof. By Lemma 9.7, there exists a constant
K0(d,Λ) < ∞ such that S(1,K0, 2) holds. Since ∏∞

k=0(1 +C2−kε) < ∞, an induction
on (9.48) implies the existence of a constant K(σ, d,Λ) < ∞ such that S(T,K, σ)
holds for every T ⩾ 1. The conclusion then follows by Lemma 9.5.
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9.2 Homogenization of the Green functions: optimal scaling

In this section, we prove optimal quantitative estimates on the difference be-
tween the heterogeneous parabolic Green function P (t, x, y) and its homogenized
counterpart P (t, x − y), which are stated in the following theorem.

Theorem 9.11 (Optimal convergence of parabolic Green function). Fix σ ∈ (0, 2)
and α ∈ (0,Λ−1). There exists C(σ,α, d,Λ) < ∞ such that, for every t ∈ [1,∞)
and x, y ∈ Rd,

∣P (t, x, y) − P (t, x − y)∣ ⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (Ct− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d > 2,

Oσ (C log
1
2 (1 + t)t− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d = 2.

(9.51)

In view of (8.46), Theorem 9.11 implies the following quantitative homogeniza-
tion result for the elliptic Green function G.

Corollary 9.12 (Optimal convergence of elliptic Green function). For each σ ∈(0, 2), there exists a constant C(σ, d,Λ) < ∞ such that, for every t ∈ [1,∞) and x, y ∈
Rd with ∣x − y∣ ⩾ 1,

∣G(x, y) −G(x − y)∣ ⩽ ⎧⎪⎪⎨⎪⎪⎩
Oσ (C ∣x − y∣1−d) if d > 2,

Oσ (C ∣x − y∣−1 log
1
2 (2 + ∣x − y∣)) if d = 2.

(9.52)

The proof of Theorem 9.11 is more subtle than the one of Theorem 8.17, due
to the difficulty in obtaining bounds at the optimal scaling. While it is relatively
straightforward to bootstrap the arguments from the previous section to obtain
a version of (9.6) with t−

1
2
+δ in place of the factor of t−

1
2 , getting on top of the

exponent requires us to “go to next order” in our asymptotic expansion of P (or, at
least we must expand to next order the term causing the difficulty in the bootstrap
argument). This should not hide the fact that the argument is still a bootstrapping
of the suboptimal result of Theorem 8.17, since it uses the latter in a crucial way.
However, as discussed below, the formal argument will be an induction in the time
variable rather than a bootstrap in the exponent.

Estimates for the error in the two-scale expansion for both ∇xP and ∇x∇yP
which are “nearly optimal” can be obtained from Theorem 9.11 by using an argument
similar to the one in Step 2 of the proof of Theorem 8.17 in the previous section.
This argument however leads to a small loss of the exponent in the estimate. The
statement one would obtain for ∇xP for instance is that, for every α ∈ (0,Λ−1) and
β > 0, there exists a constant C(β,α, d,Λ) < ∞ such that

∥∇xP (t, ⋅, y) − ∇xH(t, ⋅, y)∥L2(Br(x)) ⩽ O2 (Ct− 1
2
+βt−

1
2
− d

2 exp(−α ∣x − y∣2
4t

)) . (9.53)
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In fact, this small loss of exponent β > 0 can be removed, but this requires a more
subtle argument that is beyond the scope of this book.

In order to motivate the analysis underlying the proof of Theorem 9.11, let us
briefly discuss some classical facts concerning intermediate asymptotics of solutions
to the heat equation. Consider the initial value problem for the heat equation

{∂tu −∆u = 0 in (0,∞) ×Rd,

u(0, ⋅) = u0 on Rd,
(9.54)

for a smooth and compactly supported initial condition u0 ∈ C∞
c (Rd). It is well-

known that, after a long time, the solution u will be close to a multiple of the heat
kernel Φ, namely m0Φ, where m = ∫Rd u0 is the mass of the initial condition. For
instance, in terms of the L1(Rd) norm, we have that

lim
t→∞

∥u(t, ⋅) −mΦ(t, ⋅)∥L1(Rd) = 0.

One may wonder about the rate of convergence in this limit. It turns out to be
O(t− 1

2 ), that is, for a constant C depending on d and the support of u0,

∥u(t, ⋅) −mΦ(t, ⋅)∥L1(Rd) ⩽ Ct− 1
2 . (9.55)

In particular, if u0 has zero mass, then u(t, ⋅) decays to zero by a factor of t−
1
2 in

L1(Rd) and in every other Lp norm by t−
1
2 faster than a solution with nonzero

mass. This estimate can be proved directly from the representation formula

u(t, x) = ∫
Rd
u0(y)Φ(t, x − y)dy

and an integration by parts. It is actually sharp, as we can see immediately from
considering for instance u(t, x) = ∂xiΦ(t+1, x) for any i ∈ {1, . . . , d}, which has zero
mass and has an L1 norm which decays at exactly this rate.

Moreover, this suggests a more precise asymptotic expansion for u0 of the form

u(t, x) =mΦ(t, x) +m ⋅ ∇Φ(t, x) + o (t− 1
2) as t→∞, (9.56)

where the vector m should be the center of mass (or first moment) of u0:

m ∶= ∫
Rd
xu0(x)dx.

As it turns out, this is indeed correct, and one can show that

∥u(t, ⋅) − (mΦ(t, ⋅) +m ⋅ ∇Φ(t, ⋅))∥L1(Rd) ⩽ Ct−1.
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In fact, a full asymptotic expansion (to any power of t−
1
2 ) is possible in terms of

the moments of u and higher derivatives of the heat kernel, and we refer the reader
to [42] for the precise statement and proof of this result.

To understand the relevance of this discussion to our context, namely that
of proving Theorem 9.11, notice that the estimate (9.51) says that the difference
between P and P has relative size of order t−

1
2 , the same as the error of the

leading-order intermediate asymptotic expansion above. The proof strategy for
Theorem 9.11 relies on a propagation argument, in other words we assume the
validity of the estimate up to time t and try to establish it at time 2t. To do this,
we will study two sources of error: the error that has already been accumulated
up to time t, which will be pushed forward it time, and the “new” error created
between time t and 2t due to the fact that P and P solve different equations
(the homogenization error). The problem we face is that even if the latter error
were zero (no homogenization error), we can see from the discussion above that
the error that is propagated forward in time show decay no faster than the heat
kernel times Ct−

1
2 . This may at first glance appear to be just what we need, but

the accumulation of many such errors across all scales will lead to a logarithmic
correction (i.e., by this argument one would be able to show only (9.51) with an
additional factor of log t on the right side).

Therefore the proof strategy must be slightly smarter, and so we keep track of
the first moment of P as we propagate the estimate. This leads us to define

Q(t, x, y) ∶= P (t, x − y) −m(t, y) ⋅ ∇P (t, x − y), (9.57)

where we denote the center of mass (or first moment) of P (t, ⋅, y) relative to y by

m(t, y) ∶= ∫
Rd

(x − y)P (t, x, y)dx. (9.58)

Note that (t, x) ↦ Q(t, x, y) is not an exact solution of the homogenized equation,
since m depends on t. We also stress that it is also not a deterministic function
(despite the use of the “bar” notation) since m(t, y) is random. However, as we
will see, Q(⋅, y) is almost a solution of the a-heat equation. We record some basic
estimates on m(t, y) in Lemma 9.13 below.

We denote the two-scale expansion of Q by

K(t, x, y) ∶= Q(t, x, y) + d∑
k=1

(φek(x) − (φek ∗Φ(t, ⋅)) (y))∂xkQ(t, x, y). (9.59)

The proof of Theorem 9.11 proceeds by proving bounds on the difference P −K,
which we expect to be easier to analyze since, informed by (9.56), we can expect the
error propagated forward in time to decay faster than t−

1
2 . Indeed, the motivation

for using Q in place of P in the definition is that it has the same center of mass
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as P (as well as the same mass). By the definitions of m(t, y) and Q(t, x, y) and
the identity

∫
Rd
−x∂xiP (t, x)dx = ∫

Rd
eiP (t, x)dx = ei,

we have that

∫
Rd

(x − y)Q(t, x, y)dx =m(t, y) = ∫
Rd

(x − y)P (t, x, y)dx. (9.60)

It is also easy to check that

∫
Rd
Q(t, x, y)dx = 1 = ∫

Rd
P (t, x, y)dx. (9.61)

In the following lemmas, we check that the difference between K and P is small
enough that appropriate estimates on P −K are sufficient to imply Theorem 9.11.
We do this by showing that Q − P is sufficiently small, which reduces to showing
that stochastic moments of m(t, y) are bounded independently of t, and then
showing that K −Q is sufficiently small as well, which is an exercise in applying
some familiar bounds on the correctors to estimate the second term on the right
of (9.59).

Throughout the rest of this section, for each σ ∈ (0, d) and y ∈ Rd, we let Yσ(y)
denote the random variable in the statement of Theorem 8.17 which satisfies, for
some constant C(σ,Λ, d) < ∞,

Yσ(y) ⩽ Oσ(C). (9.62)

Lemma 9.13. There exists a constant C(d,Λ) < ∞ such that, for t > 0 and y ∈ Rd,

∣m(t, y)∣ + t ∣∂tm(t, y)∣ ⩽ Ct 12 . (9.63)

Moreover, for every σ ∈ (0,2), there exist δ(d,Λ) > 0 and C(σ, d,Λ) < ∞ such that,
for every t ⩾ 1 and y ∈ Rd,

∣∂tm(t, y)∣ ⩽ Oσ (Ct− 1
2
− d

4 ) (9.64)

and

∣m(t, y)∣ ⩽ ⎧⎪⎪⎨⎪⎪⎩
Oσ (C) if d > 2,

Oσ (C log
1
2 (1 + t)) if d = 2.

(9.65)

Lemma 9.14. For every σ ∈ (0,2) and α ∈ (0,Λ−1), there exists C(σ,α, d,Λ) < ∞
such that, for every x, y ∈ Rd and t ∈ [1,∞),

∣K(t, x, y) −Q(t, x, y)∣ ⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (Ct− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d > 2,

Oσ (C log
1
2 (1 + t)t− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d = 2.
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Before we give the proofs of Lemmas 9.13 and 9.14, notice that they imply that

∣K(t, x, y) − P (t, x − y)∣
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (Ct− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d > 2,

Oσ (C log
1
2 (1 + t)t− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d = 2.

(9.66)

Indeed, the bound (9.65) implies that, for every t > 0 and x, y ∈ Rd,

∣P (t, x − y) −Q(t, x − y)∣ ⩽ ∣m(t, y)∣ ∣∇P (t, x − y)∣
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (Ct− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d > 2,

Oσ (C log
1
2 (1 + t)t− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d = 2.

Combining this bound with the bound in Lemma 9.14, we get (9.66). The upshot
of (9.66) is that we can prove (9.51) by proving a similar estimate on P −K.

Proof of Lemma 9.13. We first show (9.63). By the Nash-Aronson bound,

∣m(t, y)∣ ⩽ C ∫
Rd
t−

d
2 ∣x − y∣ exp(−α ∣x − y∣2

4t
) dx ⩽ Ct 12 .

For the time derivative, observe that the equation for P gives us

∂tm(t, y) = ∫
Rd

(x − y)∂tP (t, x, y)dx = −∫
Rd

a(x)∇xP (t, x, y)dx, (9.67)

and thus (9.63) follows since

∥∇xP (t, ⋅, y)∥L1(Rd) ⩽ Ct− 1
2 .

We turn to the proof of (9.64) and (9.65). For every e ∈ ∂B1 we recognize
from (9.67) that ue ∶= ∂tm ⋅ e is the solution of

{∂tue −∇ ⋅ (a∇ue) = 0 in (0,∞) ×Rd,

u(0, ⋅) = ∇ ⋅ (a(⋅)e) on Rd.
(9.68)

Hence, for each σ ∈ (0,2), we have by Theorem 9.1 that for every t ⩾ 1 and y ∈ Rd,

∣∂tm(t, y)∣ = ∣∫
Rd

a(x)∇xP (t, x, y)dx∣ ⩽ Oσ(Ct− 1
2
− d

4 ),
giving (9.64). This also yields by Lemma A.4 that if d > 2, then

∣m(t, y)∣ ⩽ ∣∫ t

1
∂tm(t′, y)dt′∣ + ∣m(1, y)∣ ⩽ Oσ (C) .
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In d = 2 we instead use an argument from Section 4.7 using the bound (4.7). Using
Lemmas 9.6 and A.4 repeatedly, together with the semigroup property, we obtain
that there exists δ(d,Λ) > 0 such that, for every x ∈ Rd, s ∈ [0,∞) and t ∈ [1,∞),
∫
Rd
ue(t, y)P (s, x − y)dy
= ∫

Rd
∫
Rd
ue ( t2 , z)P ( t

2 , y, z) dz P (s, x − y)dy
= ∫

Rd
∫
Rd
ue ( t2 , z)P ( t

2 , y − z) dz P (s, x − y)dy +Oσ (Ct−δ(2−σ)−1)
= ∫

Rd
ue ( t2 , z)P (s + t

2 , x − z) dz +Oσ (Ct−δ(2−σ)−1)
= ∫

Rd
ue ( t2 , z)P (s + t

2 , x, z) dz +Oσ (Ct−δ(2−σ)−1) + Oσ (C(s + t)−δ(2−σ)−1)
= ue (t + s, x) + Oσ (Ct−δ(2−σ)−1) .

Therefore, by Theorem 9.1 and Lemma A.4, we have, for every x ∈ Rd, s, s′ ∈ (0,∞)
and T > s′ ∨ s,

(∫ T

1
ue(t, ⋅) ∗ (P (s′, ⋅) − P (s, ⋅))) (x)dt
= ∫ T

1
(ue(t + s′, x) − ue(t + s, x)) dt +Oσ(C)

= ∫ 1+s

1+s′
ue(t, x)dt +Oσ (C(1 + (s′ − s)T −1)) .

We also have by (9.8) that

(∫ 1

0
ue(t, ⋅) ∗ (P (s′, ⋅) − P (s, ⋅))) (x)dt ⩽ C.

By sending T →∞, we obtain that, for every x ∈ Rd, and s, s′ ∈ [1,∞),
(φe ∗ P (s′, ⋅) − φe ∗ P (s, ⋅)) (x) = ∫ s

s′
ue(t, x)dt +Oσ(C).

Consequently, (4.7) and Remark 4.28 yield that, for every x ∈ Rd and s ⩾ s′ ⩾ 1,

∫ s

s′
ue(t, x)dt = Oσ (C log

1
2 (2 + s

s′
)) .

As ue(t, x) = ∂tm(t, x) ⋅ e, we obtain (9.65) in the case d = 2.

Observe that, as a consequence of (9.63), we obtain, for each α ∈ (0,Λ−1), the
existence of a constant C(α, d,Λ) < ∞ such that, for every t > 0 and x, y ∈ Rd,

t ∣∂tQ(t, x, y)∣ + t ∣∇2
xQ(t, x, y)∣ +√

t ∣∇xQ(t, x, y)∣ + ∣Q(t, x, y)∣
⩽ Ct− d2 exp(−α ∣x − y∣2

4t
) . (9.69)
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Proof of Lemma 9.14. We have that

K(t, x, y) −Q(t, x, y) = d∑
k=1

(φek(x) − (φek ∗Φ(t, ⋅)) (y))∂xkQ(t, x, y).
In dimensions d > 2, Theorem 4.1 and Remark 3.14 imply that, for some δ(d,Λ) > 0,

d∑
k=1

∣φek(x) − (φek ∗Φ(t, ⋅)) (y)∣ ⩽ O2+δ(C).
On the other hand, in dimension d = 2, Theorem 4.1 and Remark 3.14 yield

d∑
k=1

∣φek(x) − (φek ∗Φ(t, ⋅)) (y)∣ ⩽ Oσ (C log (2 +√
t + ∣x − y∣) 1

2) .
Now the Nash-Aronson bound for P and the bound (9.69) for ∂xkQ(t, x, y) yield
the result.

As discussed above, we prove the desired decay estimate for P−K by propagating
it forward in time. The precise statement we propagate is given in the following
definition.

Definition 9.15. Given constants T ∈ [1,∞], C ∈ [1,∞), σ ∈ (0, 2) and α ∈ (0,Λ−1),
we let S (T,C, σ, α) denote the statement that, for every t ∈ [1, T ] ∩ (1,∞) and
x, y ∈ Rd,

∣(P −K)(t, x, y)∣ ⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (Ct− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d > 2,

Oσ (C log
1
2 (1 + t)t− 1

2
− d

2 exp(−α ∣x − y∣2
4t

)) if d = 2.

(9.70)

The main step in the proof of Theorem 9.11 is to show that, for every σ ∈ (0, 2)
and α ∈ (0,Λ−1), there exists C(σ,α, d,Λ) < ∞ such that, for every T,C ⩾ C,

S (T,C, σ, α) Ô⇒ S (2T,C, σ, α) . (9.71)

The proof of (9.71) is based on the Duhamel formula. For every s, t ∈ (0,∞) and
x, y ∈ Rd, we write

(P −K)(t + s, x, y)
= ∫

Rd
(P −K)(t, z, y)P (s, x, z)dz

− ∫ t+s

t
∫
Rd

(∂t′ −∇z ⋅ a∇z) K̂ (t′, z)P (t + s − t′, x, z)dz dt′. (9.72)
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Here, to enforce the validity of (9.72), we could choose K̂(⋅, ⋅) =K(⋅, ⋅, y). However,
in order to have (9.72) for fixed s, t > 0 and x, y ∈ Rd, it suffices that

K̂(t + s, x) =K(t + s, x, y) and K̂(t, ⋅) =K(t, ⋅, y).
This simple observation will give us more freedom and allow us to control the
interaction between the singularity created by ∇P (t + s − t′, x, z), when t′ tends
to t + s, and correctors and, especially, flux correctors present when computing(∂t′ −∇z ⋅ a∇z)K (t′, z, y); see Lemma 9.18 below.

The first integral on the right side of (9.72) represents the previous error,
accumulated by time t, propagated to time t + s, while the second term is due to
the error created between times t and t + s (the homogenization error). We first
concentrate on the former, which we rewrite as

∫
Rd

(P −K)(t, z, y)P (s, x, z)dz
= ∫

Rd
(P −K)(t, z, y) (P (s, x, z) − P (s, x − z)) dz

+ ∫
Rd

(P −Q)(t, z, y)P (s, x − z)dz
+ ∫

Rd
(Q −K)(t, z, y)P (s, x − z)dz. (9.73)

The last integral on the right side of (9.73) has been already treated in Lemma 9.14.
We will estimate the first two integrals on the right side of (9.73) in Lemmas 9.17
and 9.16, respectively. The motivation for using Q in place of P is precisely because
it allows us to estimate the second integral—this is where we will have to essentially
prove a version of (9.56).

Lemma 9.16. Fix σ ∈ (0,2) and α ∈ (0,Λ−1). There exists C(σ,α, d,Λ) < ∞
such that for every C, T ∈ [1,∞), if the statement S (T,C, σ, α) holds, then for
every x, y ∈ Rd, t ∈ (1, T ] and s ∈ [Ct,∞), we have

∣∫
Rd

(P −Q)(t, z, y)P (s, x − z)dz∣

⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Oσ (1

4
C(t + s)− 1

2
− d

2 exp(−α ∣x − y∣2
4(t + s))) if d > 2,

Oσ (1

4
C log

1
2 (1 + t)(t + s)− 1

2
− d

2 exp(−α ∣x − y∣2
4(t + s))) if d = 2.

Proof. We will exploit the fact that, as observed already in (9.61) and (9.60),

∫
Rd

(P −Q)(t, z, y)dz = 0 and ∫
Rd

(z − y)(P −Q)(t, z, y)dz = 0. (9.74)
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We use Taylor’s theorem with remainder for P (s, ⋅ − x) at y, that is,

P (s, z − x) = P (s, y − x) + ∇P (s, y − x) ⋅ (z − y)
+ ∫ 1

0
∫ 1

0
θ1∇2P (s, y − x + θ1θ2(z − y))dθ1 dθ2(z − y)⊗2.

The last term can be estimated by

∣∫ 1

0
∫ 1

0
θ1∇2P (s, y − x + θ1θ2(z − y))dθ1 dθ2(z − y)⊗2∣

⩽ C (1 + ∣y − z∣2
s

)2 ∣y − z∣2
s

s−
d
2 exp(−α +Λ−1

2

∣x − y∣2
4s

+C ∣y − z∣2
s

)
⩽ C ∣y − z∣2

s
s−

d
2 exp(−α +Λ−1

2

∣x − y∣2
4s

+C ∣y − z∣2
s

) .
We choose the constant C in the statement of the lemma large enough so that

C

s
⩽ α

16t
and

α +Λ−1

2

1

s
⩾ α

t + s.
Notice that the first condition ensures that∣y − z∣2

t
exp(C ∣y − z∣2

s
) ⩽ ∣y − z∣2

t
exp(α

4

∣y − z∣2
4t

) ⩽ C exp(α
2

∣y − z∣2
4t

) .
Combining the above bounds and using also that t + s ⩽ Cs, we obtain

∣P (s, z − x) − P (s, y − x) − ∇P (s, y − x) ⋅ (z − y)∣
⩽ Cts− 1

2 exp(α
2

∣y − z∣2
4t

) (t + s)− 1
2
− d

2 exp(−α ∣x − y∣2
4(t + s)) .

Together with (9.74) this leads to

∣∫
Rd

(P −Q)(t, z, y)P (s, x − z)dz∣
⩽ C ( t

s
) 1

2 (t + s)− 1
2
− d

2 exp(−α ∣x − y∣2
4(t + s)) t 12 ∫Rd

exp(α
2

∣y − z∣2
4t

) ∣(P −Q)(t, z, y)∣ dz.
By Lemmas 9.14 and A.4 and the assumption that S (T,C, σ, α) holds, we have

t
1
2 ∫

Rd
exp(α

2

∣y − z∣2
4t

) ∣(P −Q)(t, z, y)∣ dz
⩽ t 12 ∫

Rd
exp(α

2

∣y − z∣2
4t

)(∣(P −K) (t, z, y)∣ + ∣(Q −K)(t, z, y)∣) dz
⩽ ⎧⎪⎪⎨⎪⎪⎩
Oσ (CC) if d > 2,

Oσ (CC log
1
2 (1 + t)) if d = 2.

Combining the previous two displays and enlargening our choice of the constant C
in the statement of the lemma, if necessary, we obtain the desired estimate.
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We next give the estimate of the first integral on the right side of (9.73).

Lemma 9.17. Fix σ ∈ (0,2) and α ∈ (0,Λ−1). There exist δ(σ, d,Λ) > 0 and
C(σ,α, d,Λ) < ∞ such that for every C, T ∈ [1,∞), if S (T,C, σ, α) holds, then for
every x, y ∈ Rd, t ∈ (1, T ] and s ∈ [t,∞), we have

∫
Rd

∣(P −K)(t, z, y)∣ ∣P (s, x, z) − P (s, x − z)∣ dz
⩽ Oσ (CC(s

t
) 1

2

s−δ(t + s)− 1
2
− d

2 exp(−α ∣x − y∣2
4(t + s))) . (9.75)

Proof. Fix τ ∶= d(2+σ)
4 < d and let Xτ(z) be as in Remark 8.12. Using Theorem 8.17

and the hypothesis that S(T,C, σ, α) holds, Lemma A.4 yields

∫
Rd

∣(P −K)(t, z, y)∣ ∣P (s, x, z) − P (s, x − z)∣1{Xτ (z)⩽
√
s} dz

⩽ C ∫
Rd

∣(P −K)(t, z, y)∣ s−δ− d2 exp(−α ∣x − y∣2
4s

) dz
⩽ Oσ (C ∫

Rd
Ct−

1
2
− d

2 log
1
2 (1 + t) exp(−α ∣z − y∣2

4t
) s−δ− d2 exp(−α ∣z − x∣2

4s
) dz)

⩽ Oσ (CC(s
t
) 1

2

s−
δ
2 (t + s)− 1

2
− d

2 exp(−α ∣x − y∣2
4(t + s))) . (9.76)

Recalling the definition of τ , we have that
τ

2σ
= d

4
+ d(2 − σ)

8σ
⩾ 1

2
+ 2 − σ

4σ
.

Thus, for δ(σ) ∶= 2−σ
4σ > 0,

1{Xτ (z)⩾
√
s} ⩽ (X2

τ (z)
s

) τ
2σ ⩽ Oσ (Cs− 1

2
−δ)

and the Nash-Aronson bounds together with Lemma A.4, we get

∫
Rd

∣(P −K)(t, z, y)∣ ∣P (s, x, z) − P (s, x − z)∣1{Xτ (z)⩾
√
s} dz

⩽ C ∫
Rd
t−

d
2 exp(−α ∣z − y∣2

4t
) s− d2 exp(α ∣z − y∣2

4s
)(X2

τ (z)
s

) τ
2σ

dz

⩽ Oσ (Cs−δ(t + s)− 1
2
− d

2 exp(−α ∣x − y∣2
4(t + s))) .

We thus obtain, for some δ(σ, d,Λ) > 0,

∫
Rd

∣(P −K)(t, z, y)∣ ∣P (s, x, z) − P (s, x − z)∣1{Xτ (z)⩾
√
s} dz

⩽ Oσ (Cs−δ− 1
2 (t + s)− d2 exp(−β∣x − y∣2

t + s )) . (9.77)

Combining (9.76) and (9.77) yields (9.75). The proof is complete.
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We turn now to the estimate of the second integral on the right side of (9.72).
In fact, we have already estimated a similar integral in the previous section when
we estimated the differences between P and H (see Lemmas 8.21 and 8.22). The
main differences in the argument here compared to that of the previous section
are (i) we replace P by Q and we conclude differently by using sharper estimates
on the correctors (that is, we use Theorem 4.1 instead of Proposition 3.15), and (ii)
the cutoff function in time needs to be chosen more carefully, due to the need for
a sharper estimate, and this causes some additional technical difficulties due to
the singularity of the Green functions (which is the reason for introducing the
modification K̂ of K).

Lemma 9.18. Fix σ ∈ (0,2) and α ∈ (0,Λ−1). There exist C(σ,α, d,Λ) < ∞ and,
for every x, y ∈ Rd, t ∈ [1,∞) and s ∈ [t,∞), a function K̂ ∶ [t, t + s] × Rd → R
satisfying

K̂(t + s, x) =K(t + s, x, y) and K̂(t, ⋅) =K(t, ⋅, y)
and such that

∣∫ t+s

t
∫
Rd

(∂t′ −∇z ⋅ a∇z) K̂(t′, z)P (t + s − t′, x, z)dz dt′∣

⩽
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Oσ (Ct− 1

2 (t + s)− d2 exp(−α ∣x − y∣2
4(t + s))) if d > 2,

Oσ (C log
1
2 (1 + t + s) t− 1

2 (t + s)− d2 exp(−α ∣x − y∣2
4(t + s))) if d = 2.

(9.78)

Proof. Throughout the proof, we fix σ ∈ (0, 2), α ∈ (0,Λ−1), β ∶= 1
2(Λ−1+α), x, y ∈ Rd,

t, s ∈ [1,∞) with s ⩽ t.
We modify K close to terminal time t + s by defining, for each z ∈ Rd,

K̃(z) = Q(t + s, x, y) + ∇xQ(t + s, x, y) ⋅ (z − x)
+ d∑
k=1

(φek (z) − (φek ∗Φ(t + s, ⋅)) (y))∂xkQ(t + s, x, y),
and, for t′ ∈ [t, t + s] and z ∈ Rd we set τ(t′) ∶= 1 ∧ ((t + s − 1 − t′) ∨ 0) and

K̂(t′, z) = τ(t′)K(t′, z, y) + (1 − τ(t′))K̃(z).
Since K̃(⋅) is independent of t′ and ∇z ⋅ a∇zK̃(z) = 0 by the equation for the
correctors, we have that

∣∫ t+s

t
∫
Rd

(∂t′ −∇z ⋅ a∇z) K̂(t′, z)P (t + s − t′, x, z)dz dt′∣
⩽ ∣∫ t+s−1

t
∫
Rd

(∂t′ −∇z ⋅ a∇z)K(t′, z, y)P (t + s − t′, x, z)dz dt′∣
+ ∣∫ t+s−1

t+s−2
∫
Rd

(K(t′, z, y) − K̃(z))P (t + s − t′, x, z)dz dt′∣ . (9.79)
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We estimate the terms on the right in Steps 1-2 below.
Step 1. We show that there exists C(α,σ, d,Λ) < ∞ such that

∫ t+s−1

t
∣∫

Rd
(∂t′ −∇z ⋅ a∇z)K(t′, z, y)P (t + s − t′, x, z)dz∣ dt′

⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (Ct− 1

2 Φ(t + s
α

, x − y)) if d > 2,

Oσ (C log
1
2 (1 + t)t− 1

2 Φ(t + s
α

, x − y)) if d = 2.
(9.80)

First, by Lemma 6.6, we get

∣∫
Rd

(∂t′ −∇z ⋅ a∇z)K(t′, z, y)P (t + s − t′, x, z)dz∣
⩽ ∫

Rd
(f(t′, z, y) + g(t′, z, y)) ∣∇2

zQ(t′, z, y)∣ ∣∇yP (t + s − t′, x, z)∣ dz
+ ∣∫

Rd
∇z ⋅ (a∇2P (t′, z − y)m(t′, y))P (t + s − t′, x, z)dz∣

+ ∫
Rd

∣∂t′ (K (t′, z, y) − P (t′, z − y))∣P (t + s − t′, x, z)dz, (9.81)

where

f(t′, z, y) ∶= d∑
i,j,k=1

∣Sek,ji (z) − (Sek,ji)Et′ ∣ (9.82)

g(t′, z, y) ∶= d∑
i,j,k=1

∣aij (z) (φek (z) − (φek ∗Φ(t′, ⋅)) (y))∣ . (9.83)

and

Et′ ∶= {B√
t+s−t′(x) if t + s − t′ ⩽ t′,

B√
t′(y) if t + s − t′ > t′.

Each term appearing in (9.81) is a convolution with the parabolic Green function
P (t + s − t′, x, ⋅), or its gradient, and can thus be estimated using Lemma 8.16. For
the application of that lemma, notice that, on the one hand, by the Nash-Aronson
bound, we have, on the one hand, for all z ∈ Rd and t′ > 0, that

(t′) 1
2 ∣∇P (t′, z)∣ + t′ ∣∇2P (t′, z)∣ + (t′) 3

2 ∣∇3P (t′, z)∣ ⩽ CΦ(t′
β
, z) .

On the other hand, by (9.69) and the Nash-Aronson bounds for P , we also get, for
every β ∈ (0,Λ−1), that there exists a constant C(β, d,Λ) < ∞ such that

t′ ∣∇2
zQ(t′, z, y)∣ + t′ ∣∂t′Q(t′, z, y)∣ + (t′) 3

2 ∣∇z∂t′Q(t′, z, y)∣ ⩽ CΦ(t′
β
, z − y) . (9.84)
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First, by (9.65), we have that

∣∇z ⋅ (a∇2P (t′, z − y)m(t′, y))∣
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (C(t′)− 3

2 Φ(t′
β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)− 3

2 Φ(t′
β
, z − y)) if d = 2.

Thus, by Lemma 8.16,

∫
Rd

∣∇z ⋅ (a∇2P (t′, z − y)m(t′, y))∣P (t + s − t′, x, z)dz
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (C(t′)− 3

2 Φ(t′
β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)− 3

2 Φ(t′
β
, z − y)) if d = 2.

(9.85)

Second, we expand the time derivative appearing in (9.81) as

∂t′ (K (t′, z, y) − P (t′, z − y)) = −∂t′ (m(t′, y) ⋅ ∇P (t′, z − y))
+ ∂t′ ( d∑

k=1

(φek (x) − (φek ∗Φ(t′, ⋅)) (y))∂zkQ (t′, z, y)) . (9.86)

By (9.64) and (9.65),

∣∂t′ (m(t′, y) ⋅ ∇P (t′, z − y))∣
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Oσ (C(t′)− 3

2 Φ(t′
β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)− 3

2 Φ(t′
β
, z − y)) if d = 2.

(9.87)

For the second term in (9.86), we apply Theorem 4.1 and Remark 3.14 to obtain,
for k ∈ {1, . . . , d} and t′ ⩾ 1, z ∈ Rd,

∣φek(z) − (φek ∗Φ(t′, ⋅)) (y)∣ ⩽ ⎧⎪⎪⎨⎪⎪⎩
O2+δ (C) if d > 2,

Oσ (C log
1
2 (1 +√

t′ + ∣z − y∣)) if d = 2,
(9.88)

and, consequently, by (9.84),

∣φek(z) − (φek ∗Φ(t′, ⋅)) (y)∣ ∣∂t′∂zkQ (t′, z, y)∣
⩽ C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)− 3

2 Φ(t′
β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′) (t′)− 3

2 Φ(t′
β
, z − y)) if d = 2.

(9.89)
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We also obtain, by (9.88), that

d∑
k=1

∣∂t′ (φek ∗Φ(t′, ⋅)) (y)∣ ∣∂zkQ (t′, z, y)∣

⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)− 3

2 Φ(t′
β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)− 3

2 Φ(t′
β
, z − y)) if d = 2.

(9.90)

Collecting estimates for the terms appearing in (9.86), that is (9.87), (9.89)
and (9.90), we obtain, by the semigroup property and the Nash-Aronson bound
for P ,

∣∫
Rd
∂t′ (K (t′, z, y) − P (t′, z − y))P (t + s − t′, x, z)dz∣

⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)− 3

2 Φ(t + s
α

, x − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)− 3

2 Φ(t + s
α

, x − y)) if d = 2.
(9.91)

We next concentrate on the terms appearing in the first term on the right side
of (9.81). First, by (9.88),

g(t′, z, y) ∣∇2
zQ(t′, z, y)∣ ⩽ C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)−1Φ(t′

β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)−1Φ(t′

β
, z − y)) if d = 2.

Thus, by Lemmas 8.16 and A.4,

∫
Rd
g(t′, z, y) ∣∇2

zQ(t′, z, y)∣ ∣∇yP (t + s − t′, x, z)∣ dz
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)−1(t + s − t′)− 1

2 Φ(t + s
α

, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)−1(t + s − t′)− 1

2 Φ(t + s
α

, z − y)) if d = 2.
(9.92)

Next, Proposition 6.2 for the flux correctors and Lemma A.4 yield, for t′ ⩽ t + s − 1,

(∫ ∞

1
rd+1 exp(−2(β − α)r2

4
) ∥f(t′, ⋅, y)∥2

L2(Et′,r) dr)
1
2

⩽ ⎧⎪⎪⎨⎪⎪⎩
O2+δ (C) if d > 2,

Oσ (C log
1
2 (1 + t)) if d = 2.

(9.93)
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where

Et′,r ∶= {Br
√
t+s−t′(x) if t + s − t′ ⩽ t′,

Br
√
t′(y) if t + s − t′ > t′.

Let us remark that the above estimate is not valid for t′ ∈ (t + s − 1, t + s), since
this would call for the boundedness of flux correctors. This forces us to use the
cut-off function τ . Now, again by Lemmas 8.16 and A.4,

∫
Rd
f(t′, z, y) ∣∇2

zQ(t′, z, y)∣ ∣∇yP (t + s − t′, x, z)∣ dz
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)−1(t + s − t′)− 1

2 Φ(t + s
α

, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)−1(t + s − t′)− 1

2 Φ(t + s
α

, z − y)) if d = 2.
(9.94)

Therefore, combining (9.92) and (9.94), we get

∫
Rd

(f(t′, z, y) + g(t′, z, y)) ∣∇2
zQ(t′, z, y)∣ ∣∇yP (t + s − t′, x, z)∣ dz

⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)−1(t + s − t′)− 1

2 Φ(t + s
α

, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′)(t′)−1(t + s − t′)− 1

2 Φ(t + s
α

, z − y)) if d = 2.
(9.95)

Combining (9.95), (9.85), (9.91), integrating over time and applying Lemma A.4,
we obtain (9.80).

Step 2. We next show that there is a constant C(σ,α, d,Λ) < ∞ such that

∣∫ t+s−1

t+s−2
∫
Rd

(K(t′, z, y) − K̃(z))P (t + s − t′, x, z)dz dt′∣
⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t + s)− 1

2 Φ(t + s
α

, z − y)) if d > 2,

Oσ (C(t + s)− 1
2 log

1
2 (1 + t + s)Φ(t + s

α
, z − y)) if d = 2.

(9.96)

To see this, rewrite the difference as

K(t′, z, y) − K̃(z) = Q(t′, z, y) −Q(t + s, x, y) − ∇xQ(t + s, x, y) ⋅ (z − x)
+ d∑
k=1

(φek (z) − (φek ∗Φ(t′, ⋅)) (y))∂xkQ(t′, z, y)
− d∑
k=1

(φek (z) − (φek ∗Φ(t + s, ⋅)) (y))∂xkQ(t + s, x, y).
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It is straightforward to see by (9.84) that, for z ∈ Rd and t′ ∈ (t + s − 2, t + s],
∣Q(t′, z, y) −Q(t + s, x, y) − ∇xQ(t + s, x, y) ⋅ (z − x)∣

⩽ C (1 + ∣x − z∣2) (t + s)−1Φ(t + s
α

, x − y) .
On the other hand, by (9.84) and (9.88), we have, for all t′ ∈ (t + s − 2, t + s], that

∣ d∑
k=1

(φek (z) − (φek ∗Φ(t′, ⋅)) (y))∂xkQ(t′, z, y)∣

⩽
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O2+δ (C(t′)− 1

2 Φ(t′
β
, z − y)) if d > 2,

Oσ (C log
1
2 (1 + t′) (t′)− 1

2 Φ(t′
β
, z − y)) if d = 2.

Using the semigroup property, together with Lemma A.4, we obtain (9.96) after
integration in time.

Step 3. To conclude the argument, we simply connect (9.80) and (9.96)
with (9.79).

We next complete the proof of Theorem 9.11 by combining Lemmas 9.16, 9.17
and 9.18 and an induction argument.

Proof of Theorem 9.11. For the readability of the argument, we will write the proof
for d > 2. The only modification needed in the case d = 2 is that an additional
factor of log

1
2 (t + s) should be inserted inside each of the Oσ (⋅) expressions below.

Fix T,C ∈ [1,∞), σ ∈ (0,2) and α ∈ (0,Λ−1) and suppose that S(T,C, σ, α)
holds. We seek to prove that S(2T,C, σ, α) also holds, provided that T,C are
sufficiently large. The strategy is to apply the formula (9.72) with t ∈ [λ−1T,T ]
and s = (λ − 1)t, where λ ∈ [2,∞) is a fixed parameter to be selected below, and
then to estimate both of the terms on the right side.

Recalling (9.72), we have that

(P −K)(t + s, x, y)
= ∫

Rd
(P −K)(t, z, y)P (s, x, z)dz

− ∫ t+s

t
∫
Rd

(∂t′ −∇z ⋅ a∇z) K̂ (t′, z)P (t + s − t′, x, z), dz dt′. (9.97)
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where K̂ is constructed in Lemma 9.18. To estimate the first term, we apply (9.73)
with t ∈ [λ−1T,T ] and s ∶= (λ − 1)t as above, to get

∫
Rd

(P −K)(t, z, y)P (s, x, z)dz
= ∫

Rd
(P −K)(t, z, y) (P (s, x, z) − P (s, x − z)) dz

+ ∫
Rd

(P −Q)(t, z, y)P (s, x − z)dz
+ ∫

Rd
(Q −K)(t, z, y)P (s, x − z)dz. (9.98)

We use Lemmas 9.17, 9.16 and 9.14, respectively, to bound the three terms on
the right side of the previous display. To apply Lemma 9.16, we need that λ be
sufficiently large, so we take λ ∶= C(σ,α, d,Λ) so that s ⩾ Ct and T large enough so
that C ( s

t
) 1

2 s−δ ⩽ 1
4 . Observe that, with λ and now chosen, we have that t ⩽ s ⩽ Ct.

As a result, we obtain that

∣∫
Rd

(P −K)(t, z, y)P (s, x, z)dz∣
⩽ Oσ ((C (s

t
) 1

2 + C(1

4
+C (s

t
) 1

2

s−δ))(t + s)− 1
2
− d

2 exp(−α ∣x − y∣2
4(t + s)))

⩽ Oσ ((C + 1

2
C) (t + s)− 1

2
− d

2 exp(−α ∣x − y∣2
4(t + s))) .

To estimate the second term, we apply Lemma 9.18, which yields, since s ⩽ Ct,
∣∫ t+s

t
∫ t+s

t
∫
Rd

(∂t′ −∇z ⋅ a∇z) K̂ (t′, z)P (t + s − t′, x, z), dz dt′.∣
⩽ Oσ (C(t + s)− 1

2
− d

2 exp(−α ∣x − y∣2
4(t + s))) .

Combining the previous two displays with (9.72) and using the choices of λ, t
and s, we obtain finally that

∣(P −K)(t + s, x, y)∣ ⩽ Oσ ((C + 1

2
C) (t + s)− 1

2
− d

2 exp(−α ∣x − y∣2
4(t + s))) .

We now observe that, if C is sufficiently large, we have that C ⩽ 1
2C, and, in

particular,

∣(P −K)(t + s, x, y)∣ ⩽ Oσ (C(t + s)− 1
2
− d

2 exp(−α ∣x − y∣2
4(t + s))) .
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This holds for every t ∈ [λ−1T,T ] and therefore we have that the statementS(λT,C, σ, α) is valid. Since λ ⩾ 2, we have proved the implication (9.71). That is,
there exists C(σ,α, d,Λ) < ∞ such that, for every T,C ⩾ C,

S (T,C, σ, α) Ô⇒ S (2T,C, σ, α) . (9.99)

According to the Nash-Aronson estimate, for each fixed T ⩾ 1, there exists
C(T,σ,α, d,Λ) < ∞ such that S (T,C,σ,α). We therefore deduce by induction
that, for some constant C(σ,α, d,Λ) < ∞, the statement S (T,C,σ,α) holds for
every T < ∞. That is, S (∞,C, σ,α) is valid.

We now obtain the desired bound (9.51) from S (∞,C, σ,α) and (9.66). This
completes the proof of the theorem.

Notes and references

Optimal bounds on the decay of the parabolic semigroup were first proved by
Gloria, Neukamm and Otto [62], who obtained the result on the discrete lattice
with much weaker stochastic integrability (i.e., finite moment bounds) using a very
different argument than the one here. The full statement of Theorem 9.1 was first
proved by Gloria and Otto [68] using a proof which is more similar to the one
presented here, based on a propagation in time. Previously, the first quantitative
(but suboptimal) estimates on the semigroup were obtained in [93].

The optimal quantitative homogenization estimate for the parabolic and elliptic
Green functions (Theorem 9.11 and Corollary 9.12) are obtained here for the
first time. Theorem 9.11 can be considered as an “optimal Berry-Esseen theorem
for a diffusion in a random environment”; see also the discussion around (0.12).
Suboptimal versions were previously obtained by different methods in [94, 95].



Chapter 10

Linear equations with nonsymmetric
coefficients

The analysis of Chapters 2 and 4 was based on variational methods. The variational
formulation of the equation suggested natural subadditive quantities which turned
out to be very convenient to analyze and formed the backbone of these two chapters.
Since all subsequent chapters were heavily reliant on the results of Chapter 2, a
quantitative homogenization theory for equations lacking a variational structure
must necessarily be very different from the one described in this book.

On the other hand, it is well known that a general divergence-form elliptic
equation −∇ ⋅ (a(∇u,x)) = 0 (10.1)

admits a variational interpretation—at least in the classical sense—if and only if
the coefficients a(p, x) can be written as

a(p, x) = ∇pL(p, x),
for a Lagrangian L(p, x) which is convex in p (cf. [46, Chapter 8]). In the case that
a(p, x) is linear in p, that is, a(p, x) = a(x)p for a matrix a(x), this condition is of
course equivalent to a(x) being symmetric.

It may therefore come as a surprise that there is a completely natural and
straightforward generalization of the previous chapters to the case of general (not
necessarily symmetric) coefficients a(x). This is because any divergence-form
equation, even a very general quasilinear one like (10.1), admits a “double-variable”
variational formulation.1 This variational formulation is no less natural or important
than the “classical” one and the fact that it is much less well-known seems to be

1The need for the extra variable should be thought of as analogous to the fact that a
symmetric matrix A can be determined by evaluating the quadratic form p↦ p ⋅Ap, while if A is
not symmetric one must consider the full bilinear form (p, q) ↦ q ⋅Ap. See also Remark 10.1.

358
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a historical quirk in the development of the calculus of variations. It allows the
arguments of the previous section to be extended with the only additional difficulty
being a notational one: we have to handle twice as many variables and become
conversant in the unfamiliar (but beautiful) algebraic structure of the problem.

The purpose of this chapter is to present this generalization to nonsymmetric
coefficient fields, focusing primarily on the results in Chapters 2 and 3. At that
point, the reader will agree that the results of the other chapters can also be
similarly extended.

We therefore depart from the standing assumptions by enlarging the probability
space Ω. We first modify the uniform ellipticity condition in (0.1) by requiring that

∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ a(x)ξ and ∣a(x)ξ∣ ⩽ Λ ∣ξ∣ . (10.2)

We then define

Ω ∶= {a ∶ a is a Lebesgue measurable map from Rd to Rd×d satisfying (10.2)} .
The rest of the assumptions read verbatim as in the symmetric case. The transpose
of a is denoted by at.

We begin in Section 10.1 by reviewing this somewhat non-standard variational
formulation, as usual in the linear case for simplicity. This variational formulation
for non-self adjoint elliptic operators (as well as similar variational principles for
parabolic equations, gradient flows and other problems) have been discovered
and rediscovered multiple times, in the PDE community (see [28, 82]), by convex
analysts [54, 86] and by numerical analysts, who use it to efficiently solve non-self
adjoint problems [30, 26]. Recently it has appeared in [43] in a context quite close
to ours, namely the derivation of coarse graining procedures for analyzing singular
limits of evolution equations.

In the rest of the chapter, we define appropriate subadditive quantities and then
rewrite the arguments of Chapter 2 to obtain the analogous quantitative estimates
on their convergence. This chapter is a simplification of [13], which considered
general quasilinear equations.

10.1 Variational formulation of general linear equations

It is easy to find a variational principle for any PDE: we can just write the equation
with all nonzero terms on the left side, square it, and look for a minimizer. For a
second-order elliptic equation, this procedure leads to an integral functional which
involves second derivatives. One way to avoid this feature is to write the PDE as a
system of first-order equations and then square it. Or, we can square one of the
equations and think of the other as a constraint. For example, the equation

−∇ ⋅ (a∇u) = 0 in U, (10.3)
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can be written as

{a∇u − g = 0 in U,∇ ⋅ g = 0 in U.

The latter can also be written as

u ∈H1(U) is a (null) local minimizer of inf
g∈L2

sol
(U)

1

2
∥a∇u − g∥2

L2(U)

where L2
sol(U) is the subspace of L2(U ;Rd) of solenoidal (divergence-free) vector

fields defined by

L2
sol(U) ∶= {g ∈ L2(U ;Rd) ∶ ∀φ ∈H1

0(U), ∫
U
g ⋅ ∇φ = 0} . (10.4)

We can also write this as a minimization problem for the pair (u,g) ∈ H1(U) ×
L2

sol(U) as

(u,g) ∈H1(U) ×L2
sol(U) is a minimizer of ∫

U
(1

2
∣a∇u∣2 + 1

2
∣g∣2 − g ⋅ a∇u) .

The drawback we immediately encounter is that this functional is not uniformly con-
vex over (w +H1

0(U)) ×L2
sol(U) for a given boundary condition w ∈H1(U). In the

case that a is symmetric, we can resolve this problem by replacing 1
2 ∥a∇u − g∥2

L2(U)

with 1
2 ∥a 1

2∇u − a−
1
2g∥2

L2(U)
which leads to the minimization of

∫
U
(1

2
∇u ⋅ a∇u + 1

2
g ⋅ a−1g − g ⋅ ∇u) . (10.5)

The integral of g ⋅ ∇u is actually linear in (u,g) ∈ (w +H1
0(U)) ×L2

sol(U) and does
not depend on u since, for any w ∈H1(U), we have

∀u ∈ w +H1
0(U), ∫

U
g ⋅ ∇u = ∫

U
g ⋅ ∇w. (10.6)

The functional in (10.5) is thus uniformly convex, jointly in (u,g) ∈ (w +H1
0(U)) ×

L2
sol(U). Of course, the quadratic term in g does not depend on u either, and so,

in the case that a is symmetric, the situation simplifies: we deduce that

u is a solution of (10.3)

⇐⇒ inf
g∈L2

sol
(U)
∫
U
(1

2
∇u ⋅ a∇u + 1

2
g ⋅ a−1g − g ⋅ ∇u) = 0

Ô⇒ ∀w ∈ u +H1
0(U), ∫

U

1

2
∇u ⋅ a∇u ⩽ ∫

U

1

2
∇w ⋅ a∇w

and we recover that u is a minimizer of the classical Dirichlet energy.
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In the nonsymmetric case, we can generalize the above calculation by replacing
1
2 ∥a 1

2∇u − a−
1
2g∥2

L2(U)
with

⨏
U

1

2
(a∇u − g) ⋅ s−1 (a∇u − g)

where
a = s +m such that s = st, m = −mt,

is the unique decomposition of a(x) into its symmetric part s(x) ∶= 1
2(a + at)(x)

and its skew-symmetric part m(x) ∶= 1
2(a − at)(x). Expanding the square, we can

write the integrand as

1

2
(a∇u − g) ⋅ s−1 (a∇u − g) = A(∇u,g, x) − g ⋅ ∇u,

where

A(p, q, x) ∶= 1

2
p ⋅ s(x)p + 1

2
(q −m(x)p) ⋅ s−1(x)(q −m(x)p). (10.7)

We obtain therefore that

u ∈H1(U) is a solution of (10.3) ⇐⇒ inf
g∈L2

sol
(U)
∫
U
(A(∇u,g, x) − ∇u ⋅ g) = 0.

(10.8)
Notice that A satisfies:

• the mapping (p, q) ↦ A(p, q, x) is jointly uniformly convex and C1,1 in the
sense that there exists C(d,Λ) < ∞ such that, for every p1, p2, q1, q2 ∈ Rd,

1

C
(∣p1 − p2∣2 + ∣q1 − q2∣2)

⩽ 1

2
A(p1, q1, x) + 1

2
A(p2, q2, x) −A(1

2
p1 + 1

2
p2,

1

2
q1 + 1

2
q2, x)

⩽ C (∣p1 − p2∣2 + ∣q1 − q2∣2) , (10.9)

Indeed, the mapping (p, q) ↦ A(p, q, x) is a uniformly convex quadratic form
on R2d.

• for every p, q ∈ Rd,
A(p, q, x) ⩾ p ⋅ q . (10.10)

• for every p, q ∈ Rd, we have the equivalence

A(p, q, x) = p ⋅ q ⇐⇒ q = a(x)p. (10.11)
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Remark 10.1. Note that (10.11) implies that the quadratic form (p, q) ↦ A(p, q, x)
completely characterizes the matrix a(x). We are thus in a similar situation as
in the case of symmetric a, in which the simpler quadratic form p ↦ p ⋅ a(x)p
characterized a(x), although there are twice as many variables.

The above properties of A can be summarized in convex analytic language as
the statement that the function (p, q) ↦ A(p, q, x) is a variational representation
of the linear mapping p↦ a(x)p.
Definition 10.2. Let φ ∶ Rd → Rd. We say that F ∶ Rd × Rd → R variationally
represents φ if F is convex and F (p, q) ⩾ p ⋅ q for every p, q ∈ Rd with equality if
and only if q = φ(p).

The canonical example of Definition 10.2 is, for a given convex function L, that
the mapping (p, q) ↦ L(p) +L∗(q) represents p↦ ∇L(p). It turns out that a map
φ has a representative if and only if it is monotone, that is,

∀p1, p2 ∈ Rd, (p1 − p2) ⋅ (φ(p1) − φ(p2)) ⩾ 0.

This discovery is usually attributed to Fitzpatrick [54], but actually first appeared
a few years earlier in a paper of Krylov [82]. We remark that representatives are
not unique. They can be split into a sum of a function of p and a function of q if
and only if the monotone map is the gradient of a convex function. A uniformly
convex representative of φ can be found if and only if φ is uniformly monotone,
that is, there exists λ > 0 such that

∀p1, p2 ∈ Rd, (p1 − p2) ⋅ (φ(p1) − φ(p2)) ⩾ λ ∣p1 − p2∣2 .
We mention these facts (proofs of which can be found in [13]) so that the reader
is aware that the variational setting described here is part of a much larger and
richer convex analytic framework.

In view of (10.6), (10.8) and (10.9), we have therefore succeeded in recasting the
PDE as a uniformly convex optimization problem. The minimizer of this problem
give us the solution u as well as its flux, g = a∇u.

For our reference, we summarize what we have shown above in the following
proposition.

Proposition 10.3. For every u ∈H1(U) and u∗ ∈H−1(U), we have that u satisfies
the equation −∇ ⋅ (a(x)∇u) = u∗ in U

if and only if

0 = inf {∫
U
(A(∇u,g, ⋅) − g ⋅ ∇u) ∶ g ∈ L2(U ;Rd), −∇ ⋅ g = u∗} . (10.12)

In this case, the infimum on the right side above is attained for g = a∇u.
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Proof. By the direct method, there exists g realizing the infimum in (10.12). The
equivalence is then immediate from (10.10) and (10.11).

The variational formulation can be used to prove the existence of minimizers of
the integral function over w +H1

0(U) via the direct method, and these minimizers
can be shown to be null using convex analytic arguments. This alternative approach
to well-posedness of boundary value problems for linear elliptic equations is explored
in the following exercise.

Exercise 10.1. Let X be a reflexive Banach space, X∗ denote its dual and B be
a continuous and coercive bilinear form on X. The assumption of coercivity means
that there exists a constant λ > 0 such that

∀u ∈X, B(u,u) ⩾ λ∥u∥2
X .

The Lax-Milgram lemma states that, for every u∗ ∈X∗, there exists u ∈X satisfying

∀v ∈X, B(u, v) = ⟨v, u∗⟩,
where ⟨⋅, ⋅⟩ denotes the duality pairing between X and X∗. In this exercise, we
outline a proof of this result using a variational, convex analytic argument. In
analogy with (10.7), we define a quadratic form S on X by

S(u) ∶= 1

2
B(u,u),

denote by M the linear map M ∶X →X∗ characterized by

∀u, v ∈X, ⟨v,Mu⟩ = 1

2
(B(u, v) −B(v, u)) ,

and let A be the bilinear form A ∶X ×X∗ → R such that

∀u ∈X,u∗ ∈X∗, A(u,u∗) = S(u) + S∗(u∗ −Mu),
where S∗ ∶ X ∗ → R denotes the convex dual of S, that is,

S∗(u∗) ∶= sup
u∈X

(⟨u,u∗⟩ − S(u)) . (10.13)

We break the proof into five sub-exercises.

1. Let S′ be the symmetric bilinear form on X ×X defined by

S′(u, v) ∶= 1

2
(B(u, v) +B(v, u)) .

Using the coercivity assumption, show that there exists a unique u ∈ X
achieving the supremum in (10.13) which is characterized by

∀v ∈X, ⟨v, u∗⟩ = S′(u, v).
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2. Deduce that the conclusion of the Lax-Milgram lemma is equivalent to the
statement that, for every u∗ ∈X∗,

inf
u∈X

(A(u,u∗) − ⟨u,u∗⟩) = 0. (10.14)

3. Fix u∗ ∈X∗ and define G ∶X∗ → R by

G(v∗) ∶= inf
u∈X

(A(u,u∗ + v∗) − ⟨u,u∗⟩) .
Deduce from the joint convexity of A that G is itself convex. Using the
continuity and coercivity of A, show that G is locally bounded above, and
thus that G∗∗ = G (see [45, Chapter 1] if needed).

4. Argue that, for every v ∈X,

G∗(v) = sup{⟨v, v∗⟩ −A(u,u∗ + v∗) + ⟨u,u∗⟩, u ∈X, v∗ ∈X∗}= S(v) + S∗(u∗ −Mv) − ⟨v, u∗⟩⩾ 0.

5. Combine the previous steps to obtain that G(0) ⩽ 0 and deduce (10.14).

In the rest of this chapter, we adopt the variational point of view and apply it
to the homogenization of our equation (10.3).

10.2 The double-variable subadditive quantities

Rather than attempting to homogenize (10.3) directly, we seek to homogenize
the integral functional (∇u,g) ↦ ∫U A(∇u,g, ⋅) by finding an effective, constant-
coefficient A so that this functional behaves, on large scales, like (∇u,g) ↦∫U A(∇u,g). We will discover later that the A that we produce will be a rep-
resentative for an homogenized matrix a, but it is the integral functional that is
the primary object of study here.

We begin by defining the subadditive quantities which are analogous to ν and ν∗
and are coarsened representations of the mapping (∇u,g) ↦ ∫U A(∇u,g), in the
same way that ν and ν∗ are coarsened versions of the mapping ∇u↦ ∫U 1

2∇u ⋅ a∇u.
For each p, q ∈ Rd, we set

µ(U, p, q) ∶= inf {⨏
U
A(∇v,h, ⋅) ∶ v ∈ `p +H1

0(U), h ∈ q +L2
sol,0(U)} . (10.15)
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Recall that L2
sol,0(U) is the set of solenoidal vector fields with null flux at the

boundary defined in (0.28). The approximately dual quantity is defined, for each
q∗, p∗ ∈ Rd, by

µ∗(U, q∗, p∗) ∶= sup
u∈H1(U),g∈L2

sol
(U)
⨏
U
(q∗ ⋅ ∇u + p∗ ⋅ g −A(∇u,g, ⋅)) . (10.16)

We next show that, in the symmetric case, the quantities µ and µ∗ defined above
reduce to the quantities ν and ν∗ introduced in (1.7) and (2.1). In fact, they are
both equal to J(U, p, q) + p ⋅ q.
Lemma 10.4. Suppose a(x) = at(x) for a.e. x ∈ U . Then, for every p, q ∈ Rd,

µ(U, p, q) = ν(U, p) + ν∗(U, q) = µ∗(U, q, p). (10.17)

Proof. Since we assume a to be symmetric in this proposition, the function F
simplifies into

A(p, q, x) = 1

2
p ⋅ a(x)p + 1

2
q ⋅ a−1(x)q,

and therefore,

µ(U, p, q) = inf
v∈`p+H1

0(U)
⨏
U

1

2
∇v ⋅ a∇v + inf

h∈q+L2
sol,0

(U)
⨏
U

1

2
h ⋅ a−1h. (10.18)

The first term above is ν(U, p). We denote by h(⋅, U, p, q) the solenoidal field
achieving the infimum in the last term above. Computing the first variation, we
find that

for every g ∈ L2
sol,0(U), ∫

U
g ⋅ a−1h = 0.

In other words, a−1h ∈ L2
sol,0(U)⊥. In view of the definition of L2

sol,0(U) and since∇(H1(U)) is a closed subspace of L2(U ;Rd), we have L2
sol,0(U)⊥ = ∇(H1(U)).

Therefore, there exists u ∈H1(U) such that

h = a∇u.
Since h ∈ q +L2

sol,0(U), we have

∀φ ∈H1(U), ∫
U
∇φ ⋅ (a∇u − q) = 0.

That is, the function u solves the Neumann problem (2.2). In particular, u
satisfies (2.16) for p = 0, and is therefore the maximizer in the definition of ν∗(U, q).
By the first variation for ν∗(U, q), see (2.19), we have

ν∗(U, q) = ⨏
U

1

2
∇u ⋅ a∇u.

This coincides indeed with the last term in (10.18), and thus completes the proof
of the first equality of (10.17). The proof of the second equality is similar.
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Exercise 10.2. Give a detailed proof of the second equality of (10.17).

As in the symmetric case, we are going to combine the two subadditive quantities
into one master quantity which we denote by J . In order to write this in the most
efficient way, we first introduce some further notation. First, we identify the
quadratic form (p, q) ↦ A(p, q, x) with the matrix A(x) such that

A(p, q, x) = 1

2
(p
q
) ⋅A(x)(p

q
) .

The matrix is explicitly given by

A(x) ∶= (s(x) −m(x)s−1(x)m(x) m(x)s−1(x)−s−1(x)m(x) s−1(x) ) .
For each domain U ⊆ Rd, we define a vector space S(U) ⊆ L2

pot(U) ×L2
sol(U) by

S(U) ∶= {S ∈ L2
pot(U) ×L2

sol(U) ∶
∀S′ ∈ L2

pot,0(U) ×L2
sol,0(U), ∫

U
S ⋅AS′ = 0}. (10.19)

This definition can be compared with that for A(U), see (0.30). Recall that the
spaces L2

pot(U), L2
sol(U), L2

pot,0(U) and L2
sol,0(U) are defined in (0.25), (0.26), (0.27)

and (0.28).
The master quantity, which is a variant of the quantity introduced in (2.6)

(see also (2.9)) and which we also denote by J , is defined for every bounded open
Lipschitz domain U ⊆ Rd and X,X∗ ∈ R2d by

J (U,X,X∗) ∶= sup
S∈S(U)

⨏
U
(−1

2
S ⋅AS −X ⋅AS +X∗ ⋅ S) . (10.20)

We denote the maximizer in the definition of J by

S(⋅, U,X,X∗) ∶= unique maximizer in the definition of J(U,X,X∗).
In order to emphasize the “double-variable” nature of the function J , we note that
the definition (10.20) can be rewritten, for every p, q, p∗, q∗ ∈ Rd, as

J (U,(p
q
) ,(q∗

p∗
)) =

sup
(∇v,g)∈S(U)

⨏
U
(−1

2
(∇v
g

) ⋅A(∇v
g

) − (p
q
) ⋅A(∇v

g
) + (q∗

p∗
) ⋅ (∇v

g
)) . (10.21)

We first prove the analogous statement to Lemma 2.1.
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Lemma 10.5. For every X,X∗ ∈ R2d,

J(U,X,X∗) = µ(U,X) + µ∗(U,X∗) −X ⋅X∗. (10.22)

Moreover, the maximizer S(⋅, U,X,X∗) is the difference between the maximizer
of µ∗(U,X∗) in (10.16) and the minimizer of µ(U,X) in (10.15).

Proof. We first show that, for every X∗ ∈ R2d,

µ∗(U,X∗) = sup
S∈S(U)

⨏
U
(X∗ ⋅ S − 1

2
S ⋅AS) . (10.23)

We may rewrite the definition of µ∗(X∗) in (10.16) as

µ∗(U,X∗) = sup
S∈L2

pot(U)×L2
sol

(U)
⨏
U
(X∗ ⋅ S − 1

2
S ⋅AS) . (10.24)

Note that for every X∗ ∈ R2d and S ∈ L2
pot,0(U) ×L2

sol,0(U), we have

⨏
U
X∗ ⋅ S = 0. (10.25)

Let S∗ denote the maximizer in (10.24). Combining the first variation for µ∗
and (10.25), we deduce that

∀S′ ∈ L2
pot,0(U) ×L2

sol,0(U), ∫
U
S′ ⋅AS∗ = 0.

That is, S∗ ∈ S(U), and thus (10.23) holds.
We can now repeat the proof of Lemma 2.1, with only minor changes to the

notation. Let X = (p, q) ∈ R2d, and let

S0 = (∇v,h) ∈X +L2
pot,0(U) ×L2

sol,0(U) (10.26)

denote the minimizing pair in the definition of µ(U, p, q) = µ(U,X), see (10.15).
For every S ∈ S(U), we have

µ(U,X) + ⨏
U
(X∗ ⋅ S − 1

2
S ⋅AS) −X ⋅X∗

= ⨏
U
(1

2
S0 ⋅AS0 − 1

2
S ⋅AS +X∗ ⋅ S) −X ⋅X∗. (10.27)

In view of (10.26), we have
X = ⨏

U
S0.
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Since S ∈ S(U), we also have

⨏
U
S ⋅AS0 = ⨏

U
S ⋅AX,

and this last identity holds true in particular for S = S0. We deduce that the left
side of (10.27) equals

⨏
U
(−1

2
(S − S0) ⋅A (S − S0) −X ⋅A (S − S0) +X∗ ⋅ (S − S0)) .

Comparing with (10.23) and (10.20), we obtain the announced result.

We now show an estimate for elements of S(U) in the spirit of the interior
Caccioppoli inequality for elements of A(U) proved in Lemma C.2.

Lemma 10.6 (Caccioppoli inequality in S(U)). Let V ⊆ Rd be a domain such that
V ⊆ U . There exists a constant C(U,V, d,Λ) < ∞ such that, for every S ∈ S(U),

∥S∥L2(V ) ⩽ C∥S∥Ĥ−1(U).

Proof. Let V ′, V ′′ ⊆ Rd be two Lipschitz domains such that V ⊆ V ′, V ′ ⊆ V ′′ and
V ′′ ⊆ U . Let ◻ ⊆ Rd be a cube such that U ⊆ ◻. Denote by H1

per(◻) the space of
periodic functions over ◻ with square-integrable gradient, and by L2

sol,per(◻) the
orthogonal space to ∇H1

per(◻) (compare with (0.26)). We also let η ∈ C∞
c (Rd) be

such that η ≡ 1 on V and η ≡ 0 outside of V ′, and η′ ∈ C∞
c (Rd) be such that η′ ≡ 1

on V ′′ and η′ ≡ 0 outside of U . Throughout the proof, the constant C is allowed to
depend on the choice of V ′, V ′′, η and η′, and may change from one occurence to
another. We fix

S = (∇u
g

) ∈ S(U),
with u ∈H1(U) of mean zero. We decompose the rest of the proof into three steps.

Step 1. In this step, we define a Helmholtz-Hodge decomposition for η′g. Let
h ∈H1

per(◻) be the unique mean-zero periodic solution of

∆h = ∇ ⋅ (η′g), (10.28)

and for each i, j ∈ {1, . . . , d}, let Tij ∈ H1
per(◻) be the unique mean-zero periodic

solution of
∆Tij = ∂j(η′gi) − ∂i(η′gj). (10.29)

These quantities provide us with the decomposition

η′g = ∇h +∇ ⋅T + (η′g)◻, (10.30)
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where ∇ ⋅T is the vector field whose i-th component is given by

d∑
j=1

∂jTij,

and where we recall that (η′g)◻ = ⨏◻ η′g. Indeed, by an explicit computation, we
verify that each coordinate of the vector field

η′g −∇h −∇ ⋅T
is harmonic. Since this vector field is also periodic in ◻, it must be constant, and
the constant is identified as (η′g)◻ since ∇h and ∇ ⋅T are of mean zero.

Step 2. In this step, we show the following three estimates:

∥∇h∥L2(V ′) ⩽ C∥g∥Ĥ−1(U), (10.31)

∥T∥L2(V ′) ⩽ C∥g∥Ĥ−1(U), (10.32)

and ∥u∥L2(V ′) ⩽ C∥∇u∥Ĥ−1(U). (10.33)

By the weak formulation of the equation (10.28), we see that

∥∇h∥H−1
per(◻) ⩽ C∥η′g∥H−1

per(◻) ⩽ C∥g∥Ĥ−1(U),

where we write H−1
per(◻) for the dual space to H1

per(◻). Denoting by φ ∈ H1
per(◻)

the unique mean-zero periodic solution of

−∆φ = h,
we get via an integration by parts that

∫◻ ∣∇2φ∣2 = ∫◻ ∣∆φ∣2 = ∫◻ h2.

Moreover,

∫◻ h2 = ∫◻∇φ ⋅ ∇h ⩽ ∥∇h∥H−1
per(◻) ∥∇φ∥H1

per(◻).

Combining the last three displays yields

∥h∥L2(◻) ⩽ ∥∇h∥H−1
per(◻) ⩽ C∥g∥Ĥ−1(U). (10.34)

Moreover, the function h is harmonic on V ′′. By the Caccioppoli inequality for
harmonic functions, we deduce that

∥∇h∥L2(V ′) ⩽ C∥h∥L2(V ′′) ⩽ C∥g∥Ĥ−1(U), (10.35)
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which is (10.31). The proofs of (10.32) and (10.33) are very similar to the argument
for (10.34), so we omit the details.

Step 3. We now conclude the argument. Note first that, since η′ ≡ 1 on the
support of η, we have

C−1∫
U
η2 (∣∇u∣2 + ∣g∣2) ⩽ ∫

U
η2 (∇u

g
) ⋅A(∇u

g
)

= ∫
U
η2 ( ∇u∇h +∇ ⋅T + (η′g)◻) ⋅A(∇u

g
) .

Moreover, since T is skew-symmetric, we have

( ∇(η2u)∇ ⋅ (η2T)) ∈ L2
pot,0(U) ×L2

sol,0(U),
and the definition of the space S(U) implies

0 = ∫
U
( ∇(η2u)∇ ⋅ (η2T)) ⋅A(∇u

g
)

= ∫
U
η2 ( ∇u∇ ⋅T) ⋅A(∇u

g
) + 2∫

U
η (u∇η

T∇η) ⋅A(∇u
g

) .
Combining the last displays yields

∫
U
η2 (∣∇u∣2 + ∣g∣2) ⩽ C ∫

U
η ( −2u∇η
η∇h − 2T∇η + η(η′g)◻) ⋅A(∇u

g
) .

By Hölder’s inequality, (10.31), (10.32), (10.33) and ∣(η′g)◻∣ ⩽ C∥g∥Ĥ−1(U), we
obtain

(∫
U
η2 (∣∇u∣2 + ∣g∣2)) 1

2 ⩽ C (∥∇u∥Ĥ−1(U) + ∥g∥Ĥ−1(U)) .
Since η ≡ 1 on V , this completes the proof.

We show in the next lemma that the space S(U) can alternatively be described
in terms of solutions of the original equation as well as its adjoint (although we
remark that this is not used until Section 10.4). We denote by A∗(U) ⊆H1(U) the
set of weak solutions of the adjoint equation

−∇ ⋅ (at∇u∗) = 0 in U, (10.36)

that is,

A∗(U) ∶= {u∗ ∈H1(U) ∶ ∀w ∈H1
0(U), ∫

U
∇u∗ ⋅ a∇w = 0} .
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Lemma 10.7. We have

S(U) = {(∇u +∇u∗,a∇u − at∇u∗) ∶ u ∈ A(U), u∗ ∈ A∗(U)} . (10.37)

Proof. Denote by S ′(U) the set on the right side of (10.37). By definition, an
element S of L2

pot(U) ×L2
sol(U) belongs to S(U) if and only if

for every S′ ∈ L2
pot,0(U) ×L2

sol,0(U), ∫
U
S ⋅AS′ = 0.

In more explicit notation, a pair (∇v,g) ∈ L2
pot(U) × L2

sol(U) belongs to S(U) if
and only if

for every φ ∈H1
0(U) and f ∈ L2

sol,0(U),
∫
U
[∇φ ⋅ s∇v + (f −m∇φ) ⋅ s−1(g −m∇v)] = 0. (10.38)

This implies in particular that

for every f ∈ L2
sol,0(U), ∫

U
f ⋅ s−1(g −m∇v) = 0.

The latter condition is equivalent to the existence of w ∈H1(U) such that

s−1(g −m∇v) = ∇w.
We deduce that (10.38) is equivalent to the existence of w ∈H1(U) such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g = s∇w +m∇v, and

∀φ ∈H1
0(U), ∫

U
∇φ ⋅ (s∇v +m∇w) = 0.

(10.39)

The last line above is the weak formulation of the equation

−∇ ⋅ (s∇v +m∇w) = 0 in U,

and we recall that, since g ∈ L2
sol(U), the first line of (10.39) ensures that

−∇ ⋅ (s∇w +m∇v) = 0 in U.

Whenever the two displays above are satisfied, we may define

u ∶= 1

2
(v +w), u∗ ∶= 1

2
(v −w),

and verify that u ∈ A(U), u∗ ∈ A∗(U), and
g = a∇u − at∇u∗,
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thereby proving that S(U) ⊆ S ′(U). Conversely, given u ∈ A(U) and u∗ ∈ A∗(U),
if we set

v ∶= u + u∗, w ∶= u − u∗, g ∶= a∇u − at∇u∗ = s∇w +m∇v,
then we can verify that the conditions in (10.39) are satisfied, since

s∇v +m∇w = a∇u + at∇u∗ ∈ L2
sol(U).

This proves the converse inclusion S ′(U) ⊆ S(U), and hence completes the proof
that S(U) = S ′(U).

We now give the analogue of Lemma 2.2 for our double-variable quantity.

Lemma 10.8 (Basic properties of J). Fix a bounded Lipschitz domain U ⊆ Rd.
The quantity J(U,X,X∗) and its maximizer S(⋅, U,X,X∗) satisfy the following:

• Representation as quadratic form The mapping (X,X∗) ↦ J(U,X,X∗) is a
quadratic form and there exist 2d-by-2d matrices A(U) and A∗(U) and a
constant C(Λ) < ∞ such that

C−1 Id ⩽A∗(U) ⩽A(U) ⩽ C Id (10.40)

and

J(U,X,X∗) = 1

2
X ⋅A(U)X + 1

2
X∗ ⋅A−1

∗ (U)X∗ −X ⋅X∗. (10.41)

These matrices are characterized by the fact that, for every X,X∗ ∈ R2d,

A(U)X = −⨏
U
AS(⋅, U,X,X∗), (10.42)

and
A−1

∗ (U)X∗ = ⨏
U
S(⋅, U,X,X∗). (10.43)

• Subadditivity. Let U1, . . . , UN ⊆ U be bounded Lipschitz domains that form a
partition of U , in the sense that Ui ∩Uj = ∅ if i ≠ j and

∣U ∖ N⋃
i=1

Ui∣ = 0.

Then, for every X,X∗ ∈ R2d,

J(U,X,X∗) ⩽ N∑
i=1

∣Ui∣∣U ∣ J(Ui,X,X∗). (10.44)
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• First variation for J . For X,X∗ ∈ R2d, the function S(⋅, U,X,X∗) is charac-
terized as the unique element of S(U) which satisfies

⨏
U
T ⋅AS(⋅, U,X,X∗) = ⨏

U
(−X ⋅AT +X∗ ⋅ T ) , ∀T ∈ S(U). (10.45)

• Quadratic response. For every X,X∗ ∈ R2d and T ∈ S(U),
⨏
U

1

2
(T − S(⋅, U,X,X∗)) ⋅A (T − S(⋅, U,X,X∗))

= J(U,X,X∗) − ⨏
U
(−1

2
T ⋅AT −X ⋅AT +X∗ ⋅ T) . (10.46)

Proof. The proof is essentially identical to that of Lemma 2.2 and so is omitted.

10.3 Convergence of the subadditive quantities

In this section, we state and prove the main result of this chapter on the quantitative
convergence of the double-variable master quantity J . In order to state it, we must
first define the effective matrix which describes the limit of µ(U,X). We take it to
be the matrix A ∈ R2d×2d which satisfies, for every X ∈ R2d,

1

2
X ⋅AX = lim

n→∞
E [µ(◻n,X)] . (10.47)

The right side of (10.47) exists and defines a positive quadratic form by the
monotonicity of the sequence n↦ E [µ(◻n,X)], which follows from subadditivity
and stationarity (in analogy to Chapter 1) and Lemma 10.8. Using the matrix
notation introduced in this lemma gives that

A = lim
n→∞

E [A(◻n)] ,
and, by (10.40),

C−1 Id ⩽A ⩽ C Id. (10.48)

We define, for every X,X∗ ∈ R2d,

J(X,X∗) ∶= 1

2
X ⋅AX + 1

2
X∗ ⋅A−1

X∗ −X ⋅X∗

The following result is the analogue of Theorem 2.4 for nonsymmetric coefficients
and. By Lemma 10.4, it is equivalent to Theorem 2.4 in the symmetric case.

Theorem 10.9. Fix s ∈ (0, d). There exist α(d,Λ) ∈ (0, 1
2
] and C(s, d,Λ) < ∞

such that, for every X,X∗ ∈ B1 and n ∈ N,
∣J(◻n,X,X∗) − J(X,X∗)∣ ⩽ C3−nα(d−s) +O1 (C3−ns) . (10.49)
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As in Chapter 2, the strategy here consists of showing that E [J (◻n,X,AX)]
decays like a negative power of the length scale 3n by an iteration of the scales. This
then allows us to use the following analogue of Lemma 2.7 to control J(◻n,X,X∗)
for general (X,X∗).
Lemma 10.10. Fix Γ ⩾ 1. There exists a constant C(Γ, d,Λ) < ∞ such that, for
every symmetric matrix Ã ∈ R2d×2d satisfying

Γ−1I2d ⩽ Ã ⩽ ΓI2d

and every bounded Lipschitz domain U ⊆ Rd, we have

∣A(U) − Ã∣ + ∣A∗(U) − Ã∣ ⩽ C sup
X∈B1

(J (U,X, ÃX)) 1
2 . (10.50)

Proof. The proof of this lemma is almost identical to that of Lemma 2.7, with only
minor notational differences.

We prove Theorem 10.9 by following the same steps as in the proof of Theo-
rem 2.4. Several of the lemmas follow from arguments almost identical to the ones
in Chapter 2, and for these we will omit the details and refer the reader to the
appropriate argument.

We define the subadditivity defect by

τn ∶= sup
X,X∗∈B1

(E[J(◻n,X,X∗)] −E[J(◻n+1,X,X
∗)]) . (10.51)

Lemma 10.11. Fix a bounded Lipschitz domain U ⊆ Rd and let {U1, . . . , Uk} be a
partition of U into Lipschitz subdomains. Then, for every X,X∗ ∈ R2d,

k∑
j=1

∣Uj ∣∣U ∣ 1

2
∥A 1

2 (S(⋅, U,X,X∗) − S(⋅, Uj,X,X∗))∥2

L2(Uj)

= k∑
j=1

∣Uj ∣∣U ∣ (J(Uj,X,X∗) − J(U,X,X∗)) .
Proof. See the proof of Lemma 2.9.

The following lemma gives us control of the spatial averages of S(⋅,◻n,X,X∗)
and A(⋅)S(⋅,◻n,X,X∗), analogously to Lemma 2.10.

Lemma 10.12. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every m ∈ N
and X,X∗ ∈ B1,

var [⨏◻m S(⋅,◻m,X,X∗)] ⩽ C3−mκ +C m∑
n=0

3−κ(m−n)τn.
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Proof. See the proof of Lemma 2.10.

We next proceed to the definition of the coarsened matrix AU ∈ R2d×2d, which
is the analogue of the matrix aU introduced in Definition 2.11.

Definition 10.13. We define the symmetric matrix AU ∈ R2d×2d by

AU ∶= E [A−1(U)]−1
.

We also denote An ∶=A◻n for short.

By Lemma 10.8, there exists a constant C(Λ) < ∞ such that

C−1 Id ⩽AU ⩽ C Id, (10.52)

and moreover,

A
−1
U X

∗ = E [⨏
U
S(⋅, U,0,X∗)] .

We now proceed with the double-variable version of Lemma 2.13.

Lemma 10.14. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every n ∈ N
and X ∈ B1,

E [J(◻n,X,AnX)] ⩽ C3−nκ +C n∑
m=0

3−κ(n−m)τm. (10.53)

Proof. Fix n ∈ N and X ∈ B1. We first observe that, by the analogue of (2.19),

J(◻n,X,AnX) ⩽ C ⨏◻n ∣S(⋅,◻n,X,AnX)∣2 .
Therefore it suffices to prove that

E [⨏◻n ∣S(⋅,◻n,X,AnX)∣2] ⩽ C3−nκ +C n∑
m=0

3−κ(n−m)τm. (10.54)

Applying the multiscale Poincaré inequality (Proposition 1.7), we get

∥S(⋅,◻n+1,X,X
∗) −A

−1
n X

∗ +X∥2

Ĥ−1(◻n+1)

⩽ C ⨏◻n+1 ∣S(⋅,◻n+1,X,X
∗) −A

−1
n X

∗ +X ∣2

+C ⎛⎝
n∑

m=0

3m (∣Zm∣−1 ∑
y∈Zm

∣⨏
y+◻m

S(⋅,◻n+1,X,X
∗) −A

−1
n X

∗ +X∣2)
1
2⎞⎠

2

.
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The right side above can be compared with that of (2.48). Following then Steps 2
and 3 of the proof of Lemma 2.12, we obtain that

E [∥S(⋅,◻n+1,X,X
∗) −A

−1
n X

∗ +X∥2

Ĥ−1(◻n+1)
]

⩽ C32n (C3−nκ +C n∑
m=0

3−κ(n−m)τm) .
According to Lemma 10.6,

∥S(⋅,◻n+1,X,X
∗) −A

−1
n X

∗ +X∥
L2(◻n)⩽ C3−n ∥S(⋅,◻n+1,X,X

∗) −A
−1
n X

∗ +X∥
Ĥ−1(◻n+1)

.

We therefore deduce that

E [∥S(⋅,◻n+1,X,X
∗) −A

−1
n X

∗ +X∥2

L2(◻n)
] ⩽ C (C3−nκ +C n∑

m=0

3−κ(n−m)τm) ,
and by quadratic response and stationarity,

E [∥S(⋅,◻n+1,X,X
∗) − S(⋅,◻n,X,X∗)∥2

L2(◻n)] ⩽ Cτn.
The last two displays imply (10.54), so the proof is complete.

We now complete the proof of Theorem 10.9.

Proof of Theorem 10.9. Applying Lemma 10.14 iteratively as in the proof of Propo-
sition 2.8, we obtain an exponent α(d,Λ) > 0 and a constant C(d,Λ) < ∞ such
that, for every n ∈ N and X ∈ B1,

E [J(◻n,X,AX)] ⩽ C3−nα.

We use this estimate and Lemma A.10 to control the stochastic fluctuations of
J(◻n,X,AX), and then conclude using Lemma 10.10, just as in the proof of
Theorem 2.4.

We conclude this section by identifying the effective matrix a. We need to show
that A is a representative in the sense of Definition 10.2 of some linear, uniformly
monotone mapping p ↦ ap. This is accomplished in the following lemma, which
gives us our definition of a.

Lemma 10.15. There exist C(d,Λ) < ∞ and a matrix a ∈ Rd×d satisfying

∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ aξ and ∣aξ∣ ⩽ Λ ∣ξ∣ (10.55)
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such that the mapping

A ∶ (p, q) ↦ 1

2
(p
q
) ⋅A(p

q
) (10.56)

is a variational representative of p↦ ap.

Proof. The fact that (p, q) ↦ A(p, q) is uniformly convex is clear from (10.40)
and (10.47). It is also evident from (10.10) that

µ (◻n, p, q) ⩾ p ⋅ q, (10.57)

and thus (10.47) yields that
A(p, q) ⩾ p ⋅ q. (10.58)

It remains to check that, for each p ∈ Rd,

inf
q∈Rd

(A(p, q) − p ⋅ q) = 0 (10.59)

and that the mapping which sends p to the q achieving the infimum is linear.
The linearity is obvious from the fact that A is quadratic, which is itself imme-
diate from (10.47) and the fact that (p, q) ↦ E [µ(◻n, p, q)] is quadratic. The
bounds (10.55) follow from (10.48).

We decompose the proof of (10.59) into two steps.
Step 1. We first show that

1

2
(q∗
p∗

)A−1 (q∗
p∗

) ⩾ p∗ ⋅ q∗. (10.60)

Recall that, in view of Proposition 10.3 and the solvability of the Dirichlet problem,
we have, for every bounded Lipschitz domain U ⊆ Rd,

inf {∫
U
(A(∇u,g, ⋅) − g ⋅ ∇u) ∶ u ∈ `p∗ +H1

0(U), g ∈ L2
sol(U)} = 0.

We deduce that, for every n ∈ N and q∗, p∗ ∈ Rd,

µ∗(◻n, q∗, p∗) ⩾ q∗ ⋅ p∗.
By Lemma 10.5 and Theorem 10.9, we have

1

2
(q∗
p∗

)A−1 (q∗
p∗

) = lim
n→∞

E[µ∗(◻n, q∗, p∗)],
and therefore (10.60) follows.
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Step 2. Fix p ∈ Rd, select q ∈ Rd achieving the infimum in (10.59), so that

A(p
q
) = (∗

p
) ,

and then let q∗ ∈ Rd be such that

A(p
q
) = (q∗

p
) . (10.61)

We then have that

1

2
(q∗
p
)A−1 (q∗

p
) = sup

p′,q′∈Rd
((q∗

p
) ⋅ (p′

q′
) − 1

2
(p′
q′
) ⋅A(p′

q′
))

= (q∗
p
) ⋅ (p

q
) − 1

2
(p
q
) ⋅A(p

q
)

where we used (10.61) for the second equality. Together with (10.58) and (10.60),
this implies that

A(p, q) = p ⋅ q,
and therefore completes the proof of (10.59).

We conclude this section with the reassuring remark that the identification of a
by Lemma 10.15 does not conflict, in the symmetric case, with the identification
of a in Chapter 2. This is immediate from Lemma 10.4.

Exercise 10.3. Show that homogenization commutes with the map a↦ at.

10.4 Quantitative homogenization of the Dirichlet problem

In this section we give a generalization of Theorem 2.15, demonstrating that the
subadditive quantities µ and µ∗ give a quantitative control of the homogenization
error for the Dirichlet problem.

We begin by quantifying the weak convergence of S and AS to constants. The
following proposition is an analogue of Theorem 2.14. We also use the notation

S(X,X∗) ∶=X −A
−1
X∗.

Proposition 10.16 (Weak convergence of (S,AS)). There exist α(d,Λ) ∈ (0, 1
d
]

and C(s, d,Λ) < ∞ such that, for every X,X∗ ∈ B1 and n ∈ N,
∥S(⋅,◻m,X,X∗) − S(X,X∗)∥2

Ĥ−1(◻m)+∥AS(⋅,◻m,X,X∗) −AS(X,X∗)∥2

Ĥ−1(◻m)⩽ C3m−mα(d−s) +O1 (C3m−ms) . (10.62)
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Proof. See Step 1 of the proof of Proposition 1.5 and the proof of Theorem 2.14.

We next give the construction of (finite-volume) correctors φm,e which play
the same role as the functions defined in (1.56) in the proof of Theorem 1.12.
These functions will be obtained directly from S(⋅,X,X∗) and AS(⋅,X,X∗) and
Lemma 10.7. The estimates we need for φm,e to run the proof of Theorem 1.12 will
be immediate from (10.62).

We define φe,m from the maximizers of J(◻m,X,0) for an appropriate choice
of X, depending on e. The selection of X is a linear algebra exercise using
Lemma 10.15. We set

Xe ∶= −( e
ae

)
and observe that we have

AXe = −(ae
e
) . (10.63)

To confirm (10.63), we note (see Lemma 10.15) that

q ↦ 1

2
(e
q
) ⋅A(e

q
) − e ⋅ q attains its minimum at q = ae

and

p↦ 1

2
( p
ae

) ⋅A( p
ae

) − p ⋅ ae attains its minimum at p = e.
Differentiating in q and p, respectively, gives (10.63).

We next take ue,n ∈H1
par(◻n+1) to be the element u ∈ A(◻n+1) in the represen-

tation of S(⋅,◻n+1,Xe,0) given in Lemma 10.7, with additive constant chosen so
that (ue,n)◻n = 0. Equivalently, we can define ue,n to be the function on ◻n+1 with
mean zero on ◻n with gradient given by

∇ue,n = 1

2
(π1S (⋅,◻n+1,Xe,0) + π2AS (⋅,◻n+1,Xe,0)) , (10.64)

where π1 and π2 denote the projections R2d → Rd given by π1(x, y) = x and
π2(x, y) = y for x, y ∈ Rd. Note that, by Lemma 10.7, we also have

a∇ue,n = 1

2
(π2S (⋅,◻n+1,Xe,0) + π1AS (⋅,◻n+1,Xe,0)) . (10.65)

By Proposition 10.16, (10.63), (10.64) and (10.65), we have that

3−n ∥∇ue,n − e∥Ĥ−1(◻n+1) + 3−n ∥a∇ue,n − ae∥Ĥ−1(◻n+1)⩽ C3−nα(d−s) +O1 (C3−ns) . (10.66)
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As ue,n ∈ A(◻n+1), we have that ue,n is a solution of

−∇ ⋅ (a∇ue,n) = 0 in ◻n+1. (10.67)

The approximate first-order corrector φe,n is defined by subtracting the affine
function x↦ e ⋅ x from ue,n:

φe,n(x) ∶= ue,n(x) − e ⋅ x.
Summarizing, we therefore have that φe,n is a solution of

−∇ ⋅ (a (e +∇φe,n)) = 0 in ◻n+1, (10.68)

and satisfies the estimates

3−n (∥∇φe,n∥Ĥ−1(◻n+1) + ∥a (e +∇φe,n) − ae∥Ĥ−1(◻n+1))⩽ C3−nα(d−s) +O1 (C3−ns) . (10.69)

By the previous two displays, Lemma 1.8 and (φe,n)◻n = 0, we also have

3−n ∥φe,n∥L2(◻n) ⩽ C3−nα(d−s) +O1 (C3−ns) . (10.70)

We next recall the definition of the random variable E ′(ε) from (1.57):

E ′(ε) ∶= d∑
k=1

(ε ∥φm,ek ( ⋅
ε
)∥
L2(ε◻m) + ∥a ( ⋅

ε
) (ek +∇φm,ek ( ⋅

ε
)) − aek∥H−1(ε◻m))2

,

where m =mε ∶= ⌊∣log ε∣ / log 3⌋. The estimates (10.69) and (10.70) above immedi-
ately yield that E ′(ε) ⩽ Cεα(d−s) +O1 (Cεs) .
Theorem 1.12 now applies—the reader will notice that the proof makes no use
of the symmetry of a(⋅)—and combining this argument with the more routine
bookkeeping in the proof of Theorem 2.15, we obtain the following analogue of the
latter.

Theorem 10.17. Fix s ∈ (0, d), an exponent δ > 0 and a bounded Lipschitz domain
U ⊆ B1. There exist β(δ, d,Λ) > 0, C(s,U, δ, d,Λ) < ∞ and a random variable Xs
satisfying Xs = O1 (C) (10.71)

such that the following statement holds. For each ε ∈ (0,1] and f ∈W 1,2+δ(U), let
uε, u ∈ f +H1

0(U) respectively denote the solutions of the Dirichlet problems

{ −∇ ⋅ (a (x
ε
)∇uε) = 0 in U,

uε = f on ∂U,
and { −∇ ⋅ (a∇u) = 0 in U,

u = f on ∂U.
(10.72)
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Then we have the estimate

∥uε − u∥2
L2(U) + ∥∇uε −∇u∥2

Ĥ−1(U) + ∥a ( ⋅
ε
)∇uε − a∇u∥2

Ĥ−1(U)⩽ C ∥∇f∥2
L2+δ(U) (εβ(d−s) + Xsεs) . (10.73)

Remark 10.18 (Regularity theory for nonsymmetric coefficient fields). As Theo-
rem 10.17 gives a full generalization of Theorem 2.15 to the case of nonsymmetric
coefficient fields, the complete regularity theory of Chapter 3 is now available, in
particular the statements of Theorems 3.3 and 3.6, Corollary 3.8 and Exercise 3.5.
Indeed, the arguments of Chapter 3 make no use of symmetry and the only in-
put from Chapters 1 and 2 is Theorem 2.15, which can therefore by replaced by
Theorem 10.17.

Similarly, one also obtains in a straightforward way the boundary regularity of
Section 3.5 and well as the Calderón-Zygmund estimates of Chapter 7: in particular,
the statements of Theorems 3.18, 3.27, 7.1 and 7.6.

Most of the rest of the results in the book, in particular the optimal bounds for
the first-order correctors proved in Chapter 4 and their scaling limits in Chapter 5,
also have straightforward extensions to the case of nonsymmetric coefficient fields.
Most of the work for obtaining such a generalization consists of extending Theo-
rem 4.6 to a “double-variable” version of J1, using the ideas of the present chapter
and following the arguments of Chapter 4. We will not present the details of such
argument here.

Notes and references

An adaptation to the case of nonsymmetric coefficients of the subadditive arguments
of [15] was first obtained in [13] in the more general context of general nonlinear
equations in divergence form (i.e., in which the coefficients are uniformly monotone
maps). The arguments in this chapter follows these ideas, although the presentation
here is new and much simpler than that of [13]. More on variational principles
for non–self adjoint linear operators and evolutionary equations can be found
in [57, 118] and in the context of periodic homogenization for uniformly monotone
maps in [58, 117]. A related “double variable” variational principle was previously
used in the context of homogenization of linear, nonsymmetric elliptic operators
in [50, 51].



Chapter 11

Nonlinear equations

In this chapter, we adapt the approach developed in earlier chapters to the case
of nonlinear elliptic equations. The main focus is on extending the arguments of
Chapters 2 and 3.

In the first section, we present the assumptions and some basic facts concerning
nonlinear elliptic equations. In Section 11.2, we introduce the subadditive quantities
and adapt the arguments of Chapter 2 to prove their convergence. We give a
quantitative result on the homogenization of the Dirichlet problem in Section 11.4.
In Section 11.5 we prove a large-scale C0,1-type estimate.

11.1 Assumptions and preliminaries

The most general elliptic equation we wish to consider takes the form

−∇ ⋅ a(∇u,x) = 0. (11.1)

Here the coefficient field a(p, x) is a map a ∶ Rd × Rd → Rd which may depend
nonlinearly in its first variable. The uniform ellipticity assumption is the condition
that, for every p1, p2, x ∈ Rd,

(a(p1, x) − a(p2, x)) ⋅ (p1 − p2) ⩾ ∣p1 − p2∣2 (11.2)

and ∣a(p1, x) − a(p2, x)∣ ⩽ Λ ∣p1 − p2∣ . (11.3)

We also require that, for some constant K ∈ [1,∞) and every p ∈ Rd,

∥a(p, ⋅)∥L∞(Rd) ⩽ K +Λ∣p∣. (11.4)

The condition (11.2) says that the map p ↦ a(p, x) is uniformly monotone,
while (11.3) and (11.4) require a(⋅, ⋅) to be Lipschitz in its first variable and

382
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bounded uniformly in its second variable. We make no assumption on the regu-
larity of a(p, ⋅) beyond measurability and boundedness. In the case that (11.1)
is linear, that is, a(p, x) = ã(x)p for a d × d matrix ã(x), the assumptions (11.2)
and (11.3) are equivalent to (10.2) and (11.4) is superfluous.

To simplify the presentation, we assume throughout the chapter that

a(p, x) =DpL(p, x), (11.5)

where L = L(p, x) is a Lagrangian which is convex in p. (We denote the derivatives
of L in the variable p by Dp, and reserve the symbol ∇ for spatial variables.)
Note that (11.5) is a generalization of the assumption from the linear case that
the coefficient matrix is symmetric, and it gives (11.1) a (classical) variational
formulation:

u ∈H1(U) is a solution of (11.1)

⇐⇒ u is the minimizer in u +H1
0(U) of w ↦ ∫

U
L(∇w, ⋅).

The assumptions (11.2), (11.3) and (11.4) can be rewritten in terms of L as the
statements that, for every p1, p2, x ∈ Rd,

(DpL(p1, x) −DpL(p2, x)) ⋅ (p1 − p2) ⩾ ∣p1 − p2∣2 , (11.6)

∣DpL(p1, x) −DpL(p2, x)∣ ⩽ Λ ∣p1 − p2∣ , (11.7)

and ∥DpL(p, ⋅)∥L∞(Rd) ⩽ K +Λ∣p∣. (11.8)

Note that (11.6) and (11.7) are equivalent to the statement that for every x ∈ Rd,
the mapping p↦ L(p, x) is C1,1 and uniformly convex:

∀x ∈ Rd and a.e.p ∈ Rd, Id ⩽D2
pL(p, x) ⩽ Λ Id. (11.9)

This assumption can be written equivalently as follows: for every p1, p2, x ∈ Rd,

1

4
∣p1 − p2∣2 ⩽ L(p1, x) +L(p2, x) − 2L(p1 + p2

2
, x) ⩽ Λ

4
∣p1 − p2∣2 . (11.10)

Note that adding a function of x only to L does not change the definition of a in
(11.5) or any of the assumptions in (11.6)-(11.8). We can therefore assume without
loss of generality that, for every p, x ∈ Rd,

1

2
∣p∣2 −K∣p∣ ⩽ L(p, x) ⩽ Λ

2
∣p∣2 +K∣p∣. (11.11)
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In this chapter, we therefore modify the standing assumptions by re-defining

Ω ∶= {L ∶ L is a measurable map from Rd ×Rd → R
satisfying (11.8), (11.10) and (11.11)}.

The family {FU} indexed by the Borel subsets U ⊆ Rd is defined by

FU ∶= the σ-algebra generated by {L↦ ∫
Rd
L(p, x)ϕ(x)dx ∶ ϕ ∈ C∞

c (U), p ∈ Rd} .
We take F ∶= FRd . The translation operator Ty acts on Ω by

(TyL) (p, x) ∶= L(p, x + y), (11.12)

and, as usual, we extend this to elements of F by defining TyE ∶= {TyL ∶ L ∈ E}.
With these modifications to the definitions, the rest of the assumptions are in
force. In particular, we take P to be a probability measure on (Ω,F) satisfying
stationarity with respect to Zd translations and the unit range of dependence
assumption. We also take Ω to be the subset of Ω consisting of those L’s which do
not depend on x:

Ω ∶= {L ∶ L is a measurable map from Rd → R
such that (p, x) ↦ L(p) belongs to Ω}. (11.13)

We denote by L(U) the subset of H1
loc(U) consisting of local minimizers of the

integral functional, or equivalently, weak solutions w of the equation

−∇ ⋅ (DpL (∇w,x)) = 0 in U.

The nonlinear version of Caccioppoli’s inequality is the following (compare the
statement and its proof with the linear case, Lemma C.2).

Lemma 11.1 (Caccioppoli inequality). There exists C(d,Λ) < ∞ such that, for
every r > 0 and u, v ∈ L(Br),

∥∇u −∇v∥L2(Br/2) ⩽ Cr ∥u − v − (u − v)Br∥L2(Br) . (11.14)

Proof. The proof can be compared to that of Lemma C.2. By subtracting a constant
from u, we may suppose that (u − v)Br = 0. Select φ ∈ C∞

c (Br) to satisfy

0 ⩽ φ ⩽ 1, φ = 1 in Br/2, ∣∇φ∣ ⩽ 4r−1, (11.15)

and test the equations for u and v each with φ2(u − v) to get

⨏
Br
∇(φ2(u − v)) ⋅DpL(∇u, ⋅) = 0 = ⨏

Br
∇(φ2(u − v)) ⋅DpL(∇v, ⋅).



11.2 Subadditive quantities and basic properties 385

After rearranging, this gives

⨏
Br
φ2 (∇u −∇v) ⋅ (DpL(∇u, ⋅) −DpL(∇v, ⋅))

= −⨏
Br

2φ(u − v)∇φ ⋅ (DpL(∇u, ⋅) −DpL(∇v, ⋅)) .
Using uniform ellipticity in (11.6), as well as the Lipschitz bound (11.7), we obtain

⨏
Br
φ2 ∣∇u −∇v∣2 ⩽ C ⨏

Br
φ ∣∇φ∣ ∣u − v∣ ∣∇u −∇v∣ .

By Young’s inequality,

C ⨏
Br
φ ∣∇φ∣ ∣u − v∣ ∣∇u −∇v∣ ⩽ ⨏

Br

1

2
(φ2 ∣∇u −∇v∣2 +C ∣∇φ∣2 ∣u − v∣2) ,

and therefore we obtain, after reabsorption,

⨏
Br
φ2 ∣∇u −∇v∣2 ⩽ C ⨏

Br
∣∇φ∣2 ∣u − v∣2 .

Using (11.15), we deduce

⨏
Br/2

∣∇u −∇v∣2 ⩽ Cr−2⨏
Br

∣u − v∣2 .
This completes the proof.

11.2 Subadditive quantities and basic properties

In this section, we introduce the subadditive quantities ν and ν∗ and show that,
compared to the linear case, many of the basic properties are preserved.

Recall that `p is the affine function `p(x) = p ⋅ x. Given L ∈ Ω, p, q ∈ Rd and a
bounded Lipschitz domain U ⊆ Rd, we define

ν(U, p) ∶= inf
u∈`p+H1

0(U)
⨏
U
L (∇u, ⋅) (11.16)

and
ν∗(U, q) ∶= sup

u∈H1(U)
⨏
U
(−L (∇u, ⋅) + q ⋅ ∇u) . (11.17)

We also denote

v(⋅, U, p) ∶=minimizing element of `p +H1
0(U) in (11.16)

and
u(⋅, U, q) ∶=maximizing element of H1(U) in (11.17).
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As in the linear case, see (2.4), we may compare ν∗(U, q) to ν(U, p) by testing the
minimizer of ν(U, p) in the definition of ν∗(U, q). This gives

ν(U, p) + ν∗(U, q) ⩾ p ⋅ q. (11.18)

Thus if we define J by

J(U, p, q) ∶= ν(U, p) + ν∗(U, q) − p ⋅ q,
we see that J is nonnegative. We cannot however hope to write J as an optimization
problem as in (2.9). This turns out to be only slightly inconvenient.

We begin by recording some basic properties of ν and ν∗, extending Lemma 2.2
to the nonlinear case.

Lemma 11.2 (Basic properties of ν and ν∗). Fix a bounded Lipschitz domain
U ⊆ Rd. The quantities ν(U, p) and ν∗(U, q) and the functions v(⋅, U, p) and
u(⋅, U, q) satisfy the following properties:

• Uniformly convex and C1,1. There exists C(Λ) < ∞ such that, for every
p1, p2 ∈ Rd,

1

4
∣p1 − p2∣2 ⩽ ν (U, p1) + ν (U, p2) − 2ν (U, p1 + p2

2
) ⩽ C ∣p1 − p2∣2 (11.19)

and, for every q1, q2, p ∈ Rd,

1

C
∣q1 − q2∣2 ⩽ ν∗ (U, q1) + ν∗ (U, q2) − 2ν∗ (U, q1 + q2

2
) ⩽ 1

4
∣q1 − q2∣2 . (11.20)

• Subadditivity. Let U1, . . . , UN ⊆ U be bounded Lipschitz domains that form a
partition of U , in the sense that Ui ∩Uj = ∅ if i ≠ j and

∣U ∖ N⋃
i=1

Ui∣ = 0.

Then, for every p, q ∈ Rd,

ν(U, p) ⩽ N∑
i=1

∣Ui∣∣U ∣ ν(Ui, p) and ν∗(U, q) ⩽ N∑
i=1

∣Ui∣∣U ∣ ν∗(Ui, q). (11.21)

• First variations. For each q ∈ Rd, the maximizer u(⋅, U, q) in the defini-
tion (11.17) of ν∗(U, q) is characterized as the unique element of H1(U)∩L(U)
which satisfies

∀w ∈H1(U), ⨏
U
∇w ⋅DpL (∇u(⋅, U, q), ⋅) = q ⋅ ⨏

U
∇w. (11.22)
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For each p ∈ Rd, the minimizer v(⋅, U, p) is characterized as the unique element
of L(U), up to a constant, such that

∀w ∈ L(U), ⨏
U
∇v ⋅DpL (∇w, ⋅) = p ⋅ ⨏

U
DpL (∇w, ⋅) . (11.23)

• Quadratic response. There exists C(Λ) < ∞ such that, for every q ∈ Rd and
w ∈H1(U),

1

2 ⨏U ∣∇w −∇u(⋅, U, q)∣2 ⩽ ν∗(U, q) − ⨏
U
(−L(∇w, ⋅) + q ⋅ ∇w)
⩽ Λ

2 ⨏U ∣∇w −∇u(⋅, U, q)∣2 , (11.24)

and, similarly, for every p ∈ Rd and w ∈ `p +H1
0(U),

1

2 ⨏U ∣∇w −∇v(⋅, U, p)∣2 ⩽ ν(U, p) − ⨏
U
L(∇w, ⋅)
⩽ Λ

2 ⨏U ∣∇w −∇v(⋅, U, p)∣2 . (11.25)

• Formulas for derivatives of ν and ν∗. For every p, q ∈ Rd,

Dpν(U, p) = ⨏
U
DpL (∇v(⋅, U, p), ⋅) (11.26)

and
Dqν

∗(U, q) = ⨏
U
∇u(⋅, U, q). (11.27)

Proof. The proof of subadditivity (11.21) is nearly identical to the proof of (2.15)
and thus we omit it.

For the rest of the proof, we fix p, q ∈ Rd and U ⊆ Rd, and use the shorthand
notation u ∶= u(⋅, U, q) and v ∶= v(⋅, U, p).

Step 1. We first prove the first variations. Fix w ∈H1(U) and t ∈ R ∖ {0}, and
set ut ∶= u + tw. We have

ν∗(U, q) ⩾ ⨏
U
(−L(∇ut, ⋅) + q ⋅ ∇ut)

= ν∗(U, q) + t⨏
U
(q ⋅ ∇w −∇w ⋅ ∫ 1

0
DpL (∇u + st∇w, ⋅) ds) .

Dividing by t and sending t→ 0 proves (11.22). Clearly u ∈ L(U).
To show (11.23), fix φ ∈H1

0(U) and t ∈ R ∖ {0}, and set vt = v + tφ. Then
ν(U, p) ⩽ ⨏

U
L(∇vt, x)dx

= ν(U, p) + t⨏
U
∫ 1

0
DpL(∇v(x,U, p) + ts∇φ(x), x)ds ⋅ ∇φ(x)dx.
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Dividing by t and sending t → 0 gives that v ∈ L(U). Since v − p ⋅ x ∈ H1
0(U), we

deduce that (11.23) holds. To prove that v is the unique element satisfying (11.23),
take v1 and v2 satisfying (11.23) and observe that we obtain

⨏
U
(DpL(∇v1, ⋅) −DpL(∇v2, ⋅)) ⋅ (∇v1 −∇v2) = 0.

This implies, by (11.6), that v1 − v2 is a constant, proving the claim.
Step 2. Quadratic response. We only prove (11.24) since the proof of (11.25) is

very similar. By the first variation (11.22), we obtain that

ν∗(U, q) − ⨏
U
(−L (∇w, ⋅) + q ⋅ ∇w)

= ⨏
U
(∫ 1

0
DpL (∇u + t (∇w −∇u) , ⋅) dt − q) ⋅ (∇w −∇u)

= ⨏
U
∫ 1

0
(DpL (∇u + t (∇w −∇u) , ⋅) −DpL (∇u, ⋅)) ⋅ (∇w −∇u) dt.

Now (11.24) follows from (11.6).
Step 3. The proof of (11.26). We will show more, namely the existence of a

constant C(Λ) < ∞ such that, for every p, p′ ∈ Rd,

1

2
∣p − p′∣2 ⩽ ν(U, p) − ν(U, p′) − (p − p′) ⋅ ⨏

U
DpL(∇v, ⋅) ⩽ C ∣p − p′∣2 . (11.28)

Fix p, p′ ∈ Rd and set v ∶= v(⋅, U, p) and v′ ∶= v(⋅, U, p′). Since v−v′−(p−p′)⋅x ∈H1
0(U),

we have that

0 = ⨏
U
(DpL(∇v, ⋅) −DpL(∇v′, ⋅)) ⋅ (∇v −∇v′ − (p − p′)) .

Using (11.6), we thus obtain

⨏
U
∣∇v −∇v′∣2 ⩽ C ∣p − p′∣2 .

On the other hand, by Jensen’s inequality,

∣p − p′∣2 = ∣⨏
U
(∇v −∇v′)∣2 ⩽ ⨏

U
∣∇v −∇v′∣2 .

Applying (11.23), we get

ν(U, p) − ν(U, p′) − (p − p′) ⋅ ⨏
U
DpL(∇v, ⋅)

= ⨏
U
(L(∇v, ⋅) −L (∇v′, ⋅) −DpL(∇v, ⋅) ⋅ (∇v −∇v′))

= ⨏
U
(∫ 1

0
DpL(∇v′ + t(∇v −∇v′), ⋅)dt −DpL(∇v, ⋅)) ⋅ (∇v −∇v′) .
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Combining the three displays above and applying (11.6) yields (11.28).
Step 4. The proof of (11.27). We will show that there exists C(Λ) < ∞ such

that, for every q, q′ ∈ Rd,
1

C
∣q − q′∣2 ⩽ ν∗(U, q) − ν∗(U, q′) − (q − q′) ⋅ ⨏

U
∇u ⩽ 1

2
∣q − q′∣2 . (11.29)

Fix q, q′ ∈ Rd and set u ∶= u(⋅, U, q) and u′ ∶= u(⋅, U, q′). First, (11.22) gives
0 = ⨏

U
((DpL(∇u, ⋅) −DpL(∇u′, ⋅)) ⋅ (∇u −∇u′) − (q − q′) ⋅ (∇u −∇u′)) ,

and hence, by (11.6),

⨏
U
∣∇u −∇u′∣2 ⩽ ∣q − q′∣2 .

On the other hand, testing (11.22) with w(x) ∶= (q − q′) ⋅ x yields by (11.7) that

∣q − q′∣2 ⩽ ∣q − q′∣ ⨏
U
∣DpL(∇u, ⋅) −DpL(∇u′, ⋅)∣ ⩽ C ∣q − q′∣ (⨏

U
∣∇u −∇u′∣2) 1

2

.

From this we obtain ∣q − q′∣2 ⩽ C ⨏
U
∣∇u −∇u′∣2 .

Using the first variation (11.22) again, we find that

ν∗(U, q) − ν∗(U, q′) − (q − q′) ⋅ ⨏
U
∇u

= ⨏
U
(L(∇u′, ⋅) −L(∇u, ⋅) + q′ ⋅ (∇u −∇u′))

= ⨏
U
(L(∇u′, ⋅) −L(∇u, ⋅) −DpL (∇u′, ⋅) ⋅ (∇u′ −∇u))

= ⨏
U
(∫ 1

0
DpL(∇u + t(∇u′ −∇u), ⋅)dt −DpL(∇u′, ⋅)) ⋅ (∇u′ −∇u) .

From the last three displays and (11.6) we get (11.29).
Step 5. Uniform convexity and C1,1: (11.19) and (11.20) follow from (11.28)

and (11.29), respectively.

By (11.19) and (11.20) it follows, as we show in the following exercise, that
there exists a constant C(Λ) < ∞ such that, for U ⊆ Rd and every p1, p2 ∈ Rd,

∣Dpν(U, p1) −Dpν(U, p2)∣ + ∣Dqν
∗(U, p1) −Dqν

∗(U, p2)∣ ⩽ C ∣p1 − p2∣. (11.30)

Exercise 11.1. Suppose that K > 0, U ⊆ Rd is convex and f ∶ U → R is continuous
and satisfies, for every x1, x2 ∈ U ,

∣1
2f(x1) + 1

2f(x2) − f (1
2x1 + 1

2x2)∣ ⩽K ∣x1 − x2∣2 .
Prove that f ∈ C1,1(U) and that, for every x1, x2 ∈ U ,

∣∇f(x1) − ∇f(x2)∣ ⩽ CK ∣x1 − x2∣ .
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We next introduce “coarsenings” LU of the Lagrangian L which are defined in
terms of the Legendre-Fenchel transform of ν∗(U, ⋅). For every p ∈ Rd and bounded
Lipschitz domain U ⊆ Rd, define

LU(p) ∶= sup
q∈Rd

(p ⋅ q − ν∗(U, q)) . (11.31)

Since q ↦ ν∗(U, q) is uniformly convex and bounded above by a quadratic function,
we have (see [46, Section 3.3.2])

sup
p∈Rd

(p ⋅ q −LU(p)) = ν∗(U, q).
Since the mapping p↦ ν∗(u, p) is C1,1 and uniformly convex, we deduce that, for
every q ∈ Rd,

DLU (Dν∗(U, q)) = q and Dν∗ (U,DLU(q)) = q.
In view of (11.27), we obtain the identity, for every p ∈ Rd,

p = ⨏
U
∇u (⋅, U,DLU(p)) .

We also introduce deterministic versions of LU by setting

LU(p) ∶= sup
q∈Rd

(p ⋅ q −E [ν∗(U, q)]) . (11.32)

That is, LU is the Legendre-Fenchel transform of q ↦ E [ν∗(U, q)]. This quantity is
analogous to the coarsened matrix aU introduced in Definition 2.11. For notational
convenience, we also set

ν∗(U, q) ∶= E [ν∗(U, q)] ,
and observe that

sup
p∈Rd

(p ⋅ q − ν∗(U, q)) = LU(p).
It follows from (11.27) that

Dν∗(U, q) = E [⨏
U
∇u(⋅, U, q)] , (11.33)

and from (11.20) that, for every q1, q2 ∈ Rd,

∣q1 − q2∣ ⩽ C ∣Dν∗(U, q1) −Dν∗(U, q2)∣ .
Since DLU and Dν∗(U, ⋅) are inverse functions, we infer from (11.33) that, for
every p ∈ Rd,

p = E [⨏
U
∇u (⋅, U,DLU(p))] . (11.34)
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We also use the shorthand notation Ln ∶= L◻n and ν∗n ∶= ν∗(◻n, ⋅). We next observe
that, by (11.33), (11.34), stationarity and quadratic response, we have

∣p −Dν∗n+1 (DLn(p))∣2
= ∣E [⨏◻n ∇u (⋅,◻n,DLn(p))] −E [⨏◻n+1 ∇u (⋅,◻n+1,DLn(p))]∣2
⩽ ∑
z∈3nZd∩◻n+1

E [⨏
z+◻n

∣∇u (⋅, z +◻n,DLn(p)) − ∇u (⋅,◻n+1,DLn(p))∣2]
⩽ C (E [ν∗(◻n,DLn(p))] −E [ν∗(◻n+1,DLn(p))]) .

It follows that

∣DLn+1(p) −DLn(p)∣2⩽ C (E [ν∗(◻n,DLn(p))] −E [ν∗(◻n+1,DLn(p))]) . (11.35)

We also note that, similarly to (2.45), the uniformly convex function

q ↦ E [J (U, p, q)] = E [ν (U, p)] +E [ν∗ (U, q)] − p ⋅ q (11.36)

achieves its minimum at the point q such that p =Dν∗(U, q), which is equivalent
to q =DLU(p). It therefore follows from (11.20) that, for some constant C(Λ) < ∞
and every p, q ∈ Rd,

1

C
∣q −DLU(p)∣2 ⩽ E [J (U, p, q)] −E [J (U, p,DLU(p))] ⩽ C ∣q −DLU(p)∣2 .

(11.37)
Finally, we define the effective Lagrangian L by setting, for every p ∈ Rd,

L(p) ∶= lim
n→∞

E [ν(◻n, p)] . (11.38)

This is an extension to the nonlinear setting of the quantity a introduced in Def-
inition 1.2. Recalling the definition of Ω in (11.13), we observe that L ∈ Ω. We
denote the convex dual of L by L∗: for every q ∈ Rd,

L∗(q) ∶= sup
p∈Rd

(p ⋅ q −L(p)) . (11.39)

11.3 Convergence of the subadditive quantities

The main result of this section is the following generalization of Theorem 2.4.

Theorem 11.3. Fix s ∈ (0, d) and M ∈ [1,∞). There exist α(d,Λ) ∈ (0, 1
2
] and

C(s, d,Λ) < ∞ such that, for every p, q ∈ Rd and n ∈ N,
sup
p∈BM

∣ν(◻n, p) −L(p)∣ + sup
q∈BM

∣ν∗(◻n, q) −L∗(q)∣
⩽ C3−nα(d−s) (K +M)2 +O1 (C (K +M)2

3−ns) . (11.40)
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The strategy is similar to the one of the proof of Theorem 2.4. One difference
is that we have to perform the iteration “p-by-p” rather than for all p’s at once.
This leads to a different definition of the increment τn compared to the one from
Chapter 2. We define, for each p, q ∈ Rd and n ∈ N,

{τ∗n(q) ∶= E [ν∗(◻n, q)] −E [ν∗(◻n+1, q)] ,
τn(p) ∶= E [ν(◻n, p)] −E [ν(◻n+1, p)] , (11.41)

which are both nonnegative by subadditivity and stationarity. We begin with the
generalization of Lemma 2.10.

Lemma 11.4. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every p, q ∈ Rd

and m ∈ N,
var [⨏◻m ∇u(⋅,◻m, q)] ⩽ C(K + ∣q∣)23−mκ +C m∑

n=0

3−κ(m−n)τ∗n(q). (11.42)

Proof. The proof is almost the same as the one of Lemma 2.10. We fix q ∈ Rd.
Step 1. We show that

var [⨏◻m ∇u(⋅,◻m, q)]
⩽ var

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

∇u(⋅, z +◻n, q)⎤⎥⎥⎥⎥⎦ +C
m−1∑
k=n

τ∗k (q). (11.43)

Simplify the notation by setting

u ∶= u(◻m, q) and uz ∶= u(z +◻n, q).
Using the identity

⨏◻m ∇u = 3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

(∇u −∇uz) + 3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

∇uz,
we find that

var [⨏◻m ∇u] ⩽ 2E
⎡⎢⎢⎢⎢⎣3−d(m−n) ∑

z∈3nZd∩◻m
∣⨏
z+◻n

(∇u −∇uz)∣2⎤⎥⎥⎥⎥⎦
+ 2 var

⎡⎢⎢⎢⎢⎣3−d(m−n) ∑
z∈3nZd∩◻m

⨏
z+◻n

∇uz⎤⎥⎥⎥⎥⎦ .
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By (11.21), we have

∑
z∈3nZd∩◻m

∣⨏
z+◻n

(∇u −∇uz)∣2 ⩽ ∑
z∈3nZd∩◻m

⨏
z+◻n

∣∇u −∇uz ∣2
⩽ C ∑

z∈3nZd∩◻m
(ν∗(z +◻n, q) − ν∗(◻m, q))

and taking the expectation of this yields, by stationarity,

E
⎡⎢⎢⎢⎢⎣3−d(m−n) ∑

z∈3nZd∩◻m
∣⨏
z+◻n

(∇v −∇vz)∣2⎤⎥⎥⎥⎥⎦ ⩽ CE [ν∗(z +◻n, q) − ν∗(◻m, q)]
= C m−1∑

k=n
τ∗k (q).

Combining the two previous displays yields (11.43).
Step 2. We show that there exists θ(d) ∈ (0,1) such that, for every n ∈ N,
var

⎡⎢⎢⎢⎢⎣3−d ∑
z∈3nZd∩◻n+1

⨏
z+◻n

∇u(⋅, z +◻n, q)⎤⎥⎥⎥⎥⎦ ⩽ θ var [⨏◻n ∇u(⋅,◻n, q)] . (11.44)

The proof of (11.44) is exactly the same as that of Step 2 of the proof of Lemma 2.10.
Step 3. Iteration and conclusion. Denote

σ2
n(q) ∶= var [⨏◻n ∇u(⋅,◻n, q)] .

By (2.36) and (2.39), there exists θ(d) ∈ (0,1) such that, for every n ∈ N,
σ2
n+1(q) ⩽ θσ2

n(q) +Cτ∗n(q). (11.45)

An iteration yields

σ2
m(q) ⩽ θmσ2

0(q) +C m∑
n=0

θm−nτ∗n(q).
Since σ2

0(q) ⩽ C(K + ∣q∣)2, this inequality implies

σ2
m ⩽ C(K + ∣q∣)23−mκ +C m∑

n=0

3−κ(m−n)τ∗n(q)
for κ ∶= log θ/ log 3, which completes the proof.

Recall that the analogue of the lemma above for v(⋅,◻m, p) is trivial: indeed,
since v(⋅,◻m, p) ∈ `p +H1

0(◻m), we have

p = ⨏◻m ∇v(⋅,◻m, p) (11.46)
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and therefore
var [⨏◻m ∇v(⋅,◻m, p)] = 0. (11.47)

We next generalize Lemma 2.12. Recall that LU is defined in (11.32) and
satisfies (11.34). That is, q = DLU(p) is the correct value of the parameter q so
that the expectation of ⨏U ∇u(⋅, U, q) is equal to p.

Lemma 11.5. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every n ∈ N
and p ∈ Rd,

E [⨏◻n+1 ∣u (x,◻n+1,DLn(p)) − p ⋅ x∣2 dx]
⩽ C32n ((K + ∣p∣)2

3−κn + n∑
m=0

3−κ(n−m)τ∗m (DLm(p))) (11.48)

and

E [⨏◻n+1 ∣v(x,◻n+1, p) − p ⋅ x∣2 dx]
⩽ C32n ((K + ∣p∣)2

3−κn + n∑
m=0

3−κ(n−m)τm(p)) . (11.49)

Proof. We omit the proof since the argument has no important differences from
the proof of Lemma 2.12.

We can now generalize Lemma 2.13 in a nonlinear fashion by comparing the
maximizer of ν∗(◻n, q) to the minimizer of ν(◻n,DL∗n(q)), and then using the
Caccioppoli inequality (Lemma 11.1) to estimate the difference between ν∗(◻n, q)
and p ⋅ q − ν(◻n, p) for q =DLn(p).
Lemma 11.6. There exist κ(d) > 0 and C(d,Λ) < ∞ such that, for every p ∈ Rd

and n ∈ N,
E [J (◻n, p,DLn(p))]

⩽ C ((K + ∣p∣)2
3−κn + n∑

m=0

3−κ(n−m) (τ∗m (DLm(p)) + τm(p))) . (11.50)

Proof. Fix p ∈ Rd. Lemma 11.5 and the triangle inequality give

E [⨏◻n+1 ∣u (⋅,◻n+1,DLn(p)) − v (⋅,◻n+1, p)∣2]
⩽ C32n ((K + ∣p∣)2

3−κn + n∑
m=0

3−κ(n−m) (τ∗m (DLm(p)) + τm(p))) .
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Applying the Caccioppoli inequality, Lemma 11.1, we find that

E [⨏◻n ∣∇u (⋅,◻n+1,DLn(p)) − ∇v (⋅,◻n+1, p)∣2]
⩽ C ((K + ∣p∣)2

3−κn + n∑
m=0

3−κ(n−m) (τ∗m (DLm(p)) + τm(p))) . (11.51)

To conclude, it suffices to show that, for every p, q ∈ Rd,

E [J (◻n, p, q)]
⩽ CE [⨏◻n ∣∇u (⋅,◻n+1, q) − ∇v (⋅,◻n+1, p)∣2] +C (τ∗n(q) + τn(p)) . (11.52)

By (11.46), we have

⨏◻n (−L(∇v(⋅,◻n, p), ⋅) + q ⋅ ∇v(⋅,◻n, p)) = −ν(◻n, p) + p ⋅ q.
By (11.24), we obtain

J (◻n, p, q) = ν(◻n, p) + ν∗(◻n, p) − p ⋅ q
= ν∗(◻n, p) − ⨏◻n (−L(∇v(⋅,◻n, p), x) + q ⋅ ∇v(⋅,◻n, p))
⩽ Λ

2 ⨏◻n ∣∇v(⋅,◻n, p) − ∇u(⋅,◻n, q)∣2 .
On the other hand, by quadratic response, we have

⨏◻n ∣∇u (⋅,◻n+1, q) − ∇u (⋅,◻n, q)∣2 ⩽ C ∑
z∈3nZd∩◻n+1

(ν∗(z +◻n, q) − ν∗(◻n+1, q))
and

⨏◻n ∣∇v (⋅,◻n+1, p) − ∇v (⋅,◻n, p)∣2 ⩽ C ∑
z∈3nZd∩◻n+1

(ν(z +◻n, p) − ν(◻n+1, p)) .
Combining these, applying the triangle inequality and taking expectations yields
the claim (11.52), finishing the proof.

We now perform the iteration to complete the generalization of Proposition 2.8.

Proposition 11.7. There exist α(d,Λ) ∈ (0, 1
2
] and C(d,Λ) < ∞ such that, for

every p ∈ Rd and n ∈ N,
E [J (◻n, p,DL(p))] ⩽ C (K + ∣p∣)2

3−nα. (11.53)
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Proof. For each p ∈ Rd, we define the quantity

Fn(p) ∶= E [J (◻n, p,DLn(p))] .
Notice the difference between Fn defined here compared to the one defined in (2.57),
which is that we are not tracking the convergence of all the p’s at once, just a
single p. We also define

F̃n(p) ∶= 3−
κ
2
n

n∑
m=0

3
κ
2
mFm(p),

where κ(d) > 0 is the exponent in the statement of Lemma 11.6. It is also convenient
to define

Tn(p) ∶= τ∗n (DLn(p)) + τn(p).
Recall that τ∗n and τn are defined in (11.41).

Step 1. We prove that

Fn(p) − Fn+1(p) ⩾ Tn(p). (11.54)

Since the map in (11.36) achieves its minimum at q =DLU(p), we have

Fn(p) − Fn+1(p) = E [J (◻n, p,DLn(p))] −E [J (◻n+1, p,DLn+1(p))]⩾ E [J (◻n, p,DLn(p))] −E [J (◻n+1, p,DLn(p))]= Tn(p).
Step 2. We show that there exists θ(d,Λ) ∈ [1

2 ,1) and C(d,Λ) < ∞ such that

F̃n+1(p) ⩽ θF̃n(p) +C (K + ∣p∣)2
3−

κ
2
n. (11.55)

This is essentially the same as the proof of (2.61). We have by (11.54) and

F0(p) ⩽ C (K + ∣p∣)2 (11.56)

that

F̃n(p) − F̃n+1(p) = 3−
κ
2
n

n∑
m=0

3
κ
2
m (Fm(p) − Fm+1(p)) − 3−

κ
2
(n+1)F0(p)

⩾ 3−
κ
2
n

n∑
m=0

3
κ
2
mTm(p) −C (K + ∣p∣)2

3−
κ
2
n.

By a similar computation as in the display (2.62), we apply Lemma 11.6 to obtain

F̃n+1(p) ⩽ C (K + ∣p∣)2
3−

κ
2
n +C3−

κ
2
n

n∑
m=0

3
κ
2
mTm(p).
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Combining the previous two displays yields (11.55).
Step 3. The conclusion. By an iteration of the inequality (11.55) and us-

ing (11.56), we obtain, for some α(d,Λ) > 0,

F̃n(p) ⩽ θnF̃0(p) +C (K + ∣p∣)2
3−

κ
2
n ⩽ C (K + ∣p∣)2

3−nα.

Since Fn(p) ⩽ F̃n(p), we deduce that

Fn(p) ⩽ C (K + ∣p∣)2
3−nα.

By (11.54), we also have

Tn(p) ⩽ C (K + ∣p∣)2
3−nα.

Hence by (11.35), we obtain that, for every m,n ∈ N with n ⩽m,

∣DLn(p) −DLm(p)∣2 ⩽ ( m∑
k=n

∣DLk(p) −DLk+1(p)∣)2 ⩽ C ( m∑
k=n

Tk(p) 1
2)2

⩽ C (K + ∣p∣)2 ( m∑
k=n

3−kα/2)2

⩽ C (K + ∣p∣)2
3−nα.

For each p ∈ Rd, we define L(p) by

L(p) ∶= lim
n→∞

Ln(p). (11.57)

We postpone the verification of the fact that this definition coincides with that
given in (11.38) to the next step. By the two previous displays and (11.37), we get

E [J (◻n, p,DL(p))] ⩽ Fn(p) +C ∣DLn(p) −DL(p)∣2 ⩽ C (K + ∣p∣)2
3−nα. (11.58)

Step 4. There remains to verify that the definitions in (11.57) and (11.38)
coincide. By (11.18), we have, for every p ∈ Rd,

E [ν(◻n, p)] ⩾ Ln(p), (11.59)

and we recall that, for every q ∈ Rd,

Ln(p) = sup
q∈Rd

(p ⋅ q −E [ν∗(◻n, q)]) .
Selecting q =DL(p) and using (11.58), we infer that

Ln(p) ⩾ E [ν(◻n, p)] −C (K + ∣p∣)2
3−nα.

This and (11.59) imply that (11.38) holds.
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Exercise 11.2. Show that for L∗ defined in (11.39) and every q ∈ Rd,

L∗(q) = lim
n→∞

E [ν∗(◻n, q)] . (11.60)

We are now ready to complete the proof of Theorem 11.3.

Proof of Theorem 11.3. We decompose the proof into four steps.
Step 1. We show that, for every p ∈ Rd and n ∈ N,

0 ⩽ E [ν(◻n, p)] −L(p) ⩽ C (K + ∣p∣)2
3−nα (11.61)

and, for every q ∈ Rd and n ∈ N,
0 ⩽ E [ν∗(◻n, q)] −L∗(q) ⩽ C (K + ∣q∣)2

3−nα. (11.62)

To check (11.61), we observe that the leftmost inequality is an immediate conse-
quence of subadditivity and stationarity. For the rightmost inequality, we observe
that by subadditivity and stationarity, for every p ∈ Rd,

E [ν(◻n, p)] = E [J (◻n, p,DL(p))] + p ⋅DL(p) −E [ν∗ (◻n,DL(p))]⩽ E [J (◻n, p,DL(p))] + p ⋅DL(p) −L∗ (DL(p))= E [J (◻n, p,DL(p))] +L(p).
Together with Proposition 11.7, this completes the proof of (11.61). The proof
of (11.62) is similar using (11.60), so we omit it.

Step 2. We upgrade the stochastic integrability of (11.61) and (11.62). The
claim is that there exists C(d,Λ) < ∞ such that, for every p, q ∈ Rd and m,n ∈ N
with m ⩽ n,

∣ν(◻n, p) −L(p)∣ ⩽ C (K + ∣p∣)2
3−mα +O1 (C (K + ∣p∣)2

3−d(n−m)) (11.63)

and

∣ν∗(◻n, q) −L∗(q)∣ ⩽ C (K + ∣q∣)2
3−mα +O1 (C (K + ∣q∣)2

3−d(n−m)) . (11.64)

Fix p ∈ Rd and compute for each m,n ∈ N with m ⩽ n and Zm ∶= 3mZd ∩◻n, using
subadditivity and Lemmas A.3 and A.10, to obtain

ν(◻n, p) −E [ν(◻m, p)] ⩽ 1∣Zm∣ ∑z∈Zm (ν(z +◻m, p) −E [ν(z +◻m, p)])
⩽ O2 (C (K + ∣p∣)2

3−
d
2
(n−m)) ∧C (K + ∣p∣)2

⩽ O1 (C (K + ∣p∣)2
3−d(n−m)) .
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By (11.61), we obtain

ν(◻n, p) −L(p) ⩽ C (K + ∣p∣)2
3−mα +O1 (C (K + ∣p∣)2

3−d(n−m)) . (11.65)

Similarly, for every q ∈ Rd,

ν∗(◻n, q) −L∗(q) ⩽ C (K + ∣q∣)2
3−mα +O1 (C (K + ∣q∣)2

3−d(n−m)) .
By (11.18) with q =DpL(p) and the previous display, we have, for every p ∈ Rd,

L(p) − ν(◻n, p) ⩽ ν∗(◻n,DpL(p)) − (p ⋅DpL(p) −L(p))= ν∗(◻n,DpL(p)) −L∗(DpL(p))⩽ C (K + ∣p∣)2
3−mα +O1 (C (K + ∣p∣)2

3−d(n−m)) .
Combining this inequality with (11.65) yields (11.63). Arguing similarly and using
that L∗∗ = L, we also obtain (11.64).

Step 3. We complete the proof of the theorem. Fix M ∈ [1,∞). By (11.8)
and (11.26), we have

sup
p∈BM

(∣Dpν(U, p)∣ + ∣DpL(p)∣) ⩽ C (K +M) .
Thus, for every L > 0 and m,n ∈ N with m ⩽ n,

sup
p∈BM

∣ν(◻n, p) −L(p)∣
⩽ C (K +M)L + ∑

p∈LZd∩BM

∣ν(◻n, p) −L(p)∣
⩽ C (K +M)L + ∣LZd ∩BM∣ ⋅ (C (K +M)2

3−mα +O1 (C (K +M)2
3−d(n−m)))

= C (K +M)L +C (K +M)2 (M
L

)d 3−mα +O1 (C (K +M)2 (M
L

)d 3−d(n−m)) .
Taking L ∶= (K +M)3−mα/2d yields

sup
p∈BM

∣ν(◻n, p) −L(p)∣ ⩽ C (K +M)2
3−mα/2d +O1 (C (K +M)2

3mα/2−d(n−m)) .
Given s ∈ (0, d), the choice of m to be the closest integer to (d − s)n/(d + α/2)
and then shrinking α yields the desired estimate for the first term in (11.40). The
estimate for the second term follows similarly.
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11.4 Quantitative homogenization of the Dirichlet problem

In this section, we prove an estimate on the homogenization error for general
Dirichlet boundary value problems. This is a generalization of Theorem 2.15 to the
nonlinear setting. The proof is based on an adaptation of the two-scale expansion
argument used in the proof of Theorem 1.12.

Theorem 11.8. Fix s ∈ (0, d), δ > 0, M ∈ [1,∞), and a bounded Lipschitz do-
main U ⊆ ◻0. There exist constants α(δ, d,Λ), γ(δ,U, d,Λ) > 0 and C(δ,U, s, d,Λ) <∞, and a random variable Xs ∶ Ω→ [0,∞) satisfying

Xs ⩽ O1 (C(K +M))
such that the following statement holds. For every ε ∈ (0, 1

2
] and f ∈ W 1,2+δ(U)

satisfying ∥∇f∥L2+δ∧γ(U) ⩽M, (11.66)

and solutions uε, u ∈ f +H1
0(U) of the Dirichlet problems

{ −∇ ⋅ (DpL (∇uε, ⋅ε)) = 0 in U,
uε = f on ∂U,

{ −∇ ⋅DL (∇u) = 0 in U,
u = f on ∂U,

(11.67)

we have the estimate

∥∇uε −∇u∥H−1(U) + ∥DpL (∇uε, ⋅ε) −DL (∇u)∥
H−1(U)⩽ C(K +M)εα(d−s) + Xsεs. (11.68)

We begin the proof of Theorem 11.8 by using Theorem 11.3 to obtain bounds
on finite-volume correctors. These are built on the functions v(⋅,◻m, p) which are
the minimizers of ν(◻m, p), in other words, the solutions of the Dirichlet problem
in ◻m with affine boundary data `p.

Lemma 11.9. Fix s ∈ (0, d) and M ∈ [1,∞). There exist constants α(d,Λ) > 0
and C(s, d,Λ) < ∞ such that, for every p ∈ Rd and m ∈ N

3−m sup
p∈BM

(∥∇v(⋅,◻m, p) − p∥Ĥ−1(◻m) + ∥DpL(∇v(⋅,◻m, p), ⋅) −DL(p)∥Ĥ−1(◻m))
⩽ C(K +M)3−mα(d−s) +O1 (C(K +M)3−ms) . (11.69)

Proof. We follow the outline of the proof of Proposition 1.5 using Theorem 11.3.
Fix s ∈ (0, d). We recall from (11.40) that, for every k ∈ N0 such that k ⩽ m,
z ∈ 3kZd and p, q ∈ Rd,

sup
p∈BM

∣ν(z +◻k, p) −L(p)∣ ⩽ C (K +M)2
3−nα(d−s) +O1 (C (K +M)2

3−ns) . (11.70)
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Step 1. We show that there exist β(d,Λ) > 0 and C(s, d,Λ) < ∞ such that, for
every m ∈ N, we have

3−m sup
p∈BM

∥∇v(⋅,◻m, p) − p∥Ĥ−1(◻m) ⩽ C (K +M)3−mβ(d−s) +O1 (C (K +M)3−ms) .
(11.71)

Denote, in short,

v(x) ∶= v(x,◻m, p), vn(x) ∶= v(x, z +◻n, p), x ∈ z +◻n,
and Zn ∶= 3nZd ∩◻m and ∣Zn∣ ∶= 3d(m−n).

Then, since (∇v − p)z+◻n = (∇v −∇vn)z+◻n , we have by the multiscale Poincaré
inequality (Proposition 1.7) that

∥∇v − p∥Ĥ−1(◻m) ⩽ C ∥∇v − p∥L2(◻m) +C m−1∑
n=0

3n ( 1∣Zn∣ ∑z∈Zn ∣(∇v −∇vn)z+◻n ∣
2)

1
2

.

The first term is bounded by C(1 + ∣p∣). For the second term, we get from Jensen’s
inequality that

1∣Zn∣ ∑z∈Zn ∣(∇v −∇vn)z+◻n ∣
2 ⩽ ∥∇v −∇vn∥2

L2(◻m) .

As in the case of (1.35), we have by (11.25) that

∥∇v −∇vn∥2
L2(◻m) ⩽ 2∣Zn∣ ∑z∈Zn (ν(z +◻n, p) − ν(◻m, p)) ,

and hence

1∣Zn∣ ∑z∈Zn ∣(∇v)z+◻n − p∣
2 ⩽ 2∣Zn∣ ∑z∈Zn (ν(z +◻n, p) − ν(◻m, p)) .

Thus (11.70) and Lemma A.4 yields that

sup
p∈BM

1∣Zn∣ ∑z∈Zn ∣(∇v(⋅,◻m, p))z+◻n − p∣2⩽ C (K +M)2
3−nα(d−s

′) +O1 (C (K +M)2
3−s

′n) .
Using (2.65) as in the proof of Theorem 2.4 gives that

sup
p∈BM

( 1∣Zn∣ ∑z∈Zn ∣(∇v)z+◻n − p∣
2)

1
2 ⩽ C (K +M)3−nβ(d−s) +O1 (C (K +M)3−sn) .
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Applying Lemma A.4 once more yields (11.71).
Step 2. We show that there exists β(d,Λ) > 0 and C(d,Λ) < ∞ such that

3−m sup
p∈BM

∥DpL(∇v, ⋅) −DL(p)∥Ĥ−1(◻m)

⩽ C(K +M)3−mβ(d−s) +O1 (C(K +M)3−ms) . (11.72)

Applying the multiscale Poincaré inequality yields

∥DpL(∇v, ⋅) −DL(p)∥Ĥ−1(◻m) ⩽ C ∥DpL(∇v, ⋅) −DL(p)∥L2(◻m)

+C m−1∑
n=0

3n ( 1∣Zn∣ ∑z∈Zn ∣(DpL(∇v, ⋅))z+◻n −DL(p)∣2)
1
2

.

On the one hand, using (11.8) we get

∥DpL(∇v, ⋅) −DL(p)∥L2(◻m) ⩽ C(K + ∣p∣).
On the other hand, by (11.7), we obtain

∣(DpL(∇v, ⋅))z+◻n −DL(p)∣2⩽ C ∥∇v −∇vn∥2
L2(z+◻n) + 2 ∣(DpL(∇vn, ⋅))z+◻n −DL(p)∣2 .

The first term on the right can be estimated exactly as in the first step. For the
second term we instead use (11.26), and the inequality (11.28) from the proof of
Lemma 11.2. We have that

(DpL(∇vn, ⋅))z+◻n =Dpν(z +◻n, p).
Applying (11.28), we get, for z ∈ 3nZd,

1

2
∣p − p′∣2 ⩽ ν(z +◻n, p) − ν(z +◻n, p′) − (p − p′) ⋅Dpν(z +◻n, p) ⩽ C ∣p − p′∣2 .

and, by taking expectation and sending n→∞ for z = 0,

1

2
∣p − p′∣2 ⩽ L(p) −L(p′) − (p − p′) ⋅DL(p) ⩽ C ∣p − p′∣2 .

Applying this with p′ = p ± δek, for δ > 0, we get

∣Dpν(z +◻n, p) −DL(p)∣ ⩽ C ⎛⎝δ + δ−1 ∑
e∈{−1,0,1}d

∣ν(◻n, p + δe) −L(p + δe)∣⎞⎠ .
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We choose δ = 3−n
α
4
(d−s)(K +M) and obtain by (11.70) (applied with s = s′+d

2 ) that

sup
p∈BM

⎛⎝δ + δ−1 ∑
e∈{−1,0,1}d

∣ν(◻n, p + δe) −L(p + δe)∣⎞⎠
2

⩽ C (K +M)2
3−n

α
2
(d−s′) +O1 (C (K +M)2

3−s
′n) .

The rest of the proof is analogous to Step 1. The proof is complete.

We next record necessary basic regularity estimates for L-minimizers.

Lemma 11.10. Fix δ ∈ (0,∞] and a Lipschitz domain U . Let f ∈ W 1,2+δ(U).
Suppose that u ∈ f +H1

0(BR) is L-minimizer in BR. Then there exist constants
γ(U,d,Λ) > 0 and C(U,d,Λ) < ∞ such that

∥∇u∥L2+δ∧γ(U) ⩽ C ∥∇f∥L2+δ∧γ(U) . (11.73)

Moreover, there exist β(d,Λ) > 0 and C(d,Λ) < ∞ such that if BR ⊆ U , then
∥∇u − (∇u)BR/2∥L∞(BR/2)

+Rβ [∇u]Cβ(BR/2) ⩽ CR inf
p∈P1

∥u − p∥L2(BR) . (11.74)

Proof. The proof of (11.73) is analogous to the one of Theorem C.1. Indeed, by
defining

b(p) ∶=DL(p) −DL(0),
we see, by the first variation, that ∇ ⋅ b(∇u) = 0. We thus get a Caccioppoli
inequality, for Br(y) ⊆ U ,

∥∇u∥L2(Br/2(y)) ⩽ C 1

r
∥u − (u)Br(y)∥L2(Br)

,

and at the boundary, that is, for Br(y) such that Br/2(y) ∩U ≠ ∅,
∥∇(u − f)∥L2(Br/2(y)∩U) ⩽ C (1

r
∥u − f∥L2(Br(y)∩U) + ∥∇f∥L2(Br(y)∩U)) .

We consequently deduce a reverse Hölder inequality using Sobolev-Poincaré, as in
Corollary C.3, and then (11.73) follows by Gehring’s lemma, Lemma C.4.

The regularity result (11.74) is standard, if L would be smooth. Indeed, then
each component of ∇u would satisfy a uniformly elliptic equation with coefficients
D2L(∇u), which by the uniform ellipticity would be bounded from above and
below. Thus one may apply De Giorgi-Nash-Moser theory to obtain (11.74). In
our case, as L is only C1,1, the above reasoning is not, strictly speaking, possible.
There are several ways to overcome this difficulty. One, which we choose to do here,
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is to mollify L and then obtain (11.74) for the regularized solution with boundary
values u. Indeed, we have, for δ > 0 and ζδ defined in (0.15), that, for z ∈ Rd,

C−1Id ⩽D2 (ζδ ∗L) (z) ⩽ CId.
We then pass to the limit by Arzelá-Ascoli theorem in the equation using C1

regularity of DL. By the uniqueness, the original solution u inherits the regularity
estimate (11.74) from the approximating sequence. The proof is complete.

We turn to the proof of the quantitative homogenization result, Theorem 11.8.

Proof of Theorem 11.8. Fix ε ∈ (0, 1
2
], s ∈ (0, d), δ > 0, M ∈ [1,∞), and a bounded

Lipschitz domain U ⊆ ◻0. Fix also f ∈ W 1,2+δ(U) satisfying (11.66). We divide
the proof into eight steps. As usual, we may restrict to the case that ε ⩽ c for
any c(δ,U, s, d,Λ) > 0.

Step 1. We setup the argument. Fix m ∈ N such that ε ∈ [3−m,3−m+1). We also
fix a mesoscale k, ` ∈ N with k < ` <m and

m − ` ⩽ ` − k.
These mesoscales will be selected below in terms of m. We also set r ∶= 3`−m and

Ur ∶= {x ∈ U ∶ dist(x, ∂U) > r} ,
and let ζr be a smooth cut-off function such that ζr = 1 in U3r and it vanishes
outside of U2r, and

r∥∇ζr∥L∞(Rd) + r2∥∇2ζr∥L∞(Rd) ⩽ C1U3r∖U2r . (11.75)

We also define, using standard mollifier defined in (0.15),

ψ(x) ∶= (ζ3k ∗ 1◻k) (x),
so that ∑

z∈3kZd
ψ(⋅ − z) = 1.

Write ψεz ∶= ψ ( ⋅−z
ε
). We clearly have that

3kε∥∇ψεz∥L∞(Rd) + (3kε)2∥∇2ψεz∥L∞(Rd) ⩽ C. (11.76)

Furthermore, for z ∈ 3kZd and p ∈ Rd, we denote in short

vz(x, p) ∶= v (x, z +◻k+2, p) − (v (x, z +◻k+2, p))z+◻k+2
and

φz(x, p) ∶= vz(x, p) − p ⋅ (x − z).
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Then both vz and φz have zero mean in z +◻k+2. We also set, for z ∈ 3kZd,

vεz(x, p) ∶= vz (xε , p) and φεz(x, p) ∶= φz (xε , p) .
For simplicity, we use the short-hand notation, for each y ∈ 3kZd,

∑
z

= ∑
z∈3kZd

and ∑
z∼y

= ∑
z∈3kZd∩(y+◻k+2)

.

We define the two-scale expansion of u as

wε(x) ∶= u(x) + εζr(x)∑
z

ψεz(x)φεz (x,∇u(εz)) .
Step 2. We collect necessary regularity estimates for uε and u. By Meyers

estimate (11.73) we have that there exist γ(d,Λ) > 0 and C(d,Λ) < ∞ such that

∥∇uε∥L2+δ∧γ(U) + ∥∇u∥L2+δ∧γ(U) ⩽ C (K +M) . (11.77)

The proof for uε is similar to the one for (11.73), but now using also (11.8). On
the other hand, for any y ∈ U2r, we have by (11.74) that there exist constants
β(d,Λ) > 0 and C(d,Λ) < ∞ such that

∥∇u∥L∞(Ur) + rβ [∇u]Cβ(Ur) ⩽ Cr− d2M =∶Mr. (11.78)

Step 3. We define a quantity, which measures all the errors appearing in the
estimates below. Set, for s′ = d+s

2 ,

E(m) ∶= (K +M) (3−β(`−k)+
d
2
(m−`) + (3`−m) δ∧γ

2+δ∧γ ) + E1(m) + E2(m) + E3(m),
where the random variables E1(m), E2(m), and E3(m) are defined as

E1(m) ∶= k+2∑
j=k

⎛⎝3(j−n)d ∑
z∈3jZd∩◻n

sup
p∈BMr

∣ν(z +◻j, p) −L(p)∣⎞⎠
1
2

,

E2(m) ∶= k+2∑
j=k

⎛⎝3(j−n)d−j ∑
z∈3jZd∩◻n

sup
p∈BMr

∥∇φz (⋅, p)∥2
H−1(z+◻j)

⎞⎠
1
2

,

and

E3(m) ∶= k+2∑
j=k

⎛⎝3(j−n)d−j ∑
z∈3jZd∩◻n

sup
p∈BMr

∥DpL (∇vz (⋅, p) , ⋅) −DL (p)∥2

H−1(z+◻j)
⎞⎠

1
2

.

In Step 9 we show that the parameters can be selected so that the error above
becomes small.
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Step 4. We show that the gradient of wε can be written as

∇wε(x) = ζr(x) ∑
y∈3kZd∩ε−1U2r

∇vεy (x,∇u(εy))1ε(y+◻k)(x) +E(x), (11.79)

where E(x) is an error defined below in (11.82). To see this, observe first that by
a direct computation we get

∇wε(x) = ζr(x)∑
z

ψz(x)∇vεz (x,∇u(εz)) +E1(x),
where

E1(x) ∶= (1 − ζr(x))∇u(x)+ ζr(x)∑
z

ψεz(x) (∇u(x) − ∇u(εz)) + ε∑
z

∇(ζrψεz)(x)φεz(x,∇u(εz)). (11.80)

Furthermore, for x ∈ ε(y + ◻k), taking y ∈ 3kZd such that εy ∈ U2r, we see, for
x ∈ ε(y +◻k), that
ζr(x)∑

z

ψεz(x)∇vεz (x,∇u(εz))
= ζr(x) ∑

y∈3kZd∩ε−1U2r

(∇vεy (x,∇u(εy)) +E2(x, y))1ε(y+◻k)(x),
where

E2(x, y) = ζr(x)∑
z∼y
ψεz(x) (∇vεz (x,∇u(εz)) − ∇vεz (x,∇u(εy)))

+ ζr(x)∑
z∼y
ψεz(x) (∇vεz (x,∇u(εy)) − ∇vεy (x,∇u(εy))) . (11.81)

Indeed, notice that ∑z∼y ψ
ε
z(x) = 1 for x ∈ ε(y +◻k). This proves (11.79) with

E(x) ∶= E1(x) + ∑
y∈3kZd∩ε−1U2r

1ε(y+◻k)(x)E2(x, y). (11.82)

Step 5. In this step we show that E in (11.79) is small in L2(U) norm, namely

∥E∥L2(U) ⩽ CE(m). (11.83)

We first estimate E1 defined in (11.80), and claim that

∥E1∥L2(U) ⩽ CE(m). (11.84)

For the first term in E1 we use the Meyers estimate in (11.77), and get

∥(1 − ζr)∇u∥L2(U) ⩽ C ∣U ∖Ur∣ δ∧γ
2+δ∧γ (K +M) ⩽ C(3`−m) δ∧γ

2+δ∧γ (K +M) ⩽ CE(m).
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For the second term we apply (11.78) and obtain

∥ζr∑
z

ψεz (∇u(⋅) − ∇u(εz))∥
L2(U)

⩽ C3−β(`−k)Mr ⩽ E(m).
For the third term we first have

∥ε∑
z

∇(ζrψεz)φεz(⋅,∇u(εz))∥2

L2(U)
⩽ C3−2k∑

z

∥φεz(⋅,∇u(εz))∥2
L2(ε(z+◻k+2)) ,

and then, by Lemma 1.8 (using the zero mean of φz), and (11.78), we deduce that

3−2k ∥φεz(⋅,∇u(εz))∥2
L2(ε(z+◻k+2)) ⩽ C3(j−n)d3−2k ∥φz(⋅,∇u(εz))∥2

L2(z+◻k+2)⩽ C3(j−n)d3−2k sup
p∈BMr

∥∇φεz(⋅, p)∥2
Ĥ−1(z+◻k+2) .

Collecting last three displays yields (11.84), after summation, recalling the defini-
tions of E2(m) and E(m).

We next claim that we haveXXXXXXXXXXX ∑
y∈3kZd∩ε−1U2r

1ε(y+◻k)E2(⋅, y)XXXXXXXXXXXL2(ε(y+◻k))
⩽ CE(m). (11.85)

Together with (11.84) this yields (11.83). To see (11.85), take y ∈ 3kZd ∩ ε−1U2r

and estimate as

⨏
ε(y+◻k)

∣E2(x, y)∣2 dx ⩽ ∑
z∼y

∥∇vz (⋅,∇u(εz)) − ∇vz (⋅,∇u(εy))∥2
L2(y+◻k)

+∑
z∼y

∥∇vz (⋅,∇u(εy)) − ∇vy (⋅,∇u(εy))∥2
L2(y+◻k) .

For the first term on the right we have, as in the proof of (11.26), by (11.78) the
deterministic bound

∥∇vz (⋅,∇u(εz)) − ∇vz (⋅,∇u(εy))∥2
L2(y+◻k) ⩽ C ∣∇u(εz) − ∇u(εy)∣2 ⩽ C32β(k−`)M2

r.

For the second term, on the other hand, we compare to patched ν-minimizers in(z′+◻k)’s with the slope ∇u(εy) and use quadratic response as in (11.25) to obtain

∑
z∼y

∥∇vz (⋅,∇u(εy)) − ∇vy (⋅,∇u(εy))∥2
L2(y+◻k)

⩽ C ∑
z′∈3kZd∩(z+◻k+3)

(ν(z′ +◻k,∇u(εy)) − ν(z +◻k+2,∇u(εy))) .
⩽ C k+2∑

j=k
∑

z′∈3kZd∩(z+◻k+3)
sup
p∈BMr

∣ν(z +◻k, p) −L(p)∣
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Summation yields (11.85) by the definitions of E1(m) and E(m).
Step 6. We next show that

∥DpL (∇wε(⋅), ⋅ε) − ζr∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε)∥
L2(U)

⩽ CE(m). (11.86)

We again split the analysis to an interior estimate and a boundary layer estimate.
Our first claim is that

∥DpL (∇wε(⋅), ⋅ε) −∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε)∥
L2(U4r)

⩽ CE(m). (11.87)

For this, notice that, by (11.79) and (11.7), we get, for x ∈ U4r, that

RRRRRRRRRRRDpL (∇wε(x), xε) − ∑
y∈3kZd∩ε−1U2r

1ε(y+◻k)(x)DpL (∇vεy (x,∇u(εy)) , xε)
RRRRRRRRRRR ⩽ C ∣E(x)∣ .

We then further decompose, for y ∈ 3kZd ∩ ε−1U2r and x ∈ ε(y +◻k), as
DpL (∇vεy (x,∇u(εy)) , xε) −∑

z∼y
ψεz(x)DpL (∇vεz (x,∇u(εz)) , xε)

= ∑
z∼y
ψεz(x) (DpL (∇vεy (x,∇u(εy)) , xε) −DpL (∇vεz (x,∇u(εy)) , xε))

+∑
z∼y
ψεz(x) (DpL (∇vεz (x,∇u(εy)) , xε) −DpL (∇vεz (x,∇u(εz)) , xε)) ,

and the second term on the left is the one appearing on the left in (11.86). Us-
ing (11.7) we notice that both terms on the right can be estimated exactly as in
the case of E2. This proves (11.87).

We then claim that

∥DpL (∇wε(⋅), ⋅ε) − ζr∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε)∥
L2(U∖U4r)

⩽ CE(m). (11.88)

This is straightforward. Indeed, by (11.79) and (11.8) we have

∥DpL (∇wε(⋅), ⋅ε)∥L2(U∖U4r)
⩽ C ∥E∥L2(U) +C ∣U ∖U4r∣ 12 K

+C ⎛⎝ ∑
y∈3kZd∩ε−1(U2r∖U5r)

∥∇vεy (x,∇u(εy))∥2

L2(ε(y+◻k))
⎞⎠

1
2

,
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and since vy is ν-minimizer with the slope ∇u(εy), the last term can be bounded
using (11.8) and (11.78) as

∑
y∈3kZd∩ε−1(U2r∖U5r)

∥∇vεy (x,∇u(εy))∥2

L2(ε(y+◻k))

⩽ C ∑
y∈3kZd∩ε−1(U2r∖U5r)

∣ε◻k∣ (K + ∣∇u(εy)∣)2
.

⩽ C ∑
y∈3kZd∩ε−1(U2r∖U5r)

∣ε◻k∣ (K2 + ∥∇u∥2
L2(y+ε◻k) + (2kε)2β [∇u]2

Cβ(U2r))
⩽ C ∣U ∖U6r∣K2 +C ∣U ∖Ur∣ 2(δ∧γ)2+δ∧γ (K +M)2 +C (2kε

r
)2β

M2
r

⩽ CE2(m).
Similarly,

∥ζr∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε)∥
L2(U∖U4r)

⩽ CE(m),
and (11.88) follows. Combining (11.87) and (11.88) proves (11.86).

Step 7. In this step we show that

∥∇ ⋅DpL (∇wε(⋅), ⋅ε)∥H−1(U) ⩽ CE(m). (11.89)

To see this, we first estimate as

∥∇ ⋅DpL (∇wε(⋅), ⋅ε)∥H−1(U)

⩽ ∥DpL (∇wε(⋅), ⋅ε) − ζr∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε)∥
L2(U)

+ ∥∇ ⋅ (ζr∑
z

ψεz (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε)))∥
H−1(U)

.

Thus, recalling (11.86), we only need to estimate the last term on the right. Using
the fact that

∇ ⋅DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) = ∇ ⋅DL (∇u) = ∇ ⋅DL (∇u(εz)) = 0,

giving also

∇ ⋅ (∑
z

ζrψ
ε
zDL (∇u)) = ∇ζr ⋅DL (∇u) ,
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we expand the divergence as follows:

∇ ⋅ (ζr∑
z

ψεz (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε)))
= ∑

z

∇(ζrψεz) ⋅ (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz)))
+ ∇ ⋅ (∑

z

ζrψ
ε
z (DL (∇u(εz)) −DL (∇u)) − (1 − ζr)DL (∇u)) . (11.90)

Therefore, by the triangle inequality,

∥∇ ⋅ (ζr∑
z

ψεz (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε)))∥
H−1(U)

⩽ ∥∑
z

∇(ζrψεz) ⋅ (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz)))∥
H−1(U)

+ ∥∑
z

ζrψ
ε
z (DL (∇u(εz)) −DL (∇u)) − (1 − ζr)DL (∇u)∥

L2(U)
.

On the one hand, we have, for any θ ∈H1
0(U) with ∥∇θ∥L2(U) ⩽ 1, that

∑
z
∫
U
∇(ζrψεz) ⋅ (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz))) θ

⩽ C (∑
z

∣ε◻k∣(2kε)2
∥DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz))∥2

H−1(ε(z+◻k+2)))
1
2

× (∑
z

(2kε)2 ∥∇(∇(ζrψεz) θ)∥2
L2(ε(z+◻k+2)))

1
2

.

By (0.22), (11.78) and the definition of E3(m), we have

∑
z

∣ε◻k∣(2kε)2
∥DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz))∥2

H−1(ε(z+◻k+2)) ⩽ CE2(m),
and, by (11.75) and (11.76),

∑
z

(2kε)2 ∥∇(∇(ζrψεz) θ)∥2
L2(ε(z+◻k+2)) ⩽ C (1 + 2kε

r
)2 ⩽ C.

Thus we get

∥∑
z

∇(ζrψεz) ⋅ (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz)))∥
H−1(U)

⩽ CE(m).
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On the other hand, for the other term, we use a similar reasoning as in the case of
E1 in Step 5, using now properties of L, and also obtain

∥∑
z

ζrψ
ε
z (DL (∇u(εz)) −DL (∇u)) − (1 − ζr)DL (∇u)∥

L2(U)
⩽ CE(m).

Now (11.89) follows by (11.86).
Step 8. We prove that

∥∇uε −∇u∥H−1(U) + ∥DpL (∇uε, ⋅ε) −DL (∇u)∥
H−1(U) ⩽ CE(m). (11.91)

Since wε − uε ∈H1
0(U), we have by (11.89) and (11.6) that

∥∇uε −∇wε∥L2(U) ⩽ CE(m). (11.92)

In particular, by (11.7) it follows that

∥∇u −∇wε∥H−1(U) + ∥DpL (∇uε, ⋅ε) −DpL (∇wε, ⋅ε)∥H−1(U) ⩽ CE(m).
Therefore it is enough to estimate the average and the flux of ∇wε against ∇u. The
average is easy to compute directly from the definition of wε, as in Step 5, namely

∥∇u −∇wε∥H−1(U) = ε∥∇(ζr∑
z

ψεzφ
ε
z (⋅,∇u(εz)))∥

H−1(U)

⩽ Cε∥ζr∑
z

ψεzφ
ε
z (⋅,∇u(εz))∥

L2(U)
⩽ CE(m).

To estimate the fluxes, we have by (11.86) that

∥DpL (∇wε(⋅), ⋅ε) − ζr∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε)∥
H−1(U)

⩽ CE(m).
Similarly to (11.90), we write

ζr∑
z

ψεzDpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u)
= ∑

z

ζrψ
ε
z ⋅ (DpL (∇vεz (⋅,∇u(εz)) , ⋅ε) −DL (∇u(εz)))

+∑
z

ζrψ
ε
z (DL (∇u(εz)) −DL (∇u)) − (1 − ζr)DL (∇u) .

The estimates for the two terms on the right are analogous to Step 7, and we omit
the details. Now (11.89) follows.
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Step 9. We estimate the error term E(m). Similar to (2.74) in the proof of
Theorem 2.15, what we need to show is that, with appropriate choices of the
parameters, we have, for some β(δ, d,Λ) > 0,

sup
m∈N

3ms (E(m) −C(K +M)3−mβ(d−s))+ ⩽ O1 (C(K +M)) . (11.93)

Applying Theorem 11.3, together with (2.65), and Lemma 11.9, we obtain that,
for s′ ∶= d+s

2 , there exists constants α̃(d,Λ) > 0 and C(s, d,Λ) < ∞ such that, for
every m ∈ N,
E1(m) + E2(m) + E3(m) ⩽ C(K +M)r− d2 3−α̃(d−s

′)k +O1 (C(K +M)r− d2 3−s
′k) .

Now the desired estimate (11.93) is obtained by choosing r appropriately and
arguing as in the proof of (2.74). The proof is complete.

11.5 C0,1-type estimate

The goal of this section is to provide the counterpart for Theorem 3.3 in Chapter 3.

Theorem 11.11 (Quenched C0,1-type estimate). Fix s ∈ (0, d) and M ∈ [1,∞).
There exist a constant C(M, s,K, d,Λ) < ∞ and a random variable Xs ∶ Ω→ [1,∞]
satisfying Xs = Os (C) , (11.94)

such that the following holds: for every R ⩾ Xs and a weak solution u ∈H1(BR) of

−∇ ⋅ (DpL (∇u,x)) = 0 in BR, (11.95)

satisfying
1

R
∥u − (u)BR∥L2(BR) ⩽M

we have, for every r ∈ [Xs,R], the estimate

∥∇u∥L2(Br) ⩽ C ( 1

R
∥u − (u)BR∥L2(BR) +K) . (11.96)

We begin the proof of Theorem 11.11 with the observation that Theorem 11.8
yields a corresponding version of Proposition 3.2 for nonlinear equations.

Proposition 11.12 (Harmonic approximation). Fix s ∈ (0, d) and M ∈ [1,∞).
There exist constants α(d,Λ) > 0, C(s, d,Λ) < ∞, and a random variable Xs ∶ Ω→[1,∞] satisfying Xs = Os (C (K +M)) , (11.97)
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such that the following holds: for every R ⩾ Xs and weak solution u ∈H1(BR) of

−∇ ⋅ (DpL (∇u,x)) = 0 in BR, (11.98)

satisfying
1

R
∥u − (u)BR∥L2(BR) ⩽M, (11.99)

there exists a solution u ∈H1(BR/2) of

−∇ ⋅ (DL (∇u)) = 0 in BR/2

satisfying ∥u − u∥L2(BR/2) ⩽ CR−α(d−s) (K +M) . (11.100)

Proof. By the Meyers estimate (11.77) and the Caccioppoli inequality,

∥∇u∥L2+γ(BR/2) ⩽ C ( 1

R
∥u − (u)BR∥L2(BR) +K) ⩽ C (K +M) .

After this the proof is analogous to the one of Proposition 3.2 using Theorem 11.8.
Indeed, for each s ∈ (0, d), we let X̃s denote the random variable in the statement
of Theorem 11.8 with δ the exponent in the Meyers estimate, as above, such thatX̃s ⩽ O1 (C (K +M)). Setting

Xs ∶= X̃ 1/s
(s+d)/2 ∨ 1,

we have that Xs = Os (C (K +M)). Applying Theorem 11.8 with ε = R−1 and s̃ = s+d
2

gives us the desired conclusion for every R ⩾ Xs if we take u to be the solution
of the Dirichlet problem for the homogenized equation with Dirichlet boundary
condition u on ∂BR/2 as in the statement.

Proof of Theorem 11.11. We may replace the application of Lemma 3.5 by using
instead (11.74) and Proposition 11.12. Let H, H̃ be large constants to be fixed
in the course of the proof. Let Xs = Os (C (K + H̃M)) be as in Proposition 11.12.
Without loss of generality we may assume that R ⩾H, since otherwise the statement
follows easily by giving up a volume factor. Also assume that Xs ⩽ R.

Arguing by induction, we assume next that, for some r ∈ [Xs ∨H,R], we have

Mr ∶= sup
t∈[r,R]

1

t
∥u − (u)Bt∥L2(Bt) ⩽ KR ∥u − (u)BR∥L2(BR) ⩽ H̃ (M +K) . (11.101)

Notice that this assumption is valid for r = R by (11.99). The goal is to show that
the assumption is also valid for r/2 in place of r.
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Using Proposition 11.12 gives that if t ⩾ r ⩾ Xs, then we find ut ∈H1(Bt) such
that it solves −∇ ⋅ (DL (∇ut)) = 0 in Bt

and satisfies, by the induction assumption (11.101),

∥u − ut∥L2(Bt) ⩽ CH̃t1−α(d−s) (K +M) .
Moreover, by (11.74) and the Caccioppoli inequality, ut satisfies the decay estimate

inf
p∈P1

∥ut − p∥L2(Bθt) ⩽ Cθ1+β ∥ut − p∥L2(Bt) . (11.102)

By combining the previous two displays with the aid of the triangle inequality and
choosing θ so that Cθβ = 1

2 , we have that, for t ∈ [r,R],
1

θt
inf
p∈P1

∥u − p∥L2(Bθt) ⩽ 1

2

1

t
inf
p∈P1

∥u − p∥L2(Bt) +Ct−α(d−s)H̃ (K +M) .
Varying t, summing and reabsorbing yields that, for k ∈ N such that 2−kR ⩽ r ⩽
2−k+1R, we have that

k∑
j=0

1

2−jR
inf
p∈P1

∥u − p∥L2(B
2−jR

) ⩽ CR ∥u − (u)BR∥L2(BR) +CH−α(d−s)H̃ (K +M) .
Denoting pj ∈ P1 to be the affine function realizing the infimum above for j ∈ N,
and setting p0 = (u)BR , we see by the triangle inequality that

max
j∈{0,...,k}

∣∇pj ∣ ⩽ k−1∑
j=0

∣∇pj+1 −∇pj ∣ ⩽ C
R

∥u − (u)BR∥L2(BR) +CH−α(d−s)H̃ (K +M) ,
which also yields, for j ∈ {0, . . . , k},

1

2−jR
∥u − (u)B

2−jR
∥
L2(B

2−jR
) ⩽ 1

2−jR
inf
p∈P1

∥u − p∥L2(B
2−jR

) + ∣∇pj ∣
⩽ C
R

∥u − (u)BR∥L2(BR) +CH−α(d−s)H̃ (K +M) .
Therefore, since

Mr/2 ⩽ C max
j∈{0,...,k}

1

2−jR
∥u − (u)B

2−jR
∥
L2(B

2−jR
) ,

we deduce that

Mr/2 ⩽ C
R

∥u − (u)BR∥L2(BR) +CH−α(d−s)H̃ (K +M) .
Choosing thus H large enough so that CH−α(d−s) = 1

2 , we obtain

Mr/2 ⩽ C
R

∥u − (u)BR∥L2(BR) + 1

2
H̃ (K +M) ,

which proves the induction step with H̃ = 2C, and completes the proof.
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Notes and references

The results in this chapter first appeared in [15] and were extended to the case of
general monotone maps (that is, for a not necessarily of the form (11.5)) in [13].
The higher regularity theory in the nonlinear case is still incomplete (although
see [10] for the first steps in this direction). The problem of adapting the arguments
here to nonlinear functionals with more general, possibly non-quadratic growth
conditions is also open.



Appendix A

The Os notation

Throughout the book, we use the symbol Os(⋅) as a way to express inequalities
for random variables with respect to what is essentially the Orlicz norm Lϕ(Ω,P)
with ϕ(t) = exp (ts). In this appendix, we collect some basic properties implied by
this notation for the convenience of the reader.

Let us recall the definition given in (0.33). For a random variable X and an
exponent s, θ ∈ (0,∞), we write

X ⩽ Os(θ) (A.1)

to mean that
E [exp ((θ−1X+)s)] ⩽ 2, (A.2)

where X+ ∶=X ∨ 0 = max{X,0}. The notation is obviously homogeneous:

X ⩽ Os(θ) ⇐⇒ θ−1X ⩽ Os(1).
We also write

X = Os(θ) ⇐⇒ X ⩽ Os(θ) and −X ⩽ Os(θ),
and by extension,

X ⩽ Y +Os(θ) ⇐⇒ X − Y ⩽ Os(θ),
X = Y +Os(θ) ⇐⇒ X − Y ⩽ Os(θ) and Y −X ⩽ Os(θ).

We start by relating the property (A.1) with the behavior of the tail probability of
the random variable.

Lemma A.1 (Tail probability). For every random variable X and s, θ ∈ (0,∞),
we have

X ⩽ Os(θ) Ô⇒ ∀x ⩾ 0, P [X ⩾ θx] ⩽ 2 exp (−xs) ,
and ∀x ⩾ 0, P [X ⩾ θx] ⩽ exp (−xs) Ô⇒ X ⩽ Os (2

1
s θ) .

416
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Proof. The first implication is immediate from Chebyshev’s inequality. For the
second one, we apply Fubini’s theorem to get

E [exp (2−1 (θ−1X+)s)] = 1 +E [∫ θ−1X+

0
2−1sxs−1 exp (2−1xs) dx]

= 1 + ∫ ∞

0
2−1sxs−1 exp (2−1xs)P [X ⩾ θx] dx

⩽ 1 + ∫ ∞

0
2−1sxs−1 exp (−2−1xs) dx

= 2.

Remark A.2. If we only assume that, for some x0 ∈ [0,∞), we have

∀x ⩾ x0, P [X ⩾ θx] ⩽ exp (−xs)
then we can apply Lemma A.1 to the random variable θ−1X1θ−1X⩾x0 and get

X ⩽ (θx0) ∨ Os (2
1
s θ) , (A.3)

where we understand this inequality to mean

there exists a r.v. Y s.t. Y ⩽ Os(2 1
s θ) and X ⩽ (θx0) ∨ Y.

In the next lemma, we record simple interpolation and multiplication results
for Os-bounded random variables.

Lemma A.3. (i) For every random variable X and s < s′ ∈ (0,∞),
{ X takes values in [0,1]
X ⩽ Os(θ) Ô⇒ X ⩽ Os′(θ s

s′ ).
(ii) If 0 ⩽Xi ⩽ Osi(θi) for i ∈ {1,2}, then

X1X2 ⩽ O s1s2
s1+s2

(θ1θ2) .
Proof. The first statement follows from

E [exp((θ− s
s′X)s′)] ⩽ E [exp((θ−1X)s)] ⩽ 2.

For the second statement, we apply Young’s and Hölder’s inequalities to get

E [exp([(θ1θ2)−1X1X2] s1s2
s1+s2 )]

⩽ E [exp( s2

s1 + s2

(θ−1
1 X1)s1 + s1

s1 + s2

(θ−1
2 X2)s2)]

⩽ E [exp (θ−1
1 X1)s1)] s2

s1+s2 E [exp (θ−1
2 X2)s2)] s1

s1+s2

⩽ 2.
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We next show that an average of random variables bounded by Os(θ) is bounded
by Os(Cθ), with C = 1 when s ⩾ 1.

Lemma A.4. For each s ∈ (0,∞), there exists a constant Cs < ∞ such that the
following holds. Let µ be a measure over an arbitrary measurable space E, let
θ ∶ E → (0,∞) be a measurable function and (X(x))x∈E be a jointly measurable
family of nonnegative random variables such that, for every x ∈ E, X(x) ⩽ Os(θ(x)).
We have

∫ X dµ ⩽ Os (Cs∫ θ dµ) .
Moreover, for each s ⩾ 1, the statement holds for Cs = 1.

Proof. Without loss of generality, we can assume that ∫ θ dµ < ∞, and by homo-
geneity, we can further assume that ∫ θ dµ = 1. We first consider the case s ⩾ 1.
Since the function x↦ exp(xs) is convex on R+, Jensen’s inequality gives

E [exp((∫ X dµ)s)] ⩽ E [∫ exp ((θ−1X)s) θ dµ] ⩽ 2,

as announced. For s ∈ (0,1), we define ts ∶= (1−s
s
) 1
s so that the function x ↦

exp((x + ts)s) is convex on R+. By Jensen’s inequality,

E [exp((∫ X dµ)s)] ⩽ E [exp((∫ X dµ + ts)s)]
⩽ E [∫ exp ((θ−1X + ts)s) θdµ]
⩽ E [∫ exp ((θ−1X)s + tss) θdµ]
⩽ 2 exp (tss) .

For σ ∈ (0,1) sufficiently small in terms of s, we thus have

E [exp(σ (∫ X dµ)s)] ⩽ E [exp((∫ X dµ)s)]σ ⩽ [2 exp (tss)]σ ⩽ 2 .

We next explore a correspondence between the assumption of X ⩽ Os(1), for
s ∈ (1,∞), and the behavior of the Laplace transform of X.

Lemma A.5 (Laplace transform). For every s ∈ (1,∞), there exists a constant
C(s) < ∞ such that

X ⩽ Os(1) Ô⇒ ∀λ ⩾ 1, logE[exp(λX)] ⩽ Cλ s
s−1 , (A.4)

and ∀λ ⩾ 1, logE[exp(λX)] ⩽ λ s
s−1 Ô⇒ X ⩽ Os(C). (A.5)
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Proof. For each λ ⩾ 1, we apply Fubini’s theorem and then Lemma A.1 to get

E[exp(λX)] = 1 + λ∫ ∞

0
exp(λx)P[X ⩾ x]dx

⩽ 1 + 2λ∫ ∞

0
exp(λx − xs)dx.

Decomposing the integral into two parts:

λ∫ (2λ)
1
s−1

0
exp (λx − xs) dx ⩽ λ∫ (2λ)

1
s−1

0
exp (λx) dx ⩽ exp (Cλ s

s−1 ) ,
and

∫ ∞

(2λ)
1
s−1

exp (λx − xs) dx ⩽ ∫ ∞

(2λ)
1
s−1

exp (−2−1xs) dx ⩽ C,
we obtain (A.4). As for (A.5), by Chebyshev’s inequality, for every x ⩾ 2 and λ ⩾ 1,
we have

P [X ⩾ x] ⩽ exp (λ s
s−1 − λx) .

Selecting λ = (x/2)s−1, we get

P [X ⩾ x] ⩽ exp (−2−sxs) .
The conclusion thus follows from Lemma A.1 and Remark A.2.

Exercise A.1. Show that there exists a constant C ∈ (0,∞) such that

X ⩽ O1(1) Ô⇒ logE[exp(C−1X)] ⩽ 1,

and
logE[exp(X)] ⩽ 1 Ô⇒ X ⩽ O1(C).

One classical way to prove the central limit theorem for sums of i.i.d. and
sufficiently integrable random variables is based on the computation of Laplace
transforms. The scaling of the central limit theorem follows from the fact that the
Laplace transform of a centered random variable is quadratic near the origin, as
recalled in the next lemma.

Lemma A.6. There exists a constant C < ∞ such that, if a random variable X
satisfies

E [exp(2∣X ∣)] ⩽ 2 and E[X] = 0, (A.6)

then for every λ ∈ [−1,1],
∣logE [exp (λX)] − E[X2]

2
λ2∣ ⩽ Cλ3.
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Proof. For λ ∈ (−2,2), let ψ(λ) ∶= logE [exp(λX)], and let

Eλ[⋅] ∶= E [ ⋅ exp(λX)]
E [exp(λX)]

be the “Gibbs measure” associated with λX. Using the formal derivation rule

∂λEλ[F ] = Eλ[FX] −Eλ[F ]Eλ[X]
and the assumption of (A.6), we get that, for every ∣λ∣ ⩽ 1,

ψ′(λ) = Eλ[X],
ψ′′(λ) = Eλ [X2] − (Eλ[X])2

,

ψ′′′(λ) = Eλ [X3] − 3Eλ [X2]Eλ[X] + 2 (Eλ[X])3
.

In particular, by (A.6), there exists a constant C < ∞ such that, for every ∣λ∣ ⩽ 1,
we have ∣ψ′′′(λ)∣ ⩽ C. Noting also that ψ(0) = ψ′(0) = 0 and that ψ′′(0) = E[X2],
we obtain the result by a Taylor expansion of ψ around 0.

Inspired by this, we now introduce new notation to measure the size of centered
random variables. For every random variable X and s ∈ (1, 2], θ ∈ (0,∞), we write

X = Os(θ) (A.7)

to mean that ∀λ ∈ R, logE [exp (λθ−1X)] ⩽ λ2 ∨ ∣λ∣ s
s−1 .

Lemma A.7. For every s ∈ (1, 2], there exists a constant C(s) < ∞ such that, for
every random variable X,

X = Os(1) Ô⇒ X = Os(C),
and

X = Os(1) and E[X] = 0 Ô⇒ X = Os(C).
Proof. The first statement is immediate from Lemma A.5, while the second one
follows from Lemmas A.5 and A.6.

We now state a result analogous to Lemma A.4, but for O in place of O.
Lemma A.8. For each s ∈ (1,2], there exists C(s) < ∞ such that the following
holds. Let µ be a measure over an arbitrary measurable space E, let θ ∶ E → R+
be a measurable function and (X(x))x∈E be a jointly measurable family of random
variables such that, for every x ∈ E, X(x) = Os(θ(x)). We have

∫ X dµ = Os (C ∫ θ dµ) .
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Proof. By Lemma A.7, there exists a constant C(s) such that, for every x ∈ E,

X(x) = Os(Cθ(x)).
Applying Lemmas A.4 and A.7 thus yields the result.

The key motivation for the introduction of the notation O is that a sum of k
independent Os(θ) random variables is Os(√kθ), in agreement with the scaling of
the central limit theorem.

Lemma A.9. For every s ∈ (1,2], there exists C(s) < ∞ such that the following
holds. Let θ1, . . . , θk ⩾ 0 and X1, . . . ,Xk be independent random variables such that,
for every i ∈ {1, . . . , k}, Xi = Os(θi). We have

k∑
i=1

Xi = Os (C( k∑
i=1

θ2
i ) 1

2) . (A.8)

Moreover, if θi = θj for every i, j ∈ {1, . . . , k}, then the constant C in (A.8) can be
chosen equal to 1.

Proof of Lemma A.9. We define

θ ∶= ( k∑
i=1

θ2
i )

1
2

.

By Lemmas A.5 and A.7, in order to prove (A.8), it suffices to show that there
exists C(s) < ∞ such that, for every λ ∈ R,

logE [exp(θ −1
λ

k∑
i=1

Xi)] ⩽ C (1 + ∣λ∣ s
s−1 ) . (A.9)

We use independence and then the assumption Xi = Os(θi) to bound the term on
the left side by

k∑
i=1

logE [exp (θ −1
λXi)] ⩽ k∑

i=1

(θ −1
θiλ)2 ∨ ∣θ −1

θiλ∣ s
s−1

⩽ λ2 + ∣λ∣ s
s−1 θ

− s
s−1

k∑
i=1

θ
s
s−1

i .

Since s ⩽ 2, we have s
s−1 ⩾ 2, and thus (A.9) follows from the observation that

θ ⩾ ( k∑
i=1

θ
s
s−1

i )
s−1
s

.
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When θi = θj for every i, j ∈ {1, . . . , k}, without loss of generality we may set θi = 1,
and observe that

k∑
i=1

logE [exp (k− 1
2λXi)] ⩽ k∑

i=1

(k− 1
2λ)2 ∨ ∣k− 1

2λ∣ s
s−1

⩽ λ2 ∨ ∣λ∣ s
s−1 ,

where in the last step we used the fact that s
s−1 ⩾ 2.

Since we also often encounter families of random variables with a finite range
of dependence, we also provide a version of Lemma A.9 tailored to this situation.

Lemma A.10. For every s ∈ (1, 2], there exists a constant C(s) < ∞ such that the
following holds. Let θ > 0, R ⩾ 1, Z ⊆ RZd, and for each x ∈ Z, let X(x) be anF(◻2R(x))-measurable random variable such that X(x) = Os(θ(x)). We have

∑
x∈Z

X(x) = Os (C ( ∑
x∈Z

θ(x)2) 1
2) .

Proof. We partition Z into Z(1), . . . ,Z(3d) in such a way that for every j ∈{1, . . . ,3d}, if x ≠ x′ ∈ Z(j), then ∣x − x′∣ ⩾ 3R ⩾ 2R + 1. (That is, we defineZ(1) = (3RZd) ∩ Z, and so on with translates of (3RZ)d.) For each j, the random
variables (X(x))x∈Z(j) are independent. By Lemma A.9,

∑
x∈Z(j)

X(x) = Os (C ( ∑
x∈Z(j)

θ(x)2) 1
2) .

The conclusion follows by summing over j and applying Lemma A.8.



Appendix B

Function spaces and elliptic equations on
Lipschitz domains

In this appendix, we collect some standard facts about Sobolev and Besov spaces
on Lipschitz domains U ⊆ Rd, including negative and fractional spaces.

Definition B.1 (Ck,α domain). Let k ∈ N and α ∈ (0,1]. We say that a domain
U ⊆ Rd is a Ck,α domain if every point of ∂U has a neighborhoodN such that ∂U∩N
can be represented, up to a change of variables, as the graph of a Ck,α function
of d − 1 of the variables. A C0,1 domain is also called a Lipschitz domain.

We proceed by defining the Sobolev spaces Wα,p(U) for α ∈ R and p ∈ [1,∞].
Definition B.2 (Sobolev space W k,p(U)). For every β = (β1, . . . , βd) ∈ Nd, we
write ∂β ∶= ∂β1x1⋯∂βdxd , and ∣β∣ ∶= ∑d

i=1 βi. For every k ∈ N and p ∈ [1,∞], the Sobolev
space W k,p(U) is defined by

W k,p(U) ∶= {v ∈ Lp(U) ∶ ∀∣β∣ ⩽ k, ∂βu ∈ Lp(U)},
endowed with the norm

∥v∥Wk,p(U) ∶= ∑
0⩽∣β∣⩽k

∥∂βv∥Lp(U). (B.1)

For ∣U ∣ < ∞, we also define the rescaled norm

∥v∥Wk,p(U) ∶= ∑
0⩽∣β∣⩽k

∣U ∣ ∣β∣−kd ∥∂βv∥Lp(U).

We denote by W k,p
0 (U) the closure of C∞

0 (U) with respect to the norm in (B.1).
We say that v ∈W k,p

loc (U) if v ∈W k,p(V ) whenever V is a compact subset of U .

423
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Definition B.3 (Sobolev space Wα,p(U)). Let α ∈ (0,1) and p ∈ [1,∞]. The
fractional Sobolev Wα,p(U) seminorm is defined, for p < ∞, as

[v]pWα,p(U) ∶= (1 − α)∫
U
∫
U

∣v(x) − v(y)∣p∣x − y∣d+αp dxdy (B.2)

and, for p = ∞,

[v]Wα,∞(U) ∶= ess sup
x,y∈U

∣v(x) − v(y)∣∣x − y∣α .

For each k ∈ N, we define the Sobolev space W k+α,p(U) by

W k+α,p(U) ∶= {v ∈W k,p(U) ∶ ∥∇kv∥
Wα,p(U) < ∞} ,

with the norm

∥v∥Wk+α,p(U) ∶= ∥v∥Wk,p(U) + ∑
∣β∣=k

[∂βv]
Wα,p(U) . (B.3)

For ∣U ∣ < ∞, we also define the rescaled norm

∥v∥Wk+α,p(U) ∶= ∑
0⩽∣β∣⩽k

∣U ∣ ∣β∣−k−αd ∥∂βv∥Lp(U) + ∑
∣β∣=k

∣U ∣− 1
p [∂βv]

Wα,p(U) .

The space Wα,p(U) is a Banach space for every α ∈ (0,∞) and p ∈ [1,∞]. If
p ∈ [1,∞), then the space Wα,p(U) is the closure of the set of smooth functions
with respect to the norm in (B.1), a result first proved for integer α by Meyers and
Serrin [88].

When p = 2 and α > 0, we denote Hα(U) ∶=Wα,2(U).
Note that the normalizing constant (1 − α) in (B.2) is chosen so that, for every

v ∈W 1,p(U),
lim
α→1

[v]pWα,p(U) = c(U) ∥∇v∥pLp(U) .

Thus the normalizing constant provides continuity in seminorms. In the case
U = Rd, this can be complemented by the fact that, for v ∈ ⋃α∈(0,1)Wα,p(Rd),

lim
α→0

α [v]p
Wα,p(Rd) = 1

pc(d) ∥v∥pLp(Rd) .
Both of these properties are established in [87, Chapter 10].

We denote by Wα,p
0 (U) the closure of C∞

c (U) with respect to ∥⋅∥Wα,p(U) .

We denote by Wα,p
loc (U) the vector space of measurable functions on U which

belong to Wα,p(V ) for every bounded open set V with V ⊆ U .
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Definition B.4 (Sobolev space W −α,p(U)). Let α > 0, p ∈ [1,∞], and let p′ be the
conjugate exponent of p, that is, p′ = p

p−1 ∈ [1,∞]. For every distribution u, we
define ∥u∥W−α,p(U) ∶= sup{∫

U
uv ∶ v ∈ C∞

c (U), ∥v∥Wα,p′(U) ⩽ 1} , (B.4)

where we abuse notation slightly and denote by (u, v) ↦ ∫U uv the canonical duality
pairing. The Sobolev space W −α,p(U) is the space of distributions for which this
norm is finite. Equipped with this norm, it is a Banach space.

Remark B.5. For every p ∈ (1,∞], the space W −α,p(U) may be identified with the
dual of Wα,p′

0 (U). When p = 1, a difficulty arises since the dual of Wα,∞(U) is not
canonically embedded into the space of distributions. To wit, it is elementary to
associate a distribution with each element of the dual of Wα,∞(U), by restriction;
but this mapping is not injective. This problem is caused by the fact that the space
C∞
c (U) is not dense in Wα,∞(U).

Remark B.6. For every p ∈ (1,∞], we can identify W −1,p(U) with ∇ ⋅Lp(U ;Rd).
That is, each element of f ∈ W −1,p(U) can be associated with a vector field
F ∈ Lp(U ;Rd) such that

∀w ∈W 1,p′

0 (U), ∫
U
wf = ∫

U
F ⋅ ∇w (B.5)

and satisfying, for some C(U,d) < ∞,

1

C
∥f∥W−1,p(U) ⩽ ∥F∥Lp(U) ⩽ C ∥f∥W−1,p(U) .

Note that in (B.5), the left side is interpreted as the duality pairing between
w ∈ W 1,p′

0 (U) and f ∈ W −1,p(U), while the right side is a standard Lebesgue
integral. The existence of such F is a consequence of the Riesz representation
theorem and the Poincaré inequality (the latter tells us that ∥w∥W 1,p(U) is equivalent
to ∥∇w∥Lp(U)). Note that such an identification does not hold for p = 1, since, as
explained above, W −1,1(U) cannot be identified with the dual of W 1,∞(U).

This identification can be generalized to W −k,p(U) with k ∈ N and p ∈ (1,∞].
Indeed, again by the Riesz representation theorem, we can identify each f ∈
W −k,p(U) with (fβ)β ⊆ Lp(U), indexed by the multiindices β with ∣β∣ ⩽ k, such
that ∀w ∈W k,p′

0 (U), ∫
U
wf = ∑

∣β∣⩽k
∫
U
fβ∂

βw.

We also need to define the Besov space Bp,p
α (∂U), where ∂U is the boundary

of a Lipschitz domain U . This is because we need a relatively sharp version
of the Sobolev trace theorem for some results in Section 6.4. We denote the(d − 1)-dimensional Hausdorff measure on ∂U by σ.
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Definition B.7 (Besov space Bp,p
α (∂U)). Let U ⊆ Rd be a Lipschitz domain,

α ∈ (0,1) and p ∈ [1,∞]. The Besov Bp,p
α (∂U) seminorm is defined as

[v]p
Bp,pα (∂U) ∶= (1 − α)∫

∂U
∫
∂U

∣v(x) − v(y)∣p∣x − y∣d−1+αp dσ(x)dσ(y),
and the Besov space Bp,p

α (∂U) by

Bp,p
α (∂U) ∶= {v ∈ Lp(∂U) ∶ [v]Bp,pα (∂U) < ∞} .

This is a Banach space under the Bp,p
α (∂U) norm, which is defined by

∥v∥Bp,pα (∂U) ∶= ∥v∥Lp(∂U) + [v]Bp,pα (∂U) .

The next four statements give us various versions of the Sobolev and Sobolev-
Poincaré inequalities which are used in the book. They can be found in [87]. See
also [1, 59].

Theorem B.8 (Global Sobolev inequality). Fix k ∈ N and p ∈ (1, dk). There
exists C(k, p, d) < ∞ such that, for every v ∈W k,p(Rd),

∥v∥
L

dp
d−kp (Rd)

⩽ C ∥v∥Wk,p(Rd) . (B.6)

Recall that Pk denotes the set of real-valued polynomials of order at most k.

Theorem B.9 (Local Sobolev-Poincaré inequality). Let k ∈ N, p ∈ [1, dk) and r > 0.
There exists C(k, p, d) < ∞ such that, for every v ∈W k,p(Br),

inf
w∈Pk−1

∥v −w∥
L

dp
d−kp (Br)

⩽ Crk ∥∇kv∥
Lp(Br)

. (B.7)

Moreover, for v ∈W k,p
0 (Br), then we may take w = 0 on the left side of (B.7).

For the borderline exponent p = d
k , there is a version of Sobolev’s inequality,

attributed to Trudinger, with Lq-norm on the left replaced by a certain exponential
integral. However, since we do not use this result in the book, it will not be stated.
For exponents p > d

k , we have the following.

Theorem B.10 (Morrey’s inequality). Let k ∈ N, p ∈ ( d
k ,∞] and r > 0. There

exists a constant C(k, p, d) such that for every v ∈W k,p(Br)
inf

w∈Pk−1
∥v −w∥L∞(Br) ⩽ Crk ∥∇kv∥

Lp(Br)
. (B.8)

Moreover, if v ∈W k,p
0 (Br), then w in the infimum above can be taken to be zero.

Finally, if v ∈W k,p(Rd), then
∥v∥L∞(Rd) ⩽ C ∥v∥Wk,p(Rd) . (B.9)
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We next record a version of the Sobolev-Poincaré-Wirtinger inequality. In most
of the book, we just need the statement in the case α = 1. However, we also need a
fractional version for cubes in Lemmas 6.7 and 6.8. The former case is classical
and can be found for example in [87, Section 6.3.4]. The latter case can be found
in [87, Section 10.2.2].

Proposition B.11 (Sobolev-Poincaré-Wirtinger inequality). Fix a bounded Lips-
chitz domain U ⊆ Rd, α ∈ (0,1], p ∈ (1, dα), and denote

p∗ = p∗(α, p) ∶= dp

d − αp.
Suppose also that α = 1 or else that U is a cube. Then there exists C(α, p,U, d) < ∞
such that, for every u ∈Wα,p(U),

∥u − (u)U∥Lp∗(U) ⩽ C [u]Wα,p(U) .

Remark B.12. In the case U is either a ball or a cube, for which the above
inequality is mainly applied in this book, the constant C above has the form

C = C(d, p)(d − αp)1−1/p .

See [87, Section 10.2.3].

There is also an embedding between fractional Sobolev spaces, recorded in
the following proposition, which follows from [1, Theorem 7.58] and the extension
theorem, Proposition B.14 below.

Proposition B.13 (Embedding between fractional Sobolev spaces). Fix a Lipschitz
domain U ⊆ Rd, α ∈ (0,1), β ∈ (0, α), p ∈ (1,∞) and q ∈ [1,∞] such that

β ⩽ α − d(1

p
− 1

q
) .

Then there exists C(α,β, p, q, k,U, d) < ∞ such that, for every u ∈Wα,p(U),
[u]Wβ,q(U) ⩽ C [u]Wα,p(U) .

A proof of the following Sobolev extension theorem for Wα,p spaces in Lipschitz
domains can be found in [112, Chapter VI, Theorem 5] for α ∈ N and, for α ∈ (0, 1),
in [40, Theorem 5.4]. The general statement follows from these.

Proposition B.14 (Extension theorem). Let U ⊆ Rd be a bounded Lipschitz
domain, α ∈ (0,∞) and p ∈ (1,∞). The restriction operator Wα,p(Rd) →Wα,p(U)
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has a bounded linear right inverse. That is, there exists C(U,α, p, d) < ∞ and a
linear operator

Ext ∶Wα,p(U) →Wα,p(Rd)
such that, for every u ∈Wα,p(U),

Ext(u) = u a.e. in U

and ∥Ext(u)∥Wα,p(Rd) ⩽ C ∥u∥Wα,p(U) .

The following version of the trace theorem for Lipschitz domains is a special
case of [75, Chapter VII, Theorem 1] (see also [85]).

Proposition B.15 (Sobolev trace theorem). Let U ⊆ Rd be a bounded Lipschitz
domain, α ∈ (0,∞) and p ∈ (1,∞) be such that α > 1

p . The linear operator C
∞(U) →

Lip(∂U) that restricts a smooth function on U to ∂U has an extension to a bounded
linear mapping Wα,p(U) → Bp,p

α− 1
p

(∂U). That is, there exists C(α, p,U, d) < ∞ and

a linear operator
Tr ∶Wα,p(U) → Bp,p

α− 1
p

(∂U)
such that, for every u ∈Wα,p(U),

∥Tr(u)∥Bp,p
α− 1

p

(∂U) ⩽ C ∥u∥Wα,p(U) (B.10)

and, for every u ∈ C∞(U),
Tr(u) = u on ∂U.

We next show that the trace operator Tr is surjective and has a bounded linear
right inverse. This is a consequence of the solvability of the Dirichlet problem for
the Poisson equation in Lipschitz domains, which was proved in [73]. For another
proof, see [48, Theorem 10.1]). Note that in C1,1 domains, the result is true for
p ∈ (1,∞) by an argument which is simpler (cf. [2]).

Proposition B.16. Let U ⊆ Rd be a bounded Lipschitz domain and p ∈ [3
2 ,3].

For every g ∈ Bp,p

1− 1
p

(∂U) and f ∈ W −1,p(U), there exists a unique solution of the

Dirichlet problem

{ −∆u = f in U,
u = g on ∂U,

(B.11)

where the boundary condition is interpreted to mean that Tr(u) = g. Moreover,
there exists C(U, p, d) < ∞ such that

∥u∥W 1,p(U) ⩽ C (∥g∥Bp,p
1− 1
p

(∂U) + ∥f∥W−1,p(U)) .
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We next state some H2 estimates for solutions of the Poisson equation. The
interior estimate is essentially just the Caccioppoli inequality (see Lemma C.2
below), while a global version necessarily requires some regularity of boundary of
the domain.

Lemma B.17 (Interior H2 estimate). There exists C(d) < ∞ such that if f ∈
L2(B1) and u ∈H1(B1) satisfy the Poisson equation

−∆u = f in B1,

then u ∈H2
loc(B1) and

∥u∥H2(B1/2) ⩽ C (∥u∥L2(B1) + ∥f∥L2(B1)) . (B.12)

Proof. Since ∂ju satisfies the equation −∆∂ju = ∂jf , the Caccioppoli estimate
(Lemma C.2) gives the result.

Proposition B.16 can be improved if U is more regular than just Lipschitz. We
next record a global H2 estimate for C1,1 and for convex domains. The proofs can
be found in [69, Theorems 2.4.2.5 and 3.1.2.1].

Proposition B.18 (Global H2 estimate). Let U ⊆ Rd be a bounded domain which
is convex or C1,1. There exists C(U,d) < ∞ such that if f ∈ L2(U) and u ∈H1(U)
solves the Dirichlet problem

{ −∆u = f in U,
u = 0 on ∂U,

(B.13)

then u ∈H2(U) and ∥u∥H2(U) ⩽ C ∥f∥L2(U) . (B.14)

The proof of Corollary 1.9 requires the following global H2 estimate for the
Neumann problem in a cube. This result is true in more generality (similar to the
Dirichlet case given in Proposition B.18), but the case of a cube has a short proof
by the reflection principle which we include here for the convenience of the reader.

Lemma B.19. There exists C(d) < ∞ such that if ◻ ⊆ Rd is a cube, f ∈ L2(◻) is
such that ∫◻ f = 0 and w ∈H1(◻) solves the Neumann problem

{ −∆w = f in ◻,
∂νw = 0 on ∂◻, (B.15)

then w ∈H2(◻) and ∥∇2w∥
L2(◻) ⩽ C ∥f∥L2(◻) . (B.16)
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Proof. By translation and scaling, we may assume that ◻ ∶= (0,1)d. Denote◻̃ ∶= (−1,1)d and define f̃ ∈ L2(◻̃) by

f̃(x1, . . . , xd) ∶= f(∣x1∣, . . . , ∣xd∣).
Let w̃ ∈H1

per(◻̃) be the unique ◻̃-periodic function with mean zero solving

−∆w̃ = f̃ .
We have that w̃ ∈H2

per(◻̃) as well as the estimate

∫◻̃ ∣∇2w̃∣2 ⩽ ∫◻̃ f̃ 2.

This can be obtained by testing, for each j ∈ {1, . . . , d}, the equation −∆∂jw̃ = ∂jf
with ∂jw̃, summing over j and then applying Young’s inequality (or, alternatively,
applying Lemma B.17 and using periodicity). To conclude, we check that the
restriction of w̃ to ◻ solves the Neumann problem (B.15). It only remains to
check that the boundary condition holds, and for this we argue by symmetry.
The function w̃ is invariant under the change of coordinates xi ↦ −xi, for each
i ∈ {1, . . . , d}. We also recall that the trace mapping v ↦ ∂νv is continuous operator
from H2

per(◻̃) → L2(∂◻). Moreover, the function w̃ can be approximated by smooth
functions in H2

per(◻̃) that are also invariant under these changes of coordinates.
These approximations all have a null image under T , so the proof is complete.



Appendix C

The Meyers L2+δ estimate

In this appendix, we give a mostly self-contained proof of the Meyers improvement
of integrability estimate for gradients of solutions of uniformly elliptic equations.
The estimate states roughly that a solution of a uniformly elliptic equation must
have slightly better regularity than a typical H1 function: it belongs to the space
W 1,2+δ for some positive exponent δ. We include both a local version (Theorem C.1)
as well as a global version in Lipschitz domains with Dirichlet boundary conditions
(Theorem C.7).

The Meyers estimate (in any form) is a consequence of the Caccioppoli and
Sobolev inequalities, which immediately yield a reverse Hölder inequality for
solutions, and Gehring’s lemma, a measure-theoretic fact stating that a reverse
Hölder inequality implies an improvement of integrability.

We first give the statement of the interior Meyers estimate. Throughout we
assume that a ∈ Ω is fixed, that is, a is a measurable map from Rd to the set of
symmetric matrices with eigenvalues belonging to [1,Λ].
Theorem C.1 (Interior Meyers estimate). Fix r > 0 and p ∈ (2,∞). Suppose that
h ∈W −1,p(Br) and that u ∈H1(Br) satisfy

−∇ ⋅ (a(x)∇u) = h in Br. (C.1)

Then there exist δ(d,Λ) > 0 and C(d,Λ) < ∞ such that

∥∇u∥L(2+δ)∧p(Br/2) ⩽ C (∥∇u∥L2(Br) + ∥h∥W−1,(2+δ)∧p(Br)) . (C.2)

We begin the proof of Theorem C.1 with the Caccioppoli inequality, perhaps
the most basic elliptic regularity estimate which is also used many times for other
purposes throughout the text.
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Lemma C.2 (Interior Caccioppoli inequality). Fix r > 0. Suppose that h ∈H−1(Br)
and u ∈H1(Br) satisfy

−∇ ⋅ (a(x)∇u) = h in Br. (C.3)

Then there exists C(d,Λ) < ∞ such that

∥∇u∥L2(Br/2) ⩽ C (1

r
∥u − (u)Br∥L2(Br)

+ ∥h∥H−1(Br)) . (C.4)

Proof. By subtracting a constant from u, we may suppose (u)Br = 0. Fix a cutoff
function φ ∈ C∞

c (Br) satisfying

0 ⩽ φ ⩽ 1, φ = 1 in Br/2, ∣∇φ∣ ⩽ 4r−1, (C.5)

and test the equation with φ2u to get

⨏
Br
φ2∇u ⋅ a∇u = ⨏ hφ2u − ⨏

Br
2φu∇φ ⋅ a∇u.

Recall that we use the expression ⨏ hφ2u to denote the (normalized) pairing between
h ∈H−1(Br) and φ2u ∈H1

0(Br), as explained below (B.4). We have that

∣⨏ hφ2u∣ ⩽ ∥h∥H−1(Br) ∥φ2u∥
H1(Br)

and, by the Poincaré inequality and (C.5),

∥φ2u∥
H1(Br)

⩽ C ∥∇(φ2u)∥
L2(Br)

⩽ C
r

∥u∥L2(Br) +C ∥φ∇u∥L2(Br) .

By Young’s inequality and the upper bound ∣a∣ ⩽ Λ, we have

∣⨏
Br

2φu∇φ ⋅ a∇u∣ ⩽ 1

2 ⨏Br φ2 ∣∇u∣2 +C ⨏
Br

∣∇φ∣2 u2

⩽ 1

2
∥φ∇u∥2

L2(Br) + Cr2
∥u∥2

L2(Br) .

By the uniform ellipticity assumption, a ⩾ Id, and thus we have

⨏
Br
φ2∇u ⋅ a∇u ⩾ ⨏

Br
φ2 ∣∇u∣2 = ∥φ∇u∥2

L2(Br) .

Combining the five previous displays, we obtain

∥φ∇u∥2
L2(Br) ⩽ Cr2

∥u∥2
L2(Br) +C ∥h∥H−1(Br) (Cr ∥u∥L2(Br) +C ∥φ∇u∥L2(Br)) .

Young’s inequality then yields

∥φ∇u∥L2(Br) ⩽ Cr ∥u∥L2(Br) +C ∥h∥H−1(Br) .

As ∥φ∇u∥L2(Br) ⩾ ∥∇u∥L2(Br/2) by (C.5), the proof is complete.
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The Caccioppoli inequality can be combined with the Sobolev-Poincaré inequal-
ity to obtain a reverse Hölder inequality for the gradients of solutions. Recall that
we denote 2∗ ∶= 2d

d+2 .

Corollary C.3. Under the assumptions of Lemma C.2, there exists C(d,Λ) < ∞
such that ∥∇u∥L2(Br/2) ⩽ C (∥∇u∥L2∗(Br) + ∥h∥H−1(Br)) . (C.6)

Proof. By the Sobolev-Poincaré inequality,

∥u − (u)Br∥L2(Br)
⩽ Cr ∥∇u∥L2∗(Br) .

Plugging this into (C.4) gives the result.

It is a basic real analytic fact that a reverse Hölder inequality like (C.6) implies
a small improvement of integrability. This is formalized in the following lemma,
which is usually attributed to Gehring.

Lemma C.4 (Gehring’s lemma). Fix p ∈ (2,∞), q ∈ (1,2), K ⩾ 1, and R > 0.
Suppose that f ∈ L2(BR), g ∈ Lp(BR) and that f satisfies the following reverse
Hölder inequality, whenever Br(z) ⊆ BR,

∥f∥L2(Br/2(z)) ⩽K (∥f∥Lq(Br(z)) + ∥g∥L2(Br(z))) . (C.7)

Then there are constants δ(q,K, d) ∈ (0,1) and C(q,K, d) < ∞ such that

∥f∥L(2+δ)∧p(BR/2) ⩽ C (∥f∥L2(BR) + ∥g∥L(2+δ)∧p(BR)) .
The proof of Gehring’s lemma requires a measure theoretic, geometric covering

tool. There are several choices that could be made and here we use the Vitali
covering lemma, which we state next (for a proof, see [47, Theorem 1.5.1]).

Lemma C.5 (Vitali covering lemma). Let {Bα}α∈Γ be a family of balls in Rd with
uniformly bounded radii. Then there exists a countable, pairwise disjoint subfamily{Bαj}j∈N such that ⋃

α∈Γ
Bα ⊆ ⋃

j∈N
5Bαj .

We next proceed with the proof of Gehring’s lemma.

Proof of Lemma C.4. Fix 1
2 ⩽ s < t ⩽ 1. For any z ∈ BsR and r ∈ (0, (t − s)R], set

E(z, r) ∶= ∥f∥L2(Br/2(z)) + ∥g∥L2(Br(z)) .

Take

λ0 ∶= ( 20

t − s)
d
2 (∥f∥L2(BR) + ∥g∥L2(BR)) ,
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and let L be the set of Lebesgue points of both f and g, that is

L ∶= {x ∈ BsR ∶ lim
r→0

∥f − f(x)∥L2(Br(x)) = 0 and lim
r→0

∥g − g(x)∥L2(Br(x)) = 0} .
Then ∣BsR ∖ L∣ = 0. Now, for each λ > λ0 and z ∈ L ∩ {∣f ∣ > λ} there exists rz ∈(0, t−s10 R] such that

E(z, rz) = λ, while sup
r∈(rz , t−s10

R]
E(z, r) ⩽ λ. (C.8)

Indeed, the existence of such rz is clear since z ∈ L ∩ {∣f ∣ > λ}, giving
lim
r→0

E(z, r) = ∣f(z)∣ + ∣g(z)∣ > λ,
the mapping r ↦ E(z, r) is continuous, and

E (z, t−s10 R) ⩽ ( 20

t − s)
d
2 (∥f∥L2(BR) + ∥g∥L2(BR)) ⩽ λ0 < λ.

By (C.8) and the reverse Hölder inequality (C.7) we obtain

λ = E(z, rz) ⩽K ∥f∥Lq(Br(z)) + 2K ∥g∥L2(Br(z)) . (C.9)

Set, for any Borel set A ⊆ BtR,

µf(A) ∶= ∫
BtR∩A

∣f(x)∣q dx and νg(BtR ∩A) ∶= ∫
A
∣g(x)∣2 dx,

and similarly for νf(A). We have from (C.9) that

∣Brz ∣ ⩽ (8K

λ
)q µf (Brz(z) ∩ {∣f ∣ > λ

8K
}) + (8K

λ
)2

νg (Brz(z) ∩ {∣g∣ > λ

8K
}) .

On the other hand, by (C.8) we get

νf (B5rz(z) ∩ {∣f ∣ ⩾ λ}) ⩽ ∥f∥2
L2(B5rz (x)) ⩽ 5dλ2∣Brz ∣.

It follows by the two previous displays that

νf (B5rz(z) ∩ {∣f ∣ ⩾ λ})
⩽ 5d (8K)q λ2−qµf (Brz(z) ∩ {∣f ∣ ⩾ λ

8K
}) + 5d (8K)2

νg (Brz(z) ∩ {∣g∣ ⩾ λ

8K
}) .

Applying then Vitali’s covering lemma with {Brz(z)} yields, taking into account
that Brz(z) ⊆ BtR, that

νf (BsR ∩ {∣f ∣ ⩾ λ})
⩽ 5d (8K)q λ2−qµf ({∣f ∣ ⩾ λ

8K
}) + 5d (8K)2

νg ({∣g∣ ⩾ λ

8K
}) . (C.10)
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Let then ε ∶= (2 + δ) ∧ p and set, for m > λ0, fm ∶= ∣f ∣ ∧m. Integration and the
definition of λ0 give that

∥fm∥2+ε
L2+ε(BsR) = ε∫ m

0
λε−1νf (BsR ∩ {∣f ∣ ⩾ λ}) dλ

⩽ λ2+ε
0 ∣BtR∣ + ε∫ m

λ0
λε−1νf (BsR ∩ {∣f ∣ ⩾ λ}) dλ.

For the latter term we may use (C.10) and obtain, after change of variables, that

ε∫ m

λ0
λε−1νf (BsR ∩ {∣f ∣ ⩾ λ}) dλ

⩽ 5d(8K)2+ε (ε∫ m/(8K)

λ0/(8K)
λ1+ε−qµf ({∣f ∣ ⩾ λ}) dλ + ∥g∥2+ε

L2+ε(BtR)) .
The first term on the right can be further estimated as

ε∫ m/(8K)

λ0/(8K)
λ1+ε−qµf ({∣f ∣ ⩾ λ}) dλ ⩽ δ

2 − q + δ ∥fm∥2+ε
L2+ε(BtR) .

Now we can exploit the smallness of δ. Indeed, we choose it so that

δ

2 − q + δ5d(8K)2+δ = 2−d−1,

which is possible since q < 2. Collecting all the estimates gives, after taking averages,

∥fm∥L2+ε(BsR) ⩽ 1

2
∥fm∥L2+ε(BtR) + C

(t − s) d2 (∥f∥L2(BR) + ∥g∥Lp(BR)) .
An application of Lemma C.6 below then yields that

∥fm∥L2+ε(BR/2) ⩽ C (∥f∥L2(BR) + ∥g∥Lp(BR)) .
We conclude by sending m→∞, using the monotone convergence theorem.

Lemma C.6. Suppose that A, ξ ⩾ 0 and ρ ∶ [1
2 ,1) → [0,∞) satisfies

sup
t∈[ 1

2
,1)

(1 − t)ξρ(t) < ∞
and, for all 1

2 ⩽ s < t < 1,

ρ(s) ⩽ 1

2
ρ(t) + (t − s)−ξA. (C.11)

Then there exists a constant C(ξ) < ∞ such that ρ (1
2
) ⩽ CA.
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Proof. Denote M ∶= supt∈[ 1
2
,1)(1 − t)ξρ(t). Fix s ∈ [1

2 ,1) and take δ ∶= 1 − (2
3
)1/ξ

and t ∶= 1 − (1 − δ)(1 − s) in (C.11) and multiply by (1 − s)ξ to obtain

(1 − s)ξρ(s) ⩽ 1

2
(1 − s

1 − t)
ξ (1 − t)ξρ(t) + (1 − s)ξ(t − s)−ξA = 3

4
(1 − t)ξρ(t) + δ−ξA.

This yields

(1 − s)ξρ(s) ⩽ 3

4
M + δ−ξA.

Taking the supremum of the left side over s ∈ [1
2 ,1) gives

M ⩽ 3

4
M + δ−ξA.

Thus M ⩽ 4δ−ξA ⩽ CA. Since ρ(1
2) ⩽ 2ξM ⩽ CM , we obtain the lemma.

Proof of Theorem C.1. We first consider the case that h can be written in the form

h = ∇ ⋅H
for a vector field H ∈ Lp(Br) satisfying

∥H∥L(2+δ)∧p(Br) ⩽ C ∥h∥W−1,(2+δ)∧p(Br) .

If this is the case, then the result follows by Corollary C.3 and Lemma C.4, applied
with f = ∣∇u∣, g = ∣H∣, and q = 2d

d+2 .
The general case follows from the observation that the special case described

above is actually general. To see this, we first notice that it suffices to consider the
case that p ∈ [3

2 ,3], since we may assume that δ ⩽ 1. Then, given h ∈W −1,p(U), we
solve the Dirichlet problem

{ −∆w = h in U,
w = 0 on ∂U.

(C.12)

According to Proposition B.16, there exists a solution w belonging to W 1,p(U)
with the estimate ∥w∥W 1,p(Br) ⩽ C ∥h∥W−1,p(Br) .

(We leave it to the reader to check that we have scaled this estimate correctly.) We
then set H ∶= −∇w, which completes the proof of the claim and of the theorem.

We state and prove a global version of the Meyers estimate in bounded Lipschitz
domains with Dirichlet boundary conditions. It is useful to define, for a given
bounded Lipschitz domain U ⊆ Rd, the geometric constant

κU ∶= sup
z∈U, r>0

∣Br(z) ∩U ∣∣Br/2(z) ∩U ∣ + sup
z∈∂U, r>0

∣Br∣∣Br(z) ∖U ∣ . (C.13)
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The assumption that U is Lipschitz ensures that κU < ∞. It is the finiteness of
κU and the solvability of (C.12) which are the main reasons for assuming U is
Lipschitz.

Theorem C.7 (Global Meyers estimate). Fix p ∈ (2,∞) and let U ⊆ Rd be a
bounded Lipschitz domain. Suppose that h ∈ W −1,p(U), f ∈ W 1,p(U), and that
u ∈ f +H1

0(U) is the solution of

{ −∇ ⋅ (a(x)∇u) = h in U,
u = f on ∂U.

(C.14)

There exist δ(U,d,Λ) > 0 and C(U,d,Λ) < ∞ such that u ∈W 1,(2+δ)∧p(U) and

∥∇u∥L(2+δ)∧p(U) ⩽ C (∥∇f∥L(2+δ)∧p(U) + ∥h∥W−1,(2+δ)∧p(U)) . (C.15)

Before embarking on the proof of Theorem C.7, we mention one simple reduction,
which is that we may assume that f = 0. Indeed, by defining

ũ ∶= u − f and h̃ ∶= h +∇ ⋅ (a(x)∇f(x)) ,
we see that ũ ∈H1

0(U) and ũ solves the equation

−∇ ⋅ (a(x)∇ũ) = h̃ in U.

We then observe that the conclusion of the theorem for u follows from the one
for ũ. Therefore, we may, without loss of generality, consider only the case f = 0.

Lemma C.8 (Global Caccioppoli estimate). Let U be a bounded Lipschitz domain.
Suppose that h ∈H−1(U) and that u ∈H1

0(U) solves

−∇ ⋅ (a(x)∇u) = h in U. (C.16)

There exists C(U,d,Λ) < ∞ such that

∥∇u∥L2(U) ⩽ C ∥h∥H−1(U) , (C.17)

and, for every z ∈ ∂U and r > 0,

∥∇u∥L2(Br/2(z)∩U) ⩽ C (1

r
∥u∥L2(Br(z)∩U) + ∥h∥H−1(Br(z)∩U)) . (C.18)

Proof. The estimate (C.17) follows simply by testing the equation (C.16) with u.
The proof of (C.18) is similar to the one of Lemma C.2. Note that we have control
on the volume factor ∣Br(z) ∩U ∣/∣Br/2(z) ∩U ∣ by κU < ∞ since U is Lipschitz.

The global version of the Caccioppoli inequality naturally leads to a global
version of the reverse Hölder inequality.
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Corollary C.9. Assume the hypothesis of Lemma C.8 and consider u to belong to
the space H1(Rd) by extending it to be zero in Rd∖U . Then there exists C(U,d,Λ) <∞ such that, for every z ∈ U and r > 0,

∥∇u∥L2(Br/2(z)) ⩽ C (∥∇u∥L2∗(Br(z)∩U) + ∥h∥H−1(Br(z)∩U)) . (C.19)

Proof. If Br(z) ⊆ U , then the result follows from the interior estimate given in
Corollary C.3. If Br(z) /⊆ U , then we can find a point z′ ∈ ∂U ∩Br(z), which implies
that Br(z) ⊆ B2r(z′). We may then apply the result of Lemma C.8 in the ball
B4r(z′) and follow the rest of the proof of Corollary C.9. The only difference is that
the version of the Sobolev-Poincaré inequality we use is different: rather than the
version for mean-zero functions, we use the one which applies to functions vanishing
on a set of positive measure (cf. [72, Lemma 4.8]). It is valid here because u
vanishes on B4r(z′) ∩U , which has measure at least κ−1

U ∣B4r∣ ⩾ c ∣B4r∣.
Proof of Theorem C.7. The result is a consequence of (C.17), Corollary C.9 and
Lemma C.4. The details are almost identical to those of the proof of Theorem C.1,
so we leave them to the reader.
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Sobolev norms and heat flow

In this appendix, we review the characterization of Sobolev norms in terms of
weighted integral expressions involving spatial averages of the function with respect
to the standard heat kernel. These inequalities are used in Chapters 4 and 5 in
order to obtain estimates in W −α,p for the gradients and fluxes of the correctors as
well as Gaussian free fields, and can be compared to Propositions 1.7 and 4.19.

It turns out that we need to distinguish two cases, depending on whether α is
an integer or not. We first consider the case that α ∈ N in the following proposition.
The fractional case in which α /∈ N is presented in Proposition D.4, below.

Proposition D.1. Let α ∈ N and p ∈ (1,∞). There exists C(α, p, d) < ∞ such that
for every u ∈W −α,p(Rd),

1

C
∥u∥W−α,p(Rd) ⩽ (∫

Rd
(∫ 1

0
(tα2 ∣(Φ (t, ⋅) ∗ u) (x)∣)2 dt

t
) p2 dx)

1
p ⩽ C ∥u∥W−α,p(Rd) .

(D.1)

Inequalities similar to (D.1) are often presented as consequences of singular
integrals, multiplier theory, Littlewood-Paley decompositions and functional calcu-
lus. We give here a more direct proof based on the following property of the heat
equation.

Lemma D.2. Let q ∈ (1,∞) and k ∈ N. There exists C(k, q, d) < ∞ such that for
every f ∈ Lq(Rd),

(∫
Rd

(∫ ∞

0
tk ∣∇k (Φ (t, ⋅) ∗ f) (x)∣2 dt

t
) q2 dx)

1
q ⩽ C ∥f∥Lq(Rd) . (D.2)

Proof. By density, it is enough to show the estimate for compactly supported
smooth function f . In Steps 2 and 3, we consider the case q ∈ (1,2], in Step 4 the
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case q ∈ [4,∞), and finally in Step 5 we use interpolation to obtain the result for
q ∈ (2,4). We denote

v(t, x) ∶= (Φ (t, ⋅) ∗ f) (x).
Step 1. We first prove a pointwise bound for certain maximal functions appearing

below. We will prove that, for k ∈ N and a constant C(k, d) < ∞,

sup
t>0

∣(gk (t, ⋅) ∗ ∣f ∣) (x)∣ ⩽ CkMf(x). (D.3)

Here Mf is the centered Hardy-Littlewood maximal function defined by

Mf(x) ∶= sup
r>0
⨏
Br(x)

∣f(y)∣ dy.
and

gk(t, x) ∶= (1 + ∣x∣2
t

)k−1

Φ(t, x). (D.4)

To prove (D.3), choose tx realizing the supremum and estimate as

sup
t>0

∣(g (t, ⋅) ∗ ∣f ∣) (x)∣ ⩽ 2 ∣(g(tx, ⋅) ∗ f) (x)∣
⩽ 2∫

Rd
(1 + ∣x − z∣2

tx
)k−1

Φ(tx, x − z) ∣f(z)∣ dz
⩽ C ∞∑

j=0

4(k−1)jd exp(−4j−2)⨏
B

2j
√
tx

(x)
∣f(z)∣ dz

⩽ CkMf(x).
Therefore (D.3) follows.

Step 2. We now assume that q ∈ (1,2]. Compute formally

∂t∣v∣q = q∣v∣q−2v∂tv and ∆∣v∣q = q(q − 1)∣v∣q−2 ∣∇v∣2 + q∣v∣q−2v∆v.

To give a rigorous meaning for negative powers of ∣v∣ above, and in what follows,
one needs to take (∣v∣ + ε)q−2v instead of ∣v∣q−2v, and then pass ε→ 0 as soon as it
is appropriate. Rearranging the terms and multiplying with ∣v∣2−q leads to

∣∇v∣2 = ∣v∣2−q
q − 1

(1

q
(∆∣v∣q − ∂t∣v∣q) − ∣v∣q−2v (∆v − ∂tv)) .

In particular, since v solves the heat equation, we have

∣∇v∣2 = ∣v∣2−q
q(q − 1) (∆∣v∣q − ∂t∣v∣q) , (D.5)

and thus the term on the right is nonnegative.
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Step 3. We prove (D.2) in the case q ∈ (1,2]. Fix k ∈ N ∪ {0}. Notice that, by
integration by parts,

t
k
2 ∣∇k+1v(t, x)∣ ⩽ C (t k2 ∣∇kΦ ( t

2 , ⋅)∣ ∗ ∣∇v ( t2 , ⋅)∣) (x).
Therefore, by (D.5), we have that

t
k
2 ∣∇k+1v(t, x)∣

⩽ C (t k2 ∣∇kΦ ( t
2 , ⋅)∣ ∗ (∣v ( t2 , ⋅)∣2−q (∆ ∣v ( t2 , ⋅)∣q − ∂t ∣v ( t2 , ⋅)∣q)) 1

2)(x).
Applying Hölder’s inequality yields

(t k2 ∣∇kΦ (⋅, t)∣ ∗ (∣v (t, ⋅)∣2−q (∆ ∣v (t, ⋅)∣q − ∂t ∣v (t, ⋅)∣q)) 1
2) (x)

⩽ C ((gk (t, ⋅) ∗ ∣v (t, ⋅)∣2−q) 1
2 (Φ (t, ⋅) ∗ (∆ ∣v (t, ⋅)∣q − ∂t ∣v (t, ⋅)∣q)) 1

2) (x),
where gk is defined in (D.4). By Step 2,

sup
t>0

(gk (t, ⋅) ∗ ∣v (t, ⋅)∣2−q) (x) ⩽ C (Mf(x))2−q
,

and combining the displays above gives the pointwise bound

tk ∣∇k+1v(t, x)∣2 ⩽ C (Mf(x))2−q (Φ (t, ⋅) ∗ (∆ ∣v (t, ⋅)∣q − ∂t ∣v (t, ⋅)∣q)) (x).
It follows, again by Hölder’s inequality, that

∫
Rd

(∫ ∞

0
tk ∣∇k+1v(t, x)∣2 dt) q2 dx

⩽ C ∥Mf∥ q2 (2−q)
Lq(Rd) (∫Rd

∫ ∞

0
Φ (t, ⋅) ∗ (∆ ∣v (t, ⋅)∣q − ∂t ∣v (t, ⋅)∣q) (x)dt dx) q2 .

But since ∆ ∣v (t, ⋅)∣q − ∂t ∣v (t, ⋅)∣q ⩾ 0 and the convolution contracts, we have that

∫
Rd
∫ ∞

0
Φ (t, ⋅) ∗ (∆ ∣v (t, ⋅)∣q − ∂t ∣v (t, ⋅)∣q) (x)dt dx

⩽ ∫
Rd
∫ ∞

0
(∆ ∣v (t, x)∣q − ∂t ∣v (t, x)∣q) dxdt ⩽ 2 ∥f∥q

Lq(Rd) .

Consequently,

∫
Rd

(∫ ∞

0
tk ∣∇k+1v(t, x)∣2 dt) q2 dx ⩽ C ∥Mf∥ q2 (2−q)

Lq(Rd) ∥f∥ q22Lq(Rd) ,
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and the result follows by the strong type (q, q)-estimate for maximal functions, see
e.g. Lemma D.3. This proves (D.2) when q ∈ (1,2].

Step 4. We now proceed in proving (D.2) when q ∈ [4,∞). By duality, it is
enough to show that, for k ∈ N ∪ {0},

sup
g∈Lp(Rd),∥g∥

Lp(Rd)⩽1
∫
Rd
∫ ∞

0
tk ∣∇k+1v(t, x)∣2 g(x)dt dx ⩽ C ∥f∥2

Lq(Rd) ,

where p is the conjugate of q
2 , that is p = q

q−2 . Notice that p ∈ (1,2] if and only if
q ∈ [4,∞). Pick nonnegative g ∈ Lp(Rd) such that ∥g∥Lp(Rd) ⩽ 1. We first observe
that

∂t ∣∇k+1v∣2 −∆ ∣∇k+1v∣2 = − ∣∇ ∣∇k+1v∣∣2 ,
since each component of ∇k+1v satisfies the heat equation. In particular, ∣∇k+1v∣2
is a smooth subsolution. By the comparison principle we thus have that

∣∇k+1v(t, x)∣2 ⩽ (Φ ( t
2 , ⋅) ∗ ∣∇k+1v ( t2 , ⋅)∣2) (x),

since the latter term is a solution to the heat equation in (t/2,∞)×Rd with initial
values ∣∇k+1v ( t2 , ⋅)∣2. Denote u(t, x) = (Φ (t, ⋅) ∗ g) (x). By Fubini it is thus enough
to show that

∫
Rd
∫ ∞

0
tk ∣∇k+1v(t, x)∣2 u(t, x)dt dx ⩽ C ∥f∥2

Lq(Rd) ∥g∥Lp(Rd) .
Compute now, for any solution w to the heat equation,

∣∇w∣2 u = ∇ ⋅ (w∇wu) − (w∆w)u −w∇w ⋅ ∇u
= ∇ ⋅ (w∇wu) − 1

2
(∂tw2)u −w∇w ⋅ ∇u

= ∇ ⋅ (w∇wu) − 1

2
∂t (w2u) + 1

2
(∂tv)w2 −w∇w ⋅ ∇u

= ∇ ⋅ (w∇wu + 1

2
w2∇u) − 1

2
∂t (w2u) − 2w∇w ⋅ ∇u.

Therefore,

tk ∣∇w∣2 u = tk∇ ⋅ (w∇wu + 1

2
w2∇u) − 1

2
∂t (tkw2u) − 2tkw∇w ⋅ ∇u + k

2
tk−1w2u.

Then, by integration by parts,

∫
Rd
∫ ∞

0
tk ∣∇w(t, x)∣2 u(t, x)dxdt

⩽ k
2 ∫Rd

∫ ∞

0
tk−1 ∣w(t, x)∣2 u(t, x)dxdt

+ 1

2
lim
t→0
∫
Rd
tk∣w(t, x)∣2∣u(t, x)∣dx

+ 2∫
Rd
∫ ∞

0
tk∣w(t, x)∣∣∇w(t, x)∣∣∇u(t, x)∣dxdt.
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We will apply the above inequality with components of w ∶= ∇kv. By Hölder’s
inequality we get,

lim
t→0
∫
Rd
tk∣w(t, x)∣2∣u(t, x)∣dx ⩽ ∫

Rd
∣f ∣2 ∣g∣ ⩽ ∥f∥2

Lq(Rd) ∥g∥Lp(Rd) .
Notice that by the assumed smoothness of f , the term on the left is zero for k > 0.
By Hölder’s inequality we also obtain

∫
Rd
∫ ∞

0
tk∣w(t, x)∣∣∇w(t, x)∣∣∇u(t, x)∣dxdt ⩽ C ∥sup

t>0
(t k2 ∣∇kv (t, ⋅) ∣)∥

Lq(Rd)

× ∥(∫ ∞

0
tk∣∇k+1v (t, ⋅) ∣2 dt) 1

2∥
Lq(Rd)

∥(∫ ∞

0
∣∇u (t, ⋅) ∣2 dt) 1

2∥
Lp(Rd)

.

Furthermore, by Steps 1 and 3, and the strong (q, q)-type estimate, we obtain

∥sup
t>0

(t k2 ∣∇kv (t, ⋅) ∣)∥
Lq(Rd)

⩽ C ∥f∥Lq(Rd)
and

∥(∫ ∞

0
∣∇u (t, ⋅) ∣2 dt) 1

2∥
Lp(Rd)

⩽ C ∥g∥Lp(Rd) .
We deduce that

∫
Rd
∫ ∞

0
tk ∣∇k+1v(t, x)∣2 u(t, x)dxdt (D.6)

⩽ k
2 ∫Rd

∫ ∞

0
tk−1 ∣∇kv(t, x)∣2 u(t, x)dxdt

+C ∥f∥2
Lq(Rd) ∥g∥Lp(Rd)

+C ∥f∥Lq(Rd) ∥g∥Lp(Rd) ∥(∫ ∞

0
tk∣∇k+1v (t, ⋅) ∣2 dt) 1

2∥
Lq(Rd)

.

Assume now inductively that, for nonnegative g ∈ Lp(Rd) with ∥g∥Lp(Rd) ⩽ 1 and
m ∈ {0, . . . , k},

m

2 ∫Rd
∫ ∞

0
tm−1 ∣∇mv(t, x)∣2 u(t, x)dxdt ⩽ Cm ∥f∥2

Lq(Rd) ,

where we set C0 = 0 for m = 0. Taking supremum over nonnegative g ∈ Lp(Rd) with∥g∥Lp(Rd) ⩽ 1 and recalling that

∫
Rd
∫ ∞

0
tk ∣∇k+1v(t, x)∣2 g(x)dt dx ⩽ 2k ∫

Rd
∫ ∞

0
tk ∣∇k+1v(t, x)∣2 u(t, x)dxdt,
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we obtain by the induction assumption and (D.6) that

∥(∫ ∞

0
tk ∣∇k+1v (t, ⋅)∣2 dt) 1

2∥2

Lq(Rd)

⩽ C ∥f∥Lq(Rd) ⎛⎝∥f∥Lq(Rd) + ∥(∫ ∞

0
tk ∣∇k+1v (t, ⋅)∣2 dt) 1

2∥
Lq(Rd)

⎞⎠ .
Hence, after applying Young’s inequality and reabsorbing terms,

∥(∫ ∞

0
tk ∣∇k+1v (t, ⋅)∣2) 1

2∥
Lq(Rd)

⩽ C ∥f∥Lq(Rd) .
This proves the estimate (D.2) for q ∈ [4,∞).

Step 5. Define, for f ∈ Lq(Rd), the operator

Tf(x) ∶= (∫ ∞

0
tk ∣∇k (Φ (t, ⋅) ∗ f(⋅)) (x)∣2 dt

t
) 1

2

,

which is clearly quasilinear. By the previous steps we have that

∥Tf∥L3/2(Rd) ⩽ C ∥f∥L3/2(Rd) and ∥Tf∥L5(Rd) ⩽ C ∥f∥L5(Rd) .

By the Marcinkiewicz interpolation theorem (see [114, Appendix D]), we deduce
that, for every q ∈ [2,4],

∥Tf∥Lq(Rd) ⩽ C ∥f∥Lq(Rd) .
The proof is complete.

Above we made use of the following continuity property of maximal functions.

Lemma D.3. Let p ∈ (1,∞] and f ∈ Lp(Rd). Let

Mf(x) ∶= sup
r>0
⨏
Br(x)

∣f(y)∣ dy.
Then we have so-called strong (p, p)-type estimate

∥Mf∥Lp(Rd) ⩽ 2( 5dp

p − 1
)

1
p ∥f∥Lp(Rd) . (D.7)

Proof. The statement is clear if p = ∞. Assume thus that p ∈ (1,∞). It suffices to
show that, for λ > 0,

∣{Mf > 2λ}∣ ⩽ 5d

λ ∫{∣f ∣>λ}
∣f(y)∣dy. (D.8)
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Indeed, this can be seen immediately from the formulas

∥Mf∥p
Lp(Rd) = 2pp∫ ∞

0
λp−1 ∣{Mf > 2λ}∣ dλ (D.9)

and ∥f∥p
Lp(Rd) = (p − 1)∫ ∞

0
λp−2∫

{∣f ∣>λ}
∣f(y)∣dy dλ. (D.10)

To prove (D.8), we fix λ > 0 and observe that, for every x ∈ {Mf > 2λ}, there exists
rx > 0 such that

2λ < ⨏
Brx(x)

∣f(y)∣dy ⩽Mf(x).
From this it follows that

∣Brx(x)∣ ⩽ 1

λ ∫{∣f ∣>λ}∩Brx(x)
∣f(y)∣dy. (D.11)

Observe that supx∈{Mf>2λ} rx < ∞, since, by Hölder’s inequality,

2λ < ⨏
Brx(x)

∣f(y)∣dy ⩽ ∣Brx ∣− 1
p ∥f∥Lp(Rd) Ô⇒ rx ⩽ Cλ− pd .

Thus, by the Vitali covering lemma C.5, there exists a countable set {xj}j such
that the family {Brxj

(xj)}j is pairwise disjoint and

⋃
x∈{Mf>2λ}

Brx(x) ⊆ ⋃
j

B5rxj
(xj).

Using the fact the balls are disjoint, we obtain by (D.11) that

∣{Mf > 2λ}∣ ⩽ RRRRRRRRRRR ⋃
x∈{Mf>2λ}

Brx(x)RRRRRRRRRRR ⩽ 5d∑
j

∣Brxj
(xj)∣ ⩽ 5d

λ ∫{∣f ∣>λ}
∣f(y)∣dy.

This completes the proof of (D.8) and thus the lemma.

Proof of Proposition D.1. Throughout we fix α ∈ N and q ∈ (1,∞) to be q ∶= p
p−1 .

Step 1. One direction is easy using Lemma D.2. By Remark B.6, every
distribution u in W −α,p(Rd) can be written as

u = ∑
0⩽∣β∣⩽α

∂βfβ, fβ ∈ Lp(Rd).
Here we denote ∂β = ∂β1x1 . . . ∂βdxd with ∑d

j=1 βj = ∣β∣. Then
∣Φ (t, ⋅) ∗ u∣ ⩽ ∑

0⩽∣β∣⩽α
∣∂βΦ (t, ⋅) ∗ fβ ∣ ,
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and hence Lemma D.2 implies that

XXXXXXXXXXX(∫
1

0
(tα2 ∣Φ (t, ⋅) ∗ u∣)2 dt

t
) 1

2
XXXXXXXXXXXLp(Rd) ⩽ C ∑

0⩽∣β∣⩽α
∥fβ∥Lp(Rd) ⩽ C ∥u∥W−α,p(Rd) .

Step 2. We then prove the other direction. For this, select g ∈Wα,q(Rd). We
study the solution w of the Cauchy problem for the heat equation:

{∂tw −∆w = 0 in Rd × (0,∞),
w (0, ⋅) = g in Rd.

Note that the solution is given by convolution against the heat kernel:

w(t, x) = (g ∗Φ (t, ⋅))(x).
The goal is to estimate ∣ρ(0)∣, where we define

ρ(t) ∶= ∫
Rd
u(x)w(t, x)dx.

By Taylor’s theorem we first get that

ρ(0) = k−1∑
j=0

(−1)j
j!

ρ(j)(1) + (−1)k(k − 1)! ∫
1

0
tk−1ρ(k)(t)dt, (D.12)

where ρ(j) denotes jth derivative of ρ. Computing then the jth derivative gives

ρ(j)(t) = ∫
Rd
u(x)∂jtw(t, x)dx (D.13)

= ∫
Rd
u(x)(g ∗ ∂t∆j−1Φ (t, ⋅)) (x)dx

= ∫
Rd
u(x)∂t (∆j−1g ∗Φ (t, ⋅)) (x)dx

= ∫
Rd

(u ∗Φ ( t
2 , ⋅)) (x)∂t (∆j−1g ∗Φ ( t

2 , ⋅)) (x)dx.
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Choosing k ∈ N and β ∈ {0,1} such that α = 2k − β, we have

∣∫ 1

0
tk−βρ(k+1−β)(t)dt∣ (D.14)

= ∣∫
Rd
∫ 1

0
tk−β (u ∗Φ ( t

2 , ⋅)) (x)∂t (∆k−βg ∗Φ ( t
2 , ⋅)) (x)dt dx∣

⩽ ∫
Rd

(∫ 1

0
(tα2 ∣(u ∗Φ ( t

2 , ⋅)) (x)∣)2 dt

t
) 1

2

× (∫ 1

0
(t1−β2 ∣(∆k−βg ∗ ∂tΦ ( t

2 , ⋅)) (x)∣)2 dt

t
) 1

2

dx

⩽ XXXXXXXXXXX(∫
1

0
(tα2 ∣(u ∗Φ (t, ⋅)) (⋅)∣)2 dt

t
) 1

2
XXXXXXXXXXXLp(Rd)

× XXXXXXXXXXX(∫
1

0
(t1−β2 ∣(∆k−βg ∗ ∂tΦ (t, ⋅)) (⋅)∣)2 dt

t
) 1

2
XXXXXXXXXXXLq(Rd) .

A similar computation for j ⩽ k gives

∣ρ(j)(1)∣ ⩽ C ∥g∥Wα,q(Rd) ∥u ∗Φ (1
2 , ⋅)∥Lp(Rd) .

To estimate the last term, observe that we can find τ ∈ (1
4 ,

1
2
) such that

∥u ∗Φ (τ, ⋅)∥Lp(Rd) ⩽ C XXXXXXXXXXX(∫
1

0
(tα2 ∣(u ∗Φ (t, ⋅)) (⋅)∣)2 dt

t
) 1

2
XXXXXXXXXXXLp(Rd) .

Since the heat kernel is contracting Lp-norms, we hence have that

∥u ∗Φ(1, ⋅)∥Lp(Rd) = ∥u ∗Φ (τ, ⋅) ∗Φ(1 − τ, ⋅)∥Lp(Rd)⩽ ∥u ∗Φ (τ, ⋅)∥Lp(Rd)
⩽ C XXXXXXXXXXX(∫

1

0
(tα2 ∣(u ∗Φ (t, ⋅)) (⋅)∣)2 dt

t
) 1

2
XXXXXXXXXXXLp(Rd) .

Therefore,

max
j∈{0,...,α}

∣ρ(j)(1)∣ ⩽ C ∥g∥Wα,p(Rd)

XXXXXXXXXXX(∫
1

0
(tα2 ∣(u ∗Φ (t, ⋅)) (⋅)∣)2 dt

t
) 1

2
XXXXXXXXXXXLp(Rd)

follows. Thus we are left to estimate the last term on the right in (D.14). On the
one hand, in the case β = 0, we apply Lemma D.2 for f = ∆kg ∈ Lq(Rd) to get

XXXXXXXXXXX(∫
1

0
(t ∣∆ (Φ (t, ⋅) ∗∆kg)∣)2 dt

t
) 1

2
XXXXXXXXXXXLq(Rd) ⩽ C ∥∆kg∥

Lq(Rd) .
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On the other hand, in the case β = 1 we apply the same lemma for f = ∂j∆k−1g
together with

∣(∆k−1g ∗ ∂tΦ (t, ⋅)) (x)∣ ⩽ d∑
j=1

∣(∂j∆k−1g ∗ ∇Φ (t, ⋅)) (x)∣ ,
which follows directly from the triangle inequality, to obtain

d∑
j=1

XXXXXXXXXXX(∫
1

0
∣∇ (Φ (t, ⋅) ∗ ∂j∆k−1g)∣2 dt) 1

2
XXXXXXXXXXXLq(Rd) ⩽ C ∥∇∆k−1g∥

Lq(Rd) .

This finishes the proof.

We next give the main result of this appendix for the case α /∈ N.
Proposition D.4. Fix α ∈ (0,∞) ∖N and p ∈ [1,∞]. There exists C(α, p, d) < ∞
such that, for every u ∈W −α,p(Rd),

1

C
∥u∥W−α,p(Rd) ⩽ (∫ 1

0
(tα2 ∥u ∗Φ (t, ⋅)∥Lp(Rd))p dtt ) 1

p ⩽ C ∥u∥W−α,p(Rd) . (D.15)

For p = ∞, the inequality above is interpreted as

1

C
∥u∥W−α,∞(Rd) ⩽ sup

t∈(0,1)
t
α
2 ∥u ∗Φ (t, ⋅)∥L∞(Rd) ⩽ C ∥u∥W−α,∞(Rd) . (D.16)

We will only prove the inequality

∥u∥W−α,p(Rd) ⩽ C (∫ 1

0
(tα2 ∥u ∗Φ (t, ⋅)∥Lp(Rd))p dtt ) 1

p

. (D.17)

For the converse inequality (which we only use in this book in Exercises 5.8 and 5.6),
we refer to [115, Section 2.6.4].

Proof of (D.17). Throughout, we fix α ∈ (0,∞), p ∈ (1,∞] and let q ∶= p
p−1 ∈ [1,∞)

denote the Hölder conjugate of p. The result for p = 1 can be obtained by uniformity
of constants by sending p→ 1.
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Step 1. We proceed as in the proof of Proposition D.1. Choosing this time
k ∈ N such that α = 2(k − 1) + β, β ∈ (0,1) ∪ (1,2), Hölder’s inequality implies

∣∫ 1

0
tk−1ρ(k)(t)dt∣ (D.18)

⩽ ∫ 1

0
tk−1 ∣∫

Rd
(u ∗Φ ( t

2 , ⋅)) (x)∂t (∆k−1g ∗Φ ( t
2 , ⋅)) (x)dx∣ dt

⩽ ∫ 1

0
t
α
2
−β

2 ∥u ∗Φ ( t
2 , ⋅)∥Lp(Rd) ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥Lq(Rd) dt
⩽ (∫ 1

0
(tα2 ∥u ∗Φ ( t

2 , ⋅)∥Lp(Rd))p dtt ) 1
p

× (∫ 1

0
(t1−β2 ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥Lq(Rd))q dtt ) 1
q

.

Notice that for p = ∞ we have that

∣∫ 1

0
tk−1ρ(k)(t)dt∣ ⩽ sup

t∈(0,1)
(tα2 ∥u ∗Φ ( t

2 , ⋅)∥L∞(Rd)) (D.19)

× ∫ 1

0
(t1−β2 ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥L1(Rd)) dtt .
As in the proof of Proposition D.1, we also have that

max
j∈0,...,k−1

∣ρ(j)(1)∣ ⩽ C ∥g∥W 2k−1,q(Rd) (∫ 1

0
(tα2 ∥u ∗Φ (t, ⋅)∥Lp(Rd))p dtt ) 1

p

,

or
max

j∈0,...,k−1
∣ρ(j)(1)∣ ⩽ C ∥g∥W 2k−1,1(Rd) sup

t∈(0,1)
(tα2 ∥u ∗Φ ( t

2 , ⋅)∥L∞(Rd)) .
In view of (D.12), (D.18) and (D.19), it thus suffices to show that

∫ 1

0
(t1−β2 ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥Lq(Rd))q dtt ⩽ Cq ∥g∥q
Wα,q(Rd) . (D.20)

Indeed, then we would have by the definition of ρ(0) that

∣∫
Rd
u(x)g(x)dx∣ ⩽ C ∥g∥Wα,q(Rd) (∫ 1

0
(tα2 ∥u ∗Φ (t, ⋅)∥Lp(Rd))p dtt ) 1

p

,

which yields (D.17). We devote the rest of the argument to the proof of (D.20).
Denote, for simplicity, f ∶= ∆k−1g. Since ∂tΦ (t, ⋅) = ∆Φ (t, ⋅), an integration by

parts gives that, for any affine function `x(⋅),
∂t∫

Rd
Φ (t, x − y) f(y)dy = ∫

Rd
∆yΦ (t, x − y) (f(y) − `x(y)) dy = 0.
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The subscript x emphasizes the fact that it may depend on x. We will apply this
with `x(y) = f(x) when β ∈ (0, 1), and with `x(y) = ∇f(x) ⋅ (y − x) when β ∈ (1, 2).
Let us consider these two cases separately.

Step 2. The case β ∈ (0,1). Decomposing the integrand into annular domains
and then using Jensen’s inequality gives

tq ∣(f − f(x)) ∗ ∂tΦ (t, ⋅) (x)∣q
⩽ (C ∫

Rd
t−

d
2 (1 + ∣x − y∣2

t
) exp(−∣x − y∣2

4t
) ∣f(y) − f(x)∣ dy)q

⩽ Cq ( ∞∑
k=0

2k(d+2) exp(−4k−2)⨏
B

2k
√

t
(x)

∣f(y) − f(x)∣ dy)q

⩽ Cq
∞∑
k=0

2k(d+2) exp(−4k−2)⨏
B

2k
√

t
(x)

∣f(y) − f(x)∣q dy
⩽ Cq ∫ ∞

0
sd+1 exp (− s216)⨏

Bs
√

t(x)
∣f(y) − f(x)∣q dy ds,

with a constant C(d) < ∞. It thus follows that

∫ 1

0
(t1−β2 ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥Lq(Rd))q dtt
⩽ Cq ∫ 1

0
∫ ∞

0
sd+1 exp (− s216) t−q β2 ∫Rd

⨏
Bs
√

t(x)
∣f(y) − f(x)∣q dy dxds dt

t
.

The integral on the right can be equivalently written as

∫ ∞

0
sd+1+qβ exp (− s216)∫ 1

0
∫
Rd
⨏
Bs
√

t(x)

∣f(y) − f(x)∣q
(s√t)qβ dy dx

dt

t
ds.

Changing variable t = s−2r2 then leads to

∫ 1

0
(t1−β2 ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥Lq(Rd))q dtt
⩽ Cq ∫ ∞

0
sd+1+qβ exp (− s216)∫ s

0
∫
Rd
⨏
Br(x)

∣f(y) − f(x)∣q
rqβ

dy dx
dr

r
ds.

An elementary computation shows that

∫ ∞

0
∫
Rd
⨏
Br(x)

∣f(y) − f(x)∣q
rqβ

dy dx
dr

r
⩽ Cq

∣β − [β]∣ ∥f∥qWβ,q(Rd) .

This validates (D.20) in the first case. Note also that here C depends only on d.
Step 3. The case β ∈ (1,2). The computation is similar to the case β ∈ (0,1).

The difference is that integration by parts gives

∣(f − `x) ∗ ∂tΦ (t, ⋅) (x)∣ = (∣∇f −∇f(x)∣ ∗ ∣∇Φ (t, ⋅)∣) (x)
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and then, consequently,

t
q
2 ∣(f − `x) ∗ ∂tΦ (t, ⋅) (x)∣q

⩽ (C ∫
Rd
t−

d
2
∣x − y∣√

t
exp(−∣x − y∣2

4t
) ∣∇f(y) − ∇f(x)∣ dy)q .

Starting from the above estimate, the rest of the argument is completely analogous
to the previous step. The proof is complete.

The following proposition is immediate from Proposition D.1 and Fubini’s
theorem. However, since it has an easier proof than that of Proposition D.1, we
include it here.

Proposition D.5. Fix α ∈ N. Then there exists C(k, d) < ∞ such that, for every
u ∈H−α(Rd),

∥u∥H−α(Rd) ⩽ C (∫ 1

0
tα ∥u ∗Φ (t, ⋅)∥2

L2(Rd)
dt

t
) 1

2

. (D.21)

Proof. The proof is similar to the one of Proposition D.4. However, now we will
show that

∫ 1

0
t1−β ∥∆k−1g ∗ ∂tΦ ( t

2 , ⋅)∥2

L2(Rd) dt ⩽ C ∥g∥2
Hα(Rd) , (D.22)

with β ∈ {0,1}. Testing the equation of w(t, x) ∶= (∆k−1g ∗Φ ( t
2 , ⋅)) (x) with ∂tw

we get

∫ 1

0
∫
Rd

∣∂tw(t, x)∣2 dxdt = ∫ 1

0
∫
Rd
∂tw(t, x)∆w(t, x)dxdt

= −1

2 ∫
1

0
∫
Rd
∂t ∣∇w(t, x)∣2 dxdt

= 1

2 ∫Rd
∣∇w(x,0)∣2 dx − 1

2 ∫Rd
∣∇w(x,1)∣2 dx.

But now ∫
Rd

∣∇w(x,0)∣2 dx = ∥∆k−1∇g∥2

L2(Rd) ⩽ ∥g∥2
Hα(Rd) .

This finishes the proof when β = 1. If, on the other hand, β = 0, testing with t∂tw
leads to

∫ 1

0
∫
Rd
t ∣∂tw(t, x)∣2 dxdt = ∫ 1

0
∫
Rd
t∂tw(t, x)∆w(t, x)dxdt

= −1

2 ∫
1

0
∫
Rd
t∂t ∣∇w(t, x)∣2 dxdt

= 1

2 ∫
1

0
∫
Rd

∣∇w(t, x)∣2 dxdt − 1

2 ∫Rd
∣∇w(x,1)∣2 dx,
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and since testing with w gives

1

2 ∫Rd
∣w(x,1)∣2 dx + ∫ 1

0
∫
Rd

∣∇w(t, x)∣2 dxdt = 1

2 ∫Rd
∣w(x,0)∣2 dx,

we obtain

∫ 1

0
∫
Rd
t ∣∂tw(t, x)∣2 dxdt ⩽ 1

4 ∫Rd
∣∆k−1g(x)∣2 dx.

The proof is complete.

Throughout the book, we often need to measure the size of stationary random
fields (see Definition 3.10). Since these fields do not decay in space, it is natural
to use local versions of Sobolev spaces. For every α ∈ R and p ∈ [1,∞], the local
Sobolev space Wα,p

loc (Rd) can be defined as the space of distributions u such that
for every r > 0, the semi-norm ∥u∥Wα,p(Br) is finite. Alternatively, since the spaces
Wα,p(Rd) are stable under multiplication, one may define Wα,p

loc (Rd) as the space
of distributions u such that

∀φ ∈ C∞
c (Rd) ∶ φu ∈Wα,p(Rd).

We often use this characterization to measure the size of a distribution u ∈Wα,p
loc (Rd),

through the evaluation of ∥φu∥Wα,p(Rd) for φ ∈ C∞
c (Rd) satisfying suitable constraints

on its size and the size of its support; upper bounds on ∥φu∥Wα,p(Rd) are typically
obtained using Propositions D.1 or D.4. An exception is found in the proof of
Theorem 4.24, where we use instead the following remark which has the advantage
of relying only on spatial averages of u against the heat kernel.

Remark D.6 (Local versions). In Propositions D.1, D.4 and D.5 one can replace
the norm on the left by ∥u∥W−α,p(B1) and the Lp(Rd) norms on the right sides of
the inequalities by norms Lp(Ψ) with Ψ(z) = exp(−∣z∣). In particular, for α ∈ N
and p ∈ (2,∞) we have

∥u∥W−α,p(B1) ⩽ C (∫
Rd

exp(−∣x∣) (∫ 1

0
(tα2 ∣u ∗ (Φ (t, ⋅)) (x)∣)2 dt

t
) p2 dx)

1
p

. (D.23)

For α ∈ (0,∞) ∖N, on the other hand, we have

∥u∥W−α,p(B1) ⩽ C∣α − [α]∣ (∫
1

0
(tα2 ∥u ∗Φ (t, ⋅)∥Lp(Ψ))p dtt ) 1

p

, (D.24)

and, finally, for p = 2 and α ∈ (0,∞),
∥u∥H−α(B1) ⩽ C (∫ 1

0
tα ∥u ∗Φ (t, ⋅)∥2

L2(Ψ)
dt

t
) 1

2

. (D.25)
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Proof. The main difference compared to (D.1) is that now g ∈ Wα,q
0 (B1). This

allows us to localize in (D.13). In particular, we have that

sup
m∈{1,...,k}

sup
x∈(Rd∖B2)

sup
(y,t)∈B1×(0,1)

(t−2α exp(∣x∣) ( ∣x − y∣2
t2

)−m Φ (t, x − y)) ⩽ C(α, k, d),
and hence

sup
m∈{1,...,k}

sup
(t,x)∈(Rd∖B2)×(0,1)

exp(∣x∣) ∣t−2α∂t (∆j−1g ∗Φ ( t
2 , ⋅)) (x)∣ ⩽ C ∥g∥Lp(B1) .

Therefore, (D.13) yields

ρ(j)(t) ⩽ ∣∫
B2

(u ∗Φ ( t
2 , ⋅)) (x)∂t (∆j−1g ∗Φ ( t

2 , ⋅)) (x)dx∣
+C ∥g∥Lp(B1)∫Rd∖B2

t2α exp(−∣x∣) ∣(u ∗Φ ( t
2 , ⋅)) (x)∣ dx

Now the analysis of the first term is completely analogous to the proofs of global
estimates, and the second term can be estimated by means of Hölder’s inequality
appropriately depending on the case. We leave the details to the reader.



Appendix E

Parabolic Green functions

In this appendix, we give a mostly self-contained construction of the parabolic
Green functions for a uniformly elliptic operators and a proof of the Nash-Aronson
upper bounds. We do not make any structural assumption on the coefficient
field a(x) other than the uniform ellipticity condition (0.1), and, for convenience,
the symmetry condition a(x) = at(x). The parabolic Green function P ∶ (0,∞) ×
Rd ×Rd ↦ R is a nonnegative function that, for each t > 0 and x, y ∈ Rd, solves the
equations

{(∂t −∇ ⋅ a∇)P (⋅, ⋅, y) = 0 in (0,∞) ×Rd,

P (0, ⋅, y) = δy, (E.1)

and

{(∂t −∇ ⋅ a∇)P (⋅, x, ⋅) = 0 in (0,∞) ×Rd,

P (0, x, ⋅) = δx. (E.2)

Since a(⋅) is symmetric, also P is symmetric in x, y:

P (t, x, y) = P (t, y, x). (E.3)

Moreover, since the equations preserve mass, we have

∥P (t, ⋅, y)∥L1(Rd) = ∥P (t, x, ⋅)∥L1(Rd) = 1. (E.4)

General solutions of parabolic Cauchy problems can be represented using the Green
function. Indeed, if f ∈ L1

loc(Rd) is such that, for some k ⩾ 0,

∫
Rd

∣f(x)∣ exp (−k∣x∣2) dx < ∞, (E.5)

then the function
w ∶= ∫

Rd
P (⋅, ⋅, y)f(y)dy
454
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solves (∂t −∇a∇)w = 0 in (0, (4Λk)−1) ×Rd, and w(t, ⋅) → f almost everywhere as
t→ 0. The fundamental solution satisfies a semigroup property, that is, for t, s > 0
and x, y ∈ Rd,

P (s + t, x, y) = ∫
Rd
P (t, x, z)P (s, z, y)dz.

Finally, for g ∈ L1
loc(R ×Rd) satisfying, for k ⩾ 0,

sup
t>0
∫
Rd

∣g(t, x)∣ exp (−k∣x∣2) dx < ∞, (E.6)

we have that, for t ∈ (0, (4Λk)−1) and x ∈ Rd, the function

w(t, x) ∶= ∫ t

0
∫
Rd
g(s, z)P (t − s, x, z)dz ds

solves (∂t −∇a∇)w = g in (0, (4Λk)−1) ×Rd and w(0, ⋅) = 0.
The next proposition summarizes the results proved in this appendix. It states

the basic properties of P described above, as well as Gaussian-type upper bounds
in the Nash-Aronson estimate. Recall that we denote, for every r ∈ (0,∞), t > 0
and x ∈ Rd, the parabolic cylinder

Qr(t, x) ∶= (t − r2, t) ×Br(x).
Proposition E.1. There exists a continuous nonnegative function P ∶ (0,∞)×Rd×
Rd → R such that P (⋅, ⋅, y) solves (E.1), P (⋅, x, ⋅) solves (E.2), and (E.3) and (E.4)
are valid. Moreover, for each α ∈ (0,Λ−1), there exists a constant C(α, d,Λ) < ∞
such that we have, for every t > 0 and x, y ∈ Rd,

∣P (t, x, y)∣ ⩽ Ct− d2 exp(−α ∣x − y∣2
4t

) , (E.7)

sup
r∈(0, 1

2

√
t]
r (∥∇xP (⋅, ⋅, y)∥L2(Qr(t,x)) + ∥∇yP (⋅, x, ⋅)∥L2(Qr(t,y)))

⩽ Ct− d2 exp(−α ∣x − y∣2
4t

) , (E.8)

and

sup
r∈(0, 1

2

√
t]
r2 ∥∇x∇yP (⋅, ⋅, ⋅)∥L2((t−r2,t)×Br(x)×Br(y)) ⩽ Ct− d2 exp(−α ∣x − y∣2

4t
) . (E.9)

Finally, if f ∈ L1
loc(Rd) is such that, for some k ⩾ 0,

∫
Rd

∣f(x)∣ exp (−k∣x − y∣2) dx < ∞, (E.10)
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and y ∈ Rd is a Lebesgue point of f in the sense limh→0 ∥f(⋅) − f(y)∥L1(Bh(y)) = 0
and ∣f(y)∣ < ∞, then

lim
t→0
∫
Rd
P (t, x, y)f(x)dx = f(y). (E.11)

Remark E.2. By Lemma 8.2, one can replace (t, t − r2) × Br(x) × Br(y) with{t} ×Br(x) ×Br(y) in (E.9), changing integral averages appropriately.

The first result we recall is the basic regularity result for parabolic equations:
solutions are bounded and Hölder continuous. We refer to (8.2) for the definition
of the function space H1

par(I ×U). For each β ∈ (0, 1], we define the parabolic C0,β
par

Hölder seminorm by

[u]C0,β
par(I×U) ∶= sup

(t,x),(s,y)∈I×U

∣u(t, x) − u(s, y)∣(∣x − y∣ + ∣t − s∣1/2)β ,
and set

C0,β
par (I ×U) ∶= {u ∈ C (I ×U) ∶ ∥u∥L∞(I×U) + [u]C0,β

par(I×U) < ∞} .
The parabolic boundary ∂⊔ ((t1, t2) ×U) is defined as

∂⊔ ((t1, t2) ×U) ∶= ([t1, t2] × ∂U) ∪ ({t1} ×U) .
Proposition E.3. There exist γ(d,Λ) > 0 and, for each bounded open connected
interval I ⊆ R and Lipschitz domain U ⊆ Rd, a constant C(U,d,Λ) < ∞ such that
the following holds. Let β ∈ (0, 1], ψ ∈H1

par(I×U)∩C0,β
par (I ×U) and u ∈H1

par(I×U)
be such that

{(∂t −∇ ⋅ a∇)u = 0 in I ×U,
u = ψ on ∂⊔ (I ×U) . (E.12)

Then we have, for every (t, x) ∈ I ×U and r > 0,

∥u∥L∞(Qr(t,x)∩(I×U)) + rγ∧β [u]C0,γ∧β
par (Qr(t,x)∩(I×U))⩽ C (∥u∥L2(Q2r(t,x)∩(I×U)) + ∥ψ∥C0,β(Q2r(t,x)∩(I×U))) .

Proof. The proof is based on the parabolic De Giorgi-Nash-Moser theory, see
Nash [100] and Moser [90, 91].

The next lemma gives us the basic energy estimate. It is a variant of the
Caccioppoli inequality.



Appendix E Parabolic Green functions 457

Lemma E.4. Let u ∈H1
par((t1, t2) ×Br) be such that

(∂t −∇ ⋅ a∇)u = 0 in (t1, t2) ×Br,

and let ψ ∈ C∞((t1, t2) ×Br) be such that

uψ = 0 on (t1, t2) × ∂Br.

For every ε ∈ (0, 1
2
] and almost every t ∈ (t1, t2), we have

1

2
∂t∫

Br
∣u(t, x)ψ(t, x)∣2 dx + ε∫

Br
∣∇u(t, x)∣2ψ2(t, x)dx

⩽ ∫
Br

∣u(t, x)∣2 ( Λ

1 − ε ∣∇ψ(t, x)∣2 + ψ(t, x)∂tψ(t, x)) dx. (E.13)

Proof. By testing the equation for u with uψ2, we will show that

1

2
∂t (u2ψ2) + εψ2∇u ⋅ a∇u ⩽ −∇ ⋅ (uψ2a∇u) + u2 ( Λ

1 − ε ∣∇ψ∣2 + ψ∂tψ) . (E.14)

The desired inequality (E.13) then follows by integrating over Br, because we
assume that uψ = 0 on ∂Br. Compute, formally,

0 = uψ2 (∂t −∇ ⋅ a∇)u = 1

2
∂t (u2ψ2) − ∇ ⋅ (uψ2a∇u)
+ ψ2∇u ⋅ a∇u + 2uψ∇ψ ⋅ a∇u − u2ψ∂tψ.

Applying Young’s inequality, we obtain, for any ε ∈ (0, 1
2
],

ψ2∇u ⋅ a∇u + 2uψ∇ψ ⋅ a∇u ⩾ εψ2∇u ⋅ a∇u − Λ

1 − εu2∣∇ψ∣2,
and, consequently,

0 ⩾ 1

2
∂t (u2ψ2) − ∇ ⋅ (uψ2a∇u) + εψ2∇u ⋅ a∇u − u2 ( Λ

1 − ε ∣∇ψ∣2 + ψ∂tψ) ,
which is (E.14).

The next lemma provides a reverse Hölder inequality for solutions.

Lemma E.5. For each q ∈ (0, 2] and ε > 0, there exists a constant C(q, ε, d,Λ) < ∞
such that the following holds. Let r > 0, V ∶= (−εr2,0) ×Br. and let u ∈ H1

par(V )
satisfy (∂t −∇ ⋅ a∇)u = 0 in V.

Then we have the estimate

∥u(0, ⋅)∥L2(Br/2) ⩽ C ∥u∥Lq(V ) . (E.15)
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Proof. Fix q ∈ (0,2] and ε > 0. Let σ′, σ ∈ R be such that 1
2 ⩽ σ′ < σ ⩽ 1, and

σV ∶= (−εσr2, 0) ×Bσr. We will show that there exists an exponent p(d) > 2 and a
constant C(ε, d,Λ) < ∞ such that

∥u∥Lp(σ′V ) ⩽ C

σ − σ′ ∥u∥L2(σV ) . (E.16)

Having proved this, we obtain by Lemma E.6 below (with dµ ∶= ∣V ∣−1dxdt) that

∥u∥L2( 2
3
V ) ⩽ C ∥u∥Lq(V ) .

This then yields (E.15) by Lemma E.4, cf. (E.17) below.
To prove (E.16), fix a smooth test function η vanishing on the parabolic

boundary of σV and such that η = 1 in σ′V , 0 ⩽ η ⩽ 1, and ∣∇η∣2 + ∣∂tη∣ ⩽ 16
εr2(σ−σ′)2 .

From Lemma E.4, by integrating in time and using that uη = 0 on ∂⊔ (σV ), we
obtain that

sup
s∈(−εσr2,0)

⨏
Bσr

∣u(s, x)η(s, x)∣2 dx + εr2⨏
σV

∣∇(u(t, x)η(t, x))∣2 dxdt
⩽ C(σ − σ′)2 ⨏σV ∣u(t, x)∣2 dxdt. (E.17)

Letting 2∗ = 2d
d−2 when d > 2 and 2∗ = 4 otherwise, we deduce by Hölder’s and

Sobolev’s inequalities that

⨏
σ′V

∣u(t, x)∣4− 4
2∗ dxdt

⩽ C ⨏ 0

−εσr2
(⨏

Bσr
∣u(t, x)η(t, x)∣2∗ dxdt) 2

2∗ (⨏
Bσr

∣u(t, x)η(t, x)∣2 dxdt)1− 2
2∗

⩽ Cr2⨏
σV

∣∇(u(t, x)η(t, x))∣2 dxdt( sup
s∈(−εσr2,0)

⨏
Bσr

∣u(s, x)η(s, x)∣2 dx)1− 2
2∗

⩽ C
ε

( 1(σ − σ′)2 ⨏σV ∣u(t, x)∣2 dxdt)2− 2
2∗

.

This yields (E.16) with p = 2 (1 + 2∗−2
2∗

) > 2. The proof is complete.

Above we employed a very general statement about reverse Hölder inequalities.
The result shows that, under general assumptions, they improve themselves.

Lemma E.6. Fix p, q, r ∈ R such that 0 < p < q < r ⩽ ∞, and fix A,a > 0. Let µ be
a non-negative Borel measure in Rn. Let U be a Borel set in Rn and let {σU}σ∈(0,1]
be a collection of Borel subsets of U . Assume that f ∈ Lp(U ;µ) ∩Lr(U ;µ) satisfies
a reverse Hölder inequality, that is, for every σ′ < σ ∈ [1

2 ,1], we have

∥f∥Lr(σ′U ;µ) ⩽ A(σ − σ′)−a ∥f∥Lq(σU ;µ) . (E.18)
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Then there exists a constant C(a,A, p, q, r) < ∞ such that

∥f∥Lr( 2
3
U ;µ) ⩽ C ∥f∥Lp(U ;µ) .

Proof. Fix p ∈ (0, q]. Setting h ∶= p(r−q)
q(r−p) ∈ (0,1), we may rewrite q as

q = (hq
p

)p + ((1 − h)q
r

) r and
hq

p
+ (1 − h)q

r
= 1.

Thus, by Hölder’s inequality we get

∥f∥Lq(σU ;µ) ⩽ ∥f∥hLp(σU ;µ) ∥f∥1−h
Lr(σU ;µ) .

By Young’s inequality we then obtain

A(σ − σ′)a ∥f∥Lq(σU ;µ) ⩽ 1

2
∥f∥Lr(σU ;µ) + 2

h
1−h (A(σ − σ′)a) 1

1−h ∥f∥Lp(U ;µ) .

Hence (E.18) implies that

∥f∥Lr(σ′U ;µ) ⩽ 1

2
∥f∥Lr(σU ;µ) + 2

p(r−q)
r(q−p) (A(σ − σ′)a) q(r−p)r(q−p) ∥f∥Lp(U ;µ) .

An application of Lemma C.6 then proves the result.

The next lemma is the key to the exponential behavior of fundamental solutions.

Lemma E.7. There exists a constant δ0(d,Λ) > 0, and, for each α ∈ (0,Λ−1), a
constant C(α, d,Λ) < ∞ such that the following holds for every δ ∈ (0, δ0]. Let
u ∈H1

par((0,∞) ×B1/δ) be such that

(∂t −∇ ⋅ a∇)u = 0 in (0,∞) ×B1/δ,

u = 0 on (0,∞) × ∂B1/δ,

suppu(0, ⋅) ⊆ Bδ,

and let M ∈ [1,∞) be such that

0 ⩽ u(0, ⋅) ⩽M ∣Bδ ∣−1. (E.19)

For every t > 0, we have

∥ψα,δ∇u∥L2((0,t)×B1/δ) + ∥u(t, ⋅)ψα,δ(t, ⋅)∥L2(B1/δ) ⩽ CM(t + δ2) d4 , (E.20)

where ψα,δ is defined, for (t, x) ∈ [0,∞) ×Rd, by

ψα,δ(t, x) ∶= (t + δ2) d2 exp(α ∣x∣2
4(t + δ2)) . (E.21)
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Proof. By scaling, we can assume that M = 1. We suppress α and δ in the notation
for ψ.

Step 1. We first show that there exists a constant C(α, d,Λ) < ∞ such that, for
every t > 0,

∥(uψ) (t, ⋅)∥L2(B1/δ) + ∥ψ∇u∥L2((0,t)×B1/δ)

⩽ C(t + δ2) d4 (1 + sup
s∈(0,t)

∥u(s, ⋅)∥
L1(B

Cs1/2∧δ−1
)) . (E.22)

To show (E.22), we employ Lemma E.4 with ψ defined in (E.21). Notice that
uψ = 0 on (0,∞) × ∂B1/δ. By a direct computation we get

Λ

1 − ε ∣∇ψ∣2 + ψ∂tψ = 1

t + δ2
ψ2 ( Λ

1 − εα2 ∣x∣2
4(t + δ2) − α ∣x∣2

4(t + δ2) + d2) .
In particular, since α < Λ−1, there exist constants ε(α,Λ) > 0 and C(α, d,Λ) < ∞
such that

Λ

1 − ε ∣∇ψ∣2 + ψ∂tψ ⩽ C(t + δ2)d−11{∣x∣2⩽C(t+δ2)}.

Plugging ψ into (E.13) and using this upper bound, we obtain that, for every t > 0,

∂t∫
B1/δ

(u2ψ2) (t, x)dx + ε∫
B1/δ

(∣∇u∣2ψ2) (t, x)dx
⩽ C(t + δ2)d−1∫

B
C(t1/2+δ)∧δ−1

u2(t, x)dx. (E.23)

We next show that there exists c(α, d,Λ) > 0 such that, for every t ∈ (0, cδ−2),
∫
B
C(t1/2+δ)∧δ−1

u2(t, x)dx ⩽ C(t + δ2)− d2 (mt + 1)2, (E.24)

where we denote
mt ∶= sup

s∈(0,t)
∥u(s, ⋅)∥

L1(B
8Cs1/2

) .

To see this, we first use Lemma E.5 to obtain, for every t ∈ (δ2, (4C)−2δ−2),
∫
B

2Ct1/2

u2(t, x)dx ⩽ Ct d2 ∥u∥2

L1((t/2,t)×B
4Ct1/2

) ⩽ Ct− d2m2
t .

On the other hand, by Lemma E.4 (with ψ ≡ 1 there) the fact that u vanishes on(0,∞) × ∂B1/δ, that u(0, ⋅) is supported in Bδ and the assumption of (E.19) (with
M = 1), we have

sup
t>0
∫
B1/δ

u2(t, x)dx ⩽ ∫
B1/δ

u2(0, x)dx ⩽ ∣Bδ ∣−1 ⩽ Cδ−d. (E.25)
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Combining the last two displays, we obtain (E.24). Observe that, using again that
u(0, ⋅) is supported in Bδ and (E.19), we also get

∫
B1/δ

(u2ψ2) (0, x)dx ⩽ δ2d exp(α)∫
B1/δ

u2(0, x)dx ⩽ Cδd.
We then integrate (E.23) in time, using the previous display together with (E.24),
and conclude that up to a redefinition of C(α, d,Λ) < ∞, we have for every
t ∈ (0, cδ−2) that

∥(uψ) (t, ⋅)∥2
L2(B1/δ) + ∥ψ∇u∥2

L2((0,t)×B1/δ) ⩽ C(t + δ2) d2 (mt + 1)2.

This yields (E.22) for every t ∈ (0, cδ−2). To prove the estimate for t ⩾ cδ−2, we use
Poincaré’s inequality and Lemma E.4 (with ψ ≡ 1 there) to get that there exists a
constant c′(d) > 0 such that

∂t∫
B1/δ

∣u(t, x)∣2 dx ⩽ −c′δ2∫
B1/δ

∣u(t, x)∣2 dx.
Using also (E.25), we thus obtain that for every t ⩾ cδ−2,

∫
B1/δ

∣u(t, x)∣2 dx ⩽ exp (−c′(δ2t − c))∫
B1/δ

∣u(cδ−2, x)∣2 dx ⩽ C exp (−c′δ2t) δ−d.
From this, (E.22) follows easily also for t ⩾ cδ−2.

Step 2. We show that

sup
s∈(0,∞)

∥u(s, ⋅)∥L1(B1/δ) ⩽ 1, (E.26)

which, together with (E.22), yields (E.20). By the minimum principle, u ⩾ 0.
Testing thus the equation of u with u/(ε+u), ε > 0, and integrating over (0, t) ×Rd

yields

∫
B1/δ

∫ u(t,z)

0

θ

ε + θ dθ dz + ε∫
t

0
∫
B1/δ

∇u(t′, z) ⋅ a(z)∇u(t′, z)(ε + ∣u(t′, z)∣)2
dz dt′

= ∫
B1/δ

∫ u(0,z)

0

θ

ε + θ dθ dz ⩽ ∫B1/δ

u(0, z)dz ⩽ 1.

Hence (E.26) follows after sending ε to zero, completing the proof.

The next lemma will be used to construct the parabolic Green function.

Lemma E.8. Fix y ∈ Rd and t > 0. There exist a nonnegative solution u of

{(∂t −∇ ⋅ a∇)u = 0 in (0,∞) ×Rd,

u = δy, (E.27)
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and there exists β(d,Λ) ∈ (0,1) such that, for any ε > 0, we have

u ∈H1
par ((ε2,∞) ×Rd) ∩H1

par ((0,∞) × (Rd ∖Bε(y))∩C0,β
par (((0,∞) ×Rd) ∖ ((0, ε2) ×Bε(y))) . (E.28)

Moreover, u satisfies the following estimates. For all t > 0,

∥u(t, ⋅)∥L1(Rd) = 1, (E.29)

and, for every α ∈ (0,Λ−1), there exists a constant C(α, d,Λ) < ∞ such that, for
every x ∈ Rd, we have

∣u(t, x)∣ ⩽ Ct− d2 exp(−α ∣x − y∣2
4t

) (E.30)

and
sup

r∈(0, 1
2

√
t]
r ∥∇u(t, ⋅)∥L2(Br(x)) ⩽ Ct− d2 exp(−α ∣x − y∣2

4t
) . (E.31)

Finally, if f ∈ L1(Rd) is such that, for some k > 0,

∫
Rd

∣f(x)∣ exp (−k∣x − y∣2) dx < ∞ (E.32)

and y ∈ Rd is a Lebesgue point of f in the sense that limh→0 ∥f(⋅) − f(y)∥L1(Bh(y)) = 0
and ∣f(y)∣ < ∞, then

lim
t→0
∫
Rd
u(t, x)f(x)dx = f(y). (E.33)

Proof. Step 1. We first show the existence of a nonnegative solution to (E.27). For
each δ ∈ (0, 1

2], let uδ solve the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∂t −∇ ⋅ a∇)uδ = 0 in (0,∞) ×B1/δ(y),
uδ = 0 on (0,∞) × ∂B1/δ(y),
uδ(0, ⋅) = γδ(⋅ − y),

(E.34)

where γδ is a smooth function with unit mass supported in Bδ such that 0 ⩽
γδ ⩽ 2∣Bδ ∣−1. Extend uδ to be zero on (0,∞) × (Rd ∖B1/δ(y)). By the maximum
principle, 0 ⩽ uδ ⩽ 2∣Bδ ∣−1, and, by Proposition E.3, uδ is continuous on [0,∞)×Rd.
Lemma E.7 then yields that, for every t > 0,

∥ψα,δ∇uδ∥L2((0,t)×B1/δ) + ∥uδ(t, ⋅)ψα,δ(t, ⋅)∥L2(B1/δ) ⩽ C(t + δ2) d4 . (E.35)

This, in turn, gives by Lemma E.4 and Proposition E.3 that the norm of uδ in the
spaces indicated in (E.28) is uniformly bounded in δ. This implies that there is u
satisfying (E.28) such that uδ converges uniformly to u away from (0, y) and, for
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any ε > 0, uδ → u weakly in H1
par((ε2,∞) ×Rd), and hence u, extended as zero in(−∞,0) is a continuous weak solution outside of (0, y).

Step 2. We next show that u satisfies (E.30). By (E.35) and the pointwise
convergence, we obtain that, for every t > 0,

∥u(t, ⋅) exp(α ∣ ⋅ −y∣2
4t

)∥
L2(Rd)

⩽ Ct− d4 . (E.36)

Replacing α with α′ ∶= 1
2 (α +Λ−1) above, we can find a small enough ε(α,Λ) > 0

such that ∥u∥
L2((t−εt,t)×B

(εt)1/2
)
⩽ Ct− d2 exp(−α ∣x − y∣2

4t
) .

Now, the L∞–L2 estimate provided by Proposition E.3 implies (E.30).
Step 3. We now prove (E.31). By the Caccioppoli estimate and Lemma 8.2 we

have, for every t > 0 and r ∈ (0, 1
8(Λ−1 − α)√t), that

r2 ∥∇u(t, ⋅)∥2
L2(Br(z)) ⩽ C ⨏ t

t−(2r)2
⨏
B3r(z)

∣u(s, z′)∣2 dz′ ds
⩽ Ct−d exp(−(Λ−1 + α) ∣z − y∣2

t
) .

On the other hand, for z ∈ B√
t(x), we have by the triangle inequality and convexity

that, for any ε ∈ (0,1),
∣z − y∣2 ⩾ (1 − ε) ∣x − y∣2 − 1 − ε

ε
∣x − z∣2 ⩾ (1 − ε) ∣x − y∣2 − 1 − ε

ε
t.

Therefore, taking ε(α,Λ) ∈ (0,1) small enough, we obtain, for z ∈ B√
t(x) and

r ∈ (0, 1
4(Λ−1 − α)√t),

r2 ∥∇u(t, ⋅)∥2
L2(Br(z)) ⩽ Ct−d exp(−2α

∣x − y∣2
4t

) .
A covering argument then shows the gradient estimate (E.31).

Step 4. We next show (E.29). Recall the definition of the standard mollifier
ζR in (0.16). We test the equation for u with ζR and use (E.28) and (E.31) to get
that, for every t > 0,

∫
Rd
u(t, x)dx − 1 = lim

δ→0
∫
Rd

(uδ(t, x) − uδ(0, x))ζ1/δ(x − y)dx
⩽ C lim sup

δ→0
∣∫ t

0
∫
B1/δ(y)

∣∇uδ(x, z)∣ ∣∇ζ1/δ(x − y)∣ dxdt∣
= 0,
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as desired.
Step 5. We finally prove (E.33). Let f ∈ L1

loc(Rd) be such that it satisfies (E.32)
for some k > 0 and that limh→0 ∥f(⋅) − f(y)∥L1(Bh(y)) = 0. By (E.29), (E.30) and a
layer-cake formula, we obtain, for every t ∈ (0, α4k), that

∣∫
Rd
u(t, x)f(x)dx − f(y)∣ = ∣∫

Rd
u(t, x)(f(x) − f(y))dx∣

⩽ C ∫ ∞

0
rd+1 exp(−α

4
r2) ∥f(⋅) − f(y)∥L1(Br√t(y))

dr,

and the right hand side tends to zero as t→ 0. The proof is complete.

Proof of Proposition E.1. Step 1. We first construct P (t, x, y). Fix x, y ∈ Rd. By
Lemma E.8 we find a solution u(⋅, ⋅, y) (we add y in arguments to emphasize the
location of the pole at y) of

{(∂t −∇ ⋅ a∇)u(⋅, ⋅, y) = 0 in (0,∞) ×Rd,

u(0, ⋅, y) = δy. (E.37)

On the other hand, for each fixed t > 0, denoting v(s, x, z) ∶= u(t − s, z, x), we see
that v solves the dual equation

{ [(∂t +∇ ⋅ a∇)] v(⋅, ⋅, x) = 0 in (−∞, t) ×Rd,

v(t, ⋅, x) = δx. (E.38)

Fixing t1, t2 ∈ R such that 0 < t1 < t2 < t, we have that since u, v ∈H1
par((t1, t2)×Rd),

then u is an admissible test function for the equation of v, and vice versa, on(t1, t2) ×Rd. We obtain

∫
Rd

((uv)(t2, z) − (uv)(t1, z)) dz
= ∫ t2

t1
∫
Rd
∂t (uv) (s, z)dz ds

= ∫ t2

t1
∫
Rd

((u∂tv + a∇u ⋅ ∇v) + (v∂tu − a∇v ⋅ ∇u)) (s, z)dz ds
= 0.

Letting t2 → t and t1 → 0 yields that

u(t, x, y) = v(0, y, x) = u(t, y, x).
Now, for u and v defined as above, we set, for t > 0 and x, y ∈ Rd,

P (t, x, y) = u(t, x, y),
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and by the symmetry, for all t > 0 and x, y ∈ Rd,

P (t, x, y) = P (t, y, x).
Now (E.2) is valid, and (E.3) and (E.4) follow by Lemma E.8.

Step 2. We show (E.9). Notice that (E.7), (E.8) and (E.11) are all consequences
of Lemma E.8. For the mixed derivatives we first observe that wi ∶= ∂yiP (⋅, ⋅, y)
still solves (∂t −∇ ⋅ a∇)wi = 0. Therefore, Lemma E.4 yields, for r ∈ (0, 1

2

√
t],

∥∇x∇yP (⋅, ⋅, y)∥L2(Qr(t,x)) ⩽ Cr−1 ∥∇yP (⋅, ⋅, y)∥
L2(Q 3

2 r
(t,x))

On the other hand, by (E.3), ∇yP (t, x, y) = ∇xP (t, y, x). Thus, applying E.4 once
more, after integrating in y, gives (E.9).
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