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Abstract. Sum-of-norms clustering is a convex optimization problem whose solution
can be used for the clustering of multivariate data. We propose and study a localized
version of this method, and show in particular that it can separate arbitrarily close balls
in the stochastic ball model. More precisely, we prove a quantitative bound on the error
incurred in the clustering of disjoint connected sets. Our bound is expressed in terms of
the number of datapoints and the localization length of the functional.

1. Introduction

1.1. Context and informal description of main result. Let x1, . . . , xN ∈ Rd (d ∈ N)
be a collection of points, which we think of as a dataset. We consider the clustering problem,
which is to find a partition of {x1, . . . , xN} that collects close-together points into the
same element of the partition. The problem of K-means clustering is to identify a global
minimizer of the functional

(y1, . . . , yN ) 7→ 1

N

N∑
n=1

|yn − xn|2, (1.1)

over all (y1, . . . , yN ) ∈ (Rd)N such that the cardinality of the set {y1, . . . , yN} is at most K.
This minimization problem is known to be NP-hard in general, even when restricted to
K = 2 [2] or d = 2 [21]. Practitioners typically resort to iterative search algorithms such
as Lloyd’s algorithm and its refinements [20, 28], which at least identify local minimizers
of (1.1). However, these methods are known to perform poorly in some cases, as will be
discussed further below.

In this paper, we focus our attention on the “sum-of-norms clustering” method (also
known as “convex clustering shrinkage” or “Clusterpath”) introduced in [25, 16, 19]. This
method can be thought of as a convex relaxation of the K-means problem. It considers the
minimizer of the convex functional

(y1, . . . , yN ) 7→ 1

N

N∑
n=1

|yn − xn|2 +
λ

N2

N∑
m,n=1

w(|xm − xn|)|ym − yn| (1.2)

over (y1, . . . , yN ) ∈ (Rd)N , for some nonincreasing “weight function” w. (Typical choices
include constant and exponential weights.) Here | · | denotes the Euclidean norm on Rd.
The point yn is thought of as a “representative point” of the cluster to which xn belongs,
and thus xn and xm are declared to be members of the same cluster if yn = ym. The first
term of (1.2) is designed to keep the representative point of a cluster close to the points in
that cluster (and so encouraging having many clusters), while the second term (called the
“fusion term”) is designed to encourage points to merge into fewer clusters, at least if they
are close together according to the weight function. The parameter λ controls the relative
strength of these two effects.

The present work investigates an asymptotic regime of sum-of-norms clustering as the
number of datapoints becomes very large and the weight w is simultaneously scaled in a
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careful way. In order to do so, it is useful to specify a more explicit model for the dataset.
We assume that the datapoints x1, . . . , xN are independent and identically distributed.
Their common law µ, a probability measure on Rd, is supported on the union of disjoint
closed sets U1, . . . , UL. These sets are not known to the practitioner. We would like xi and
xj to be in the same cluster if and only if they lie in the same set U ` for some ` ∈ {1, . . . , L},
and so we seek a clustering algorithm that can guarantee this in the limit as N →∞.

The weight function we choose is w(r) := γd+1e−γr, where γ > 0 is a parameter that can
be tuned with the number of datapoints N . Roughly speaking, our main result states that,
under modest assumptions, if we choose λ above a critical threshold not depending on N ,
and also choose γ ' N3/(4d), then in some mean-square sense, each point xn ∈ U ` will be
associated with a “representative point” yn that is at distance of about N−1/(8d) from the
centroid of the set U ` as N →∞. In particular, the clustering of the dataset is successful
in the mean-square sense. The technical assumptions we need are that each set U ` is
“effectively” star-shaped (see Definition 1.1 below), that the measure µ has a density with
respect to the Lebesgue measure, and that this density is Lipschitz and bounded away
from zero on its support. As an illustration, we can take µ to be the uniform measure
on the union of the sets depicted in Fig. 1.2 below. The condition that the clusters be
effectively star-shaped is a nontrivial geometric restriction, although it does not seem to be
fundamental. See Remark 4.2 below for a weaker but more complicated sufficient condition,
and further discussion.

Our result applies in particular to the case in which µ is the uniform measure on the
union of disjoint balls. One of the strengths of our result is that these balls, or more
generally the sets U1, . . . , UL, can be chosen arbitrarily close to one another, as long as they
do not touch. (However, we expect that the required number of datapoints N will grow
as the balls are brought closer to each other.) Another important feature is that we allow
for sets U1, . . . , UL that may be non-convex, as long as they are effectively star-shaped.
Moreover, our result covers situations in which the convex hulls of the clusters intersect.

The unweighted version of the sum-of-norms clustering method, i.e. the case w ≡ 1,
does not share any of these features. Indeed, the unweighted method fails to recover the
clusters of datapoints sampled independently from two disjoint balls if the balls are too
close together, as we showed in [13]. Moreover, the unweighted algorithm must output
clusters that are contained in disjoint balls (see [23, Theorem 3] or [13, Proposition 1.8]),
and in particular, it cannot separate two clusters unless their convex hulls are disjoint.

Popular alternative clustering methods such as Lloyd’s algorithm and its refinements
[20, 28] are also known to have important limitations. In [4, Appendix E], the authors
exhibit explicit examples of configurations of disjoint balls U1, . . . , UL of equal radius such
that if the measure µ is the uniform probability measure on the union of these balls, then
the probability that Lloyd’s algorithm successfully clusters the dataset is at most (1− 2

9)L/3.
They also construct similar examples for which a refined method called “kmeans++” also
fails to successfully cluster the dataset with a probability that can be made arbitrarily close
to 1.

Other convex relaxations of the K-means problem have been explored, but we are not
aware of theoretical guarantees that would cover the case in which two clusters can be taken
arbitrarily close to one another. Possibly the simplest way to ask the question is to consider
the “stochastic ball model” [22]: we assume that the datapoints are sampled independently
according to the uniform measure on the union of two disjoint balls of unit radius. In this
setting, the method explored in [4] is guaranteed to recover the clusters provided that the
distance between the two ball centers is above 2

√
2(1 + d−1/2). (See also [12] for the related

problem of K-medians clustering.) Another convex relaxation of K-means clustering is
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explored in [11]: for the stochastic ball model, that method successfully clusters the dataset
provided that the distance between the centers of the balls is above 1 +

√
3.

Several earlier works have explored the theoretical properties of sum-of-norms clustering.
The unweighted method (w ≡ 1) was shown to separate cube-shaped clusters provided
that they are sufficiently far away in [29]; for the case of two cubes of side-length 2 and
equal number of datapoints falling in each cube, the criterion requires that the minimal
distance between two points in each cube be at least 6

√
d. More general conditions are

derived in [24] (see in particular part 2 of Theorem 1) that imply the successful recovery of
the clusters for the stochastic ball model if the distance between the ball centers is larger
than 4. These results were refined and extended to the case of arbitrary weights in [26].
The problem of separating mixtures of Gaussian random variables has been considered in
[27, 24, 18], and algorithmic aspects were explored in [25, 16, 9, 10, 17]. Several works have
stressed the apparent advantages of using non-constant weights in sum-of-norms clustering
[16, 9, 10, 23].

1.2. Precise statement and proof strategy. Following our previous work [13], for the
purposes of mathematical analysis we consider the somewhat more general problem of
clustering of measures. For a Borel measure µ on Rd of compact support, we abbreviate
L2(µ) := L2(Rd, µ;R) and (L2(µ))d ' L2(Rd, µ;Rd) to denote the Lebesgue spaces of
µ-square-integrable functions from Rd to R and Rd to Rd respectively. (We recall that
these spaces identify functions that only disagree on a set of µ-measure zero.) We define
the functional Jµ,λ,γ : (L2(µ))d → R by

Jµ,λ,γ(u) :=

ˆ
|u(x)− x|2 dµ(x) + λγd+1

¨
e−γ|x−y||u(x)− u(y)| dµ(x) dµ(y). (1.3)

We note that (1.2) with w(r) = γd+1e−γr is obtained from (1.3) by setting µ = 1
N

∑N
n=1 δxn .

The map x 7→ u(x) is then the analogue of the map xn 7→ yn from points to cluster
representative points. We denote by uµ,λ,γ the minimizer of Jµ,λ,γ , which exists and is
unique because Jµ,λ,γ is coercive, uniformly convex, and continuous on (L2(µ))d. (See (2.2)
below.) For every Borel set U such that µ(U) > 0, we let

centµ(U) :=
1

µ(U)

ˆ
U
x dµ(x)

be the µ-centroid of U . We also write a ∨ b := max(a, b), and define

d′ :=


∞ if d = 1,
4
3 if d = 2,

d if d > 3.

(1.4)

Our main result considers a measure µ with support comprising a finite union of connected
components, each with sufficiently regular boundary and satisfying a quantitative version
of a “star-shaped” property. We also assume that µ is bounded below on its support, and is
sufficiently regular on its support. We draw N datapoints independently from µ and run
our clustering algorithm on these datapoints. If γ is chosen appropriately large depending
on N , and λ is fixed sufficiently large independent of N , then our clustering algorithm will
recover the connected components of suppµ. Before stating our main result, we introduce
the technical condition we need on the components of suppµ.

Definition 1.1. For U a subset of Rd and ε > 0, let Uε be the ε-enlargement of U , namely

Uε := {x ∈ Rd | dist(x, U) 6 ε}.
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Figure 1.1. A set that is star-shaped but not effectively star-shaped.

Figure 1.2. A set of three open sets U1, U2, U3 satisfying the hypotheses of Theorem 1.2.

We say that a domain U is effectively star-shaped if there exists x∗ ∈ U and a constant
C∗ <∞ such that for every ε > 0 sufficiently small, the image of Uε under the mapping
x 7→ x∗ + (1− C∗ε)(x− x∗) is contained in U .

For example, any convex open set is effectively star-shaped (in which case x∗ can be
chosen arbitrarily in the interior). Any effectively star-shaped set is star-shaped. An
example of a set that is star-shaped but not effectively star-shaped is illustrated in Fig. 1.1.
Now we can state our main theorem.

Theorem 1.2. Let µ be a probability measure on Rd such that suppµ =
⋃L
`=1 U`, where

U1, . . . , UL are bounded, effectively star-shaped open sets with Lipschitz boundaries, such
that their closures U1, . . . , UL are pairwise disjoint. Assume that µ admits a density with
respect to the Lebesgue measure, and that this density is Lipschitz and bounded away from
zero on suppµ. Then there exist λc, C < ∞ such that for every λ > λc, the following
holds. Let (Xn)n∈N be a sequence of independent random variables with law µ, N > 1 be
an integer, µN := 1

N

∑N
n=1 δXn be the empirical measure of the datapoints, and

A
(`)
N := {n ∈ {1, . . . , N} | Xn ∈ U`}, ` ∈ {1, . . . , L}
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be the set of indices of datapoints in U`. For every γ > 1, the mean-square error between
the clustering algorithm and the centroids of the clusters is bounded as follows:

E

 1

N

L∑
`=1

∑
n∈A(`)

N

|uµN ,λ,γ(Xn)− centµ(U`)|2


6 C

(
γN−1/(d∨2)(logN)1/d

′
+ (1 + λ)γ−1/3

)
.

(1.5)

For d > 2, optimizing the right-hand side of (1.5) suggests the optimal choice γ ' N3/(4d),
in which case the mean-square error is at most of the order of N−1/(4d), up to logarithmic
corrections. We do not know if the estimate in (1.5) is sharp. If technical issues that arise
near the boundary of the domains could be avoided, then we believe that we could replace
the term γ−1/3 in (1.5) by γ−1/2; this in turn would suggest choosing γ ' N2/(3d), up to a
logarithmic correction.

A similar result to Theorem 1.2 can be obtained if the weight r 7→ e−γr is replaced by a
truncated version r 7→ e−γr1r6ω for an appropriate choice of ω; see Proposition 6.1 below.
This result essentially says that we can choose ω ' γ−1, up to a logarithmic correction,
without modifying the optimizer substantially. In the discrete setting, this reduces the
number of pairs of points that need to be included in the sum that is the double integral
in (1.3), and thus may lead to improvements in computational efficiency. (See [9] regarding
efficient computational algorithms for sum-of-norms clustering, and in particular regarding
the effect of the sparsity of the weights on the computational complexity.) For instance,
under the assumptions of Theorem 1.2 and with the choice of ω ' γ−1 ' N−3/(4d), a typical
point only interacts with about N1/4 points in its vicinity. Depending on the relative costs
of computation versus the procurement of new datapoints, efficiency considerations may
lead to a different choice of γ than what would be suggested by the optimal accuracy
considerations discussed in the previous paragraph. We do not further pursue the question
of computational efficiency in the present paper.

While we did not keep track of this explicitly, one can check from the proof that the
critical value λc < ∞ identified in Theorem 1.2 does not change as the sets U1, . . . , UL
are individually translated or rotated, provided that they remain pairwise disjoint. In
particular, this constant does not depend on the minimal distance between the different
data clusters. As a careful examination of the arguments below shows, one can also choose
the constant C < ∞ in Theorem 1.2 to be invariant under individual translations and
rotations of the sets U1, . . . , UL that do not make them intersect each other, provided that
we also require γ to be sufficiently large. Roughly speaking, we would then require γ−1 to
be larger than the minimal distance separating any pair of clusters, that is,

γ−1 & ∆ := min
16`6=`′6L

dist(U`, U`′).

The precise condition is displayed in (7.1) below. In particular, for d > 2, our approach
would yield non-trivial information provided that the number of datapoints N is much
larger than ∆−d.

An important step in the proof of Theorem 1.2, which is also of independent interest,
concerns the behavior of the functional Ju,λ,γ as γ is taken to infinity. The factor γd+1

in (1.3) was chosen so that Ju,λ,γ would converge to a limiting functional as γ →∞, under
appropriate conditions on µ. Let U be a bounded open subset of Rd and suppose that
suppµ = U . Suppose furthermore that µ is absolutely continuous with respect to the
Lebesgue measure on U , with density ρ ∈ C(U) bounded away from zero on U . We denote
by BV(U) the space of functions of bounded variation on U . (Some elementary properties
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of the space BV(U) are recalled in Section 2 below; see also [3].) If u ∈ (L2(U) ∩ BV(U))d,
then we can define

Jµ,λ,∞(u) :=

ˆ
|u(x)− x|2 dµ(x) + cλ

ˆ
ρ(x)2 d|Du|(x), (1.6)

where

c :=

ˆ
Rd

e−|y||y · e1|dy. (1.7)

We will see in Proposition 2.1 below that Jµ,λ,∞ admits a unique minimizer uµ,λ,∞ ∈
(L2(U) ∩ BV(U))d. In Theorem 4.1, we will then show in a quantitative sense that, if U
is sufficiently regular and the density ρ is Lipschitz, then uµ,λ,γ converges to uµ,λ,∞ as γ
tends to infinity. The essential strategy here is to compare the functionals Jµ,λ,∞ and Jµ,λ,γ
and use their uniform convexity. An important technical complication is that Jµ,λ,∞(u) is
only defined for functions u of bounded variation on U while the minimizer of Jµ,λ,γ may
not (a priori) be of bounded variation. Therefore, to compare the functionals, we must
first smooth their argument u in a way that respects derivatives. Convolution by a smooth
function works, but we first must dilate u slightly since it is only defined on U , not all
of Rd. Moreover, this modification of the optimizer for Jµ,λ,γ needs to be performed in
such a way that the functional does not increase too much. It is this constraint that leads
us to the requirement that the domains be effectively star-shaped (or that the more general
condition in Remark 4.2 holds).

The utility of the gradient functional (1.6) in the proof of Theorem 1.2 is apparent in
Proposition 5.1 below. This proposition states that when λ is large enough, the minimizer
of the gradient functional recovers the centroids of the connected components of the support
of the measure µ. The critical λ is identified in terms of the L∞ norm of the solution to
a PDE arising from the first-order conditions for the minimizer. We expect that further
information about the behavior of the limiting functional could be obtained by further
studying this PDE.

As mentioned, the gradient clustering functional (1.6) only makes sense for smooth
measures. In order to show the convergence of the minimizers of the weighted clustering
functionals (1.3) on empirical distributions, we need to relate the minimizers of the finite-γ
problem for empirical distributions to the minimizers of the finite-γ problem for smooth
distributions. We do this by proving a stability result with respect to the ∞-Wasserstein
metric W∞, which is Proposition 3.1 below. This works in combination with a quantitative
Glivenko–Cantelli-type result for the ∞-Wasserstein metric proved in [15], and recalled in
Proposition 7.1 below. However, since the latter result only holds for connected domains,
we also need to truncate the exponential weight in (1.3), which is done in Section 6.

1.3. Outline of the paper. In Section 2 we establish some basic properties of Jµ,λ,γ and
Jµ,λ,∞. In Section 3 we prove a stability result for uµ̃,λ,γ as µ̃→ µ in the ∞-Wasserstein
distance. In Section 4 we prove the convergence result for uµ,λ,γ as γ →∞. In Section 5 we
show that the limiting functional uµ,λ,∞ recovers the centroids of the connected components
of suppµ as long as λ is large enough. In Section 6 we prove a stability result when
the exponential weight is truncated. In Section 7 we put everything together to prove
Theorem 1.2.

Acknowledgments. AD was partially supported by the NSF Mathematical Sciences
Postdoctoral Fellowship program under grant no. DMS-2002118. JCM was partially
supported by NSF grant DMS-1954357.
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2. Basic properties of the functionals

As mentioned above, for a bounded open set U ⊆ Rd, we denote by BV(U) the space
of functions of bounded variation on U . This is the set of all functions u ∈ L1(U) whose
derivatives are Radon measures. For u ∈ BV(U), we denote by Du the gradient of u,
which is thus a vector-valued Radon measure, and we denote by |Du| its total variation. In
particular, for every open set V ⊆ U , we have by [3, Proposition 1.47] that

|Du|(V ) = sup
φ

ˆ
V
φ · dDu = sup

φ

d∑
i=1

ˆ
V
φi dDiu, (2.1)

where the supremum is over all φ ∈ (Cc(V ))d (the space of Rd-valued continuous functions
supported on compact subsets of V ) such that ‖φ‖L∞(V ) 6 1, with the understanding that

‖φ‖L∞(V ) = ‖ |φ| ‖L∞(V ) = ess sup
x∈V

(
d∑
i=1

φ2i (x)

) 1
2

.

When u ∈ (BV(U))d, the gradient Du is a Radon measure taking values in the space of
d× d matrices. Identifying such a matrix with an element of Rd2 , we can still define the
total variation measure |Du| as above. (Thus, if Du is in fact an Rd×d-valued function,
then |Du|(x) is the Frobenius norm of the matrix Du(x).) We refer to [3] for a thorough
exposition of the properties of BV functions.

In the remainder of this section, we collect some basic properties of the functionals Jµ,λ,γ .
It is straightforward to see that, for any γ ∈ (0,∞), the functional Jµ,λ,γ is uniformly
convex on (L2(µ))d. Indeed, for every u, v ∈ (L2(µ))d, we have

1

2
(Jµ,λ,γ(u+ v) + Jµ,λ,γ(u− v))− Jµ,λ,γ(u) >

ˆ
v2 dµ. (2.2)

Since the functional is also coercive, the existence and uniqueness of the minimizer uµ,λ,γ
follow. The next proposition covers the case when γ =∞.

Proposition 2.1. Let U be a bounded open subset of Rd and suppose that suppµ = U .
Suppose furthermore that µ is absolutely continuous with respect to the Lebesgue measure
on U with a density ρ ∈ C(U) that is bounded away from zero on U . Then for any λ > 0,
the functional Jµ,λ,∞ admits a unique minimizer uµ,λ,∞ ∈ (L2(U) ∩ BV(U))d.

Proof. We start by observing that the convexity property (2.2) is still valid for γ =∞, for
every u, v ∈ (L2(U) ∩BV(U))d. Let (uk)k be a sequence of functions in (L2(U) ∩BV(U))d

such that
lim
k→∞

Jµ,λ,∞(uk) = inf
u∈(L2(U)∩BV(U))d

Jµ,λ,∞(u). (2.3)

Since ρ is bounded away from zero, the functional Jµ,λ,∞ is coercive on (L2(U) ∩ BV(U))d.
By the Banach–Alaoglu theorem and [3, Theorem 3.23] (the latter saying that sets S of
functions in BV(U) for which supu∈S

´
U |u|dx+ |Du|(U) <∞ are weakly-∗ precompact),

by passing to a subsequence we can assume that there is a u ∈ (L2(U) ∩ BV(U))d such
that uk → u weakly in (L2(U))d and weakly-∗ in (BV(U))d. From the weak convergence in
(L2(U))d we see thatˆ

|u(x)− x|2 dµ(x) 6 lim inf
k→∞

ˆ
|uk(x)− x|2 dµ(x).
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From the weak-∗ convergence in (BV(U))d we see thatˆ
U
ρ(x)2 d|Du|(x) = sup

φ

ˆ
U
ρ(x)2φ(x) · dDu(x)

6 lim inf
k→∞

sup
φ

ˆ
U
ρ(x)2φ(x) · dDuk(x)

= lim inf
k→∞

ˆ
U
ρ(x)2 d|Duk|(x),

where the supremum is over all φ ∈ (Cc(U))d
2 such that ‖φ‖L∞(U) 6 1. The last two

displays and (2.3) imply that Jµ,λ,∞(u) = inf Jµ,λ,∞, so we can take uµ,λ,∞ = u. The
uniqueness of uµ,λ,∞ follows from the uniform convexity (2.2). �

A direct consequence of the convexity property (2.2) is that, for every γ ∈ (0,∞) and
u ∈ (L2(µ))d, we haveˆ

|u− uµ,λ,γ |2 dµ 6 2 (Jµ,λ,γ(u) + Jµ,λ,γ(uµ,λ,γ))− 4Jµ,λ,γ

(
uµ,λ,γ + u

2

)
6 2 (Jµ,λ,γ(u)− inf Jµ,λ,γ) . (2.4)

Under the assumptions of Proposition 2.1, the inequalities in (2.4) remain valid with γ =∞,
provided that we also impose that u ∈ (L2(U) ∩ BV(U))d. Another important fact will be
that, for every γ ∈ (0,∞],

0 6 inf Jµ,λ,γ 6 Jµ,λ,γ(centµ(Rd)) =

ˆ
|x− centµ(Rd)|2 dµ(x), (2.5)

where we note that the right-hand side is the variance of a random variable distributed
according to µ, and in particular is independent of λ and γ.

3. Stability with respect to ∞-Wasserstein perturbations of the measure

Throughout the paper, for any two measures µ and ν on Rd, we let W∞(µ, ν) be the
∞-Wasserstein distance between µ and ν, namely

W∞(µ, ν) = inf
π

ess sup
(x,y)∼π

|x− y|,

where the infimum is taken over all couplings π of µ and ν. It is classical to verify that this
infimum is achieved (see e.g. [8, Proposition 2.1]). We call any π achieving this infimum
an ∞-optimal transport plan from µ to ν. In this section we prove that, for finite γ, the
minimizer uµ,λ,γ is stable under ∞-Wasserstein perturbations of µ.

Proposition 3.1. There is a universal constant C such that the following holds. Let
γ, λ,M ∈ (0,∞) and let µ, µ̃ be two probability measures on Rd with supports contained in
a common Euclidean ball B of diameter M . There exists an ∞-optimal transport plan π
from µ to µ̃ such thatˆ

|uµ,λ,γ(x)− uµ̃,λ,γ(x̃)|2 dπ(x, x̃) 6 C(M + 1)2(γ + 1)W∞(µ, µ̃). (3.1)

Proof. Throughout the proof, λ and γ will remain fixed, so we write Jµ = Jµ,λ,γ and
uµ = uµ,λ,γ . (Nonetheless, we emphasize that the constant C in the statement of the
theorem does not depend on λ or γ.) Let π be an ∞-optimal transport plan from µ to µ̃.
We write the disintegration

dπ(x, x̃) = dν(x̃ | x) dµ(x)
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and define
u(x) :=

ˆ
uµ̃(x̃) dν(x̃ | x).

We have

inf Jµ̃ =

ˆ
|uµ̃(x̃)− x̃|2 dµ̃(x̃) + λγd+1

¨
e−γ|x̃−ỹ||uµ̃(x̃)− uµ̃(ỹ)|dµ̃(x̃) dµ̃(ỹ)

=

¨
|uµ̃(x̃)− x̃|2 dν(x̃ | x) dµ(x)

+ λγd+1

˘
e−γ|x̃−ỹ||uµ̃(x̃)− uµ̃(ỹ)|dν(x̃ | x) dµ(x) dν(ỹ | y) dµ(y). (3.2)

For the first term on the right side of (3.2), we write

|uµ̃(x̃)− x̃|2 = |uµ̃(x̃)− x|2 − |x− x̃|2 + 2(uµ̃(x̃)− x̃) · (x− x̃)

> |uµ̃(x̃)− x|2 − 3M |x− x̃|. (3.3)

For the second term on the right side of (3.2), we note that, for µ-a.e. x, y, on the support
of ν(x̃ | x)⊗ ν(ỹ | y) we have, writing W :=W∞(µ, µ̃),

|ỹ − x̃| 6 2W + |y − x|,
so

e−γ|x̃−ỹ| > e−2γW e−γ|y−x|.

Thus we can write˘
e−γ|x̃−ỹ||uµ̃(x̃)− uµ̃(ỹ)|dν(x̃ | x) dµ(x) dν(ỹ | y) dµ(y)

> e−2γW
¨

e−γ|x−y|
(¨

|uµ̃(x̃)− uµ̃(ỹ)|dν(x̃ | x) dν(ỹ | y)

)
dµ(x) dµ(y)

> e−2γW
¨

e−γ|x−y||u(x)− u(y)|dµ(x) dµ(y), (3.4)

where we used Jensen’s inequality in the last step. Substituting (3.3) and (3.4) into (3.2),
we obtain

inf Jµ̃ >
¨
|uµ̃(x̃)− x|2 dν(x̃ | x) dµ(x)− 3M

¨
|x− x̃|dπ(x, x̃)

+ λγd+1e−2γW
¨

e−γ|x−y||u(x)− u(y)|dµ(x) dµ(y)

>
ˆ
|u(x)− x|2 dµ(x) + λγd+1e−2γW

¨
e−γ|x−y||u(x)− u(y)|dµ(x) dµ(y)− 3MW

> e−2γWJµ(u)− 3MW,

where in the second step we again used Jensen’s inequality. Therefore, we have

inf Jµ 6 Jµ(u) 6 e2γW
(
inf Jµ̃ + 3MW

)
6 inf Jµ̃ + 3Me2γWW +

(
e2γW − 1

)
M2, (3.5)

with the last inequality by (2.5). By symmetry, this implies that∣∣inf Jµ̃ − inf Jµ
∣∣ 6 3Me2γWW + (e2γW − 1)M2. (3.6)

Now we have, using the second and third inequalities of (3.5), as well as (2.4) and (3.6),
thatˆ
|u− uµ|2 dµ 6 2 (Jµ(u)− inf Jµ) 6 2

(
inf Jµ̃ − inf Jµ

)
+ 6Me2γWW + 2

(
e2γW − 1

)
M2

6 12Me2γWW + 4(e2γW − 1)M2 6 (M + 1)2Q((γ + 1)W∞(µ, µ̃)), (3.7)
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where we have defined Q(t) := 12e2tt+ 4(e2t − 1).
The remainder of the proof is very similar to the second half of the proof of [13,

Proposition 5.3]. For each ε > 0, let µε be a measure on the ball B, absolutely continuous
with respect to the Lebesgue measure, and such that

W∞(µ, µε) 6 ε. (3.8)

Since µε is absolutely continuous with respect to the Lebesgue measure, by [8, Theorems 5.5
and 3.2] there are maps Tε and T̃ε from suppµε to suppµ and supp µ̃, respectively, such that
(id×Tε)∗(µε) is an ∞-optimal transport plan between µε and µ and similarly (id×T̃ε)∗(µε)
is an ∞-optimal transport plan between µε and µ̃. We haveˆ

|uµ(Tε(x))− uµ̃(T̃ε(x))|2 dµε(x)

6 2

ˆ
|uµ(Tε(x))− uµε(x)|2 dµε(x) + 2

ˆ
|uµε(x)− uµ̃(T̃ε(x))|2 dµε(x).

(3.9)

For the first term on the right side, we use (3.7) above with µ← µε and µ̃← µ (so that
u← uµ ◦ Tε): ˆ

|uµ(Tε(x))− uµε(x)|2 dµε(x) 6 (M + 1)2Q((γ + 1)ε).

For the second term on the right side, we use (3.7) above with µ← µε and µ̃← µ̃ (so that
u← uµ̃ ◦ T̃ε):ˆ

|uµε(x)− uµ̃(T̃ε(x))|2 dµε(x) 6 (M + 1)2Q((γ + 1)W∞(µε, µ̃)).

Using the last two displays in (3.9), we getˆ
|uµ(Tε(x))− uµ̃(T̃ε(x))|2 dµε(x)

6 2(M + 1)2Q((γ + 1)ε) + 2(M + 1)2Q((γ + 1)W∞(µε, µ̃)). (3.10)

We can find a sequence εk ↓ 0 and a coupling π of µ and µ̃ such that (Tεk , T̃εk)∗µεk → π as
k →∞. Taking ε = εk in (3.10), and then taking the limit as k →∞, we getˆ

|uµ,λ,γ(x)− uµ̃,λ,γ(x̃)|2 dπ(x, x̃) 6 2(M + 1)2Q((γ + 1)W∞(µ, µ̃)). (3.11)

Hence, since, Q is smooth, Q(0) = 0, and the left side of (3.11) is also evidently bounded
above by M2, we obtain the desired inequality (3.1).

It remains to show that π is an ∞-optimal transport plan. This follows by using (3.8) to
note that

ess sup
x∼µε

|Tε(x)− T̃ε(x)| 6 ess sup
x∼µε

|Tε(x)− x|+ ess sup
x∼µε

|x− T̃ε(x)| 6 ε+W∞(µε, µ̃),

and then taking limits along the subsequence εk ↓ 0. �

4. Convergence as γ →∞

In this section we show that, under suitable assumptions on U and µ, the optimizer uµ,λ,γ
converges to uµ,λ,∞ as γ →∞. In essence, we will obtain this by showing a quantitative
version of the fact that the functional Jµ,λ,γ Γ-converges to Jµ,λ,∞ as γ tends to infinity.
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Theorem 4.1. Assume that U = suppµ is effectively star-shaped and has a Lipschitz
boundary, and that the measure µ has a density with respect to the Lebesgue measure that is
Lipschitz on U and is bounded away from zero. Then there exists a constant C <∞ such
that, for every λ ∈ (0,∞), we have

| inf Jµ,λ,∞ − inf Jµ,λ,γ |+
ˆ
|uµ,λ,∞ − uµ,λ,γ |2 dµ 6 Cγ−1/3. (4.1)

Proof. Without loss of generality, assume that the point x∗ in Definition 1.1 is the origin,
and that the constant C∗ appearing there is 1. We denote by ρ the density of µ with
respect to the Lebesgue measure. By [14, Theorem 5.4.1], we can and do extend ρ to a
Lipschitz function on Rd, which we can also prescribe to vanish outside of a bounded set.
Throughout the proof, we will leave µ, λ fixed, and write uγ = uµ,λ,γ and Jγ = Jµ,λ,γ . The
constant C may depend on µ but not on γ or λ, and may change over the course of the
argument. We let Uε be the ε-enlargement of U as in Definition 1.1.

For every ε ∈ (0, 1), γ ∈ (0,∞], and x ∈ Uε, we define

ũγ,ε(x) := uγ((1− ε)x),

and for every x ∈ U , we define

uγ,ε(x) := (ũγ,ε ∗ χε)(x),

where ∗ denotes the convolution operator, χ ∈ C∞c (Rd;R+) is a nonnegative smooth
function with compact support in the unit ball satisfyingˆ

Rd

χ(x) dx = 1 and
ˆ
Rd

xχ(x) dx = 0, (4.2)

and where we have set χε := ε−dχ(ε−1·).
Step 1. We show that, for every γ ∈ (0,∞),ˆ
Uε

|ũγ,ε(x)− x|2ρ(x) dx+ λγd+1

¨
U2
ε

e−γ|x−y||ũγ,ε(x)− ũγ,ε(y)|ρ(x)ρ(y) dx dy

6 Jγ(uγ) + Cε.

(4.3)

To prove this, we bound the first term on the left side of (4.3) by
ˆ
Uε

|ũγ,ε(x)− x|2ρ(x) dx 6 (1− ε)−d
ˆ
U

∣∣∣∣uγ(x)− x

1− ε

∣∣∣∣2 ρ( x

1− ε

)
dx

6
ˆ
U
|uγ(x)− x|2ρ(x) dx+ Cε,

where in the second inequality we used the fact that ρ is Lipschitz. For the second term on
the left side of (4.3), we proceed similarly, noting that

γd+1

¨
U2
ε

e−γ|x−y||ũγ,ε(x)− ũγ,ε(y)|dµ(x) dµ(y)

6
γd+1

(1− ε)2d

¨
U2

e−γ|x−y|/(1−ε)|uγ(x)− uγ(y)|ρ
(

x

1− ε

)
ρ

(
y

1− ε

)
dx dy

6
γd+1

(1− ε)2d

¨
U2

e−γ|x−y||uγ(x)− uγ(y)|ρ
(

x

1− ε

)
ρ

(
y

1− ε

)
dx dy

6
γd+1

(1− ε)2d

¨
U2

e−γ|x−y||uγ(x)− uγ(y)|ρ(x)ρ(y) dx dy + Cε.
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It is in this calculation that the star-shaped property is crucial: in the second inequality,
we used that the map sending Uε to U (i.e. the map x 7→ x/(1 − ε)) is contractive. We
also used (2.5) and again the fact that ρ is Lipschitz. Combining the last two displays, we
obtain (4.3).

Step 2. We show that, for every γ ∈ (0,∞),

Jγ(uγ,ε) 6 Jγ(uγ) + Cε. (4.4)

Using (4.2), we can write
ˆ
U
|uγ,ε(x)− x|2 dµ(x) =

ˆ
U

∣∣∣∣ˆ
Uε

(ũγ,ε(y)− y)χε(x− y) dy

∣∣∣∣2 ρ(x) dx

6
ˆ
Uε

|ũγ,ε(y)− y|2
ˆ
Rd

χε(x− y)ρ(x) dx dy.

Since ρ is Lipschitz, the inner integral is close to ρ(y), up to an error bounded by Cε, and
we thus get that ˆ

U
|uγ,ε(x)− x|2 dµ(x) 6

ˆ
Uε

|ũγ,ε(x)− x|2ρ(x) dx+ Cε. (4.5)

We also have

γd+1

¨
U2

e−γ|x−y||uγ,ε(x)− uγ,ε(y)|ρ(x)ρ(y) dx dy

6 γd+1

¨
U2

e−γ|x−y|
∣∣∣∣ˆ

Rd

[ũγ,ε(x− z)− ũγ,ε(y − z)]χε(z) dz

∣∣∣∣ ρ(x)ρ(y) dx dy

6 γd+1

¨
U2

ˆ
Rd

e−γ|x−y| |ũγ,ε(x)− ũγ,ε(y)|χε(z)ρ(x+ z)ρ(y + z) dz dx dy

6 γd+1

¨
U2
ε

e−γ|x−y| |ũγ,ε(x)− ũγ,ε(y)|
(ˆ

Rd

χε(z)ρ(x+ z)ρ(y + z) dz

)
dx dy

6 γd+1

¨
U2
ε

e−γ|x−y| |ũγ,ε(x)− ũγ,ε(y)| ρ(x)ρ(y) dx dy + Cε,

where in the last step we used (4.3), (2.5), and the fact that ρ is Lipschitz. Combining the
last two displays with (4.3) yields (4.4).

Step 3. We show that, for every γ ∈ [1,∞) and ε ∈ (0, 1],

J∞(uγ,ε) 6 Jγ(uγ) + Cε+
C

γε2
. (4.6)

In view of (4.4), it suffices to show (4.6) with Jγ(uγ) replaced by Jγ(uγ,ε). We start by
using the fact that ‖D2uγ,ε‖L∞(µ) 6 Cε

−2 to write

γd+1

¨
U2

e−γ|x−y||uγ,ε(x)− uγ,ε(y)|ρ(x)ρ(y) dx dy

> γd+1

¨
U2

e−γ|x−y||Duγ,ε(x) · (x− y)|ρ(x)ρ(y) dx dy

− Cγd+1

¨
U2

e−γ|x−y|
|x− y|2

ε2
ρ(x)ρ(y) dx dy. (4.7)

Since ρ is bounded and

γd+1

ˆ
Rd

e−γ|x−y||x− y|2 dy = γ−1
ˆ
Rd

e−|y||y|2 dy, (4.8)
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we see that the second integral on the right-hand side of (4.7) is bounded by Cγ−1ε−2.
Next, we aim to compare the first integral on the right-hand side of (4.7) with the same
quantity with ρ(y) replaced by ρ(x). Since ρ is Lipschitz and ‖Duγ,ε‖L∞(µ) 6 Cε−1, the
difference between these two quantities is bounded by

Cε−1γd+1

¨
U2

e−γ|x−y||x− y|2ρ(x)ρ(y) dx dy 6 Cγ−1ε−1,

using again (4.8) and the boundedness of ρ. To complete this step, it remains to argue that

γd+1

¨
U2

e−γ|x−y||Duγ,ε(x) · (x− y)|ρ(x)2 dx dy > c
ˆ
ρ(x)2|Duγ,ε(x)|dx+ Cγ−1ε−1.

(4.9)
Recalling (1.7), we see that the first term on the right-hand side above can be rewritten as

γd+1

ˆ
U

ˆ
Rd

e−γ|x−y||Duγ,ε(x) · (x− y)|ρ(x)2 dy dx.

For every δ > 0, we denote U δ := {x ∈ U : dist(x, ∂U) 6 δ}. Since ‖Duγ,ε‖L∞(µ) 6 Cε
−1,

the inequality (4.9) will follow from the fact that

γd+1

ˆ
U

ˆ
Rd\U

e−γ|x−y||x− y|dy dx 6 Cγ−1. (4.10)

Since U has a Lipschitz boundary, there exists δ > 0 such that for every 0 < η < η′ < δ,
the Lebesgue measure of Uη′ \ Uη is at most C(η′ − η). Therefore,

γd+1

ˆ
U

ˆ
Rd\U

e−γ|x−y||x− y|dy dx

6 Cγd+1e−δγ + γd+1

dδγe∑
k=0

ˆ
U(k+1)γ−1\Ukγ−1

ˆ
Rd\U

e−γ|x−y||x− y|dy dx

6 Cγd+1e−δγ + γd+1

dδγe∑
k=0

e−
γk
2

ˆ
U(k+1)γ−1\Ukγ−1

ˆ
Rd

e−
γ|x−y|

2 |x− y|dy dx

6 Cγd+1e−δγ + Cγ−1
dδγe∑
k=0

e−
γk
2

6 Cγ−1.

This is (4.10). Combining these estimates with (4.4) yields (4.6).
Step 4. We show thatˆ

Uε

|ũ∞,ε(x)− x|2 ρ(x) dx+ cλ

¨
U2
ε

ρ(x)2 d|Dũ∞,ε|(x) 6 J∞(u∞) + Cε. (4.11)

This follows from the fact that the the left side of (4.11) can be rewritten as

(1− ε)−d
ˆ
U

∣∣∣∣u∞(x)− x

1− ε

∣∣∣∣2 ρ( x

1− ε

)
dx+

cλ

(1− ε)d+1

¨
U2

ρ

(
x

1− ε

)2

d|Du∞|(x),

and from the fact that ρ is Lipschitz.
Step 5. We show that

J∞(u∞,ε) 6 J∞(u∞) + Cε. (4.12)
Arguing in the same way as for (4.5), we see thatˆ

U
|u∞,ε(x)− x|2 dµ(x) 6

ˆ
Uε

|ũ∞,ε(x)− x|2ρ(x) dx+ Cε. (4.13)
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For the second term, we notice that by [3, Proposition 3.2], we have

D(ũ∞,ε ∗ χε) = Dũ∞,ε ∗ χε,

and thus ˆ
U
ρ(x)2|D(ũ∞,ε ∗ χε)|(x) dx 6

ˆ
U

ˆ
Uε

ρ(x)2χε(x− y) d|Dũ∞,ε|(y) dx

6
ˆ
Uε

ρ(y)2 d|Dũ∞,ε|(y) + Cε,

where we used (4.11), (2.5), and the fact that ρ is Lipschitz in the last step. Combining
this with (4.13) and using (4.11) once more, we obtain (4.12).

Step 6. We show that

Jγ(u∞,ε) 6 J∞(u∞) + Cε+
C

γε2
. (4.14)

We decompose the fusion term of Jγ(u∞,ε) into

γd+1

¨
U2

e−γ|x−y||u∞,ε(x)− u∞,ε(y)|ρ(x)ρ(y) dx dy

6 γd+1

¨
U2

e−γ|x−y||Du∞,ε(x) · (x− y)|ρ(x)ρ(y) dx dy

+ Cγd+1

¨
U2

e−γ|x−y|
|x− y|2

ε2
ρ(x)ρ(y) dx dy, (4.15)

and estimate each of these integrals in turn. The second integral on the right side is the
same as the second integral in (4.7), and thus is bounded by Cγ−1ε−2. We next aim to
compare the first integral on the right-hand side of (4.15) with the one where ρ(y) is replaced
by ρ(x). Since ρ is Lipschitz, the difference between these two quantities is bounded by

Cγd+1

¨
U2

e−γ|x−y||Du∞,ε(x)||x− y|2 dx dy 6 Cγ−1
ˆ
U
|Du∞,ε(x)| dx 6 Cγ−1,

where we used (4.12) and the fact that ρ is bounded above and below in the last step. Then
it remains to estimate

γd+1

¨
U2

e−γ|x−y||Du∞,ε(x) · (x− y)|ρ(x)2 dx dy

6
ˆ
R2

e−|y||y · e1|dy
ˆ
U
|Du∞,ε(x)|ρ(x)2 dx = c

ˆ
U
|Du∞,ε(x)|ρ(x)2 dx,

where we recalled (1.7) in the last step. Thus we have

Jγ(u∞,ε) 6 J∞(u∞,ε) + Cγ−1ε−2,

and inequality (4.14) then follows using (4.12).
Step 7. We can now conclude the proof. We take ε := γ−1/3, and using (4.6) and (4.14),

we see that

J∞(u∞) 6 J∞(uγ,γ−1/3) 6 Jγ(uγ)+Cγ−1/3 6 Jγ(u∞,γ−1/3)+Cγ−1/3 6 J∞(u∞)+Cγ−1/3.

From this, we deduce that

|J∞(u∞)− Jγ(uγ)| 6 Cγ−1/3, (4.16)

and moreover that
0 6 J∞(uγ,γ−1/3)− J∞(u∞) 6 Cγ−1/3. (4.17)
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By (2.4) and (4.17), we obtainˆ
|uγ,γ−1/3 − u∞|2 dµ 6 Cγ−1/3. (4.18)

Using (2.4) and (4.4), we also infer thatˆ
|uγ,γ−1/3 − uγ |2 dµ 6 Cγ−1/3. (4.19)

Combining (4.16), (4.18), and (4.19) yields (4.1). �

Remark 4.2. In the proof of Theorem 4.1, the assumption that U is effectively star-shaped
could be replaced by the following weaker assumption: that there exist L < ∞ and, for
every ε > 0 sufficiently small, a 1-Lipschitz injective map Pε : Uε → U with L-Lipschitz
inverse. In Theorem 1.2, we could then assume that the same property holds for each of
the sets U1, . . . , UL in place of the assumption that these sets are effectively star-shaped.

5. Properties of the limiting functional

In this section we show that if λ is large enough, then the minimizer uµ,λ,∞ of Jµ,λ,∞
recovers the connected components of suppµ.

Proposition 5.1. Let µ be a probability measure on Rd satisfying the conditions of
Theorem 1.2, so its support is the disjoint union of U1 t · · · t UL. There is a λc <∞ such
that if λ > λc, then uµ,λ,∞(x) = centµ(U`) for all x ∈ U`, ` ∈ {1, . . . , L}.

Proof. Let u(x) = centµ(U`) for all x ∈ U`, ` ∈ {1, . . . , L}. Since the gradient of u is zero
on each U`, we have

Jµ,λ,∞(u) =

L∑
`=1

ˆ
U`

|u(x)− x|2 dµ(x).

Let U =
⋃L
`=1 U`, p > d, and let W 1,p(U) denote the usual Sobolev space with regularity 1

and integrability p. Note that W 1,p(U) embeds continuously into C(U) by Morrey’s
inequality; see [1, Theorem 4.12]. Let ψ ∈ (W 1,p(U))d×d be a weak solution to the PDE

2ρ(x)(u(x)j − xj)− c
d∑

k=1

Dk(ρ
2ψjk)(x) = 0, x ∈ U, j = 1, . . . , d; (5.1)

ψ|∂U ≡ 0. (5.2)

We note that the problem (5.1)–(5.2) separates into dL problems, one for each j and `.
Each problem can be solved by [7, Theorem 2.4] (which follows the approach introduced in
[5, 6]). We have, for every v ∈ (L2(U) ∩ BV(U))d,

Jµ,λ,∞(u+ v) =

ˆ
U
|u(x) + v(x)− x|2 dµ(x) + cλ

ˆ
U
ρ(x)2 d|Dv|(x)

= Jµ,λ,∞(u) +

ˆ
U

(
2(u(x)− x) · v(x) + |v(x)|2

)
dµ(x) + cλ

ˆ
U
ρ(x)2 d|Dv|(x).

A minor variant of (2.1) takes the form
ˆ
U
ρ(x)2 d|Dv|(x) = sup

{ˆ
U
ρ(x)2φ(x) · dDv(x), φ ∈ (C(U))d×d s.t. ‖φ‖L∞(U) 6 1

}
.
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Selecting φ = ψ/‖ψ‖L∞(U), and using the assumption that λ > ‖ψ‖L∞(U), we obtain

Jµ,λ,∞(u+ v) > Jµ,λ,∞(u) +

ˆ (
2(u(x)− x) · v(x) + |v(x)|2

)
dµ(x)

+ c

d∑
j,k=1

ˆ
ρ(x)2ψjk(x)Dkvj(x) dx

= Jµ,λ,∞(u) +

ˆ (
2(u(x)− x) · v(x) + |v(x)|2

)
dµ(x)

−
d∑
j=1

ˆ
2ρ(x)(u(x)j − xj)(x)vj(x) dx

= Jµ,λ,∞(u) +

ˆ
|v(x)|2 dµ(x)

> Jµ,λ,∞(u),

where we used (5.1) for the first equality. This implies that uµ,λ,∞ = u, and hence the
statement of the proposition with λc = ‖ψ‖L∞(U). �

6. Truncation

In this section we prove a stability result for when we truncate the exponential weight.
For γ, ω ∈ (0,∞), we define the truncated functional

Jµ,λ,γ,ω(u)

:=

ˆ
|u(x)− x|2 dµ(x) + λγd+1

¨
e−γ|x−y|1{|x− y| 6 ω}|u(x)− u(y)|dµ(x) dµ(y).

(6.1)
The functional Jµ,λ,γ,ω is uniformly convex and satisfies (2.2) and (2.4) in the same way as
Jµ,λ,γ . Let uµ,λ,γ,ω be the (unique) minimizer of Jµ,λ,γ,ω.

Proposition 6.1. Let γ, λ, ω > 0 and let µ be a probability measure on Rd with compact
support. Let M := diam suppµ. Then we have

ˆ
|uµ,λ,γ,ω(x)− uµ,λ,γ(x)|2 dµ(x) 6 2Mλγd+1e−γω. (6.2)

In light of this statement, we define

uµ,λ,γ := uµ,λ,γ,(d+4/3)γ−1 log γ . (6.3)

Then (6.2) implies that
ˆ
|uµ,λ,γ(x)− uµ,λ,γ(x)|2 dµ(x) 6 2Mλγ−1/3. (6.4)

Proof of Proposition 6.1. Subtracting (1.3) from (6.1), we obtain

Jµ,λ,γ,ω(u)− Jµ,λ,γ(u) = λγd+1

¨
e−γ|x−y|1{|x− y| > ω}|u(x)− u(y)|dµ(x) dµ(y).
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Taking u = uµ,λ,γ , we get

Jµ,λ,γ,ω(uµ,λ,γ)− inf Jµ,λ,γ

= λγd+1

¨
e−γ|x−y|1{|x− y| > ω}|uµ,λ,γ(x)− uµ,λ,γ(y)|dµ(x) dµ(y)

6Mλγd+1e−γω,

and similarly,

Jµ,λ,γ(uµ,λ,γ,ω)− inf Jµ,λ,γ,ω

= −λγd+1

¨
e−γ|x−y|1{|x− y| > ω}|uµ,λ,γ,ω(x)− uµ,λ,γ,ω(y)| dµ(x) dµ(y) 6 0.

Therefore, using (2.4) and the last two displays we haveˆ
|uµ,λ,γ,ω(x)− uµ,λ,γ(x)|2 dµ(x)

6 2 (Jµ,λ,γ(uµ,λ,γ,ω)− inf Jµ,λ,γ)

6 2
[
Jµ,λ,γ(uµ,λ,γ,ω)− inf Jµ,λ,γ,ω

]
+ 2

[
Jµ,λ,γ,ω(uµ,λ,γ)− inf Jµ,λ,γ

]
6 2Mλγd+1e−γω,

as claimed. �

7. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We first need a result from [15]. Recall the
notation d′ introduced in (1.4).

Proposition 7.1. Let U ⊆ Rd be a bounded, connected domain with Lipschitz boundary.
Let µ be a probability measure on U , absolutely continuous with respect to Lebesgue measure,
with density bounded above and away from zero on U . For every α > 1, there is a constant
C < ∞, depending only on U , α, and µ, such that the following holds. If (Xn)n∈N are
independent random variables with law µ, then for every integer N > 1,

P

(
W∞

(
µ,

1

N

N∑
n=1

δXn

)
> CN−1/(d∨2)(logN)1/d

′

)
6 CN−α.

Proof. For d > 2, this is a restatement of [15, Theorem 1.1]. For d = 1, the result can
be obtained from the classical Kolmogorov-Smirnov quantitative version of the Glivenko-
Cantelli theorem. �

Now we can prove Theorem 1.2. For a measure µ on Rd and a Borel set U , we denote
by µ U the restriction of µ to the set U .

Proof of Theorem 1.2. Recalling (6.3), it is clear that if γ is so large that

(d+ 4/3)γ−1 log γ 6 min
16` 6=`′6L

dist(U`, U`′), (7.1)

then
uµN U`,λ,γ(x) = uµN ,λ,γ(x), for all x ∈ U`, (7.2)

and similarly
uµ U`,λ,γ(x) = uµ,λ,γ(x), for all x ∈ U`. (7.3)
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Also, we have by the definitions and Proposition 5.1 that there exists λc such that for every
λ > λc,

uµ U`,λ,∞(x) = uµ,λ,∞(x) = centµ(U`), for all x ∈ U`. (7.4)
By (7.4) and Theorem 4.1, we haveˆ

U`

| centµ(U`)− uµ U`,λ,γ |
2 dµ =

ˆ
U`

|uµ U`,λ,∞ − uµ U`,λ,γ |
2 dµ 6 Cγ−1/3.

By (7.3) and (6.4), we have, as long as (7.1) holds,ˆ
U`

|uµ,λ,γ − uµ U`,λ,γ |
2 dµ =

ˆ
U`

|uµ U`,λ,γ − uµ U`,λ,γ |
2 dµ 6 2Mλγ−1/3.

Combining the last two displays, we see thatˆ
U`

|uµ,λ,γ − centµ(U`)|2 dµ 6 C(1 + λ)γ−1/3.

Using (6.4) again, this implies thatˆ
U`

|uµ,λ,γ − centµ(U`)|2 dµ 6 C(1 + λ)γ−1/3. (7.5)

On the other hand, by Proposition 7.1, we have for each ` that

P

(
W∞

(
µ U`
µ(U`)

,
µN U`
µN (U`)

)
> CN−1/(d∨2)(logN)1/d

′
)
6 CN−100. (7.6)

By Proposition 3.1, for each ` there is an ∞-optimal transport plan π`,N between µ U`
µ(U`)

and
µN UL
µN (U`)

such that, using also (7.2) and (7.3), we have
¨
U2
`

|uµ,λ,γ(x)− uµN ,λ,γ(x̃)|2 dπ`,N (x, x̃) 6 C(γ + 1)W∞
(
µ U`
µ(U`)

,
µN U`
µN (U`)

)
.

Combining this with (7.5), we see that
1

µN (U`)

ˆ
U`

|uµN ,λ,γ − centµ(U`)|2 dµN

=

¨
U2
`

|uµN ,λ,γ(x̃)− centµ(U`)|2 dπ(x, x̃)

6 C

(
(γ + 1)W∞

(
µ U`
µ(U`)

,
µN U`
µN (U`)

)
+ (1 + λ)γ−1/3

)
.

Now summing over ` and using (7.6) and the fact that the term inside the expectation on
the left-hand side of (1.5) is bounded almost surely, we obtain (1.5). �
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