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Abstract. Consider a discrete-time martingale, and let V 2 be its normalized
quadratic variation. As V 2 approaches 1 and provided some Lindeberg con-
dition is satisfied, the distribution of the rescaled martingale approaches the
Gaussian distribution. For any p > 1, [Ha88] gives a bound on the rate of
convergence in this central limit theorem, that is the sum of two terms, say

Ap + Bp, where up to a constant, Ap = ‖V 2 − 1‖
p/(2p+1)
p . We discuss here

the optimality of this term, focusing on the restricted class of martingales with
bounded increments. In this context, [Bo82] sketches a strategy to prove op-
timality for p = 1. Here, we extend this strategy to any p > 1, thus justifying
the optimality of the term Ap. As a necessary step, we also provide a new
bound on the rate of convergence in the central limit theorem for martingales
with bounded increments that improves on the term Bp, generalizing another
result of [Bo82].
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1. introduction

Let X = (X1, . . . , Xn) be a sequence of square-integrable random variables such
that for any i, Xi satisfies E[Xi | Fi−1] = 0, where Fi is the σ-algebra generated
by (X1, . . . , Xi). In other words, X is a square-integrable martingale difference
sequence. Following the notation of [Bo82], we write Mn for the set of all such
sequences of length n, and introduce

s2(X) =

n∑

i=1

E[X2
i ],

V 2(X) = s−2(X)

n∑

i=1

E[X2
i | Fi−1],

S(X) =
n∑

i=1

Xi.

One may call V 2(X) the normalized quadratic variation of X. Let (Xn)n∈N be such
that for any n, Xn ∈ Mn. It is well known (see for instance [Du, Section 7.7.a])
that if

(1.1) V 2(Xn)
(prob.)−−−−−→
n→+∞

1

and some Lindeberg condition is satisfied, then the rescaled sum S(Xn)/s(Xn)
converges in distribution to a standard Gaussian random variable, that is to say:

(1.2) ∀t ∈ R, P[S(Xn)/s(Xn) 6 t] −−−−−→
n→+∞

Φ(t),

where Φ(t) = (2π)−1/2
∫ t

−∞
e−x2/2 dx.

1
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We are interested in bounds on the speed of convergence in this central limit
theorem. Several results have been obtained under a variety of additional assump-
tions. One natural way to strengthen the convergence in probability (1.1) is to
change it for a convergence in Lp for some p ∈ [1,+∞]. Quantitative estimates in
terms of ‖V 2 − 1‖p seem indeed particularly convenient when one wants to apply
the result to practical situations. Let us write

D(X) = sup
t∈R

∣
∣P[S(X)/s(X) 6 t]− Φ(t)

∣
∣,

and

‖X‖p = max
16i6n

‖Xi‖p (p ∈ [1,+∞]).

[Ha88] proves the following result.

Theorem 1.1 ([Ha88]). Let p ∈ [1,+∞). There exists a constant Cp > 0 such

that, for any n > 1 and any X ∈ Mn, one has

(1.3) D(X) 6 Cp

(

‖V 2(X)− 1‖pp + s−2p(X)
n∑

i=1

‖Xi‖2p2p

)1/(2p+1)

.

In [Jo89], Theorem 1.1 is generalized to the following.

Theorem 1.2. Let p ∈ [1,+∞] and p′ ∈ [1,+∞). There exists Cp,p′ > 0 such that

for any n > 1 and any X ∈ Mn, one has

(1.4) D(X) 6 Cp,p′



‖V 2(X)− 1‖p/(2p+1)

p +

(

s−2p′

(X)
n∑

i=1

‖Xi‖2p
′

2p′

)1/(2p′+1)


 .

One should unerstand that p/(2p + 1) = 1/2 for p = +∞. In fact, a stronger,
non-uniform bound is given ; we refer to [Jo89, Theorem 2.2] (or equivalently, to
[Jo93]) for details.

The main question that is addressed here concerns the optimality of the term

‖V 2(X)− 1‖p/(2p+1)
p appearing in the r.h.s. of (1.3) or (1.4). About this, [Ha88]

constructs a sequence of elements Xn ∈ Mn such that

• s(Xn) ≃
√
n,

• D(Xn) ≃ log−1/2(n),

• ‖V 2(X)− 1‖pp ≃ s−2p(X) ‖X‖2p2p ≃ s−2p(X)

n∑

i=1

‖Xi‖2p2p ≃ log−(2p+1)/2(n),

where we write an ≃ bn if there exists C > 0 such that an/C 6 bn 6 Can for all
large enough n. The example demonstrates that one cannot improve the exponent
1/(2p + 1) appearing on the outer bracket of the r.h.s. of (1.3). But as the two
terms of the r.h.s. of (1.3) are of the same order, one cannot draw any conclusion

about the optimality of the term ‖V 2(X) − 1‖p/(2p+1)
p alone. Most importantly, it is

rather disappointing that in the example, ‖X‖2p2p and
∑n

i=1 ‖Xi‖2p2p are of the same
order, if the typical martingales that one has in mind have increments of roughly
the same order.

Using a similar construction, but imposing also that V 2(X) = 1 a.s., [Jo89,
Example 2.4] proves the optimality of the exponent 1/(2p′ + 1) appearing on the
second term of the sum in the r.h.s. of (1.4), but does not discuss the optimality of

the first term ‖V 2(X) − 1‖p/(2p+1)
p .

For 1 6 p 6 2, Theorem 1.1 is in fact already proved in [HB70]. In [HH,
Section 3.6], the authors could only show that the bound on D(X) can be no better

than ‖V 2(X)− 1‖1/21 .
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The proof of Theorem 1.1 given in [Ha88] is inspired by a method introduced in
[Bo82]. There, the following results are proved.

Theorem 1.3 ([Bo82]). Let γ ∈ (0,+∞). There exists a constant Cγ > 0 such

that, for any n > 2 and any X ∈ Mn satisfying ‖X‖∞ 6 γ and V 2(X) = 1 a.s.,

one has

D(X) 6 Cγ
n log(n)

s3(X)
.

In typical instances, s(X) is of order
√
n when X ∈ Mn. Under such a cir-

cumstance, Theorem 1.3 thus gives a bound of order log(n)/
√
n. Moreover, [Bo82]

provides an example of a sequence of elements Xn ∈ Mn satisfying the conditions
of Theorem 1.3, such that s2(Xn) = n and for which

lim sup
n→+∞

√
n log−1(n)D(Xn) > 0,

so the result is optimal.
Relaxing the condition that V 2(X) = 1 a.s., [Bo82] then shows the following.

Corollary 1.4 ([Bo82]). Let γ ∈ (0,+∞). There exists a constant Cγ > 0 such

that, for any n > 2 and any X ∈ Mn satisfying ‖X‖∞ 6 γ, one has

(1.5) D(X) 6 Cγ

[
n log(n)

s3(X)
+ min

(

‖V 2(X)− 1‖1/31 , ‖V 2(X)− 1‖1/2∞

)]

.

We refer to [Jo89, Theorem 3.2] for a non-uniform version of this result. A

strategy is sketched in [Bo82] to prove that the bound ‖V 2(X) − 1‖1/31 is indeed
optimal, even on the restricted class considered by Corollary 1.4 of martingales with
bounded increments. This example provides a satisfactory answer to our question
of optimality for p = 1. The aim of the present paper is to generalize Corollary 1.4
and the optimality result to any p ∈ [1,+∞). We begin by proving the following
general result.

Theorem 1.5. Let p ∈ [1,+∞) and γ ∈ (0,+∞). There exists a constant Cp,γ > 0
such that, for any n > 2 and any X ∈ Mn satisfying ‖X‖∞ 6 γ, one has

(1.6) D(X) 6 Cp,γ

[
n log(n)

s3(X)
+
(

‖V 2(X)− 1‖pp + s−2p(X)
)1/(2p+1)

]

.

Note that, somewhat surprisingly, the term s−2p(X)
∑n

i=1 ‖Xi‖2p2p appearing in

inequality (1.3) is no longer present in (1.5), and is changed for the smaller s−2p(X)
in (1.6).

Finally, we justify the optimality of the term ‖V 2(X)− 1‖p/(2p+1)
p appearing in

the r.h.s. of (1.6).

Theorem 1.6. Let p ∈ [1,+∞) and α ∈ (1/2, 1). There exists a sequence of

elements Xn ∈ Mn such that

• ‖Xn‖∞ 6 2,
• s(Xn) ≃

√
n,

• ‖V 2(Xn)− 1‖p/(2p+1)

p = O
(

n(α−1)/2
)

,

• lim sup
n→+∞

n(1−α)/2D(Xn) > 0.

Our strategy to prove Theorem 1.6 builds up on the one sketched in [Bo82] for
the case when p = 1. Interestingly, Theorem 1.5 is used in the proof of Theorem 1.6.

The question of optimality of the term ‖V 2(X)− 1‖p/(2p+1)
p , now settled by

Theorem 1.6, arises naturally in the problem of showing a quantitative central limit
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theorem for the random walk among random conductances on Z
d [Mo11]. There,

one approximates the random walk by a martingale. The martingale increments are
stationary and “almost bounded” for d > 3, in the sense that they have bounded
Lp norm for every p < +∞. Roughly speaking, it is shown that for d > 3, the
variance of the rescaled quadratic variation up to time t decays like t−1. This
bound is optimal, and leads to a Berry-Esseen bound of order t−1/5. Theorem 1.6
thus demonstrates that there is no way to obtain a better exponent of decay than
1/5 if one relies only on information about the variance of the quadratic variation.

Theorem 1.5 is proved in Section 2, and Theorem 1.6 in Section 3.

2. Proof of Theorem 1.5

The proof of Theorem 1.5 is essentially similar to the proof of Corollary 1.4 given
in [Bo82], with the additional ingredient of a Burkholder inequality.

Let X = (X1, . . . , Xn) ∈ Mn be such that ‖X‖∞ 6 γ. The idea, which probably

first appeared in [Dv72], is to augment the sequence to some X̂ ∈ M2n such that

V 2(X̂) = 1 almost surely, while preserving the property that ‖X̂‖∞ 6 γ, and apply
Theorem 1.3 to this enlarged sequence. Let

τ = sup

{

k 6 n :

k∑

i=1

E[X2
i | Fi−1] 6 s2(X)

}

.

For i 6 τ , we define X̂i = Xi. Let r be the largest integer not exceeding

s2(X)−∑τ
i=1 E[X

2
i | Fi−1]

γ2
.

As ‖X‖∞ 6 γ, it is clear that r 6 n. Conditionally on Fτ and for 1 6 i 6 r, we let

X̂i be independent random variables such that P[X̂τ+i = ±γ] = 1/2. If τ + r < 2n,

we let X̂τ+r+1 be such that

P



X̂τ+r+1 = ±
(

s2(X)−
τ∑

i=1

E[X2
i | Fi−1]− rγ2

)1/2


 =
1

2
,

the sign being decided independently of everything else. Finally, if τ + r + 1 < 2n,
we let X̂τ+r+i = 0 for i > 2.

Possibly enlarging the σ-fields, we can assume that X̂i is Fi-measurable for i 6 n,
and define Fi to be the σ-field generated by Fn and X̂n+1, . . . , X̂n+i if i > n. By
construction, one has

2n∑

i=τ+1

E[X̂2
i | Fi−1] = s2(X)−

τ∑

i=1

E[X2
i | Fi−1],

which can be rewritten as

2n∑

i=1

E[X̂2
i | Fi−1] = s2(X).

As a consequence, s2(X̂) = s2(X) and V 2(X̂) = 1 almost surely. The sequence X̂

thus satisfies the assumptions of Theorem 1.3, so

(2.1) D(X̂) 6 4Cγ
n log(n)

s3(X)
.
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For any x > 0, we have

P

[
S(X)

s(X)
6 t

]

6 P

[

S(X)

s(X)
6 t,

|S(X)− S(X̂)|
s(X)

6 x

]

+ P

[

|S(X)− S(X̂)|
s(X)

> x

]

6 P

[

S(X̂)

s(X)
6 t+ x

]

+
1

x2p
E





∣
∣
∣
∣
∣

S(X)− S(X̂)

s(X)

∣
∣
∣
∣
∣

2p


 .(2.2)

Due to (2.1), the first term in the r.h.s. of (2.2) is smaller than

(2.3) Φ(t+ x) + 4Cγ
n log(n)

s3(X)
6 Φ(t) +

x√
2π

+ 4Cγ
n log(n)

s3(X)
.

To control the second term, note first that

(2.4) S(X)− S(X̂) =

2n∑

i=τ+1

(Xi − X̂i),

where we put Xi = 0 for i > n. As τ + 1 is a stopping time, conditionally on τ ,
the (Xi − X̂i)i>τ+2 still forms a martingale difference sequence. We can thus use
Burkholder’s inequality (see for instance [HH, Theorem 2.11]), which states that

(2.5)
1

C
E





∣
∣
∣
∣
∣

2n∑

i=τ+2

(Xi − X̂i)

∣
∣
∣
∣
∣

2p




6 E

[(
2n∑

i=τ+2

E[(Xi − X̂i)
2 | Fi−1]

)p]

+ E

[

max
τ+26i62n

∣
∣
∣Xi − X̂i

∣
∣
∣

2p
]

,

and we can safely discard the summand indexed by τ +1 appearing in (2.4), that is
uniformly bounded. The maximum on the r.h.s. of (2.5) is also bounded by 2γ2p.

As for the other term, Xi and X̂i being orthogonal random variables, we have

2n∑

i=τ+1

E[(Xi − X̂i)
2 | Fi−1] =

2n∑

i=τ+1

E[X2
i | Fi−1] +

2n∑

i=τ+1

E[X̂2
i | Fi−1]

= s2(X)V 2(X) + s2(X)− 2

τ∑

i=1

E[X2
i | Fi−1]

︸ ︷︷ ︸

.(2.6)

Now, if τ = n, then by definition the sum underbraced above is s2(X)V 2(X).

Otherwise,
∑τ+1

i=1 E[X2
i | Fi−1] exceeds s

2(X), but as the increments are bounded,
the sum underbraced is necessarily larger than s2(X) − γ2. In any case, we thus
have

τ∑

i=1

E[X2
i | Fi−1] > min(s2(X)V 2(X), s2(X) − γ2).

As a consequence, we obtain from (2.6) that

2n∑

i=τ+1

E[(Xi − X̂i)
2 | Fi−1] 6

∣
∣s2(X)V 2(X)− s2(X)

∣
∣+ 2γ2.

Combining this with equations (2.5), (2.4), (2.3) and (2.2), we finally obtain that

P

[
S(X)

s(X)
6 t

]

− Φ(t) 6 4Cγ
n log(n)

s3(X)
+

x√
2π

+
C

x2p

(

‖V 2(X)− 1‖pp +
γ2p

s2p(X)

)

.

Optimizing this over x > 0 leads to the correct estimate. The lower bound is
obtained in the same way.
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3. Proof of Theorem 1.6

Let p > 1 and α ∈ (1/2, 1) be fixed. We let (Xni)16i6n−nα be independent
random variables with P[Xni = ±1] = 1/2. The subsequent (Xni)n−nα<i6n are
defined recursively. Let

λni =
√

n− i+ κ2
n,

where κn = n1/4 (in fact, any nβ with 1 − α < 2β < α would be fine). Assuming
that Xn,1, . . . , Xn,i−1 have already been defined, we write Fn,i−1 for the σ-algebra
that they generate, and let

Sn,i−1 =

i−1∑

j=1

Xnj .

For any i such that n− nα < i 6 n, we construct Xni such that

(3.1) P[Xni ∈ · | Fn,i−1] =

∣
∣
∣
∣
∣
∣
∣

δ
−
√

3/2
+ δ√

3/2
if Sn,i−1 ∈ [λni, 2λni],

δ
−
√

1/2
+ δ√

1/2
if Sn,i−1 ∈ [−2λni,−λni],

δ−1 + δ1 otherwise,

where δx is the Dirac mass at point x. One can view (Sni)i6n as an inhomogeneous
Markov chain. We write Xn = (Xn1, . . . , Xnn), and Xni = (Xn1, . . . , Xni) for any
i 6 n. Let

(3.2) δ(i) = sup
n>i

D(Xni).

Proposition 3.1. One has, uniformly over n,

(3.3) ‖V 2(Xni)− 1‖p = O
(
i(α−1)(1+1/2p)

)
(i → +∞),

and

(3.4) δ(i) = O
(

i(α−1)/2
)

(i → +∞).

The proof goes the following way: first, we bound ‖V 2(Xni) − 1‖p in terms of
(δ(j))j6i in Lemma 3.2. This gives an inequality on the sequence (δ(i))i∈N through
Theorem 1.5, from which we deduce (3.4), and then (3.3).

Lemma 3.2. Let Ki = maxj6i δ(j)j
(1−α)/2. For any n and i, the following in-

equalities hold:

(3.5)
∣
∣E[X2

ni]− 1
∣
∣ 6

∣
∣
∣
∣

0 if i 6 n− nα,
2δ(i− 1) if n− nα < i 6 n,

(3.6)
∣
∣s2(Xni)− i

∣
∣ 6

∣
∣
∣
∣

0 if i 6 n− nα,
Ci(3α−1)/2Ki 6 Ciα if n− nα < i 6 n,

(3.7)

‖V 2(Xni)− 1‖p 6

∣
∣
∣
∣

0 if i 6 n− nα,

Ci(α−1)(1+1/2p)(1 +Ki)
1/p + Ci(3α−3)/2Ki otherwise.

Proof of Lemma 3.2. Inequality (3.5) is obvious for i 6 n − nα. Otherwise, from
the definition (3.1), we know that

E[X2
ni] = 1 +

1

2
P[Sn,i−1 ∈ I+ni]−

1

2
P[Sn,i−1 ∈ I−ni],

where we write

(3.8) I+ni = [λni, 2λni] and I−ni = [−2λni,−λni].
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The random variable Sn,i−1/s(Xn,i−1) is approximately Gaussian, up to an error
controlled by δ(i− 1). More precisely,

∣
∣
∣
∣
∣
P[Sn,i−1 ∈ I+ni]−

∫

I+

ni
/s(Xn,i−1)

dΦ

∣
∣
∣
∣
∣
6 2δ(i− 1).

We obtain (3.5) using the fact that
∫

I+

ni
/s(Xn,i−1)

dΦ =

∫

I−

ni
/s(Xn,i−1)

dΦ.

As a by-product, we also learn that

∣
∣s2(Xni)− i

∣
∣ 6

∣
∣
∣
∣

0 if i 6 n− nα,
2
∑

n−nα<j6i δ(j − 1) if n− nα < i 6 n.

Recalling that α < 1, we obtain (3.6) noting that, for n− nα < i 6 n,
∑

n−nα<j6i

δ(j − 1) 6 nα(n− nα)(α−1)/2Ki.

In particular, it follows that

(3.9) s2(Xni) = i(1 + o(1)).

Turning now to (3.7), ‖V 2(Xni)− 1‖p is clearly equal to 0 for i 6 n− nα, so let us
assume the contrary. We have:

‖V 2(Xni)− 1‖p = s−2(Xni)

∥
∥
∥
∥
∥
∥

i∑

j=1

E[X2
nj |Fn,j−1]− s2(Xni)

∥
∥
∥
∥
∥
∥
p

6
1

s2(Xni)

i∑

j=1

∥
∥E[X2

nj |Fn,j−1]− 1
∥
∥
p
+

∣
∣s2(Xni)− i

∣
∣

s2(Xni)

6
1

2s2(Xni)

∑

n−nα<j6i

(
P[Sn,j−1 ∈ I+nj ∪ I−nj ]

)1/p
+

∣
∣s2(Xni)− i

∣
∣

s2(Xni)
.(3.10)

We consider the two terms in (3.10) separately. First, by the definition of δ, we
know that

∣
∣
∣
∣
∣
P[Sn,j−1 ∈ I+nj ∪ I−nj ]−

∫

(I+

nj
∪I−

nj
)/s(Xn,j−1)

dΦ

∣
∣
∣
∣
∣
6 2δ(j − 1).

Equation (3.9) implies that, uniformly over j > n− nα,
∫

(I+

nj
∪I−

nj
)/s(Xn,j−1)

dΦ = (2π)−1/2 2λnj

s(Xn,j−1)
(1 + o(1)) 6 Cn(α−1)/2,

so the first term of (3.10) is bounded by

C

i

∑

n−nα<j6i

(n(α−1)/2 + 2δ(j − 1))1/p

6
C

i

∑

n−nα<j6i

(n(α−1)/2 + 2(n− nα)(α−1)/2Ki)
1/p

6 Ci(α−1)(1+1/2p)(1 +Ki)
1/p.

(3.11)

The second term in (3.10) is controlled by (3.6), and we obtain inequality (3.7). �
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Proof of Proposition 3.1. Applying Theorem 1.5 with the information given by
Lemma 3.2, we obtain that, up to a multiplicative constant that does not depend
on n and i 6 n, D(Xni) is bounded by:

(3.12)
log(i)√

i
+ i(α−1)/2(1 +Ki)

1/(2p+1) + i−3(1−α)p/(4p+2)K
p/(2p+1)
i + i−p/(2p+1).

The first term can be disregarded, as it is dominated by i−p/(2p+1). Note also that,
as p > 1, we have

3(1− α)p

4p+ 2
>

1− α

2
,

and as α > 1/2 > 1/(2p+ 1), we also have

p

2p+ 1
>

1− α

2
.

Multiplying (3.12) by i(1−α)/2, we thus obtain

Ki 6 C(1 +Ki)
1/(2p+1) + CK

p/(2p+1)
i ,

where we recall that the constant C does not depend on i. Observing that the set
{x > 0 : x 6 C(1 + x)1/(2p+1) + Cxp/(2p+1)} is bounded, we obtain that Ki is a
bounded sequence, so (3.4) is proved. The relation (3.3) then follows from (3.4)
and (3.7). �

Proposition 3.3. We have

lim sup
i→+∞

i(1−α)/2 δ(i) > 0.

Proof. Our aim is to contradict, by reductio ad absurdum, the claim that

(3.13) δ(i) = o
(

i(α−1)/2
)

(i → +∞).

Let Z1, . . . , Zn be independent standard Gaussian random variables, and ξn be an
independent centred Gaussian random variable with variance κ2

n, all being inde-
pendent of Xn. Assuming (3.13), we will contradict the fact that

(3.14) D(Xn) = o
(

n(α−1)/2
)

.

Let Wni =
∑n

j=i+1 Zj + ξn. Noting that n−1/2
∑n

j=1 Zj is a standard Gaussian

random variable, and with the help of [Bo82, Lemma 1], we learn that
∣
∣
∣
∣
P[Wn0 6 0]− 1

2

∣
∣
∣
∣
6 C

κn√
n
,

and similarly,
∣
∣
∣
∣
P[Snn + ξn 6 0]− 1

2

∣
∣
∣
∣
6 C

(

D(Xn) +
κn

s(Xn)

)

.

Combining these two observations with (3.6), we thus obtain that

(3.15) P[Snn + ξn 6 0]− P[Wn0 6 0] 6 C

(

D(Xn) +
κn√
n

)

.

As κn = n1/4 and α > 1/2, we know that κn/
√
n = o(n(α−1)/2). We decompose

the l.h.s. of (3.15) as

n∑

i=1

P[Sn,i−1 +Xni +Wni 6 0]− P[Sn,i−1 + Zi +Wni 6 0].
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The random variable Wni is Gaussian with variance λ2
ni = n− i+κ2

n, and indepen-
dent of Xn, so the sum can be rewritten as

(3.16)

n∑

i=1

E

[

Φ

(

−Sn,i−1 +Xni

λni

)

− Φ

(

−Sn,i−1 + Zi

λni

)]

,

Let ϕ(x) = (2π)−1/2 e−x2/2. We can replace

(3.17) Φ

(

−Sn,i−1 +Xni

λni

)

by its Taylor expansion

(3.18) Φ

(

−Sn,i−1

λni

)

− Xni

λni
ϕ

(

−Sn,i−1

λni

)

+
X2

ni

2λ2
ni

ϕ′

(

−Sn,i−1

λni

)

,

up to an error that is bounded by

(3.19)
|Xni|3
6λ3

ni

‖ϕ′′‖∞.

Step 1. We show that the error term (3.19), after integration and summation over i,
is o(n(α−1)/2). As Xni is uniformly bounded, it suffices to show that

(3.20)
n∑

i=1

1

λ3
ni

= o
(

n(α−1)/2
)

.

The sum above equals

n∑

i=1

1

(n− i+ κ2
n)

3/2
6 n−1/2

∫ (κ2
n+n)/n

(κ2
n−1)/n

x−3/2 dx = O
(
κ−1
n

)
.

As we defined κn to be n1/4 and α > 1/2, equation (3.20) is proved.

Step 2. For the second part of the summands in (3.16), the same holds with Xni

replaced by Zi, and similarly,

(3.21)

n∑

i=1

E[|Zi|3]
λ3
ni

= o
(

n(α−1)/2
)

.

Step 3. Combining the results of the two previous steps, we know that up to a term
of order o

(
n(α−1)/2

)
, the sum in (3.16) can be replaced by

n∑

i=1

E

[
Zi −Xni

λni
ϕ

(

−Sn,i−1

λni

)

+
X2

ni − Z2
i

2λ2
ni

ϕ′

(

−Sn,i−1

λni

)]

.

Conditionally on Sn,i−1, both Zi and Xni are centred random variables, so the first
part of the summands vanishes, and there remains only
(3.22)

n∑

i=1

E

[
X2

ni − Z2
i

2λ2
ni

ϕ′

(

−Sn,i−1

λni

)]

=

n∑

i=1

E

[
E[X2

ni − 1 | Sn,i−1]

2λ2
ni

ϕ′

(

−Sn,i−1

λni

)]

.

From the definition of Xni, we learn that E[X2
ni − 1 | Sn,i−1] is 0 if i 6 n−nα, and

otherwise equals
∣
∣
∣
∣
∣
∣

1/2 if Sn,i−1 ∈ I+ni,
−1/2 if Sn,i−1 ∈ I−ni,
0 otherwise,
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where I+ni and I−ni were defined in (3.8). As a consequence, it is clear that the
contribution of each summand in the r.h.s. of (3.22) is positive. Moreover, for
i > n− nα and on the event Sn,i−1 ∈ I−ni ∪ I+ni, we have

E[X2
ni − 1 | Sn,i−1] ϕ

′

(

−Sn,i−1

λni

)

>
1

2
inf
[1,2]

|ϕ′| > 0.

Let us assume temporarily that, uniformly over n and i such that n − nα < i 6
n− (nα)/2, we have

(3.23) P[Sn,i−1 ∈ I−ni ∪ I+ni] > C
λni√
n
.

Then the sum in the r.h.s. of (3.22) is, up to a constant, bounded from below by

∑

n−nα<i6n−(nα)/2

1

λni
√
n
> Cnα 1

nα/2
√
n
= Cn(α−1)/2.

This contradicts (3.14) via inequality (3.15), and thus finishes the proof of the
Proposition.

Step 4. There remains to show (3.23), for n− nα < i 6 n− (nα)/2. We have

∣
∣
∣
∣
∣
P[Sn,i−1 ∈ I+ni]−

∫

I+

ni
/s(Xn,i−1)

dΦ

∣
∣
∣
∣
∣
6 2δ(i− 1).

Using inequality (3.6), it follows that

∫

I+

ni
/s(Xn,i−1)

dΦ > C
λni√
n
.

As we choose i inside [n−nα, n−(nα)/2], λni is larger than Cnα/2, while δ(i−1) =
o
(
i(α−1)/2

)
by assumption (3.13). This proves (3.23). �

Remark. To match the example proposed in [Bo82], one should choose instead
α = 1/3 and κn = 1 in the definition of the sequences (Xn). In this case, Propo-
sitions 3.1 and 3.3 are still true. While the proof of Proposition 3.1 can be kept
unchanged, Proposition 3.3 requires a more subtle analysis. First, one needs to
choose ξn of variance κ2

n 6= 1, thus requiring to change the λni appearing in (3.16)

by, say, λni =
√

n− i+ κ2
n. The sequence κ2

n should grow to infinity with n, while
remaining o(nα). In step 1, bounding the difference between (3.17) and (3.18) by
(3.19) is too crude. Instead, one can bound it by

C

λ
3

ni

Ψ

(

−Sn,i−1

λni

)

,

where Ψ(x) = sup|y|61 |ϕ′′(x + y)|. One can then appeal to [Bo82, Lemma 2] and
get through this step, using the fact that κn tends to infinity. Step 2 is similar,
with some additional care required by the fact that Zi is unbounded. The rest of
the proof then applies, taking care of the discrepancy between λni and λni when
necessary.
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