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Abstract. We study discrete linear divergence-form operators with random
coefficients, also known as random conductance models. We assume that
the conductances are bounded, independent and stationary; the law of a
conductance may depend on the orientation of the associated edge. We give a
simple necessary and sufficient condition for the relaxation of the environment
seen by the particle to be diffusive, in the sense of every polynomial moment.
As a consequence, we derive polynomial moment estimates on the corrector.

Résumé. Nous étudions des opérateurs linéaires discrets sous forme divergence
à coefficients aléatoires, aussi appelés modèles de conductances aléatoires. Nous
supposons que les conductances sont bornées, indépendantes et stationnaires; la
loi d’une conductance peut dépendre de l’orientation de l’arète associée. Nous
donnons une condition nécessaire et suffisante simple pour que la relaxation de
l’environnement vu par la particule soit diffusive, au sens de tous les moments
polynomiaux. Comme conséquence, nous estimons les moments polynomiaux
du correcteur.
MSC 2010: 35B27, 35K65, 60K37.
Keywords: Quantitative homogenization, environment viewed by the particle,
mixing of Markov chains, corrector estimate.

1. Introduction

We study the homogenization of discrete divergence-form operators

(1.1) −∇ · a∇f(x) :=
∑
y∼x

a((x, y))(f(y)− f(x)),

where a = (a(e))e∈B is a family of independent random variables indexed by the
nearest-neighbor, unoriented edges of the graph Zd, d > 2. We assume that the
coefficients a(e) take values in [0, 1], that the law of a(e) depends only on the
orientation of the edge e, and that none of these d probability laws is a Dirac mass
at 0. In this setting, we give a necessary and sufficient condition for the relaxation
of the “environment viewed by the particle” to be diffusive in the sense of every
polynomial moment. As the name implies, this process can be described in terms
of the random walk with generator given by (1.1). We will rather define the flow
of its semigroup directly by means of the PDE (1.6) below. Denoting by ut the
solution to (1.6) with bounded, local and centered initial condition g, we show that
the property

(1.2) for every p > 1, sup
t>1

t
d
2 〈|ut|2p〉

1
p <∞

holds as soon as
(1.3) for every q > 1, 〈

(
sup

16i6d
a(ei)

)−q〉 <∞,
where (e1, . . . , ed) is the canonical basis of Zd, and 〈 · 〉 denotes the expectation with
respect to the law of {a(e)}. Moreover, if (1.2) holds for a single “generic” bounded
and local initial datum g, then (1.3) holds as well. Finally, we show that if the
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initial condition g in (1.6) is the divergence of a local bounded function and if (1.3)
holds, then (1.2) can be improved to

(1.4) for every p > 1 and ε > 0, sup
t>1

t
d
2 +1−ε 〈|ut|2p〉

1
p <∞.

A rather degenerate example of environment satisfying (1.3) can be constructed by
letting a(e) be i.i.d. Bernoulli random variables in (d − 1) directions, and letting
a(e) = (1 + Ee)−1 with (Ee) i.i.d. exponential random variables in the remaining
direction.

As shown in [20, 13] and recalled below, these estimates imply a range of other
quantitative homogenization results, including bounds on the corrector. They can
also be used to prove quenched central limit theorems for the associated random
walk.

Under the condition that the coefficients a(e) are uniformly bounded away from 0
and infinity, the estimate (1.2) and the stronger estimate (1.4) with ε = 0 were
proved in [13]. We refer to [6, 14, 15, 5] for more recent developments under this
assumption. Bounds on the corrector under assumptions similar to ours and for
d > 3 were obtained in [17]. The case of coefficients that are bounded away from 0
but not from infinity was considered in [20, 10].

Our approach is inspired by the strategy of [13], which rests on quenched heat
kernel bounds. In the context of degenerate environments, quenched diffusive bounds
on the heat kernel are false in general. However, under the condition (1.3), we will
be able to control the anomalous behavior of the heat kernel, in the sense of every
polynomial moment, by exploiting the method presented in [21]. We then show that
these weaker bounds are sufficient to imply (1.2) and (1.4).

Our long-term goal is to develop a comparable strategy in the context of interacting
particle systems, in particular to study the relaxation of the environment viewed
by a tagged particle in the symmetric exclusion process. We expect the results
of this paper to be a first step in this direction. Loosely speaking, in the present
work, we leverage on the existence of one “good direction” where conductances are
well-behaved. For the exclusion process, we hope to benefit from the good behavior
of the model in the time direction, as illustrated for instance by [21, Lemma 5.3].

The results we present here shed light on the associated process of the random
walk among random conductances. This is the Markov process with infinitesimal
generator given by (1.1). In this view, the corrector provides us with harmonic
coordinates that turn the walk into a martingale. As is well-known, these coordinates
allow to show an annealed invariance principle for the random walk, under very
general conditions on the conductances [16, 11]. The qualifier “annealed” indicates
that convergence in law is only known if one averages over the environment as well
as on the trajectories of the walk. When the conductances are uniformly elliptic,
it was quickly realized [22] that the statement can be improved to a quenched
invariance principle: that is to say, one that holds for almost every realization of
the environment. What needs to be shown is that the corrector, evaluated at the
position of the random walk, is of lower order compared with the position of the walk
itself, with probability one with respect to the environment. By general arguments,
one only knows that the corrector is sublinear in an L2-averaged sense, and this is
not sufficient in itself to guarantee a quenched result. One possibility to overcome
this difficulty is to show that the walk is sufficiently “spread out” (in the sense that
it satisfies heat kernel estimates), so that the averaged information on the corrector
becomes sufficient to conclude. This was the route explored in a majority of papers
on the subject [22, 23, 19, 8, 9, 18, 2]; see however [12, 7, 4, 3] for approaches more
similar to ours. The results we derive here give much more precise information than
these earlier works, since Corollary 1.2 below implies that the corrector is not only
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sublinear, but in fact grows slower than any power of the distance, with probability
one.

1.1. Notation and main result. We say that x, y ∈ Zd are neighbors, and write
x ∼ y, when |x− y| = 1. This endows Zd with a graph structure, so that we may
introduce the associated set of unoriented edges B. Throughout the paper, we will
typically denote points of Zd by x, y, z, and edges in B by b, e. For a given edge e ∈ B,
we write e and e to denote its two endpoints, with the convention that e− e = ei
for some i ∈ {1, . . . , d}, where we recall that (e1, . . . , ed) is the canonical basis of
Zd. We identify the vector ei ∈ Zd with the edge (0, ei), for each i ∈ {1, . . . d}.

The space of “environments” we consider is Ω := [0, 1]B. The group Zd naturally
acts by translations on Ω in the following way: for every x ∈ Zd and a = (a(e))e∈B ∈
Ω, we define

(1.5) τxa := (a(x+ e))e∈B,

where for e ∈ B, we write x + e := (x + e, x + e). We consider a random a =
(a(e))e∈B ∈ Ω whose law we denote by 〈 · 〉. We assume the family of random
variables a = (a(e)) to be independent and stationary, i.e. for every x ∈ Zd, the
random variables τxa and a have the same law. In other words, the random variables
(a(e)) are independent, and the law of a(e) only depends on the orientation of the
edge e. We assume that for every e, P[a(e) = 0] < 1, since otherwise the model
would truly be defined on a lower-dimensional space.

For a random variable ξ : Ω→ R and a fixed edge b ∈ B, we define

Dbξ = Dbξ(a) := ξ(τba)− ξ(τba),

and simply write Dξ for the d-dimensional random vector defined as

(Dξ)i := Deiξ.

We observe that for every p ∈ [1,+∞] the operator D : Lp(Ω)→ Lp(Ω)d is bounded
and that its adjoint in L2(Ω), which we denote by D∗ : L2(Ω)d → L2(Ω), is defined
as

D∗ξ :=
d∑
i=1

D∗i ξi(a), where D∗i ξi := ξ(τ−eia)− ξ(a).

Given a random variable g ∈ L1(Ω), with 〈g〉 = 0, our goal is to understand the
relaxation to equilibrium of u : R+ × Ω→ R, solution of

(1.6)
{

∂tut +D∗aDut = 0
u0 = g,

where

D∗aDut(a) :=
d∑
i=1

D∗i (a(ei)Diut(a)) =
∑
e30

a(e)Deut(a).

Whenever no confusion occurs, we write ut instead of ut(a). For N ∈ N, we say
that a function g : Ω → R is local with support of size N if g depends only on a
finite number of conductances {a(e(1)), . . . , a(e(N))}. Here is our main result.

Theorem 1.1. Under the moment condition (1.3), the following statements hold.
(a) For every p ∈ [1,∞), there exists a constant C = C(d, p) < +∞ such that

if g : Ω→ R is local with support of size N , bounded and centered, then〈
|ut|2p

〉1/p
6 CN2||g||2L∞(Ω) t

− d2 .(1.7)
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(b) For every p ∈ [1,∞) and ε > 0, there exists a constant C = C(d, p, ε) <∞
such that if f : Ω→ R is local with support of size N and bounded, and if
g = D∗f , then〈

|ut|2p
〉1/p

6 CN2||f ||2L∞(Ω) t
−( d2 +1−ε).(1.8)

1.2. Consequences of the main result. As was shown in [20, Section 9] and
[13, Section 6], Theorem 1.1 implies a host of other results of interest in stochastic
homogenization. In particular, estimates on the corrector can be derived, by
integration in time, from the relaxation to equilibrium of the solution to (1.6) with
g = D∗(ae).

Corollary 1.2. Assume that the moment condition (1.3) holds, and let e ∈ B. If
d > 2, then there exists φe ∈ L2(Ω) solution to the equation

D∗aDφe = −D∗ae.(1.9)

Moreover, φe is in Lp(Ω) for every p ∈ [1,∞).

We refer to [13, Proposition 4] for the proofs of these results. As another example,
we can estimate the corrector φe,µ with massive term µ > 0, i.e. the solution of

µφe,µ +D∗aDφe,µ = −D∗ae .

By [13, Proposition 5], we obtain that for every ε > 0 and p ∈ [1,∞),

sup
µ>0
〈|φe,µ|p〉

1
p <∞.

1.3. On the necessity of the moment condition. We now explain why our
assumption (1.3) on the law of (a(e)) is necessary in order to have the optimal
relaxation decay (1.2). In this subsection we introduce the notation . for 6 C
where the constant C only depends on the dimension d of the lattice Zd.

If (1.3) does not hold, then we can find p0 > 1 and a sequence {εp0,n}n∈N,
εp0,n ↓ 0 such that for every n ∈ N,

P( sup
i=1,...,d

a(ei) 6 εp0,n) = Πd
i=1Pi(a(ei) 6 εp0,n) > εp0

p0,n.(1.10)

We show that the solution ut of

(1.11)
{

∂tut +D∗aDut = 0
u0 = g,

with g = a(ẽ)− 〈a(ẽ)〉 for a fixed ẽ such that 0 /∈ ẽ, does not satisfy the bound (1.2).
We make this choice of initial datum g for convenience, but as will be seen shortly,
this is inessential. From (1.6), we may bound by stationarity

|∂tut| .
(
sup
e30

a(e)
)
||ut||L∞ =

(
sup

i=1,...,d
a(±ei)

)
||ut||L∞ ,

and hence, by the maximum principle,

|∂tut| .
(

sup
i=1,...,d

a(±ei)
)
||g||L∞ .

Therefore, if
(
supi=1,...,d a(±ei)

)
6 1

t2 , we get

|ut| > |g| −
||g||L∞(Ω)

t
,(1.12)
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and thus

〈|ut|2q〉 > 〈|ut|2q1supi a(±ei)6 1
t2
〉 = 〈 |ut|2q

∣∣ sup
i
a(±ei) 6

1
t2
〉P(sup

i
a(±ei) 6

1
t2

)

(1.12)
& 〈

(
|g| −

||g||L∞(Ω)

t

)2q ∣∣ sup
i
a(±ei) 6

1
t2
〉P(sup

i
a(±ei) 6

1
t2

)

a(ẽ)⊥a(±ei)= 〈
(
|g| −

||g||L∞(Ω)

t

)2q 〉P(sup
i
a(±ei) 6

1
t2

)

= 〈
(
|g| −

||g||L∞(Ω)

t

)2q 〉P(sup
i
a(ei) 6

1
t2
, sup

i
a(−ei) 6

1
t2

)

= 〈
(
|g| −

||g||L∞(Ω)

t

)2q 〉(P(sup
i
a(ei) 6

1
t2

)
)2
,(1.13)

where in the last equality we use that supi a(ei) and supi a(−ei) are independent
and have the same law. For {tn}n∈N with t2n = 1

εp0,n
we may apply (1.10) and

estimate for every n ∈ N

〈|utn |2q〉
1
q & 〈

(
|g| −

||g||L∞(Ω)
tn
)2q 〉 1

q t
−4 p0

q
n &

(
〈|g|2q〉

1
q −
||g||2L∞(Ω)

t2n

)
t
−4 p0

q
n .

Thus, for any q > 8p0
d we contradict (1.2).

1.4. Organisation of the paper. In the rest of the paper, we assume that the
moment condition (1.3) holds. We derive the necessary heat kernel bounds in
Section 2, and proceed to prove Theorem 1.1 in Section 3.

2. Heat kernel bounds

We say that a random field ζ : Ω × Zd → R is stationary if for every x ∈ Zd,
we have ζ(a, x) = ζ(τxa, 0). Conversely, given a random variable ξ : Ω → R,
we define its stationary extension ξ̄ : Ω × Zd → R as the random field given by
ξ̄(a, x) := ξ(τxa). If the function u : R+ × Ω→ R solves (1.6), then its stationary
extension ūt(x, a) = ut(τxa) is a solution in R+ × Zd of the parabolic PDE{

∂tūt +∇∗a∇ūt = 0
ū0 = ḡ,

(2.1)

with ∇ the spacial discrete gradient defined, for an edge b ∈ B and a random field ζ,
as

∇ζ(a, b) := ζ(a, b)− ζ(a, b),
a∇ζ(a, b) := a(b)∇ζ(a, b),

and ∇∗ the adjoint of ∇ in `2(Zd).

Let pt = pt(a, x, y) be the parabolic Green function associated to the operator
∂t +∇∗a∇, i.e. for every y ∈ Zd the unique bounded solution in Zd of{

∂tpt(a, ·, y) +∇∗a∇pt(a, ·, y) = 0
p0(·, y) = 1{y}(·),

(2.2)

with 1y being the indicator function defined for x ∈ Zd

1y(x) =
{

1 if x = y

0 otherwise.
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For every α ∈ R, x ∈ Rd and t > 0, we write

ωα(t, x) :=
( |x|2
t+ 1 + 1)α2 .(2.3)

The goal of this section is to show the heat kernel upper bound summarized in
the following Lemma 2.1, which we then lift to an estimate on the gradient of the
heat kernel in Lemma 2.2.

Lemma 2.1. Let pt(x, y) = pt(a, x, y) be as in (2.2). There exists a random variable
X such that for all p ∈ [1,+∞),

〈|X |p〉 6 C(p) < +∞,(2.4)

and

pt(0, 0) 6 X
td/2

(2.5)

or, equivalently ∑
x∈Zd

pt/2(x, 0)2 6
X
td/2

.(2.6)

Lemma 2.2. For every α > d
2 + 1, there exists C = C(α, d) < +∞ such that for

every t ∈ R+ it holds

ωα−1(t, x)pt(x, 0) 6 C

√
X (0)X (x)

t
d
2

,(2.7) ∑
b∈Bd

ω2
α(b, t)|

√
a∇pt(b, 0)|2 6 C Yt

(1 + t) d2 +1
,(2.8)

where X (x) := X (τxa) is the stationary extension of the random variable X defined
in Lemma 2.1 and

Yt := X 3
2 (1 + t)−

d
2
∑
z

ω−2
d
2 +2(z, t)

√
X (z).(2.9)

Moreover, for every p ∈ [1,+∞) it holds

〈| sup
t>0
Yt|p〉

1
p 6 C(p, d) < +∞.(2.10)

The proof of Lemma 2.1 consists in showing that the environments we consider
are “w-moderate” in the sense defined in [21].

Lemma 2.3. There exists a family of non-negative random variables {w(e)}e∈B
and a family of nearest-neighbor paths {π(e)}e∈B such that the following properties
hold:

(i) For every e ∈ Bd and q ∈ [1,+∞)

〈|w(e)|−q〉 6 C(d, q) < +∞;(2.11)

(ii) Let ξ : Ω→ R be a random variable and ζ : Ω×Zd → R a random field; for
every e ∈ Bd, the path π(e) connects the two endpoints of e, it is such that
its length |π(e)| satisfies, for every q ∈ [1,+∞),

〈|π(e)|q〉 6 C(d, q) < +∞,(2.12)
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and it holds
w(e)|Deξ(a)|2 6

∑
b∈π(e)

a(b)|Dbξ(a)|2,(2.13)

w(e)|∇ζ(a, e)|2 6
∑
b∈π(e)

a(b)|∇ζ(a, b)|2.(2.14)

(iii) Both w(·) and π(·) are stationary;

Proof. In this proof the notation . stands for 6 C with C = C(d, q). For every
edge e ∈ B, we define

w(e)−1 := inf{
∑
b∈π(e)

a−1(b) : π(e) connects the two endpoints of e}.(2.15)

Since a−1 is bounded from below, there exists a path that achieves the infimum above.
We choose one according to a fixed, deterministic tie-breaking rule, and denote it by
π(e). With this definition of weights and paths, the point (iii) immediately follows
by stationarity of a. We also have

|Deξ|2 = |
∑
b∈π(e)

a(b)− 1
2 a(b) 1

2Dbξ|2

6
( ∑
b∈π(e)

a(b)−1)( ∑
b∈π(e)

a(b)|Dbξ|2
) (2.15)= w(e)−1( ∑

b∈π(e)

a(b)|Dbξ|2
)
,

i.e. inequality (2.13). Note that by definition of ∇, an analogous calculation yields
(2.14). Moreover, since a−1 > 1, we have

|π(e)| 6
∑
b∈π(e)

a(b)−1,

and thanks to (2.15), the bound (2.12) is directly implied by (2.11). In order to
show this last bound, we want to argue that for every q ∈ [1,+∞) and x� 1

P(w−1(e) > x) . x−q.(2.16)

We proceed in the following way: Thanks to assumption (1.3) and independence, it
holds for y ∈ R to be fixed below that

P((sup
i
a(ei))−1 > y) =

d∏
i=1

P(a(ei)−1 > y) . y−2qd,

and therefore there exists a (random) i = i(y) such that
P(a(ei)−1 > y) . y−2q.(2.17)

The main idea is to explicitly construct a path π̃(e), connecting the two endpoints
of e for which we have some control on the quantity P(

∑
b∈π̃(e) a(b)−1 > x): From

that, thanks to definition (2.15), we also obtain the same bound for (2.16). Without
loss of generality, let us assume that e = (z, z + e1) for some z ∈ Zd. Therefore, if
i(y) = 1 we just choose π̃(e) = e and get by stationarity that for every x > y

P(
∑
b∈π̃(e)

a(b)−1 > x) = P(a(e)−1 > x)
(2.17)
. y−2q,(2.18)

i.e. the bound (2.11). If otherwise i 6= 1, then by stationarity and our assumption
on the random variables {a(b)}b∈B to be non-degenerate, we may fix a ε > 0
(independent on i and x) and consider

K := inf{k > 0 : a((z + kei, z + kei + e1) > ε},
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which satisfies

P(K > k) 6 exp (−ck),(2.19)

for a positive constant c = c(ε). Therefore, we estimate for any x > 2
ε

P(w−1(e) > x) = P(w−1(e) > x , K > k) + P(w−1(e) > x , K 6 k).(2.20)

We control the first term on the r.h.s of (2.20) by

P(w−1(e) > x , K > k)

= P(w−1(e) > x
∣∣ K > k) P(K > k)

(2.19)
6 exp (−ck).(2.21)

For the second term the idea is two observe that, if K 6 k, then we might consider
as path

π̃(e) := {b̃1, ..., b̃k, ẽ, b̃k+1, ..., b̃2k}
the one starting from z, moving k steps in direction ei, then moving in direction e1
and finally going back with other k steps to x+ e1. Therefore,

P(w−1(e) > x , K 6 k) 6 P(
∑
b∈π̃(e)

a−1(b) > x , K 6 k),

and since by construction

|π̃(e)| = 2k + 1 and
∑
b∈π̃(e)

a(b)−1 6 ε−1
2k∑
j=1

a(b̃j)−1,

we may control

P(w−1(e) > x , K 6 k)
6 P( ∃ j ∈ {1, ..., 2k} such that a(b̃j) > x

4k , K 6 k).

Independence and then stationarity hence yield

P(w−1(e) > x , K 6 k) 6 2k P(a(ei)−1 >
x

4k ).

Fixing now k = xη with η << 1, we get

P(w−1(e) > x , K 6 xη) 6 xη P(a(ei)−1 >
x1−η

4 ),

so that if we choose y = x1−η

4 < x in (2.17), this turns into

P(w−1(e) > x , K 6 xη) . x−q,

and (2.21) and (2.18) respectively into

P(w−1(e) > x , K > xη) 6 exp (−cxη) . x−q,

P(a(e)−1 > x) = P(a(e)−1 > x) . x−2(1−η)q . x−q

By wrapping up the previous three inequalities we conclude (2.16) and hence
(2.11). �

Lemma 2.4. For every b ∈ B, let

π−1(b) := {e ∈ B : b ∈ π(e)}.(2.22)

Then, for every p ∈ [1,+∞)

(2.23) 〈|π−1(b)|p〉 6 C(d, p) < +∞.
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Proof. For a fixed edge b ∈ B and any p ∈ [1,+∞), let us consider
P(|π−1(b)| > k) = P(∃ e1, ..., ek : ∀i b ∈ π(ei) ).

We observe that if there are ∼ k edges whose optimal path passes through b, then
there must be and edge e with |b− e| > k 1

d . Therefore,

P(|π−1(b)| > k) 6 P(∃ ẽ with |ẽ− b| > k 1
d : ẽ ∈ π(b) ).

The path π(ẽ) being connected, allows us to estimate

P(|π−1(b)| > k) 6 P(∃ ẽ with |ẽ− b| > k 1
d : |π(ẽ)| > |b− ẽ| )

6
∑

e:|b−e|>k
1
d

P(|π(e)| > |b− e|) '
+∞∑
n∼k

1
d

∑
|e−b|=n

P(|π(e)| > n).

Chebyshev’s inequality yields for every q ∈ [1; +∞)

P(|π−1(b)| > k) 6
+∞∑
n∼k

1
d

∑
|e−b|=n

n−q〈|π(e)|q〉
(2.12)−(iii)
6 C(d, q)

+∞∑
n∼k

1
d

nd−1−q.

We may now choose q big enough, e.g. q = 2(p+ 1)d, to conclude

P(|π−1(b)| > k) 6 C(d, 2(p+ 1)d)k−(2p+1),

which implies inequality (2.23) for every p ∈ [1,+∞). �

We now show the following general result on stationary random fields.

Lemma 2.5. Let ζ : Ω × Zd → R be a stationary random field. Then for every
p ∈ [1,+∞), edges e0, b0 ∈ B and δ > 0 there exists a C = C(d, p, δ) < +∞ such
that

〈|
∑

b∈π(e0)

ζ(a, b)|p〉
1
p 6 C〈|ζ(a, 0)|p(1+δ)〉

1
p(1+δ) ,(2.24)

〈|
∑

e∈π−1(b0)

ζ(a, e)|p〉
1
p 6 C〈|ζ(a, 0)|p(1+δ)〉

1
p(1+δ) ,(2.25)

whenever the r.h.s. of (2.24)-(2.25) is finite.

Proof. For the sake of simplicity, we skip the argument a in ζ and write . instead of
6 C, with C depending on d, p and δ. We start with (2.25): Let us fix p ∈ [1,+∞)
and δ > 0. Since by (2.23) we have 〈·〉-almost surely that |π−1(z)| < +∞, we may
write
〈|

∑
e∈π−1(b0)

ζ(e)|p〉

=
+∞∑
n=0

P( max
e∈π−1(b0)

|e− b0| = n) 〈|
∑

e∈π−1(b0)

ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉

.
+∞∑
n=0

P( max
e∈π−1(b0)

|e− b0| = n)〈|
∑

e∈Bn+1(b0)

ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉,

and by Hölder’s inequality in e

〈|
∑

e∈π−1(b0)

ζ(e)|p〉

.
+∞∑
n=0

(n+ 1)d(p−1)P( max
e∈π−1(b0)

|e− b0| = n)
∑

e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉.
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We now decompose the second term in the r.h.s. of the previous inequality as

P( max
e∈π−1(b0)

|e− b0| = n) = P( max
e∈π−1(b0)

|e− b0| = n)
δ

1+δ P( max
e∈π−1(b0)

|e− b0| = n)
1

1+δ ,

and thus rewrite

〈|
∑

e∈π−1(b0)

ζ(e)|p〉

.
+∞∑
n=0

(n+ 1)d(p−1)P( max
e∈π−1(b0)

|e− b0| = n)
δ

1+δ

× P( max
e∈π−1(b0)

|e− b0| = n)
1

1+δ
∑

e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉.

Therefore, an application of Hölder’s inequality with exponents (1 + 2δ, 1+2δ
2δ ) in n

yields

(2.26)

〈|
∑

e∈π−1(b0)

ζ(e)|p〉 .
(+∞∑
n=0

(n+ 1)d(p−1) 1+2δ
2δ P( max

e∈π−1(b0)
|e− b0| = n)

1+2δ
2(1+δ)

) 2δ
1+2δ

×
(+∞∑
n=0

P( max
e∈π−1(b0)

|e−b0| = n)1+ δ
1+δ
( ∑
e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e−b0| = n〉
)1+2δ

) 1
1+2δ

.

We now observe that the first term on the r.h.s. of (2.26) may be bounded by(+∞∑
n=0

(n+ 1)d(p−1) 1+2δ
2δ P( max

e∈π−1(b0)
|e− b0| = n)

1+2δ
2(1+δ)

) 2δ
1+2δ

. 1.(2.27)

This follows after noting that since

P( max
e∈π−1(b0)

|e− b0| = n) 6 P(∃ ẽ with |ẽ− b| > n : |π(e)| > n),

by the same reasoning of Lemma 2.4 we have for every M > 1

P( max
e∈π−1(b0)

|e− b0| = n) 6 C(d,M)n−M ,(2.28)

and thus also (2.27) for M large enough. We turn to the second term on the r.h.s.
of (2.26) and claim that

+∞∑
n=0

P( max
e∈π−1(b0)

|e− b0| = n)1+ δ
1+δ
( ∑
e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉
)1+2δ

. 〈|ζ(0)|p(1+2δ)〉.(2.29)

Indeed, we write
+∞∑
n=0

P( max
e∈π−1(b0)

|e− b0| = n)1+ δ
1+δ
( ∑
e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉
)1+2δ

=
∑
n

∑
m

1n(m)P( max
e∈π−1(b0)

|e− b0| = m)
δ

1+δ

× P( max
e∈π−1(b0)

|e− b0| = n)
( ∑
e∈Bm+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉
)1+2δ

,
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and by Hölder’s inequality first in the e-variable and then in 〈·〉
+∞∑
n=0

P( max
e∈π−1(b0)

|e− b0| = n)1+ δ
1+δ
( ∑
e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉
)1+2δ

6
∑
n

∑
m

1n(m)md 1+2δ
2δ P( max

e∈π−1(b0)
|e− b0| = m)

δ
1+δ

× P( max
e∈π−1(b0)

|e− b0| = n)
∑

e∈Bm+1(b0)

〈|ζ(e)|p(1+2δ)∣∣ max
e∈π−1(b0)

|e− b0| = n〉

6
∑
m

md 1+2δ
2δ P( max

e∈π−1(b0)
|e− b0| = m)

δ
1+δ

×
∑

e∈Bm+1(b0)

∑
n

P( max
e∈π−1(b0)

|e− b0| = n)〈|ζ(e)|p(1+2δ)∣∣ max
e∈π−1(b0)

|e− b0| = n〉

=
∑
m

md 1+2δ
2δ P( max

e∈π−1(b0)
|e− b0| = m)

δ
1+δ

∑
e∈Bm+1(b0)

〈|ζ(e)|p(1+2δ)〉.

Our assumption that ζ is stationary thus implies
+∞∑
n=0

P( max
e∈π−1(b0)

|e− b0| = n)1+ δ
1+δ
( ∑
e∈Bn+1(b0)

〈|ζ(e)|p
∣∣ max
e∈π−1(b0)

|e− b0| = n〉
)1+2δ

' 〈|ζ(0)|p(1+2δ)〉
∑
m

md(1+ 1+2δ
2δ )P( max

e∈π−1(b0)
|e− b0| = m)

δ
1+δ .

Reasoning as for (2.27), we conclude inequality (2.29). Inserting estimates (2.27)
and (2.29) in (2.26) yields inequality (2.25), after relabeling δ = 2δ.

We now prove (2.24) in an analogous way: Thanks to assumption (2.12), it holds
the identity

〈|
∑

e∈π−1(b0)

ζ(e)|p〉 =
+∞∑
n=1

P(|π(e0)| = n)〈|
∑

e∈π−1(b0)

ζ(e)|p
∣∣|π(e0)| = n〉.

We now reason exactly as in the argument for (2.25), this time relying directly on
(2.12) and on Chebyshev’s inequality to infer the analogous of (2.28), i.e. that for
every M > 1

P(|π(e0)| = n) 6 C(d,M)n−M .

�

Proof of Lemma 2.1. Thanks to Lemma 2.3, (ii) we may apply Theorem 3.2 of [21]
and obtain that there exist r > 0 and q > d such that

pt(0, 0) 6 t− d2
(

sup
r
r−d

∑
|e|6r

w−q(e)
)r
,

with w(e) defined in Lemma 2.3. It thus only remains to prove that

X :=
(

sup
r
r−d

∑
|e|6r

w−q(e)
)r

satisfies (2.4). This follows from Lemma 2.3, (i) and the maximal function estimate
([21], Corollary A.2 )

〈| sup
r
r−d

∑
|e|6r

w−q(e)|p〉
1
p 6 C(p)〈|w−q|p〉

1
p ,
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for every p ∈ (1,+∞]. Estimate (2.6) follows from (2.5) thanks to the identity

pt(0, 0) =
∑
z

p2
t
2
(x, 0).

This, thanks to the symmetry of pt, is in turn a particular case of

pt(x, 0) =
∑
z

ps(x, z)pt−s(z, 0),(2.30)

with x ∈ Zd and s ∈ (0, t). To show (2.30) it suffices to observe that since for every
s > 0 we have {

∂tps+t +∇∗a∇ps+t = 0 t > 0
ps(x, 0) = ps(x, 0),

then the representation formula implies the semigroup property

ps+t(x, 0) =
∑
z

pt(x, z)ps(z, 0),

which is equivalent to (2.30) if we relabel t = t+ s. �

Before proving Lemma 2.2, we state the following auxiliary result, whose proof
we postpone to the appendix.

Lemma 2.6. Let α > d
2 + 1 and let Z = Z(a) be a non-negative random variable

such that for every p ∈ [1,+∞)
〈|Z|p〉 6 C(p) < +∞.(2.31)

We then have
〈| sup
t>0

∑
z∈Zd

ω−2
α (z, t)Z(τza)|p〉 6 C(d, p, α) < +∞,(2.32)

where the weight ωα is defined as in (2.3).

Proof of Lemma 2.2. We prove Lemma 2.2 similarly to [13, Theorem 3]. We remark
that, in contrast with Theorem 3, we do not need to prove an optimal decay in
time for the weighted `2p-norm in space, and we replace inequality (173) by the
stochastic bound (2.6) of Lemma 2.1.
We start by observing that by [21, Proposition 3.3 or 3.4], Lemma 2.1 implies for
α > d

2 + 1

(2.33)
∑
x∈Zd

ω2
α(x, t) p2

t (x, 0) . X
t
d
2
,

where here and in the rest of this proof . stands for 6 C(d, α).
We start by upgrading inequality (2.33) to the bound (2.7): Since for every t > 0

and s ∈ (0, t)
ωα(t, x) . ωα(s, x− z)ωα(t− s, z),(2.34)

we may choose the value s = t
2 in (2.34) and in (2.30) of Lemma 2.1 and obtain

ωα(t, x)pt(x, 0) .
∑
z

ωα( t2 , z − x)p t
2
(x, z)ωα( t2 , z)p

t
2
(z, 0)

.

(∑
z

ω2
α( t2 , z − x)p2

t
2
(x, z)

) 1
2
(∑

z

ω2
α( t2 , z)p

2
t
2
(z, 0)

) 1
2

.(2.35)

By symmetry and stationarity of pt, it holds
pt(a, x, z) = pt(a, z, x) = pt(τxa, z − x, 0),
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so that inequality (2.35) turns into

ωα(x, t)pt(x, 0) .
(∑

z

ω2
α( t2 , z − x)p2

t
2
(τxa, z − x, 0)

) 1
2
(∑

z

ω2
α( t2 , z)p

2
t
2
(a, z, 0)

) 1
2

(2.6)
.

√
X (a)X (τxa)

t
d
2

.

Recalling our definition of stationary extension of a random variable, the previous
inequality yields (2.7).

In order to get also (2.8), we first claim that for every T > 0

(2.36)
 2T

T

∑
b

ω2
α(b, t)|

√
a(b)∇pt(b, 0)|2 . X

T
d
2 +1

.

The identity
d

dt

(∑
x

1
2p

2
t (x, 0)

)
(2.1)= −

∑
b

∇pt(b, 0) · a(b)∇pt(b, 0)

implies by integrating
 2T

T

∑
b

∇pt · a∇pt(b, 0) . T−1
∑
x

p2
T (x, 0)

(2.6)
.

X
T
d
2 +1

.

Therefore, as

ω2
α(b, t)∇pt · a∇pt(b, 0) . t−α|b|2α∇pt · a∇pt(b, 0) +∇pt · a∇pt(b, 0),

in order to show (2.36) it suffices to prove that
 2T

T

∑
b

|b|2∇pt(b, 0) · a(b)∇pt(b, 0) . X
T−α+ d

2 +1
.(2.37)

We write

d

dt

(∑
x

|x|2αp2
t (x, 0)

)
(2.1)= −

∑
b

∇
(
| · |2αpt(·, 0)

)
(b) · a(b)∇pt(b, 0)

.−
∑
b

|b|2α∇pt · a∇pt(b, 0) +
∑
b

pt(b, 0)
(
|b|2α − |b|2α

)
|a(b)∇pt(b, 0)|

. −
∑
b

|b|2α∇pt · a∇pt(b, 0) +
∑
b

pt(b, 0)|b|α−1|b|α|a(b)∇pt(b, 0)|,

and thus by Hölder’s inequality and Young’s inequality we get

d

dt

(∑
x

|x|2αp2
t (x, 0)

)
.−

∑
b

|b|2α∇pt · a∇pt(b, 0) +
∑
b

|b|2(α−1)p2
t (b, 0)

' −
∑
b

|b|2α∇pt · a∇pt(b, 0) +
∑
x

|x|2(α−1)p2
t (x, 0).

Integrating this inequality in t ∈ (T, 2T ) we obtain
 2T

T

∑
b

|b|2α∇pt · a∇pt(b, 0)

. T−1
(∑

x

|x|2αp2
T (x, 0)

)
+
 2T

T

∑
x

|x|2(α−1)p2
t (x, 0)
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and therefore 2T

T

∑
b

|b|2α∇pt · a∇pt(b, 0)

. T−1+α
∑
x

ω2
α(T, x)p2

T (x, 0) +
 2T

T

tα−1
∑
x

ω2
α(t, x)p2

t (x, 0).

Using (2.33) we conclude (2.37).

We finally prove (2.8): by (2.30) it holds for every b ∈ B

√
a∇pT (b, 0) =

 2
3T

T
3

∑
z

√
a∇pt(b, z)pT−t(z, 0) dt,

so that

∇pT · a∇pT (b, 0) = |
√
a∇pT (b, 0)|2

= |
 2

3T

T
3

∑
z

√
a∇pt(b, z)pT−t(z, 0)|2 dt

6
 2

3T

T
3

∑
z

pT−t(z, 0)|
√
a∇pt(b, z)|2 dt,(2.38)

where for the last line we appeal to Jensen’s inequality in t and, thanks to∑
z ps(z, 0) = 1 for every s > 0, also in z . By (2.34) we write

∑
b

ω2
α(b, T )∇pT · a∇pT (b, 0)

(2.34)
.

 2
3T

T
3

∑
z

ω2
α(T − t, z)pT−t(z, 0)

∑
b

ω2
α(t, b− z)|

√
a∇pt(b, z)|2 dt

(2.7), β>d
.

 2
3T

T
3

∑
z

√
X (0)X (z)(T − t)− d2ω−2

β (T − t, z)
∑
b

ω2
α(t, b− z)|

√
a∇pt(b, z)|2 dt

. T−
d
2
∑
z

√
X (0)X (z)ω−2

β (T, z)
 2

3T

T
3

∑
b

ω2
α(t, b− z)|

√
a∇pt(b, z)|2 dt

(2.36)
.

X
T d+1

∑
z

√
X (0)X (z)ω−2

β (T, z),

which implies (2.8) if we choose β = d
2 + 2.

To show inequality (2.10) we observe that thanks to (2.4) it is enough to prove
that for every p ∈ [1,+∞)

〈| sup
t>0

(1 + t)−
d
2
∑
z

ω−2
d
2 +2(t, z)

√
X (z)|p〉 6 C(d, p) < +∞.(2.39)

This immediately follows from Lemma 2.6 since
√
X (z) stands for

√
X (a, z) =

√
X (τza) and we have chosen α = d

2 + 2 > d
2 + 1. �

3. Proof of Theorem 1.1

Before giving the argument for Theorem 1.1 we introduce two technical results.
The first is a generalization of Lemma 15 of [13].
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Lemma 3.1. Assume that for C0 > 0,

0 6 a(t) 6 C0

(
(1 + t)−γ0 +

ˆ t

0
(1 + t− s)−γ bβ(s) ds

)
,(3.1)

0 6 bp(t) 6 − d

dt
[ap(t)],(3.2)

with p ∈ [2,+∞), γ ∈ [1,+∞), γ0 ∈ (0, γ] and β ∈ ( γ
γ+ 1

p

, 1). Then there exists a
constant C = C(λ, β, p, C0) < +∞ such that

a(t) 6 C(1 + t)−γ0 .(3.3)

Proof. In this proof we use the notation . for 6 C(λ, β, p, C0). We define
Λ(t) := sup

s6t
(1 + s)γa(s), Λ0(t) := sup

s6t
(1 + s)γ0a(s)(3.4)

By Hölder’s inequality, for any 0 6 t1 6 t2 it follows
ˆ t2

t1

bβ(s) ds 6
(ˆ t2

t1

bp(s) ds
) β
p

(t2 − t1)1− βp
(3.2)
6 (ap(t1)− ap(t2))

β
p (t2 − t1)1− βp

. aβ(t1) (t2 − t1)1− βp ,(3.5)

where in the last inequality we use the fact that by (3.2), the function ap(t) is
monotone non-increasing. Moreover, lettingN ∈ N be such that 2N−1t1 6 t2 6 2N t1,
we get

ˆ t2

t1

bβ(s) ds 6
N∑
n=1

ˆ 2nt1

2n−1t1

bβ(s) ds
(3.5)
.

N∑
n=1

t
1− βp
1 2(n−1)(1− βp ) aβ(2n−1t1),

which by the definition of Λ in (3.4) implies
ˆ t2

t1

bβ(s) ds . t1−
β
p

1 Λβ(t2)
N∑
n=1

2(n−1)(1− βp )(2n−1t1)−γβ

. t
1−β( 1

p+γ)
1 Λβ(t2)

N∑
n=1

2(n−1)(1−β( 1
p+γ)) . Λβ(t2)t1−β( 1

p+γ)
1 ,(3.6)

since we assume β( 1
p + γ) > γ > 1. Moreover, since by (3.2) the function a is

non-increasing, we have

a(t) 6 2
t

ˆ t

t
2

a(r) dr

(3.1)
.

2
t

ˆ t

t
2

(1 + r)−γ0 dr + 2
t

ˆ t

t
2

dr

ˆ r

0
(1 + r − s)−γ bβ(s) ds

. (1 + t)−γ0 + 2
t

ˆ t

t
2

dr

ˆ r

0
(1 + r − s)−γ bβ(s) ds.

We let τ ∈ [0, t4 ] to be chosen later, and write

a(t) . (1 + t)−γ0 + 2
t

ˆ t

t
2

dr

ˆ τ

0
(1 + r − s)−γ bβ(s) ds

+ 2
t

ˆ t

t
2

dr

ˆ r
2

τ

(1 + r − s)−γ bβ(s) ds

+ 2
t

ˆ t

t
2

dr

ˆ r

r
2

(1 + r − s)−γ bβ(s) ds.
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We estimate each of the three last terms in turn:
2
t

ˆ t

t
2

dr

ˆ τ

0
(1 + r − s)−γ bβ(s) ds . (1 + t)−γ

ˆ τ

0
bβ(s) ds

(3.5)
. (1 + t)−γτ1− βp aβ(0) . (1 + t)−γτ1− βp ;

2
t

ˆ t

t
2

dr

ˆ r
2

τ

(1 + r − s)−γ bβ(s) ds

. (1 + t)−γ
ˆ t

2

τ

bβ(s) ds
(3.6)
. (1 + t)−γ Λβ(t)

τβ( 1
p+γ)−1

;

2
t

ˆ t

t
2

dr

ˆ r

r
2

(1 + r − s)−γ bβ(s) ds

.
2
t

ˆ t

t
4

bβ(s) ds
ˆ t

s

(1 + r − s)−γ dr

γ>1
.

2
t

ˆ t

t
4

bβ(s) ds
ˆ t−s

0
(1 + r)−1 dr

.

(ˆ t

t
4

bβ(s) ds
)(

2
t

ˆ t

0
(1 + r)−1 dr

)
.

log(t+ 1)
t

ˆ t

t
4

bβ(s) ds
(3.6)
.

log(t+ 1)
t

Λβ(t)
(1 + t)β( 1

p+γ)−1

.
log(1 + t)

(t+ 1)β( 1
p+γ)−γ

Λβ(t)
(1 + t)γ .

Everything together implies

(1 + t)γa(t) . (1 + t)γ0−γ + τ1− βp +
(

1
τβ( 1

p+γ)−1
+ log(t+ 1)

(t+ 1)β( 1
p+γ)−γ

)
Λβ(t),

where the implicit constant does not depend on our choice of τ ∈ [0, t4 ]. It follows
from our assumption on β and γ that we can find τ0 = τ0(β, γ, p) < ∞ and
C(β, γ, p) <∞ such that for t

4 > τ = τ0,

(1 + t)γ0a(t) 6 C
(

1 + τ
1− βp
0 (1 + t)γ0−γ

)
+ (1 + t)γ0−γ 1

2Λβ(t).

Moreover, by γ0 6 γ and β < 1 it holds

(1 + t)γ0a(t) 6 C
(

1 + τ
1− βp
0

)
+ 1

2Λ0(t).(3.7)

Hence, for such t, we have
Λ0(t) 6 sup

06s6τ0

(1 + s)γ0a(s) + sup
τ06s6t

(1 + s)γ0a(s)

(3.2),(3.7),(3.1)
6 (1 + τ0)γ0 + C

(
1 + τ

1− βp
0

)
+ 1

2Λ0(t),

and this completes the proof. �

Lemma 3.2. Let ut solve (1.6). Then, for every integer p > 1, we have

〈|Dut · aDut|p〉 6 C
(
− d

dt
〈u2p(t)〉

)
,(3.8)
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where C = C(d, p) < +∞.

Proof. We estimate
d

dt
〈u2p(t)〉 = −2p〈Du2p−1 · aDu〉

and we are done once that we prove

〈Du2p−1 · aDu〉 & 〈|Du · aDu|p〉,(3.9)

where here and in the rest of this proof we write . and & respectively for 6 C and
> C with C depending on d and p. We note that the previous inequality can be
rewritten as

d∑
i=1
〈Diu

2p−1 · a(ei)Diu〉 & 〈|
d∑
i=1

Diu · a(ei)Diu|p〉

and, since the argument Diu · a(ei)Diu > 0, it is implied by
d∑
i=1
〈Diu

2p−1 · a(ei)Diu〉 &
d∑
i=1
〈|Diu · a(ei)Diu|p〉

We thus reduce ourselves to prove for every fixed i = 1, ..., d

Diu
2p−1 · a(ei)Diu & |Diu · a(ei)Diu|p.

By our assumptions on the coefficients 0 6 a(ei) 6 1, we observe that if a(ei) = 0,
then the previous inequality is trivial. If otherwise a(ei) 6= 0, for every a ∈ R we
have that

(a2p−1 − 1)a(ei)(a− 1)
a(ei)61
& (a2p−1 − 1)a(ei)2p(a− 1),

and thus (3.9) is implied if we show that

(a2p−1 − 1)(a− 1) & (a− 1)2p,(3.10)

for every a ∈ R. We may now argue analogously to [13], Lemma 14, inequality (94)
and show (3.10).

�

Proof of Theorem 1.1. Throughout this proof, the notation . stands for 6 C with
the constant depending on d and p. We give ourselves an independent copy (ã(e))e∈B
of the environment (a(e))e∈B, with the same law and defined on the same probability
space. For each given e ∈ B, we define the environment ae by

(3.11) ae(b) :=
{
a(b) if b 6= e,

ã(e) if b = e.

In other words, the environment ae is obtained from the environment a by resampling
the conductance at the edge e.

By the independence assumption on the conductances (a(e)), every random
variable f ∈ L2(Ω) satisfies the Spectral Gap (or Efron-Stein) inequality〈

(f − 〈f〉)2
〉
6

1
2
∑
e∈B

〈
(∂ef)2

〉
,(3.12)

with respect to the Glauber derivative

∂ef(a) := f(ae)− f(a).
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We start by observing that, analogously to Lemma 11 of [13], we can upgrade the
spectral gap inequality (3.12) to

(3.13)
〈
|f − 〈f〉|2p

〉 1
p

.

〈(∑
e

(
∂ef
)2)p〉 1

p

, for integer p ∈ [1,+∞).

Whenever no ambiguity occurs, we write ut(x) := ūt(a, x) and/or skip the
argument a in u and all the random variables involved. We now argue that,
appealing to (3.13), for ut solution of (1.6) it holds for every integer p ∈ [1,+∞)
that

〈|ut|2p〉
1

2p . 〈
(∑

e

(∑
z

pt(z, 0)∂eg(z)
)2)p〉 1

2p

+
ˆ t

0
〈
(∑

b

|∇pt−s(b, 0)|2|∇ūs(aei , b)|2
)p
〉

1
2p ,(3.14)

with ūt, and ḡ the stationary extensions solving (2.1).
To show the previous bound we take the Glauber derivative ∂e in (2.1) and, thanks
to the relation

[∂e,∇] := ∂e∇−∇∂e = 0,

we obtain the parabolic boundary value problem

(3.15)
{

∂t∂eūt +∇∗a∇∂eūt = −∇∗ht
∂eu0 = ∂eḡ,

where ht = ht(a, b, e) is defined as

ht(a, b, e) := ∂ea(b)∇ut(ae, b) = 1b=e∂ea(e)∇ūt(ae, e).(3.16)

Using Duhamel’s formula, equation (3.15) yields

∂eut(x) =
∑
z

pt(z, x)∂eg(z) +
ˆ t

0

(∑
b

∇pt−s(b, x)hs(b, e)
)
ds,

which can be rewritten thanks to (3.16) as

∂eut(x) =
∑
z

pt(z, x)∂eg(z) +
ˆ t

0

(
∇pt−s(e, x)∂ea(e)∇ūs(ae, e)

)
ds.(3.17)

Furthermore, we note that for a general random variable ζ = ζ(a) it holds

∂eζ̄(a, x) = ζ((τxa)e)− ζ(τxa)
= ζ(τx(ae−x))− ζ(τxa) = ∂e−xζ(a, x),(3.18)

so that it follows for ut that

∂eut(a, 0) = ∂eut(a, 0).

Taking in the previous identity the 2p-th power and the average, stationarity implies
that

〈|∂eut(0)|2p〉 = 〈|∂eut|2p〉.(3.19)
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Since by (1.6) for both assumptions (a) and (b) on the initial data we have 〈ut〉 = 0,
we may plug the identities (3.19) and (3.17) into the p-Spectral Gap (3.13) and get

〈|ut|2p〉
1

2p . 〈
(∑

e

(
∂eut(0)

)2)p〉 1
2p

. 〈
(∑

e

(∑
z

pt(z, 0)∂eg(z)
)2)p〉 1

2p

+ 〈
(∑

e

(ˆ t

0
∇pt−s(e, 0)∂ea(e)∇ūt(ae, e)ds

)2)p〉 1
2p .(3.20)

We now apply the triangle inequality together with (3.16) on the second term on
the r.h.s and estimate

〈
(∑

e

(ˆ t

0
∇pt−s(e, 0)∂ea(e)∇ūt(ae, e)ds

)2)p〉 1
2p

.
ˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p ds,

i.e. inequality (3.14).

We are now ready to prove part (a): We start focussing on the first term on the
r.h.s. of (3.14) and claim that

〈
(∑

e

(∑
z

pt(z, 0)∂eg(z)
)2)p〉 1

p . t−
d
2N2||g||2L∞(Ω).(3.21)

We rewrite the l.h.s of (3.21) as

〈
( ∑

y∈Zd
i=1,...,d

(∑
z

pt(z, 0)∂{y,y+ei}g(z)
)2)p〉 1

p

.
∑

i=1,...,d
〈
(∑

y

(∑
z

pt(z, 0)∂{y,y+ei}g(z)
)2)p〉 1

p .

For every fixed i, we estimate by the triangle inequality

〈
(∑

y

(∑
z

pt(z, 0)∂{y,y+ei}g(z)
)2)p〉 1

2p 6
∑
z

〈
(∑

y

p2
t (z, 0)|∂{y,y+ei}g(z)|2

)p
〉

1
2p

(3.18)=
∑
z

〈
(∑

y

p2
t (z, 0)|∂{y−z,y−z+ei}g(z)|2

)p
〉

1
2p

z=y−z=
∑
z

〈
(∑

y

p2
t (y − z, 0)|∂{z,z+ei}g(y − z)|2

)p
〉

1
2p

y=y−z=
∑
z

〈
(∑

y

p2
t (y, 0)|∂{z,z+ei}g(y)|2

)p
〉

1
2p

(2.7)
.
∑
z

〈
(∑

y

X (0)X (y)t−dω−2
α (t, y)|∂{z,z+ei}g(y)|2

)p
〉

1
2p .(3.22)



20 ARIANNA GIUNTI, JEAN-CHRISTOPHE MOURRAT

We now use in the last term the triangle inequality in the inner sum and 〈·〉 and
infer that

〈
(∑

y

(∑
z

pt(z, 0)∂{y,y+ei}g(z)
)2)p〉 1

2p

. t−
d
2
∑
z

(∑
y

ω−2
α (t, y)〈

(
X (0)X (y)

)p|∂{z,z+ei}g(y)|2p〉
1
p

) 1
2

.

After a repeated application of Hölder’s inequality in 〈·〉, stationarity and (2.4) yield

〈
(∑

y

(∑
z

pt(z, 0)∂{y,y+ei}g(z)
)2)p〉 1

2p

. t−
d
2
∑
z

||∂{z,z+ei}g||L∞(Ω)

(∑
y

ω−2
α (t, y)

) 1
2

α> d
2
. t−

d
4
∑
z

||∂{z,z+ei}g||L∞(Ω).

Appealing to our assumption on g to be in L∞(Ω) and depending on N edges, we
get that

〈
(∑

y

(∑
z

pt(z, 0)∂{y,y+ei}g(z)
)2)p〉 1

p . N2||g||2L∞(Ω)t
− d2 .

Summing over i = 1, ..., d yields (3.21).
We now turn to the second term of the r.h.s. of (3.14) to argue that for every

δ > 0 it holdsˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p ds

.C(δ)
ˆ t

0
(t− s)−( d4 + 1

2 )(1− 1
p )+ d

2p 〈|Dut · aDut|p(1+δ)〉
1

2p(1+δ) ds.(3.23)

By (2.14) of Lemma 2.3, we writeˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p ds

.
ˆ t

0
〈
(∑

e

w(e)−1
∑
b∈π(e)

|
√
a(b)∇pt−s(b, 0)|2w′(e)−1

∑
b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p
〉

1
2p ds

'
ˆ t

0
〈
(∑

b

|
√
a(b)∇pt−s(b, 0)|2

∑
e∈π−1(b)

w(e)−1w′(e)−1
∑

b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p
〉

1
2p ds,

where π′(e) and w′(e) are as π and w introduced in Lemma 2.3 and related to the
environment given by ae. After smuggling the weight ω2

α(t− s, b) in the sum over b,
we use Hölder’s inequality with exponents q and p to estimateˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p ds

.
ˆ t

0
〈
(∑

b

ω2q
α (t− s, b)|

√
a(b)∇pt−s(b, 0)|2q

)p−1

×
(∑

b

ω−2p
α (t− s, b)

( ∑
e∈π−1(b)

w(e)−1w′(e)−1
∑

b′∈π′(z)

|
√
ae(b′)∇ūs(ae, b′)|2

)p)〉 1
2p ds.
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We now appeal to Lemma 2.2 and the embedding `2 ⊆ `r for r > 2 to infer from
the previous inequality that

ˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p ds

.
ˆ t

0
(t− s)−( d4 + 1

2 )(1− 1
p )
(∑

b

ω−2p
α (t− s, b)

× 〈Yp−1
t−s
( ∑
e∈π−1(b)

w(e)−1w′(e)−1
∑

b′∈π′(z)

|
√
ae(b′)∇ūs(ae, b′)|2

)p〉) 1
2p

ds.

(3.24)

We claim that

〈Yp−1
t−s
( ∑
e∈π−1(b)

w(e)−1w′(e)−1
∑

b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p〉
. C(δ)〈|Dus · aDus|p(1+δ)〉

1
(1+δ) .(3.25)

We note that, once that we have (3.25), by inserting it in (3.24) we get
ˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p ds

. C(δ)
ˆ t

0
(t− s)−( d2 +1)(1− 1

p )
(∑

b

ω−2p
α (t− s, b)〈|Dus · aDus|p(1+δ)〉

1
(1+δ)

) 1
2p

ds

α> d
2
. C(δ)

ˆ t

0
(t− s)−( d4 + 1

2 )(1− 1
p )+ d

p 〈|Dus · aDus|p(1+δ)〉
1

2p(1+δ) ds

and thus (3.23).

We now prove (3.25): It holds

〈Yp−1
t−s
( ∑
e∈π−1(b)

w(e)−1w′(e)−1
∑

b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p〉
6〈Yp−1

t−s |π−1(b)|p−1
∑

e∈π−1(b)

w(e)−pw′(e)−p
( ∑
b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p〉
=〈

∑
e∈π−1(b)

Yp−1
t−s |π−1(b)|p−1w(e)−pw′(e)−p

( ∑
b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p〉.
Hölder’s inequality with exponents (1 + δ, 1+δ

δ ) first in e and then in 〈·〉 yields

〈Yp−1
t−s
( ∑
e∈π−1(b)

w(e)−1w′(e)−1
∑

b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p〉
6 〈

∑
e∈π−1(b)

Y(p−1) 1+δ
δ

t−s |π−1(b)|(p−1) 1+δ
δ w(e)−p

1+δ
δ w′(e)−p

1+δ
δ 〉

δ
1+δ

× 〈
∑

e∈π−1(b)

( ∑
b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p(1+δ)〉
1

1+δ(3.26)

As the terms π′(e) and
√
ae(b′)∇ūs(ae, b′) are stationary respectively by Lemma 2.3

and by definition of stationary extension, we have that also
∑
b′∈π′(e) |

√
ae(b′)∇ūs(ae, b′)|2
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is stationary. Therefore, appealing to Lemma 2.5 for every δ > 0 it holds

〈
∑

e∈π−1(b)

( ∑
b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p(1+δ)〉
1

1+δ

(2.25)
. C(δ)

d∑
i=1
〈
( ∑
b′∈π′(ei)

|
√
aei(b′)∇ūs(aei , b′)|2

)p(1+δ)2

〉
1

(1+δ)2

(2.24)
. C(δ)

d∑
i=1
〈|
√
aeiDus(aei)|2p(1+δ)3

〉
1

(1+δ)3 .

Since ae and a have by definition the same law, we conclude that

〈
∑

e∈π−1(b)

( ∑
b′∈π′(e)

|
√
ae(b′)∇ūs(ae, b′)|2

)p(1+δ)〉
1

1+δ

. C(δ)〈|
√
aDus(a)|2p(1+δ)3

〉
1

(1+δ)3 .(3.27)

We now turn to the other averaged term in (3.26): Reasoning as above, thanks to
(iii) of Lemma 2.3 and (2.9) of Lemma 2.2, we may apply (2.24) of Lemma 2.5 and
get that for every δ > 0 the last term on the r.h.s. of (3.26) satisfies

〈
∑

e∈π−1(b)

Y(p−1) 1+δ
δ

t−s |π−1(b)|(p−1) 1+δ
δ w(e)−p

1+δ
δ w′(e)−p

1+δ
δ 〉

.
d∑
i=1
〈
(
Y(p−1) 1+δ

δ
t−s |π−1(ei)|(p−1) 1+δ

δ w(ei)−p
1+δ
δ w′(ei)−p

1+δ
δ

)1+δ〉
1

1+δ

(2.11)−(2.12)−(2.10)
. C(δ).(3.28)

Inequalities (3.27) and (3.28) in (3.26) yield the bound (3.25), once that we relabel
δ ' δ3 + 2δ2 + 2δ.

We are now ready to conclude the proof of Theorem 1.1, part (a): By (3.21) and
(3.23), we get from (3.14)

〈|ut|2p〉
1

2p . C(δ)
(
N ||g||L∞(Ω)t

− d4

+
ˆ t

0
(t− s)−( d4 + 1

2 )(1− 1
p )+ d

2p 〈|Dus · aDus|p(1+δ)〉
1

2p(1+δ) ds

)
.

By our assumption that g ∈ L∞(Ω) and the maximum principle, we have

〈|Dus · aDus|p(1+δ)〉
1

2p(1+δ) . ||g||
δ
δ+1
L∞(Ω)〈|Dus · aDus|

p〉
1

2p(1+δ) ,

and therefore

〈|ut|2p〉
1

2p . C(δ)
(
N ||g||L∞(Ω)t

− d4

+ ‖g‖
δ
δ+1
L∞(Ω)

ˆ t

0
(t− s)−( d4 + 1

2 )(1− 1
p )+ d

2p 〈|Dus · aDus|p〉
1

2p(1+δ) ds

)
.

For p sufficiently large, we now use Lemma 3.1 with γ0 := d
4 , γ1 := (d4 + 1

2 )(1 −
1
p )− d

2p > 1, any β := 1
1+δ >

γ
γ+ 1

2p
and for the functions

a(t) := (N‖g‖L∞(Ω))−1〈|ut|2p〉
1

2p ,

b(t) := (N1+δ‖g‖L∞(Ω))−1〈|Dus · aDus|p〉
1

2p .
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We remark that the relation (3.2) is satisfied since by Lemma 3.2 and N > 1 we
have

b(t)2p = (N1+δ‖g‖L∞(Ω))−2p〈|Dus · aDus|p〉 . (N1+δ‖g‖L∞(Ω))−2p
(
− d

dt
〈|ut|2p〉

)
. (N‖g‖L∞(Ω))−2p

(
− d

dt
〈|ut|2p〉

)
'
(
− d

dt
a2p(t)

)
.

The embedding

〈|ut|q〉
1
q 6 C(p, q)〈|ut|p〉

1
p(3.29)

allows to conclude the proof of Theorem 1.7, part (a).

To prove also Theorem 1.1, part (b) we observe that thanks to the assumption
g = D∗f (and thus ḡ = ∇∗f̄), after an integration by parts, we may reformulate
the estimate (3.14) as

〈|ut|2p〉
1

2p . 〈
(∑

e

(∑
b

∇pt(b, 0)∂ef(b)
)2)p〉 1

2p

+
ˆ t

0
〈
(∑

e

|∇pt−s(e, 0)|2|∇ūs(ae, e)|2
)p
〉

1
2p .(3.30)

We control the second term on the r.h.s. again by (3.23). For the first term, we now
argue that

〈
(∑

e

(∑
b

∇pt(b, 0)∂ef(b)
)2)p〉 1

p . N2||f ||2L∞(Ω)t
−( d2 +1)(1− 1

p )+ d
p ,(3.31)

with N the number of sites on which f depends.

Before proving (3.31), we show how to conclude the argument: Inserting inequal-
ities (3.31),(3.21) in (3.30) and using the maximum principle and that f ∈ L∞(Ω),
we get

〈|ut|2p〉
1

2p . C(δ)
(
N ||f ||L∞(Ω) t

−( d4 + 1
2 )(1− 1

p )+ d
2p

+ ‖f‖
δ

1+δ
L∞(Ω)

ˆ t

0
(t− s)−( d4 + 1

2 )(1− 1
p )+ d

2p 〈|Dus · aDus|p〉
1

2p(1+δ) ds

)
.

As for the proof of part (a), we multiply the previous inequality by
(
C(δ)N ||f ||L∞(Ω)

)−1

and use Lemma 3.2 and Lemma 3.1 applied to

a(t) :=
(
N ||f ||L∞(Ω)

)−1〈|ut|2p〉
1

2p ,

b(t) :=
(
N1+δ||f ||L∞(Ω)

)−1〈|Dus · aDus|p〉
1

2p ,

with γ0 = γ := (d4 + 1
2 )(1− 1

p )− d
2p and any β := 1

1+δ >
γ

γ+ 1
2p

to obtain

〈|ut|2p〉
1
p . N2||f ||2L∞(Ω)t

−( d2 +1)(1− 1
p )+ d

p . N2||f ||2L∞(Ω)t
−( d2 +1)+ d

2p .

Therefore, for every q ∈ [1,+∞) fixed, let us consider ε > 0; we choose q 6 p < +∞
such that d

2p 6 ε and use the previous estimate together with the embedding (3.29)
to infer

〈|ut|2q〉
1
q . C(ε)N2||f ||2L∞(Ω)t

−( d2 +1)+ d
2p . C(ε)N2||f ||2L∞(Ω)t

−( d2 +1)+ε,

i.e. bound (1.8).



24 ARIANNA GIUNTI, JEAN-CHRISTOPHE MOURRAT

It thus only remains to show (3.31): As in (3.22), we bound the l.h.s of (3.31) by

〈
(∑

e

(∑
b

∇pt(b, 0)∂ef(z)
)2)p〉 1

2p

6
∑

i=1,...,d

∑
z

〈
(∑

b

|∇pt(b, 0)|2|∂{z,z+ei}f(b)|2
)p
〉

1
2p .(3.32)

For any fixed i = 1, ..., d, inequality (2.14) of Lemma 2.3 yields∑
z

〈
(∑

b

|∇pt(b, 0)|2|∂{z,z+ei}f(b)|2
)p
〉

1
2p

6
∑
z

〈
(∑

b

w(b)−1
∑

b′∈π(b)

|
√
a(b′)∇pt(b′, 0)|2|∂{z,z+ei}f(b)|2

)p
〉

1
2p

=
∑
z

〈
(∑

b′

|
√
a(b′)∇pt(b′, 0)|2

∑
b∈π−1(b′)

w(b)−2|∂{z,z+ei}f(b)|2
)p
〉

1
2p

After smuggling the weight ω2
α(t,′ b) into the sum over b′, Hölder’s inequality with

exponents p and q implies∑
z

〈
(∑

b

|∇pt(b, 0)|2|∂{z,z+ei}f(b)|2
)p
〉

1
2p

.
∑
z

〈
(∑

b′

ω2q
α (t, b′)|

√
a(b′)∇pt(b′, 0)|2q

)p−1

×
(∑

b′

ω−2p
α (t, b′)

( ∑
b∈π−1(b′)

w(b)−1|∂{z,z+ei}f(b)|2
)p)〉 1

2p ,

and thus by Lemma 2.2,∑
z

〈
(∑

b

|∇pt(b, 0)|2|∂{z,z+ei}f(b)|2
)p
〉

1
2p

. t−( d4 + 1
2 )(1− 1

p )
∑
z

(∑
b′

ω−2p
α (t, b′)〈

( ∑
b∈π−1(b′)

w(b)−1|∂{z,z+ei}f(b)|2
)p〉) 1

2p

.

(3.33)

We now show that

〈
( ∑
b∈π−1(b′)

w(b)−1|∂{z,z+ei}f(b)|2
)p〉 . ||∂{z,z+ei}f ||2pL∞(Ω).(3.34)

Once proven the previous inequality, estimate (3.33) turns into∑
z

〈
(∑

b

|∇pt(b, 0)|2|∂{z,z+ei}f(b)|2
)p
〉

1
2p

. t−( d4 + 1
2 )(1− 1

p )
∑
z

(∑
b′

ω−2p
α (b′, t)

) 1
2p

||∂{z,z+ei}f ||L∞(Ω)

. t−( d4 + 1
2 )+ d

2p
∑
z

||∂{z,z+ei}f ||L∞(Ω)

. Nt−−( d4 + 1
2 )+ d

2p ||f ||L∞(Ω),

where for the last inequality we observe that ∂z,z+eif = 0 if {z, z + ei} /∈ supp(f).
The bound (3.31) follows by (3.32).
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To obtain (3.34), we reason similarly to (3.27) and (3.28): We write

〈
( ∑
b∈π−1(b′)

w(b)−1|∂{z,z+ei}f(b)|2
)p〉

(2.24)
.

d∑
j=1

C(δ)〈w(ej)−p(1+δ)|∂{z,z+ei}f(ej)|2p(1+δ)|〉
1

1+δ

δ=1
.

d∑
j=1
〈w(ej)−2p|∂{z,z+ei}f(ej)|4p|〉

1
2 .

Appealing to the assumption f ∈ L∞(Ω) and to the bound (2.11) of Lemma 2.3, we
infer (3.34). �

4. Appendix

Proof of Lemma 2.6. We start observing that it is enough to show an analogue
of the maximal function estimate ([1], Theorem 3.2), namely that for a constant
C = C(d, α) < +∞ it holds

P(| sup
t>0

t−
d
2
∑
z

ω−2
α (z, t)Z(τza)| > λ) 6 C 1

λ
〈|Z|〉.(4.1)

This indeed, combined with the Marcinkiewicz Interpolation Theorem and the fact
that the map

Z → sup
t>0

(
t−

d
2
∑
z

ω−2
α (z, t)Z(τza)

)
is bounded from L∞ to L∞, yields for every p ∈ (1,+∞]

〈| sup
t>0

(
t−

d
2
∑
z

ω−2
α (z, t)Z(τza)

)
|p〉 . 〈|Z|p〉

and thus also (2.32) by assumption (2.31). Above and in the rest of the proof .
stands for 6 C(d, α, p).

We now give the argument for (4.1): We observe that it holds

P( sup
t>0

(
t−

d
2
∑
z

ω−2
α (z, t)Z(τza)

)
> λ)

= P(sup
t>0

(
t−

d
2

∞∑
n=1

∑
(n−1)t

1
2 6|z|<nt

1
2

ω−2
α (z, t)Z(τza)

)
> λ)

= P(∃ t ∈ (0,+∞) : t− d2
∞∑
n=1

∑
(n−1)t

1
2 6|z|<nt

1
2

ω−2
α (z, t)Z(τza) > λ)

= P(∃ t ∈ (0,+∞), n ∈ N : t− d2
∑

(n−1)t
1
2 6|z|<nt

1
2

ω−2
α (z, t)Z(τza) & λ

n2 ).

Since Z > 0 and
sup

(n−1)t
1
2 6|z|<nt

1
2

ω−2
α (z, t) . n−2α,
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we get

P( sup
t>0

(
t−

d
2
∑
z

ω−2
α (z, t)Z(τza)

)
> λ)

6 P(∃ t ∈ (0,+∞), n ∈ N : n−dt− d2
∑

(n−1)t
1
2 6|z|<nt

1
2

Z(τza) & n2α−d−2λ )

6 P(∃ t ∈ (0,+∞), n ∈ N : n−dt− d2
∑
|z|<nt

1
2

Z(τza) & n2α−d−2λ )

6
∞∑
m=1

P(∃ t ∈ (0,+∞), n ∈ N : n−dt− d2
∑
|z|<nt

1
2

Z(τza) & m2α−d−2λ )

6
∞∑
m=1

P(sup
R>0

(
R−d

∑
|z|<R

Z(τza)
)
& m2α−d−2λ ).

We may now use in this last line the standard maximal function estimate ([1],
Theorem 3.2)

P(sup
R>0

(
R−d

∑
|z|<R

Z(τza)
)
> δ) 6 〈|Z|〉

δ

to conclude

P(sup
t>0

(
t−

d
2
∑
z

ω−2
α (z, t)Z(τza)

)
> λ) .

∞∑
m=1

〈|Z|〉
m2α−2−dλ

α> d
2 +1
.

〈|Z|〉
λ

.

�
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