UNIVERSITE PARIS-SUD

Centre D'Orsay

THESE

De Doctorat D'Etat Es Sciences Mathematiques

présentée pour obtenir le grade de DOCTEUR ES-SCIENCES par

Jean-Claude SIKORAV

sujet de la Thèse : Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de un-formes fermées

Soutenue le 3 février 1987 devant le Jury composé de :

Jean CERF, Président
Daniel BENNEQUIN
Etienne FOUVRY

Mikhael GROMOV François LAUDENBACH Alexis MARIN

TABLE DES MATIERES

description of the control of the co	duction	age-even
James —	Points fixes d'une application symplectique homologue à l'identité	17
possed justined	Problèmes d'intersections et de points fixes en géométrie hamiltonienne	<u>~</u> † {
	Un problème de disjonction par isotopie symplectique dans un fibré cotangent	6(
omogen engagement	Homologie de Novikov associée à une classe de cohomologie réelle de degré un	70

BIBLIOGRAPHIE

- [F] M. C. FARBER, Exactitude des inégalités de Novikov [Funct. Anal. i ego Pril., vol. 19, 1985, p. 49-59 (en russe)]; [Funct. Anal. and its Appl., vol. 19, p. 40-49 (en anglais)].
- [LS] F. LAUDENBACH et J.-C SIKORAV, Persistance d'intersection avec la section nulle... (Invent. Math., vol. 82, 1985, p. 349-357).
- [M] J. MILNOR, Infinite cyclic coverings, in Conf. on the Topology of manifolds (éditée par J. C. Hocking), Prindle, Weber & Schmidt, 1968, p. 115-133.
- [N] S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory (Soviet. Math. Dokl., vol. 24, n° 2, 1981, p. 222-226).
- [S] E. SPANIER, Algebraic Topology, McGraw Hill, New York, 1966.
- [T] D. TISCHLER, On fibering certain foliated manifolds over S¹, (Topology 9, 1970, p. 153-154).

(Manuscrit reçu le 10 septembre 1985, révisé le 3 juin 1986.)

J.-C. SIKORAV
U.A. nº 1169 du C.N.R.S.,
Université de Paris-Sud,
Mathématiques, bâtiment 425,
91405 Orsay Cedex.

HOMOLOGIE DE NOVIKOV ASSOCIEE A UNE CLASSE DE COHOMOLOGIE REELLE DE DEGRE UN

INTRODUCTION

On se donne une variété différentiable fermée M et une classe de cohomologie ζ non nuile dans $H^1(M;\mathbb{R})$, que l'on identifie à un morphisme de $\pi_1(M)$ dans \mathbb{R} . On cherche à quelles conditions ζ peut être représentée par une 1-forme fermée non singulière, ou en abrégé est non singulière.

D'après D.Tischler [Ti], si ω est une 1-forme fermée non singulière, on peut l'approcher par une forme voisine ω' qui est encore fermée non singulière et dont la classe $[\omega']$ est rationnelle, c'est-à-dire que le groupe des périodes $\operatorname{im}[\omega']$ est de rang un ; alors $\omega'=\lambda p^*d\theta$, où p est une fibration de M sur le cercle S^1 . Dans ce cas, le problème est donc de savoir si une application de M dans S^1 est homotope à une fibration.

Le problème est trivial en dimension ≤ 2 ; par ailleurs, les deux cas suivants ont été étudiés à fond.

1) Si M est de dimension trois et irréductible (condition nécessaire pour qu'elle puisse fibrer sur le cercle, sauf les cas exceptionnels où la fibre est \mathbb{S}^Z ou \mathbb{P}^Z), [Stallings] prouve qu'une classe ξ rationnelle est non singulière si et seulement si ker ξ est de type fini ; [Thurston] prouve que l'ensemble des classes non singulières dans $H^1(M;\mathbb{R})$ est décrit par un nombre fini d'inéquations linéaires à coefficients entiers (par rapport au réseau $H_1(M;\mathbb{Z})$ /Torsion de l'espace dual) ; on dira qu'il a une structure polyédrale rationnelle (voir aussi l'exposé de D. Fried dans [Fathi-Laudenbach-Poénaru], p.251-266).

- 2) Si 11 est de dimension \geq 6 et ξ est rationnelle, les travaux de [Browder-Levine], [Farrell] et [Siebenmann] donnent les conditions nécessaires et suffisantes suivantes pour que ξ soit non singulière :
- a) le revêtement infini cyclique $\hat{\mathbb{M}}_{\xi}$ associé a le type d'homotopie d'un complexe fini ; de façon équivalente, $\mathbb{H}_{*}(\hat{\mathbb{M}}_{\xi};\mathbb{Z})$ est de type fini, ker ξ est de présentation finie et une certaine obstruction secondaire $\tau_{0}(\xi)$ oans $\mathbb{K}_{0}\mathbb{Z}(\pi_{1}\mathbb{M})$ est nulle ;
- b) une certaine obstruction secondaire $\tau_1(\xi)$ dans $Wh_1(\pi_1M)$ est nulle.

La condition a) est nécessaire en toutes dimensions. En revanche, pour les classes irrationnelles en dimension ≥ 4 , on ne connaît pas de condition autre que le fait que toute classe rationnelle assez proche doit être non singulière (en dimension trois, la description de Thurston implique qu'alors ξ est non singulière, mais ceci pourrait bien ne plus être vrai en grande dimension, voir 2.7). D'autre part, la condition de finitude a) n'est pas commode a vérifier, surtout quand on fait varier ξ .

Dans ce travail, nous allons utiliser l'approche plus récente de [Novikov], continuée par [Farber], qui permet de traiter directement le cas irrationnel. Nous verrons aussi que cette méthode a un rapport avec des travaux de [Levitt] d'une part, et de [Bieri-Neumann-Strebel] d'autre part. Signalons aussi les travaux de [Geogeghan-Mihalik] et de [Dwyer-Fried].

Novikov associe à ξ des groupes d'homologie de la façon suivante : soit ω une forme représentant ξ ; sur le revêtement d'intégration $\mathring{\mathbb{N}}_{\xi}$ caractèrisé par $\pi_{1}\mathring{\mathbb{N}}_{\xi}=\ker\xi$, elle se relève en une forme exacte d $\mathring{\mathfrak{f}}$. On définit le complexe des chaînes singulières "modulo le bout négatif" (ce n'est un vrai bout que si ξ est rationnelle) :

$$\tilde{c}_{*}(\hat{\mathbb{M}}_{\xi}, \infty^{-}) = \lim^{0} c_{*}(\hat{\mathbb{M}}_{\xi}, \hat{\mathfrak{f}} \leq c), \quad c \to -\infty,$$

où l'on note ($\hat{\mathfrak{f}} \leq c) = |\hat{\mathfrak{f}}^{-1}(]-\infty,c])$. On en déduit des groupes d'homologie

 $H_*(\hat{\mathbb{M}}_{\xi},\infty^-)$. Ceux-ci ne dépendent que de ξ , et leur nullité est une condition nécessaire pour que ξ soit non singulière ; si dim $M \geq 6$ et $\pi_1 M = \mathbb{Z}$ (donc ξ est rationnelle), Farber (op.cit.) montre que la réciproque est vraie.

Nous allons procéder de même avec le revêtement universe! $\widetilde{\mathbb{M}}$, et définir ainsi des *groupes d'homologie de Novikov associés à* ξ , que nous noterons $H_*(\widetilde{\mathbb{M}}, \infty_{\xi}^-)$. Là encore, leur nullité est une condition nécessaire pour que ξ soit non singulière. Plus généralement, on a :

Propriété 1 (1.3). Si ξ est représentée par une forme de Morse sans singularité d'indice $\leq k$, alors $H_i(\widetilde{M}, \infty_{\xi^-}) = 0$ pour $i \leq k$.

En particulier, comme ξ est non nulle, on peut la représenter par une forme de Morse sans singularité d'indice zero (cf. [Levitt], théorème III.1), donc on a toujours $H_0(\widetilde{M}, \infty_{\xi}^-) = 0$ (on donnera en 4.5, remarque 1, une autre démonstration de ce résultat homologique).

Questions. 1) Si dim M \geq 6 et k < (1/2).dim M , la réciproque de la propriété l'est-elle yraie ?

2) La nullité de $H_*(\tilde{M}, \infty_{\zeta}^-)$ implique-t-elle celle de $H_*(\tilde{M}, \infty_{\zeta}^+)$ (= $H_*(\tilde{M}, \infty_{-\xi}^-)$?

3) Si $\dim M \geq \delta$ et $K_0\mathbb{Z}[\pi_1M]$ et $Wh_1(\pi_1M)$ sont nuls, la nullité de $H_*(\tilde{M}, \infty_{\xi}^+)$ et de $H_*(\tilde{M}, \infty_{\xi}^+)$ suffit-elle pour que ξ soit non singulière ?

Ensuite, on introduit les anneaux

$$\begin{split} \Lambda &= \ \mathbb{Z}[\pi_1 \mathbb{M}] = \{ \text{ sommes finies } \Sigma \ n_g \ g \ , \ g \in \pi_1 \mathbb{M} \ , \ n_g \in \mathbb{Z} \ \} \ , \\ \Lambda_\xi^- &= \{ \text{ séries formelles } \Sigma \ n_g \ g \ \text{ telles que, pour tout } \ c \ , \ \text{le nombre des} \\ g \ \text{ vérifiant } n_g \neq 0 \ \text{ et } \ \xi(g) > c \ \text{ est fini} \ \} \ . \end{split}$$

Alors $H_*(\widetilde{M};\mathbb{Z})$ est naturellement un Λ -module à gauche et de même $H_*(\widetilde{M},\infty_{\xi}^-)$ est un Λ_{ξ}^- -module.

Propriété 2 (1.4). Soit C_* un Λ -complexe libre dont l'homologie est isomorphe à $H_*(\Breve{M}; \Bbb Z)$. On considère le Λ_ξ^- -complexe $\Lambda_\xi^-\otimes_\Lambda C_*$ obtenu par extension des scalaires ; alors son homologie ne dépend que de $H_*(\Breve{M}; \Bbb Z)$ et de ξ et elle est isomorphe à $H_*(\Breve{M}, \infty_\xi^-)$.

Remarques. 1) On a un énoncé analogue pour $H_*(\hat{\mathbb{M}}_{\xi},\infty^-)$, l'anneau Λ_{ξ}^- étant remplace par un quotient convenable A_{ξ}^- : on peut en déduire facilement que la nullité de $H_*(\widetilde{\mathbb{M}},\infty_{\xi}^-)$ est une condition strictement plus forte que celle de $H_*(\hat{\mathbb{M}}_{\xi},\infty^-)$.

2) [Novikov] affirme que si ω est une forme de Morse représentant ξ , ses singularités engendrent librement sur A_{ξ}^- un complexe dont l'homologie est $H_*(\hat{M}_{\xi}, \infty^-)$; un tel énoncé (que je ne sais pas prouver) reste sûrement valable pour $H_*(\tilde{M}, \infty_{\xi}^-)$ si l'on remplace A_{ξ}^- par Λ_{ξ}^- .

Dans le reste du travail, on s'intéresse au module $H_1(\widetilde{n}, \infty_{\xi}^-)$; en particulier, on cherche à quelles conditions il est nul. Pour cela, on représente ξ par une jorme de Morse sans singularité d'indice zéro ; ceci a pour conséquence que, dans le revêtement d'intégration, les parties $(\hat{j} \leq c)$ sont connexes (cj. 0.3). S'inspirant de [Levitt], on obtient :

Théorème 3. Les propriétés suivantes sont équivalentes :

- Al) $H_1(\tilde{M}, \infty_{\xi}^-)$ est nul;
- A2) pour tout c, le morphisme $\pi_1(\hat{f} \leq c) \rightarrow \pi_1(\hat{M}_F)$ est surjectif;
- A3) pour tout c , <u>la partie</u> ($\tilde{f} \leq c$) <u>dans le revêtement universel est connexe</u>;
- A4) le système projectif $(\pi_1(\hat{\mathfrak{f}} \leq c), c \to -\infty)$ vérifie la condition de Mittag-Leffler (ML) (cf.[Switzer], p. 131-132) : pour tout c_0 , il existe $c_1 \leq c_0$ tel que, pour tout $c \leq c_1$, l'image de $\pi_1(\hat{\mathfrak{f}} \leq c)$ dans $\pi_1(\hat{\mathfrak{f}} \leq c_0)$ est la même que celle de $\pi_1(\hat{\mathfrak{f}} \leq c_1)$.

Les propriétés A2 et A3 apparaissent chez [Levitt] ; on déduit du théorème 3 que la classe ξ est $\mathit{complète}$ au sens de celui-ci (voir la définition en 2.2) si et seulement si $H_1(\widetilde{M}, \infty_{\xi}^-)$ et $H_1(\widetilde{M}, \infty_{\xi}^+)$ sont nuls. Par la méthode de Levitt, on obtient une propriété équivalente à celles du théorème 3 et portant sur les singularités d'indice 1 de ω (voir 2.2.b)). Nous espérons pouvoir utiliser cette caractérisation dans un travail ultérieur pour montrer qu'en dimension ≥ 5 la nullité de $H_1(\widetilde{M}, \infty_{\xi}^-)$ permet d'éliminer ces singularités d'indice 1 .

D'autre part, la propriété A2 apparaît dans [Bieri-Neumann-Strebel], d'où l'on déduit une propriété équivalente portant seulement sur $\pi_1 M$ et le morphisme ξ (voir 2.5). On en déduit :

Corollaire 4 (2.4). So ker ξ est de type fini, alors $H_1(\widetilde{M}, \infty_{\xi}^{-})$ et $H_1(\widetilde{M}, \infty_{\xi}^{+})$ sont nuis. La réciproque est vraie si ξ est rationnelle.

Si M est de dimension trois et irréductible. [Bieri-Neumann-Strebel] utilise les résultats de Stallings et de Thurston pour prouver que ξ est non singulière si et seulement A2 est vérifiée. De façon analogue mais plus simple, [Levitt] prouve (ξ non singulière \Leftrightarrow ξ complète). La caractérisation homologique qui s'en déduit permet, en utilisant [Sikorav], de prouver un résultat de géométrie symplectique :

Théorème 5. On suppose que M est de dimension 3 et irréductible, et que la section nulle $M \subset T^*M$ peut être disjointe d'elle-même par isotopie symplectique. Alors M fibre sur le cercle.

Enfin, utilisant la propriété 2, on montre que $H_1(\widetilde{M}, \infty_{\capsum}^{-})$ ne dépend que de $\pi_1 M$ et du morphisme \capsum , et l'on en donne la description suivante : étant donnée une présentation \capsum , \capsum , \capsum , on lui associe la suite exacte de Lyndon ((Lyndon), p. 656) :

$$V_0 \xrightarrow{q_5} V_0 \xrightarrow{q_1} V$$

où ${
m d}_1$ et ${
m d}_2$ sont les applications Λ —linéaires à gauche données par

- (1) $d_1(e_i) = g_i i , i \le i \le p ;$
- (2) d_2 est la multiplication à droite par la matrice $D = [\partial r_i/\partial g_j]$ (notation du calcul différentiel libre de [Fox]).

Proposition 6. On suppose $\xi(g_k) \neq 0$ et l'on note A <u>la matrice</u> obtenue en supprimant la k -jème colonne de D . Alors les propriétés suivantes sont équivalentes :

- a) $H_1(\tilde{M}, \infty_{\xi}^{-})$ est nul;
- b) A <u>définit une application surjective de</u> $(\Lambda_{\mathcal{E}}^{-})^q$ <u>dans</u> $(\Lambda_{\mathcal{E}}^{-})^{p-1}$;
- c) il existe une matrice \bar{X} à coefficients dans Λ_{ξ}^- telle que \bar{X} . A = id $_{0-1}$;
- d) il existe une matrice X à coefficients dans A telle que X.A = id_{p-1} + B, où B est ξ -négative, c'est-à-dire que chaque élément est une somme Σ n_q .g , $\xi(g)$ < 0 .

En combinant ce résultat avec le corollaire 4, on obtient des propriétés caractérisant, pour un groupe 6 de présentation finie, les morphismes de 6 dans $\mathbb Z$ dont le noyau est de type fini (voir 4.6).

Le plan de ce travail est le suivant :

- 0) Suivant (Levitt), on donne quelques définitions et propriétés générales sur les 1-formes fermées et en particulier les formes de Morse.
- 1) On définit $H_*(\tilde{\mathbb{M}}, \infty_{\tilde{\xi}}^-)$ et l'on prouve les propriétés 1 et 2.
- 2) On prouve le théorème 3 ; on en déduit le corollaire 4, puis une caractérisation homologique des classes non singulières en dimension 3.
- 3) S'appuyant sur cette caractérisation, on prouve le théorème 5.
- 4) On prouve la proposition 6 et sa conséquence en théorie des groupes.

O. PRELIMINAIRES.

On se donne M et ξ comme dans l'Introduction. Si ω est une forme représentant ξ , son intégration le long des lacets définit le morphisme de $\pi_1 M$ dans $\mathbb R$ identifié à ξ . Son image est le groupe des <u>périodes</u>, noté $P(\xi)$ ou $P(\omega)$. La classe (ou la forme) est <u>rationnelle</u> s'il est de rang I, <u>irrationnelle</u> sinon.

Par ailleurs, on note Sing ω l'ensemble des singularités (= zéros) de ω ; alors $\omega | \text{M-Sing} \omega$ définit un feuilletage de codimension un.

0.1. Le revêtement d'intégration $\hat{p}_{\xi}: \hat{M}_{\xi} \to M$ (ou \hat{p} , \hat{M} s'il n'y a pas de confusion possible) est celui tel que $\pi_1 \hat{m}_{\xi} = \ker \xi$. Si ω représente ξ , c'est le plus petit revêtement tel que tout lacet γ dans M vérifiant $\int_{\mathcal{O}} \omega = 0$ se relève en un lacet dans \hat{m} . Donc $p^*\omega$ est exacte, et l'on note \hat{f} une primitive globale (unique à constante additive près). Ce revêtement est galoisien, de groupe $\operatorname{Aut}(\hat{m}|M) = \pi_1 M / \ker \xi \approx P(\xi)$, et l'on a $\hat{f} \circ \bar{g} - \hat{f} = \xi(g)$ pour tout $\bar{g} \in \pi_1 M$, \bar{g} désignant son image dans $\operatorname{Aut}(\hat{m}|M)$. Si ξ est rationnelle, \hat{M} est le revêtement infini cyclique associé à l'application induite par \hat{f} de M dans $\mathbb{R}/P(\xi) \approx S^1$.

Sur le revêtement universel $\widetilde{p}:\widetilde{M}\to M$, on notera \widetilde{f} la primitive de $\widetilde{p}^*\omega$ correspondant à \widehat{f} : on a de même $\widetilde{f}\circ g-\widetilde{f}=\xi(g)$.

Si c , c' \in \mathbb{R} , on notera (c \leq $\hat{f} \leq$ c') = $\hat{f}^{-1}([c,c'])$, et de même ($\hat{f} \leq$ c) = $\hat{f}^{-1}([-\infty,c])$, ainsi que pour \tilde{f} .

Soit ω' une autre forme représentant ξ , avec $\hat{p}^*\omega'=\hat{d}f'$. Alors, $\hat{f}'-\hat{f}$ est invariante par les transformations du revêtement, donc bornée ; il en est de même pour $\tilde{f}'-\tilde{f}$.

0.2. Une <u>forme de Morse</u> est une 1-forme fermée ω telle qu'au voisinage de toute singularité, on ait $\omega = \mathrm{d} f$, où f a un point critique non dégénéré. Les singularités sont alors en nombre fini et ont un indice compris entre zéro et $n=\mathrm{dim}\,M$; une singularité d'indice zéro ou n

(extremum local de f) est un <u>centre</u>. Comme pour les fonctions, on montre que, dans toute classe de cohomologie ξ , les formes de Morse constituent un ouvert dense.

On appelle champ de quasi-gradient pour ω un champ de vecteurs X sur M tel que

- a) $\omega(X) > 0$ sur M-Sing ω ;
- b) près d'une singularité où $\,\omega = \text{d} f$, on a $\,\omega \,=\, \text{grad} \, f$ pour une certaine métrique.

Un tel champ existe toujours, et permet d'associer à chaque singularité d'indice i une <u>variété stable</u> et une <u>variété instable</u>, qui sont les images de \mathbb{R}^1 et de \mathbb{R}^{n-1} par des immersions injectives.

Si $\xi=0$, c'est-à-dire si ω est exacte, elle a nécessairement au moins un point d'indice zéro et un d'indice n . En revanche, on a :

Propriété (cf. [Levitt], théorème III.1). Si $\xi \neq 0$, on peut la representer par une forme de Morse sans centre.

0.3. Propriété (cf. [Levitt]). Si ω est une forme de Morse sans singularité d'indice zéro, alors dans le revêtement d'intégration toute partie ($\hat{f} \leq c$) est connexe.

Remarque. Cette propriété reste valable pour tout revêtement abélien de M (au-dessus de \hat{M}), en particulier le revêtement abélien maximal considéré en 2.5. En revanche, elle est fausse en général pour le revêtement universel : voir le théorème 3.

1. DEFINITION ET PREMIERES PROPRIETES.

1.1. Soient M , ξ , ω et $\tilde{\mathfrak{f}}$ comme dans le $\S 0$, avec $\xi \neq 0$. Avec des complexes de chaînes singulières, on définit la limite projective

$$\mathbb{C}_*(\,\widetilde{\mathbb{M}}, \infty_{\xi}^{\,-}) \,=\, \lim{}^{\tilde{\mathbb{Q}}}\, \mathbb{C}_*(\,\widetilde{\mathbb{M}},\,\widetilde{\mathfrak{f}} \leq c) \,\,,\,\, c \to -\infty \,\,.$$

Si l'on remplace ω , \tilde{f} par ω' , \tilde{f}' , le fait que $\tilde{f}'-\tilde{f}$ est borné implique qu'on obtient un complexe canoniquement isomorphe, ce qui justifie la notation. Un élément de ce complexe peut se voir comme une chaîne localement finie $\sum n_j \sigma_j$ telle que, pour tout c , il n'y ait qu'un nombre fini de simplexes σ_j dont le support n'est pas contenu dans $(\tilde{f} \leq c): c'est$ donc naturellement un $\Lambda_{\tilde{\mathcal{F}}}$ —complexe. L'homologie de Novikov $H_*(\tilde{\mathbb{M}}, \infty_{\tilde{\mathcal{F}}}^-)$ est par définition l'homologie de ce complexe.

Un résultat général sur l'homologie d'une limite projective de complexes où les applications sont surjectives (cf. [Massey] p.407) donne :

Propriété. On a pour tout k une suite exacte :

$$(1.2) \quad \lim^{1} H_{k+1}(\widetilde{\mathbf{M}}, \widetilde{\mathbf{f}} \leq \mathbf{c}) \longrightarrow H_{k}(\widetilde{\mathbf{M}}, \infty_{\xi}^{-}) \longrightarrow \lim^{0} H_{k}(\widetilde{\mathbf{M}}, \widetilde{\mathbf{f}} \leq \mathbf{c}) .$$

1.3. Démonstration de la propriété 1.

Supposons $\widetilde{\mathfrak{f}}$ de Morse et sans point critique d'indice $\leq k$.

- a) On a d'abord $\pi_i(\widetilde{n},\widetilde{j}\leq c)=0$ pour $i\leq k$. Ceci se démontre —soit en notant qu'homotopiquement \widetilde{M} s'obtient à partir de $(\widetilde{j}\leq c)$ en ajoutant des cellules (en nombre peut-être infini), de dimension >k;
- —soit en notant que génériquement un objet de dimension \le k évite toutes les variétés instables donc peut être poussé vers le bas par le flot de \hat{x} .

1.4. Démonstration de la propriété 2.

Définissons d'abord un second complexe sur Λ_ξ^- donnant la même homologie : pour cela, on fixe une stucture cellulaire sur M , donc une structure $\pi_1 M$ -équivariante sur \widetilde{M} . Le complexe de chaînes cellulaires $C_*^{C}(\widetilde{M})$ est alors un Λ -complexe libre de type fini sur les cellules de M .

Notant K(c) la réunion des cellules contenues dans $\,(\,\tilde{\mathfrak{f}}\!\leq\! c)$, on définit le complexe de chaînes cellulaires

$$\mathbb{C}_{*}^{\,\,c}(\,\widetilde{\mathbb{M}},\infty_{\xi}^{\,\,-})\,=\,\lim{}^{\tilde{\mathbb{M}}}\,\mathbb{C}_{*}^{\,\,c}(\,\widetilde{\mathbb{M}},\mathsf{K}(c))\,\,,\,\,\,c\to-\infty\,\,.$$

Là encore, un élément de ce complexe s'interprète comme une chaîne localement finie, donc on obtient un Λ_{ξ}^- -complexe. La preuve que les deux complexes ont la même homologie est laissée en exercice : c'est une conséquence facile du fait que l'homologie cellulaire de $(\widetilde{M},K(c))$ est égale à l'homologie singulière.

L'intérêt d'utiliser des chaînes cellulaires est que l'on a un isomorphisme naturel

$${\rm C}_{*}{}^{\rm C}(\widetilde{\rm M}, \omega_{\mathcal{E}}^{-}) \approx \Lambda_{\mathcal{E}}^{-} \otimes_{\Lambda} {\rm C}_{*}{}^{\rm C}(\widetilde{\rm M}) \; .$$

La propriété 2 est alors un cas particulier du théorème général des coefficients universels, cf. par exemple [Godement], p. 117 ; de la mème référence on déduit l'existence d'une suite spectrale convergeant vers $H_{D+\sigma}(\widetilde{M},\infty_{\mathcal{E}}^{-})$ et telle que

$$E^2_{pq} = Tor^{\Lambda}_{p}(\Lambda_{\xi}^-, H_{q}(\widetilde{M}; \mathbb{Z}))$$
.

De la propriété 2 on déduit une nouvelle preuve de la nullité de $H_0(\widetilde{M}, \omega_\xi^-)$, et aussi que i'on a

$$\mathsf{H}_{\mathsf{I}}(\widetilde{\mathsf{M}}, \infty_{\xi}^{-}) \approx \mathsf{Tor}^{\Lambda}{}_{\mathsf{I}}(\Lambda_{\xi}^{-}, \mathbb{Z}) = \mathsf{H}_{\mathsf{I}}(\Lambda_{\xi}^{-}, \Lambda)$$

(homologie du $\Lambda-$ module Λ_{ξ}^{-}), ce qui prouve déjà que ce module ne dépend que de $\pi_i M$ et du morphisme ξ .

2. CARACTERISATIONS DE LA NULLITE DE $H_1(\tilde{\mathbb{M}}, \otimes_{\tilde{\xi}}^-)$.

2.1. Preuve du théorème 3. Nous allons prouver $A1 \Rightarrow A3$, $A3 \Leftrightarrow A2$, $A2 \Rightarrow A4$ et $A4 \Rightarrow A1$.

A1 \Rightarrow **A3**. Considérons la suite exacte (1.1) pour k=1. Comme \widetilde{M} est simplement connexe, on a $H_1(\widetilde{M},\widetilde{\mathfrak{f}}\leq c)=\widetilde{H_0}(\widetilde{\mathfrak{f}}\leq c)$; de plus, de la suite exacte $H_2\widetilde{M}\to H_2(\widetilde{M},\widetilde{\mathfrak{f}}\leq c)$ — $\#H_1(\widetilde{\mathfrak{f}}\leq c)$, on déduit $\lim^1\!H_2(\widetilde{M},\widetilde{\mathfrak{f}}\leq c)=\lim^1\!H_1(\widetilde{\mathfrak{f}}\leq c)$. Il vient donc la suite exacte

$$(2.2) \quad \lim^{I} H_{1}(\tilde{\mathfrak{f}} \leq c) > \longrightarrow H_{1}(\tilde{M}, \infty_{\xi}^{-}) \longrightarrow \lim^{\tilde{\mathbb{Q}}} H_{0}(\tilde{\mathfrak{f}} \leq c) \; .$$

Supposons Al vérifiée ; on a donc $\lim^O H_O(\widetilde{\mathfrak{f}} \leq c) = 0$. Or, comme ω n'a pas de singularité d'indice zéro, on sait que l'application $\widetilde{H}_O(\widetilde{\mathfrak{f}} \leq c) \to \widetilde{H}_O(\widetilde{\mathfrak{f}} \leq c')$ est surjective si c < c'. Donc tous les $\widetilde{H}_O(\widetilde{\mathfrak{f}} \leq c)$ sont nuls. \square

A3 \leftrightarrow A2. Le revêtement universel $\widetilde{\mathbb{N}} \to \widehat{\mathbb{M}}$ induit un revêtement galoisien $(\widetilde{\mathfrak{f}} \leq c) \to (\widehat{\mathfrak{f}} \leq c)$ de groupe $\pi_1 \widehat{\mathbb{M}}$. Comme $(\widehat{\mathfrak{f}} \leq c)$ est connexe, la suite exacte d'homotopie associée donne

$$(2.3) \quad \pi_{1}(\tilde{\mathfrak{f}} \leq c) \qquad \pi_{1}(\tilde{\mathfrak{f}} \leq c) \xrightarrow{i} \pi_{1} \hat{\mathfrak{m}} \xrightarrow{\longrightarrow} \pi_{0}(\tilde{\mathfrak{f}} \leq c) ,$$

où la flèche i est induite par l'inclusion : donc i est surjective si et seulement si $(\tilde{f} \leq c)$ est connexe. \Box

Remarque. Il est clair que dans A3, on peut remplacer "pour tout c" par "il existe c tel que", donc aussi dans A2.

A2 \Rightarrow A4. a) <u>Préliminaires</u>. Soit $\tau > 0$ une période de ξ ; on peut supposer que 0 est une valeur régulière de \hat{f} , donc aussi $k\tau$, $k\in\mathbb{Z}$. Notons $\hat{x}_1,\dots,\hat{x}_D$ des relevés dans $(0<\hat{f}<\tau)$ des singularités

d'indice l. Alors tout point critique d'indice l de \hat{f} dans (0 < \hat{f} < τ) s'écrit $\hat{x} = \overline{g}$. \hat{x}_i , où $\overline{g} \in \pi_1 M/\pi_1 \hat{M} = \text{Aut}(\hat{M}|M)$, et $|\xi(g)| < \tau$.

Choisissons un point base \hat{b} dans $(\hat{f} \leq 0)$. Alors $\pi_1(\hat{f} \leq \tau, \hat{b})$ est "engendré sur $\pi_1(\hat{f} \leq 0, \hat{b})$ par les points critiques d'indice 1 dans $(0 < \hat{f} < \tau)$ ": plus précisément, à chaque \hat{x} on associe un lacet $\hat{x} \hat{x} = \theta_1 \cup \theta \cup \theta_2$, où θ est la partie de la variété stable de \hat{x} au-dessus du niveau 0, et θ_1 , θ_2 des chemins dans $(\hat{f} \leq 0)$ joignant \hat{b} aux extrémités de θ (cf. figure 1). Alors $\pi_1(\hat{f} \leq \tau, \hat{b})$ est engendré par l'image de $\pi_1(\hat{f} \leq 0, \hat{b})$ et les $[\hat{x} \hat{y}]$.

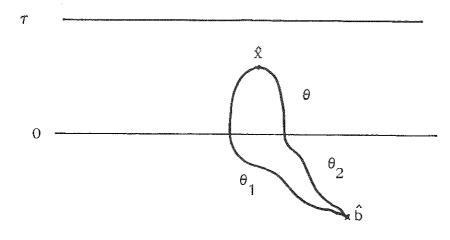


Figure 1

Prenons \hat{b} dans $(\hat{f} \leq -\tau)$ et, pour $\hat{x} = \hat{x}_i$, $i \leq i \leq p$, imposons à θ_1 et θ_2 de coîncider avec la variété stable de \hat{x}_i entre 0 et $-\tau$ (cf. figure 2); on obtient ainsi des lacets $\gamma_1, \dots, \gamma_p$. Soit $\hat{x} = \bar{g}.x_i$ un point d'indice l'entre 0 et τ ; alors $\hat{f}(\bar{g},\hat{b}) \leq 0$, et il existe un chemin $\lambda_{\bar{g}}$ de \hat{b} à $\bar{g}.\hat{b}$ dans $(\hat{f} \leq 0)$. On peut alors prendre $\gamma_{\hat{x}} = \lambda_{\bar{g}}.\gamma_i.\lambda_{\bar{g}}^{-1}$.

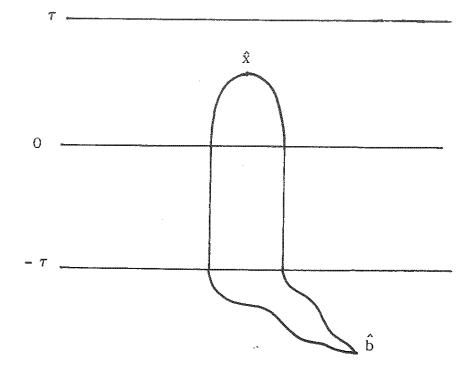


Figure 2

b) Supposons A2 vraie. Comme $\pi_1(\hat{\mathfrak{f}} \leq -\tau, \hat{\mathfrak{b}}) \to \pi_1(\hat{\mathfrak{M}}, \hat{\mathfrak{b}})$ est surjective, \aleph_1 est homotope dans $\hat{\mathfrak{M}}$ à $\aleph'_1 \subset (\hat{\mathfrak{f}} \leq -\tau)$. Soit N assez grand pour que toutes les homotopies $\aleph_1 \cong \aleph'_1$, $1 \leq i \leq p$, aient lieu dans $(\hat{\mathfrak{f}} \leq (N\tau))$; alors tout lacet $\aleph_{\hat{\mathfrak{X}}} = \lambda_{\bar{\mathfrak{g}}} \cdot \aleph_1 \cdot \lambda_{\bar{\mathfrak{g}}}^{-1}$ est homotope dans $(\hat{\mathfrak{f}} \leq (N+1)\tau)$ à $\aleph'_{\hat{\mathfrak{X}}} = \lambda_{\bar{\mathfrak{g}}} \cdot \aleph_1 \cdot \lambda_{\bar{\mathfrak{g}}}$, qui est contenu dans $(\hat{\mathfrak{f}} \leq 0)$: ceci prouve que $\pi_1(\hat{\mathfrak{f}} \leq 0, \hat{\mathfrak{b}})$ et $\pi_1(\hat{\mathfrak{f}} \leq \tau, \hat{\mathfrak{b}})$ ont même image dans $\pi_1(\hat{\mathfrak{f}} \leq (N+1)\tau, \hat{\mathfrak{b}})$; en utilisant la périodicité, on en déduit (ML). $\pi_1(\hat{\mathfrak{f}} \leq 0, \hat{\mathfrak{b}})$

A4 \Rightarrow **A1.** Supposons A4 vraie, et soit c_1 associé à c_0 = 0.

Montrons d'abord A2 : soit g un élément de $\pi_1 \hat{M}$, il existe $k \in \mathbb{Z}$ tel que g soit l'image de $\chi \in \pi_1(\hat{\mathfrak{f}} \leq c_1 + k \tau)$; alors l'image de χ dans $\pi_1(\hat{\mathfrak{f}} \leq k \tau)$ provient de $\pi_1(\hat{\mathfrak{f}} \leq c)$ pour tout $c \leq c_1 + k \tau$, et c'est a fortiori vrai pour g, d'où A2.

Ensuite, comme A2 \leftrightarrow A3, on a $\lim^0\widetilde{H}_0(\widetilde{\mathfrak{f}}\leq c)=0$; donc, d'après la suite exacte (2.1), il reste à prouver $\lim^1H_1(\widetilde{\mathfrak{f}}\leq c)=0$. Or

(ML) entraîne $\lim_{t\to 0} \pi_1(\hat{f} \le c) = 1$ (cf. [Switzer], p.131–132), et d'après la suite exacte (2.3), on en déduit $\lim_{t\to 0} \pi_1(\tilde{\mathfrak{f}} \leq c) = 1$. d'où le résultat. \square

2.2. Connexion avec les formes complètes de (Levitt).

a) Une forme de Morse w sans centre est dite complète si tout chemin θ dans $M - Sing \omega$ tel que $\int_{\Theta} \omega = 0$ est homotope à extrémités fixes à un chemin contenu dans une jeuille de $\,\omega|M\!-\!Sing\,\omega$. D'après [Levitt], la complétude est une propriété de la classe de cohomologie, et (ω complète $\Leftrightarrow \omega$ et $-\omega$ vérifient A2). Donc :

Propriété. La classe ξ est complète si et seulement si $H_1(\widetilde{M}, \infty_{\mathcal{F}}^{-})$ et $H_1(\widetilde{M}, \infty_{\mathcal{E}}^+)$ sont nuis.

b) Formes demi-complètes. [Levitt] démontre qu'une forme (de Morse sans centre) est complète si et seulement si, pour toute singularité s d'indice 1 ou n-1, les deux bouts singuliers issus de α sont situés sur la même feuille, et il existe un locet de connexion $\% (\% - \{s\})$ est contenu dans cette feuille) homotope à zéro dans M (voir figure 3).

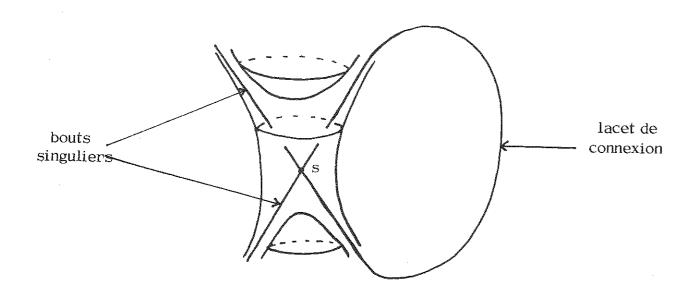


Figure 3

Ceci nous suggère d'appeler une forme de Morse sans singularité d'indice zéro <u>demi-complète à gauche</u> si un tel lacet existe pour toute singularité d'indice un. On adapte sans difficulté les méthodes de [Levitt] (preuve de la proposition II.2) pour prouver l'équivalence de cette propriété avec A3, donc la nullité de $H_1(\widetilde{\mathbb{M}},\infty_{\tilde{\mathcal{E}}}^-)$. Notons que la stabilité par perturbation de la demi-complétude permet de prouver, comme dans [Levitt], que <u>l'ensemble</u> $\{\xi|H_1(\tilde{M},\infty_{\xi}^-)=0\}$ <u>est ouvert dans</u> $H^1(M;\mathbb{R})$; nous retrouverons ce résultat plus tard (voir 4.4, remarque 1).

- 2.3. Preuve du corollaire 4. C'est le théorème V.2 de [Levitt], où l'on a remplacé la complétude par sa caractérisation homologique ; reproduisons sa démonstration, en rappelant que $\ker \xi = \pi_1(\hat{\mathbb{N}}_{\mathcal{E}})$:
- a) Si $\pi_1(\hat{M}_{\mathcal{E}})$ est de type fini, il est engendré par l'image de $\pi_1(K)$, où K est compact, donc par $\pi_1(c \leq \hat{\mathfrak{f}} \leq c')$; on en déduit que ξ et -ξ vérifient A2.
- b) Supposons rationnelle, alors tout niveau régulier ($\hat{\mathfrak{f}}=c$) est une variété compacte, donc $\pi_1(\hat{f}=c)$ est de présentation finie ; si ξ est complète, alors la surjectivité de $(\pi_1(\hat{j}=c) \to \pi_1(\hat{M}_{\mathcal{E}}))$ implique que $\pi_1(\hat{\mathsf{M}}_{\mathcal{E}})$ est de type fini. σ
- 2.4. Corollaire. Si M est de dimension trois et irréductible, il y a <u>équivalence</u> entre :

 - a) ξ <u>est non singulière</u>; b) $H_1(\widetilde{M}, \infty_{\xi}^-)$ <u>et</u> $H_1(\widetilde{M}, \infty_{\xi}^+)$ <u>sont nuls</u>.

Démonstration (cf. [Levitt], partie V, preuve de ℃(N)=U(N) pour les variétés de dimension trois irréductibles).

Notons N et C les sous-ensembles de $H^1(M,\mathbb{R})$ définis par a) et b); on sait déjà que N⊂C, et de plus C est ouvert (cf. 2.3). Le théorème de fibration de (Stallings) dit que, si ξ est rationnelle, elle est dans. Nosi et seulement si ker ξ est de type fini, c'est-à-dire si elle est dans C d'après le corollaire 4.

Il ne reste plus qu'à voir que, si ξ est irrationnelle et n'est pas dans N , elle n'est pas dans C non plus ; or, la description de N par [Thurston] implique l'existence d'une suite de classes rationnelles tendant vers ξ et qui ne sont pas dans N , donc pas dans C : comme C est ouvert, ξ ne peut être dans C . \square

Remarque. En fait, la nullité de $H_1(\widetilde{M}, \infty_{\xi}^-)$ suffit d'après [Bieri-Neumann-Strebel] (voir ce qui suit et leur théorème E).

2.5. Connexion avec [Bieri-Neumann-Strebel].

Dans [Bieri-Neumann-Strebel], on considère un groupe G de type fini, de groupe des commutateurs G'; pour un morphisme ξ de G dans $\mathbb R$, on pose $G_\xi=\{|g||\xi(g)\geq 0\}$ puis

 $\Sigma(\mathsf{G}) = \{\ \xi \in \mathsf{Hom}(\mathsf{G},\mathbb{R}) - \{\mathsf{0}\} | \mathsf{G}' \text{ est de type fini sur un sous-monoïde} \\ \text{de type fini de } \mathsf{G}_{\xi}\ \}$

(en fait, on prend le quotient par l'action multiplicative de \mathbb{R}_+^*).

Théorème ([Bieri-Neumann-Strebel], Théorème G (légèrement modifié)). On suppose G de présentation finie et l'on considère une variété fermée M telle que $\pi_1 M = G$; un morphisme $\xi : G \to \mathbb{R}$ est identifié à une classe de $H^1(M;\mathbb{R})$. Si ξ est non nulle, on la représente par une forme ω ; sur le revêtement M défini par $\pi_1 M = G'$, celle-ci se relève en une forme exacte df. Alors la partie $(f \ge 0)$ de M admet une unique composante non f-bornée, notée $M^+(\xi)$, et les propriétés suivantes sont équivalentes :

- a) $\xi \in \Sigma(G) = \Sigma(\pi_1 M)$;
- b) Le morphisme $\pi_1(\vec{M}^+(\xi)) \to \pi_1\vec{M}$ est surjectif.

On peut reprendre leur preuve mot à mot en remplaçant \widetilde{M} par $(\hat{\mathfrak{f}} \geq 0)$, ce qui compte étant <u>l'abélianité</u> des deux revêtements, d'où :

Corollaire. Si ξ est une classe dans $H^1(M;\mathbb{R}) - \{0\}$, il y a équivalence entre :

- a) $-\xi \in \Sigma(\pi_1 M)$;
- b) $H_1(\widetilde{M}, \infty_{\xi}^-) = 0$.
- **2.6.** Du résultat précédent et du théorème B1 de [Bieri-Neumann-Strebel], on déduit la généralisation suivante du corollaire 4.

Corollaire. Soit ξ une classe non nulle quelconque dans $H^1(M;\mathbb{R})$; alors $\ker \xi$ est de type fini si et seulement si on a $H_1(\widetilde{M}, \infty_{\xi}^-) = 0$ pour toute forme \mathfrak{N} telle que $\ker \mathfrak{N} \supseteq \ker \xi$. (Si ξ est rationnelle, une telle forme est un multiple $\mathfrak{N}\xi$, donc

(Si ξ est rationnelle, une telle forme est un multiple $\lambda \xi$,donc l'homologie associée est celle de $\pm \xi$: on retrouve bien le corollaire 4.)

2.7. Commentaire sur un exemple de [Bieri-Neumann-Strebell.

Cet exemple (section 8) est celui d'un groupe G de présentation finie et tel que, dans $Hom(G;\mathbb{R})$, l'ensemble $\Sigma(G)$ est le complémentaire de deux demi-droites <u>irrationnelles</u> (par rapport au réseau $H_1(G;\mathbb{Z})$ /torsion du dual) : on n'a donc plus la structure rationnelle polyédrale vraie si G est le groupe fondamental d'une variété de dimension trois. Or, en toutes dimensions ≥ 4 , on peut trouver une variété fermée M de groupe fondamental G; donc, il existe une classe irrationnelle ξ telle que

- $H_1(\widetilde{M}, \infty_{\xi}^-) \neq 0$,
- $H_1(\widetilde{M}, \infty_{\xi'}^-) = 0$ pour toute classe rationnelle ξ' assez proche.

Il ne paraît pas déraisonnable d'envisager un exemple semblable pour la propriété $(H_*(\widetilde{M}, \infty_{\zeta}^-))$ et $H_*(\widetilde{M}, \infty_{\zeta}^+)$ sont nuls); ensuite, si l'on savait répondre positivement à la question 2 de l'Introduction, on pourrait peut—être trouver une classe ξ <u>totalement irrationnelle</u> telle que :

- a) ξ ne peut être représentée par une forme non singulière ;
- b) toute classe ξ' assez proche [et rationnelle?] peut l'être.

3. PREUVE DU THEOREME 5. Elle résultera de la

Proposition. Soit M une variété fermée telle que la section nulle $M \subset T^*M$ puisse être disjointe d'elle-même par une isotopie symplectique (Ψ_t) ; on note λ la forme de Liouville et $\xi \in H^1(M;\mathbb{R})$ la classe de la forme fermée $(\Psi_1|M)^*\lambda$. Alors on a $H_*(\widetilde{M}, \infty_{\xi}^-) = 0$.

En effet, comme $\left[(\psi_t^{-1}|\text{M})^*\lambda\right]=-\xi$, on a aussi $\text{H*}(\widetilde{\text{M}}, \infty_{\xi}^+)=0$, donc le corollaire 2.4 implique que ξ est représentée par une forme non-singulière : donc M fibre sur le cercle.

Preuve de la proposition. D'après [Sikorav], on peut construire une variété fermée V^{2N} et une forme Ω <u>non-singulière</u> sur M×V , avec les propriétés suivantes :

- a) Il existe une application $\,\rho:V\to S^1\,$ à singularités de Morse ayant pour seule singularité un point d'indice $\,N\,$; de plus, $\,\rho\,$ induit un isomorphisme de $\,\pi_1V\,$ sur $\,\pi_1S^1\approx \mathbb{Z}\,$;
- b) La classe $[\Omega]$ est de la forme $\xi \oplus A\alpha$, où A est un nombre quelconque assez grand et $\alpha=[p^*d\theta]$.

Notant t le générateur de
$$\pi_1 V$$
 tel que $\rho_{\#}(t)=1$, on pose
$$L=\mathbb{Z}[\pi_1 V]=\mathbb{Z}[t,t^{-1}]\;.$$

$$L^-=L_{\text{Cl}}^-=\mathbb{Z}[t][[t^{-1}]]\;(=L_{\text{Ac}}^-)\;.$$

Lemme 1. On a : $H_*(\widetilde{V}; \infty_{\alpha}^-) = H_N = L^-$.

<u>Démonstration</u> (esquisse). Cela résulte de la suite (1.2) et du fait que, si c est une valeur régulière de l'application relevée \widetilde{p} , alors $(\widetilde{p} \le c)$ s'obtient homotopiquement en attachant une N-cellule à $(\widetilde{p} \le c-1)$.

Remarque. Ce lemme est évidemment un cas particulier de la théorie du complexe de Novikov évoquée dans l'introduction.

Ensuite, on choisit A dans le groupe im ξ , et l'on fixe g_0 dans $\pi_1 V$ tel que $\xi(g_0)=A$. On pose $\Lambda=\mathbb{Z}[\pi_1 M], \Lambda^-=\Lambda_{\xi}^-$ et l'on regarde L (resp. L $^-$) comme un sous-anneau de Λ (resp. Λ^-) en identifiant t à g_0 .

Notons ensuite

$$B = \mathbb{Z}[\pi_1(M \times V)] \approx \Lambda \otimes_{\mathbb{Z}} L$$
,

$$B^-=B_{[\Omega]}^-=\{\ \Sigma\, n_{g,\,i}\,g\otimes t^i\ |\ \text{pour tout } c\ ,\ i)\ n'y\ \text{a qu'un nombre fini de} \\ (g,i)\ \ \text{tels que}\ \ n_{g,\,i}\ \ \ \downarrow 0\ \ \text{et}\ \ \xi(g)+Ai\ \ \ge\ 0\ \}\ .$$

On fait agir B à droite sur Λ en posant $g_*(g'\otimes t^i)=g_0^{-i}gg'$. Le fait que $\xi(g_0)=\Lambda$ dit que ceci s'étend en une action de B^ sur $\Lambda^-.$

Enfin, définissons les complexes de chaînes cellulaires

$$\begin{split} & C_1 = C_*^{\ c}(\widetilde{\mathbb{M}}) \ , \ \ \overline{C}_1 = C_1^{\ c}(\widetilde{\mathbb{M}}, \infty_{\xi}^{\ -}) \approx \Lambda^- \otimes_{\Lambda} C_1 \ , \\ & C_2 = C_*^{\ c}(\widetilde{\mathbb{V}}) \ , \ \ \overline{C}_2 = C_2^{\ c}(\widetilde{\mathbb{V}}, \infty_{\alpha}^{\ -}) \approx L^- \otimes_L C_2 \ , \\ & C = C_*^{\ c}(\widetilde{\mathbb{M}} \times \widetilde{\mathbb{V}}) \approx C_1 \otimes_{\mathbb{Z}} C_2 \ , \\ & \overline{C} = C_*^{\ c}(\widetilde{\mathbb{M}} \times \widetilde{\mathbb{V}}, \infty_{|\Omega|}^{\ -}) \approx B^- \otimes_B C \ . \end{split}$$

Lemme 2. On a l'isomorphisme de Λ^- -complexes

$$\Lambda^-\otimes_{\bar b^-}\bar c \approx \,\bar c_1\otimes_{L^+}\bar c_2 \;.$$

<u>Démonstration</u>. Le complexe de gauche est isomorphe à $\Lambda^- \otimes_B (C_1 \otimes_\mathbb{Z} C_2) \text{ , et celui de droite à } (\Lambda^- \otimes_\Lambda C_1) \otimes_\mathbb{L} C_2 \text{ ; le lemme résulte alors de } \mathbb{B} \approx \Lambda \otimes_\mathbb{Z} \mathbb{L}$. \square

Fin de la preuve de la proposition. Comme Ω est non singulière, le complexe $\overline{\mathbb{C}}$ est acyclique ; comme il est libre, $\Lambda^-\otimes_{B^-}\overline{\mathbb{C}}$ est encore acyclique, soit $H(\overline{\mathbb{C}}_1\otimes_{L^-}\overline{\mathbb{C}}_2)=0$ d'après le lemme 2. Or, L^- est

évidemment un anneau euclidien donc principal ; d'autre part, $H(\overline{\mathbb{C}}_2) \, \approx \, \mathsf{L}^- \ \, \mathsf{d'après} \, \, \mathsf{le} \, \, \mathsf{lemme} \, \, \mathsf{l}, \, \, \mathsf{donc} \, \, \mathsf{la} \, \, \mathsf{formule} \, \, \mathsf{de} \, \, \mathsf{Künneth} \, \, \mathsf{implique} \, \, \\ H(\,\overline{\mathbb{C}}_1 \otimes_{\,\mathsf{L}} - \, \overline{\mathbb{C}}_2) \, \approx \, H(\,\overline{\mathbb{C}}_1) \, \, , \, \, \, \mathsf{d'où} \, \, H(\,\overline{\mathbb{C}}_1) \, = \, \mathsf{0} \, \, . \, \, \, \mathsf{D} \, \, \, \, \mathsf{d'ou} \,$

4. CALCUL DE $H_1(\tilde{M}, \infty_{\mathcal{E}}^-)$.

4.1. Nous allons appliquer la méthode indiquée par la propriété 2. Comme nous nous limitons à H_1 , il suffit de se donner une suite exacte de Λ -modules libres

$$\mathsf{C}_2 \xrightarrow{d_2} \mathsf{C}_1 \xrightarrow{d_1} \mathsf{C}_0 \ , \ \mathsf{coker} \ \mathsf{d}_1 \approx \mathbb{Z} \ .$$

Pour cela, nous nous donnons une présentation $\langle g_1,\dots,g_p|r_1,\dots,r_q\rangle$ de $\pi_1 M$ et lui associons la suite exacte de Lyndon évoquée dans l'introduction.

Soit maintenant ξ un élément non nul de $H^1(M;\mathbb{R})$, disons tel que $\xi(g_k) \neq 0$. On pose $\hat{\Lambda} = \Lambda_\xi^-$ et l'on considère la suite

$$\Lambda^q \xrightarrow{\hat{\mathfrak{d}}_{\mathbb{Z}}} \hat{\Lambda}^p \xrightarrow{\hat{\mathfrak{d}}_{1}} \hat{\Lambda}$$

obtenue par extension des scalaires ; d'après la propriété 1, on a :

D'abord, notons que $\hat{d}_1(e_k) = g_k - 1$ est <u>inversible</u> dans $\hat{\Lambda}:$ si par exemple $\xi(g_k) > 0$, son inverse est $\sum_{\ell=1}^\infty g_k^{-\ell}$; donc \hat{d}_1 est surjective, ce qui donne une nouvelle preuve de la nullité de $H_0(\tilde{M}, \infty_{\hat{\xi}}^-)$.

Ensuite, on peut décrire le noyau de $\hat{d_1}$:

Notons $\hat{\pi}_k: \hat{\Lambda}^p \to \hat{\Lambda}^{p-1}$ la projection oubliant la k-ème coordonnée; elle induit un isomorphisme de $\ker \hat{d}_1$ sur $\hat{\Lambda}^{p-1}$, d'où :

$$(4.4) \quad \text{H}_1(\tilde{\text{M}},\infty_{\xi}^{-}) \approx \hat{\Lambda}^{p-1}/\text{im}\,(\hat{\pi}_{k} \circ \hat{\text{d}}_2) \; .$$

Remarquons que $\,\hat{\pi}_k \circ \hat{d}_2\,$ est représentée par la matrice A de la proposition 6, considérée comme ayant ses coefficients dans $\,\hat{\Lambda}\,$.

- **4.5.** Preuve de la proposition δ . L'équivalence de a) et de b) résulte immédiatement de (4.4), et celle de b) et de c) est évidente. Reste à prouver c \Leftrightarrow d).
- c) \Leftrightarrow d). Soit \hat{x} vérifiant c). Notons K la valeur maximale de ξ sur les termes de A. Comme \hat{x} est à coefficients dans Λ_{ξ}^- , elle ne contient qu'un nombre fini de termes sur lesquels ξ prend une valeur $\geq -K$; soit $X \in M_{q,p-1}(\Lambda)$ la somme de ces termes, alors $(\hat{x}-x)A$ est clairement ξ -négative, donc XA a la forme voulue.
- d) \leftrightarrow c). Soient X et B vérifiant d). Alors $\mathrm{id}_{p-1}+\mathrm{B}$ est inversible dans $\mathrm{M}_{p-1,p-1}(\Lambda_{\xi}^{-})$, son inverse étant $\sum\limits_{0}^{\infty}{(-1)^{k}\mathrm{B}^{k}}$. Donc, si l'on pose $\hat{\mathrm{X}}=(\mathrm{id}_{p-1}+\mathrm{B})^{-1}\mathrm{X}$, on aura $\hat{\mathrm{X}}\mathrm{A}=\mathrm{id}_{p-1}$. \Box

Remarques. I) La condition d) montre de nouveau que $\{\xi|H_1(\widetilde{M},\infty_{\xi}^-)=0\}$ est ouvert.

2) Comme l'anneau $\Lambda_{\mbox{\it \xi}}^{-}$ admet un morphisme vers un corps, par

- (Lyndon) R.C. LYNDON, Cohomology of groups, Ann. of Math. 52 (1950), 650-665.
- [Massey] W.S. MASSEY, Homology and cohomology theory, Marcel Dekker, New-York 1978.
- [Novikov] S.P. NOVIKOV, Multivalued functions and functionals; an analogue of the Morse theory, Soviet Math. Dokl.24 (1981), 222-226.
- (Siebemann) L.C. SIEBENMANN, A total Whitehead obstruction to fibering over the circle, Comment. Math. Hev. 45 (1970), 1–48.
- (Sikorav) J.-C. SIKORAV, Un problème de disjonction par isotopie symplectique dans un fibré cotangent, Ann. Sci. Ec. Norm. Sup., 4e série, t.19 (1986).
- [Stallings] J. STALLINGS, On fibering certain 3-manifolds, Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs (NJ), 1962, p.95-100.
- [Switzer] R.M. SWITZER, Algebraic Topology Homotopy and Homology, Grundlehren Math. Wiss. 212, Springer, Berlin—Heidelberg— New York, 1975.
- [Thurston] W.P. THURSTON, A norm of the homology of 3-manifolds, Memoirs Amer. Math. Soc. 339 (1986) (appendice).
- [Tischler] D. TISCHLER, On fibering certain foliated manifolds over S^1 , Topology 9 (1970), 153–154.

No dimpression:890 2e trimestre 1987