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Abstract. Consider a graph G with a long path P . When is it the case that G also
contains a long induced path? This question has been investigated in general as well
as within a number of different graph classes since the 80s. We have recently observed
in a companion paper (Long induced paths in sparse graphs and graphs with forbidden
patterns, arXiv:2411.08685, 2024) that most existing results can recovered in a simple
way by considering forbidden ordered patterns of edges along the path P . In particular
we proved that if we forbid some fixed ordered matching along a path of order n in a graph
G, then G must contain an induced path of order (log n)Ω(1). Moreover, we completely
characterized the forbidden ordered patterns forcing the existence of an induced path of
polynomial size.

The purpose of the present paper is to completely characterize the ordered patterns
H such that forbidding H along a path P of order n implies the existence of an induced
path of order (log n)Ω(1). These patterns are star forests with some specific ordering,
which we called constellations.

As a direct consequence of our result, we show that if a graph G has a path of length
n and does not contain Kt as a topological minor, then G contains an induced path
of order (log n)Ω(1/t log2 t). The previously best known bound was (log n)f(t) for some
unspecified function f depending on the Topological Minor Structure Theorem of Grohe
and Marx (2015).

1. Introduction

Consider a graph G with a long path P . When is it the case that G also contains a long
induced path? Complete bipartite graphs must be forbidden as subgraphs, since these
graphs have long paths but no induced paths of order 3. A classical result of Galvin,
Rival, and Sands [GRS82] states that if G contains an n-vertex path and is Kt,t-subgraph
free, then it contains an induced path of order Ω((log log log n)1/3). In the companion
paper [DER24], we recently improved this bound to Ω

(
( log logn
log log logn

)1/5
)
. This was further

improved to Ω
(

log logn
log log logn

)
by Hunter, Milojević, Sudakov, and Tomon in [HMST24].

This question has also been investigated extensively when G belongs to a specific graph
class, such as outerplanar graphs, planar graphs and graphs of bounded genus [AV00,
ELM17, GLM16], graphs of bounded pathwidth or treewidth [ELM17, HR23], degenerate
graphs [DR24, NOdM12], and graphs excluding a minor or topological minor [HR23].

In [DER24], we recently observed that most of the known results on this question
can be recovered in a simple and unified way by considering the following variant of the
problem. Consider that the vertices of the n-vertex path P in G are ordered following
their occurrence in P . What forbidden ordered subgraphs in G force the existence of a
long induced path in G? In [DER24], we showed that forbidding ordered matchings yields
an induced path of order nΩ(1) or (log n)Ω(1), depending on the structure of the matching.
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This was enough to imply all previously known results in the area, except the result of
[HR23] on graphs excluding a topological minor.

In this paper we completely characterize the forbidden ordered subgraphs yielding in-
duced paths of order (log n)Ω(1). These graphs are star forests with a specific vertex
ordering, which we call constellations. Our proof has two parts: we first show that
forbidding a constellation yields induced paths of order polylog(n), and we then con-
struct a graph without any of these constellations, which has no induced path of order
Ω((log log n)2). The construction is inspired by the recent construction of [DR24] of a
2-degenerate Hamiltonian n-vertex graph without induced path of order Ω((log log n)2).

As a direct consequence of our main result, we obtain that graphs which do not contain
Kt as a topological minor, and which contain a path on n vertices also contain an induced
path of order (log n)Ω(1/t log2 t). This simplifies and improves upon an earlier result of
[HR23], in which the exponent was an unspecified function of t (relying on structure
theorems of Robertson and Seymour, and Grohe and Marx). In the particular case of
forbidden Kt minors, this also improves upon the bound of order (log n)Ω(1/t2) obtained in
[DER24] using forbidden ordered matchings (we note that the proof of the weaker bound
in [DER24] is significantly simpler than the proof of the stronger bound obtained in the
present paper).

Organization of the paper. In Section 2 we introduce the necessary tools and defini-
tions. Our main result, a proof that graphs with long paths and without constellations
have long induced paths (Theorem 3.2), is proved in Section 3. The construction showing
that constellations are the only ordered subgraphs whose avoidance yields induced paths
of polylogarithmic size is given in Section 4. We conclude with some additional remarks
in Section 5.

2. Preliminaries

In all the paper, to avoid any ambiguity we always consider the order of a path P (its
number of vertices), denoted by |P |. We never refer to the length (number of edges) of a
path.

Logarithms are in base 2. As we will often be using several levels of exponentiations, it
will sometimes be more convenient to write exponentiation in-line: we will then write a∗b
instead of ab. We omit parentheses for the sake of readability but it should be implicit
that ∗ is not associative and n1 ∗ n2 ∗ · · · ∗ nk = n1 ∗ (n2 ∗ (· · · ∗ nk) · · · ). Similarly, we use
log(i) to denote the logarithm iterated i times. That is, log(0) is the identity function and
for every integer i ⩾ 1 and every x s.t. log(i−1)(x) > 0, log(i) x = log(log(i−1) x).

Forbidden patterns. An ordered graph is a graph with a total order on its vertex set.
Consider an ordered graph G with order v1, . . . , vn and an ordered graph H with order
u1, . . . , uk. We say that G contains H as an ordered subgraph if there exist 1 ⩽ a1 < a2 <
. . . < ak ⩽ n such that for all 1 ⩽ i, j ⩽ k, if ui is adjacent to uj in H, then vai is adjacent
to vaj in G. In words, H appears as a subgraph in G in such a way that the ordering of
the copy of H in G is consistent with the ordering of G.

Let G be a graph and P = v1, v2, . . . , vn be a Hamiltonian path in G. Note that P
allows us to consider G and G−E(P ) (the spanning subgraph of G obtained by removing
the edges of P ) as ordered graphs, that is with vi ≺ vj if and only if i < j. Given
an ordered graph H, we say that (G,P ) contains H as a pattern if the ordered graph
G−E(P ) contains H as an ordered subgraph. If (G,P ) does not contain H as a pattern,
we say that (G,P ) avoids the pattern H. When P is clear from the context we simply say
that G contains or avoids the pattern H (but in all such instances we really mean that H
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is a pattern with respect to some Hamiltonian path P , so the edges of P are not part of
the pattern).

In [DER24] we studied the function gH(n) defined as the maximum integer k such that
for every graph G with a path P of order n that avoids H as a pattern, G has an induced
path of order at least k. Observe that we can assume that P is a Hamiltonian path in
G (by considering the subgraph of G induced by P instead of G). If H = K2 then G is
precisely an induced path on n vertices, so gK2(n) = n.

Let A and B be two ordered graphs. The concatenation of A and B, denoted by A ·B,
is the ordered graph whose graph is the disjoint union of A and B, and whose order
consists of the ordered vertices of A, followed by the ordered vertices of B. We will need
the following simple result, proved in [DER24].

Lemma 2.1 ([DER24]). Let A and B be two ordered graphs. Then for any n ⩾ 0,

gA·B(n) ⩾ min{gA(⌊n/2⌋), gB(⌈n/2⌉)}.

We proved in [DER24] that if gH(n) = ω(log n), then H must be a matching. So better-
than-logarithmic bounds on the size of induced paths can only be obtained by considering
very simple patterns, namely ordered matchings. It is thus natural to investigate gH(n)
when H is an ordered matching. In this case, we proved the following in [DER24]:

• either H is non-crossing (that is, it does not contain vertices a < b < c < d with
edges ac, bd) and then gH(n) = nΘ(1), or

• H contains a pair of crossing edges and then gH(n) = (log n)Θ(1).
We also gave several constructions of graphs avoiding certain patterns, but which do

not contain long induced paths. These constructions imply the following.

Observation 2.2 ([DER24]). Let H be an ordered graph such that {gH(n) : n ∈ N} is
unbounded. Then for each vertex v ∈ V (H), all neighbors of v are predecessors of v, or
all neighbors of v are successors of v. In particular H is bipartite.

3. Constellations

The r-star is the complete bipartite graph K1,r. We say that the vertex of degree r is
the center of the star (if r = 1, both endpoints can be the center of the star, and otherwise
the center is unique). Recall that by Observation 2.2, for gH to be unbounded, an ordered
graph H must have the property that every vertex is larger than all its neighbors, or
smaller than all its neighbors. So we only need to consider two orderings of a star: the
right star where the center is the smallest vertex in the ordering, and the left star where
the center is the largest vertex (we consider that 1-star is left star and a right star). In the
course of showing that traceable graphs of bounded degeneracy have long induced paths,
Nešetřil, and Ossona de Mendez proved a lemma that can be restated as follows in terms
of excluded patterns.

Lemma 3.1 ([NOdM12, Lemma 6.3]). If H is a left or right r-star, then gH(n) ⩾
log((r−1)n+1)

log r
.

This shows that avoiding a single right or left star as a pattern guarantees the existence
of an induced path of logarithmic order. In the following, our goal will be to obtain
polylogarithmic bounds for patterns consisting of a constant number of constant size
stars.

We now introduce constellations, a particular type of ordered star forests. A constella-
tion H consists of a disjoint union of stars S1, . . . , St, each of which is a left or right star,
and is defined inductively as follows:
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• either the center of one of the stars, say S1, is the first vertex of H, and H − S1

is a constellation,
• or the center of one of the stars, say St, is the last vertex of H, and H − St is a

constellation,
• or H is the concatenation of two constellations.

In the first item above, H is called a right constellation (the star whose center is the first
vertex of H is a right star), and in the second item above, H is called a left constellation
(the star whose center is the last vertex of H is a left star). We emphasize that the
three items in the definition of a constellation are not mutually exclusive: for instance the
concatenation of a right star and a left star is a constellation that satisfies all three items.
Note also that any ordered matching is a left constellation and a right constellation.

A constellation consisting of t stars, each of which is an r-star, is called a (t, r)-
constellation.

Theorem 3.2. There exists a constant µ > 0 such that for any integers r ⩾ 1 and t ⩾ 1,
and any (t, r)-constellation H,

gH(n) ⩾ (logr n)
µ

t(log t)2 .

Let G be an ordered graph with order v1, . . . , vn, and let H be an ordered subgraph of
G with vertex set va[1], va[2], . . . , va[k] (for 1 ⩽ a[1] < a[2] < . . . < a[k] ⩽ n). The gap of H
in G is defined as the minimum of a[i+ 1]− a[i], for 1 ⩽ i ⩽ k − 1. The definition of the
gap naturally extends to patterns in pairs (G,P ) where G is a graph and P a Hamiltonian
path in G.

Theorem 3.2 is a consequence of Theorem 3.10 below which, informally, states that a
graph either contains a “large scale” version of a constellation as a pattern, or contains
a “long”1 increasing induced path. This is illustrated by the following simplified form of
Theorem 3.10.

Theorem 3.3 (simplified form of Theorem 3.10). Let H be a (t, r)-constellation. There
are functions

f(n) = (log n)Θr(1/(t(log t)2)) and g(n) =
n

2 ∗ (log n) ∗
(
1−Θr(1/(t(log t)2))

)
such that for every graph G with a Hamiltonian path P = v1, . . . , vn, either (G,P ) contains
the pattern H with gap g(n), or G contains an induced path of order at least f(n) which
is increasing with respect to the order v1, . . . , vn.

For the purpose of the induction we need to define the aforementioned functions f and
g with extra parameters, as well as additional functions, which we do now. In the rest of
the section, r ⩾ 1 is a fixed integer. Most functions we introduce depend on r implicitly,
but as r is fixed we do not consider them explicitly as functions of r.

Definition 3.4. Let φ, η, γ : N ∪ {−1} → (0, 1) be three functions such that every t ∈ N
we have:

γ(t)− γ(t− 1) ⩾ 8 · φ(t− 1),(1)
1− γ(t− 1) ⩾ 8 · φ(t− 1),(2)

φ(t− 1) > η(t) > φ(t), and(3)
φ(t− 1)− η(t) > φ(t)− η(t+ 1).(4)

1The inequalities describing how “large” should be related to “long” for our argument to work are
gathered in Lemma 3.8 hereafter.
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Remark 3.5. Functions as in Definition 3.4 exist, for instance for every t ∈ N ∪ {−1}
we could take

φ(t) :=
1

8
· 1
α
· 1

(t+ 10)(log(t+ 10))2
, where α :=

∞∑
i=−1

1

(i+ 10)(log(i+ 10))2
≈ 0.22,

η(t) :=
φ(t− 1) + φ(t)

2
, and

γ(−1) := 0 and if t ⩾ 0, γ(t) := 8 ·
t−1∑
i=−1

φ(i).

Actually we could replace (t+ 10)(log(t+ 10))2 above by any function of the form

Θ(t(log t)(log log t) · · · (log · · · log t)2),
where the square is only on the last factor. Indeed by the Cauchy Condensation Test (see
[Mor38]), for any such function ρ and t0 ∈ N large enough so that 1/ρ(t0) is defined, the
series

∑∞
t=t0

1/ρ(t) converges.
The “ + 10” term above is only here to ensure that the functions are indeed defined for

small values.

Definition 3.6. We use the functions of Definition 3.4 above to define, for every integers
n ⩾ 1, t ⩾ 1, p ⩾ 0 the following functions:

f(n, t, p) := (logr+1 n)
φ(t) − p/2− 4

1
φ(t−1)−η(t) ,

h(n, t, p) := (logr+1 n)
η(t) + p/2− 4

1
φ(t−2)−η(t−1) ,

g(n, t, p) :=
n

(6(r + 1)) ∗
(
2(logr+1 n)

γ(t) · (3(logr+1 n)
φ(t) − p)

) , and

s(n, t, p) :=
g(n/3, t− 1, p)− 1

2r + 1
.

The properties of the functions f , g, h, and s defined above that are crucial for our
proof are given in Lemma 3.7 and Lemma 3.8 below. The proofs of these properties
are a sequence of tedious and relatively unexciting computations, so we defer them to
Appendix A.

Lemma 3.7. For any integers p ⩾ 0, t ⩾ 1, and n such that logr+1 n ⩾ 4∗ 1
φ(t)·(φ(t−1)−η(t))

and p ⩽ 2 · (logr+1 n)
φ(t), we have

f(n, t− 1, p) ⩾ f(n, t, p), g(n, t− 1, p) ⩾ g(n, t, p), and h(n, t− 1, p) ⩾ h(n, t, p).

Lemma 3.8. For any integers r ⩾ 1, t ⩾ 1, p ⩾ 0, n ⩾ 1, such that

logr+1 n ⩾ (2 + p/2)1/φ(t) + 4
1

φ(t)·(φ(t−1)−η(t)) and(5)

p < 2(logr+1 n)
φ(t),(6)

we have the following inequalities:

f
(
s(n, t, p), t, p+ 1

)
⩾ f(n, t, p)− 1,(7)

h
(
s(n, t, p), t, p+ 1

)
⩾ h(n, t, p),(8)

g
(
s(n, t, p), t, p+ 1

)
⩾ g(n, t, p),(9)

f(n/3, t− 1, p) ⩾ h(n, t, p), and(10)
s(n, t, p) ⩾ g(n, t, p).(11)



6 J. DURON, L. ESPERET, AND J.-F. RAYMOND

Let G be a graph with a Hamiltonian path P = v1, . . . , vn, n ⩾ 2. For any two integers
a and b such that 1 ⩽ a ⩽ b ⩽ n, we denote by G[a, b] the ordered subgraph of G induced
by the vertices va, . . . , vb. Let a1, . . . , ad denote the indices of the neighbors of v1 in G
(in the same order as in P , so a1 = 2) and let ad+1 = n. The stretch of G is defined as
maxi∈{1,...,d} ai+1 − ai. Let i ∈ {0, . . . , d} be the minimum index maximizing ai+1 − ai and
call the ordered subgraph G[ai, ai+1 − 1] of G the successor of G.

Lemma 3.9. Let G be a graph with a Hamiltonian path P = v1, . . . , vn and let s,m ∈ N⩾1

with m < n. If for every i, j ∈ {1, . . . , n} such that j− i+1 ⩾ n/m, G[i, j] has stretch at
least j−i+1

s
then G has an increasing induced path of length at least logm

log s
starting from v1.

Proof. Let G0 = G. For every i ⩾ 0 and as long as |Gi| ⩾ n/m, we define Gi+1 as
the successor of Gi. Let p be the index of the last graph defined that way. For every
i ∈ {1, . . . , p}, let va[i] be the first vertex of Gi. Clearly Gi+1 is an (ordered) induced
subgraph of Gi and va[i] has only one neighbor in Gi+1, that is va[i+1]. So va[0], . . . , va[p] is
an induced path.

By definition of p, for every i ∈ {0, . . . , p− 1}, |Gi| ⩾ n/m so by assumption Gi has
stretch at least |Gi|/s. Hence Gi+1 ⩾ |Gi|/s ⩾ n/si+1. Recall that |Gp| < n/m. So
n/sp ⩽ n/m and p ⩾ logm

log s
. □

The following is the main technical result of the section.

Theorem 3.10. Let r ⩾ 1 be a fixed integer, and let f and g be the functions introduced
in Definition 3.6. Let H be a (t, r)-constellation. Let G be a graph with a Hamiltonian
path P = v1, . . . , vn. Then either (G,P ) contains the pattern H with gap at least g(n, t, 0),
or G contains an induced path of size at least f(n, t, 0) which is increasing with respect to
the order v1, . . . , vn.

Proof. Recall that r ⩾ 1 is fixed and all the functions of Definition 3.6 implicitly depend
on r. Recall also that by definition, H is either a right constellation, a left constellation,
or a concatenation of smaller constellations. For the sake of induction we will actually
prove the following stronger proposition Prop(t, n, p) for any integers t ⩾ 1, n ⩾ 1, and
p ⩾ 0:

Prop(n, t, p): One of the following holds
(P1) H is a right (resp. left) (t, r)-constellation and G contains an increasing

induced path of order f(n, t, p) starting at the first (resp. ending at the last)
vertex, or

(P2) G contains an increasing induced path of order h(n, t, p), or
(P3) G contains the pattern H with gap at least g(n, t, p).

Base case (t = 1).
When t = 1, H is a right or left star (and in particular a left or right constellation). By

symmetry, we can assume that H is a right star. We will prove that either (P1) or (P3)
holds in this case. To do so, we call Lemma 3.9 with s := 2r and m := 2f(n,1,p)·log 2r.

The first step is to prove that either (P3) holds, or for any indices i and j with j−i+1 ⩾
n/m, the subgraph G[i, j] has stretch at least j−i+1

s
. Hence, assume that for such pair i, j,

G[i, j] has stretch less than j−i+1
s

= j−i+1
2r

. Then one finds the star H with gap at least n
ms

as follows: take vi, and a neighbor of vi in each interval
[
i+ (2k − 1) j−i+1

s
, i+ 2k j−i+1

s
− 1
]
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for 1 ⩽ k ⩽ r. But since

sm = 2r · 2f(n,1,p)·log 2r

= 2r · 2 ∗
((

(logr+1 n)
φ(1) − p/2− 4

1
φ(0)−η(1)

)
· log 2r

)
by definition

⩽ 2r · (2r) ∗
(
(logr+1 n)

φ(1) − p/2
)

⩽ (2r) ∗
(
2
(
(logr+1 n)

φ(1) − p/2
))

since f(n, 1, p) ⩾ 1

< (6(r + 1)) ∗
(
6
(
(logr+1 n)

φ(1) − p/2
))

= (6(r + 1)) ∗
(
6(logr+1 n)

φ(1) − 3p
)
= n/g(n, 1, p)

we have n
ms

⩾ g(n, 1, p), and so we found H with gap at least g(n, 1, p) in G, and proved
(P3). Hence, we can assume that G[i, j] has stretch at least j−i+1

s
for any pair i, j with

j − i + 1 ⩾ n/m, and thus we can apply Lemma 3.9, finding a path that starts in v1 of
size logm

log s
= f(n,1,p) log 2r

log 2r
= f(n, 1, p) This proves that (P1) holds and concludes the proof

of the base case (t = 1).

Induction step (t > 1). We distinguish two cases below depending whether H is a
concatenation of smaller constellations or a left or right constellation. For the induction
we will assume that that t > 1 and that for every t′ < t, and every n′ ⩾ 1 and p′ ⩾ 0,
Prop(n′, t′, p′) holds.

Case 1: H is a concatenation of non-empty constellations.

If H is the concatenation of a (t1, r)-constellation H1 and a (t2, r)-constellation H2 (with
t1, t2 > 0 and t1 + t2 = t), then we apply induction on G1 = G[1, ⌈n/3⌉] with pattern H1,
and induction on G2 = G[⌊2n/3⌋, n] with pattern H2. If in one of them the outcome is
(P1), then the resulting increasing induced path has order at least f

(
n/3,max(t1, t2), p

)
⩾

f(n/3, t−1, p), since f is decreasing in t (by Lemma 3.7). If in one of them the outcome is
(P2), then the resulting increasing induced path has order at least h

(
n/3,max(t1, t2), p

)
⩾

h(n/3, t− 1, p) ⩾ f(n/3, t− 1, p). It then follows from Lemma 3.8.(10) that in both cases
this path has order at least h(n, t, p). Hence (P2) holds for G.

Otherwise, both applications of the induction hypothesis result in (P3) for G1 with pat-
tern H1 and G2 with pattern H2. That is, we find H1 with gap g(n/3, t1, p) in G[1, ⌈n/3⌉]
and H2 with gap g(n/3, t2, p) in G[⌊2n/3⌋, n]. Since g is decreasing with t (by Lemma 3.7),
in particular we find H1 and H2 each with gap at least g(n/3, t − 1, p) which is at least
s(n, t, p), so at least g(n, t, p) by Lemma 3.8.(11). Furthermore, the patterns H1 and H2

are separated by at least n/3− 2 ⩾ g(n, t, p) vertices, so we have the pattern H = H1 ·H2

with gap at least g(n, t, p). Hence (P3) holds.

Case 2: H is a left or right constellation.

We will extensively use the following two claims.

Claim 3.11. If p ⩾ 2 · f(n, t, 0) then Prop(n, t, p) holds.

Proof. Indeed in this case by definition of f we have f(n, t, p) ⩽ 0, so (P1) is trivially
satisfied. ⌟

Claim 3.12. If logr+1 n < (2 + p/2)1/φ(t) + 4
1

φ(t)·(φ(t−1)−η(t)) then Prop(n, t, p) holds.
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Proof. Indeed in this case

f(n, t, p) =
(
logr+1 n

)φ(t) − p/2− 4
1

φ(t−1)−η(t) by definition

<
(
(2 + p/2)1/φ(t) + 4

1
φ(t)·(φ(t−1)−η(t))

)φ(t)
− p/2− 4

1
φ(t−1)−η(t)

⩽
(
(2 + p/2)1/φ(t)

)φ(t)
+
(
4

1
φ(t)·(φ(t−1)−η(t))

)φ(t)
− p/2− 4

1
φ(t−1)−η(t)

by sub-additivity of x 7→ xφ(t)

= 2 + p/2 + 4
1

φ(t−1)−η(t) − p/2− 4
1

φ(t−1)−η(t)

= 2.

So (P1) is satisfied by any edge incident to the first vertex of G. ⌟

By Claim 3.11 and Claim 3.12 we can assume without loss of generality that

(12) p < 2 · f(n, t, 0) and logr+1 n ⩾ (2 + p/2)1/φ(t) + 4
1

φ(t)·(φ(t−1)−η(t)) .

By symmetry, up to reversing P , we may assume without loss of generality that H is a
right constellation. Let H = S1, . . . , St. Since H is a right (t, r)-constellation, the vertex
of degree r in S1 is the first vertex of H. Let H− be the ordered graph obtained from H
by deleting S1.

Claim 3.13. Let k be an integer such that k ⩽ n/3− 2. Suppose that G [⌊n/3⌋ , ⌊2n/3⌋]
contains the pattern H− with gap at least k. Then either G has stretch more than k−1

2r+1
,

or G contains the pattern H with gap at least k−1
2r+1

.

Proof. Suppose that G has stretch at most k−1
2r+1

. Then v1 has at least one neighbor in
any set of k−1

2r+1
consecutive vertices of G. Hence, for any two vertices va and vb of G such

that b − a ⩾ k, v1 has 2r + 1 neighbors indexed i0, . . . , i2r such that for all 0 ⩽ j ⩽ 2r,
a + 1 + j k−1

2r+1
⩽ ij < a + 1 + (j + 1) k−1

2r+1
. In particular by taking all ij with j in

{1, 3, . . . , 2r − 1}, one finds a copy with gap at least k−1
2r+1

of a right r-star centered in v1
and whose leaves have indices between a+ k−1

2r+1
and b− k−1

2r+1
.

As G [⌊n/3⌋ , ⌊2n/3⌋] contains the pattern H− with gap at least k, G contains as a
pattern with gap at least k−1

2r+1
the ordered graph consisting of H− preceded by a right

(r · (|V (H−)|+ 1))-star, having at least r leaves in each gap of the pattern H−, together
with r leaves before v⌊n/3⌋ and r leaves after v⌊2n/3⌋. In particular, G contains the pattern
H with gap at least k−1

2r+1
, as desired. ⌟

Let Gmid := G[⌊n/3⌋, ⌈2n/3⌉] be the graph induced by the central third of G. By
induction on t, if Gmid does not contain the pattern H− with gap at least g(n/3, t− 1, p),
then Gmid either satisfies (P1) or (P2) (note that in the case of (P1), the path may
begin at the first vertex of Gmid, or end at the last vertex of Gmid since H− can be
either a right or left constellation). Hence, Gmid either contains an increasing induced
path of order at least f(n/3, t − 1, p) or an increasing induced path of order at least
h(n/3, t− 1, p) ⩾ f(n/3, t− 1, p). By Lemma 3.8.(10), f(n/3, t− 1, p) ⩾ h(n, t, p) which
ensures that G indeed satisfies (P2).

Hence we can assume that Gmid contains the pattern H− with gap at least g(n/3, t−1, p).
By Claim 3.13 we know that either Gmid (and G) contain the pattern H with gap at least
g(n/3,t−1,p)−1

2r+1
or Gmid has stretch at least g(n/3,t−1,p)−1

2r+1
. In the first case, an application of

Lemma 3.8.(11) gives g(n/3,t−1,p)−1
2r+1

= s(n, t, p) ⩾ g(n, t, p) and thus G satisfies (P3), so we
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can assume that Gmid has stretch at least g(n/3,t−1,p)−1
2r+1

. Let G′ be the successor of Gmid.
Notice that

(13) |V (G′)| ⩾ g(n/3, t− 1, p)− 1

2r + 1
= s(n, t, p).

We now apply induction on G′ again with the pattern H.
(P1’) If G′ has an increasing induced path Q with f(|V (G′)|, t, p + 1) vertices starting

at its first vertex (recall that H was assumed to be a right (t, r)-constellation),
then the path v1Q is an increasing induced path of G starting at v1 and has order
at least

1 + f(|V (G′)|, t, p+ 1) ⩾ 1 + f(s(n, t, p), t, p+ 1). by (13)
⩾ f(n, t, p) by Lemma 3.8.(7),

hence G satisfies (P1).
(P2’) If G′ has an increasing induced path Q with at least h(|V (G′)|, t, p + 1) vertices,

then observe that

|Q| ⩾ h
(
s(n, t, p), t, p+ 1

)
by (13)

⩾ h(n, t, p) by Lemma 3.8.(8),

hence G satisfies (P2).
(P3’) If G′ contains the pattern H with gap at least g(|V (G′)|, t, p+ 1), then

g
(
|V (G′)|, t, p+ 1

)
⩾ g
(
s(n, t, p), t, p+ 1

)
by (13)

⩾ g(n, t, p) by Lemma 3.8.(9),

hence G satisfies (P3).
Hence Prop(t, n, p) holds for any n ⩾ 1 and p ⩾ 0 (and in particular for p = 0). □

We now explain the main application of Theorem 3.10 on (unordered) graphs avoiding
some topological minors. We say that a graph G contains some graph H as a topological
minor if G contains some subdivision of H as a subgraph (where a subdivision of H is a
graph obtained from H by replacing each edge by a path of arbitrary length).

Corollary 3.14. Let t > 1 be a positive integer. If a graph G contains an n-vertex path
P and does not contain Kt as a topological minor, then G[P ] contains an induced path of
order (log n)Ω(1/t(log t)

2) which is increasing with respect to P .

Proof. Let G be a graph that does not contain Kt as a topological minor and let P be an
n-vertex path of G. We describe a pattern H that is a (t, t − 1)-constellation and such
that (G[P ], P ) avoids H as a pattern.

The pattern H consists of t right (t− 1)-stars S1, . . . , St. For each star Si, we write ci
for its center, and ℓi,1, . . . , ℓi,i−1, ℓi,i+1, . . . ℓi,t for its t− 1 leaves (note that we omitted the
name ℓi,i). We then order the vertices of H such that

• all centers of the stars lie before all the leaves of the stars, and
• for any 1 ⩽ i < j ⩽ t, the leaves ℓi,j and ℓj,i are consecutive.

Note that there are many orders satisfying these two conditions. We refer the reader to
Figure 1 for a drawing of such an ordered graph H when t = 4. For each 1 ⩽ i < j ⩽ t,
consider the path Pi,j which is the concatenation of the edge cici,j, the subpath of P
between ci,j and cj,i, and the edge cj,icj. Note that these paths are internally vertex-
disjoint, and thus if G[P ] contains the pattern H, then it contains Kt as a topological
minor. Hence, G[P ] avoids the pattern H and so by Theorem 3.10, G[P ] contains an
increasing path of order at least f(n, t, 0) = (log n)Ω(1/t(log t)

2). □
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c1 c2 c3 c4 ℓ21 ℓ12 ℓ31 ℓ13 ℓ41 ℓ14 ℓ32 ℓ23 ℓ42 ℓ24 ℓ43 ℓ34

Figure 1. Drawing of an ordered graph H with the following property:
if a graph G with a Hamiltonian path P contains H as a pattern, then
G contains K4 as a topological minor. The ordered graph H consists of
four right stars centered respectively in c1, c2, c3 and c4, each drawn with a
different color.

4. Doubly polylogarithmic upper-bounds

In [DR24] Defrain and the third author gave the following upper-bound on the size of
induced paths in 2-degenerate graphs with long paths.

Theorem 4.1 ([DR24]). There is a constant c such that for infinitely many integers n,
there is a 2-degenerate graph G with a path of order n and no induced path of order
c(log log n)2.

In the proof of Theorem 4.1 the construction of the graph G is explicit. The graph
is obtained after adding subdivisions and extra edges to a 3-blow-up of a binary tree
(each node is replaced by a triangle an each edge by two “parallel” edges between the
triangles corresponding to its endpoints). We give an alternative construction that implies
Theorem 4.1 while also having consequences related to excluded patterns.

Theorem 4.2. For any ordered graph H which is not a constellation,

gH(n) = O((log log n)2).

We note that our construction is merely a modification of that of [DR24] so that it
avoids constellations. For completeness we include the proof, but since several parts are
similar to the proof of [DR24], we reused as much material from that paper as possible
(including definitions, proofs, pictures), with the agreement of the authors. Besides prov-
ing Theorem 4.2, our contribution here is also to show that the construction of [DR24] is
quite versatile and in particular that there is a lot of freedom in choosing the connecting
gadgets (to be defined below).

4.1. The construction.

4.1.1. The base graph. Let h : N⩾1 → N be the function defined for every ℓ ∈ N⩾1 by the
following formula:
(14) h(ℓ) = 5 · 2ℓ−1 − 2.

For every ℓ ∈ N⩾1 we denote by Bℓ the complete binary tree of depth2 h(ℓ). In this tree,
≺ is the ancestor-descendant relation, i.e. s ≺ t if s ̸= t and s lies on the unique path
linking t to the root. Let Hℓ be the graph obtained from Bℓ by replacing each vertex by
the subgraph called gadget that is drawn in Figure 2 (while Figure 3, right, shows the

2The complete binary tree of depth p is K1 (rooted at its unique vertex) if p = 1 and otherwise it can
be obtained from two disjoint copies of the complete binary tree of depth p− 1 by adding a new vertex
v adjacent to their roots and rooting the resulting tree at v.
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gadgets used in [DR24] as a comparison) and connected to other gadgets as described in
Figure 3, bottom (and explained more formally below, after we introduce some necessary
terminology). So each vertex s of Bℓ corresponds to a different gadget in Hℓ, that we refer
to as the gadget at s. Conversely it is useful for our proofs to define a function π that
maps the vertices of Hℓ back to the vertex of Bℓ they originate from. Hence the gadget
at s is precisely the subgraph of Hℓ induced by π−1(s). We define the depth depth(u)
of a vertex u ∈ V (Hℓ) as the depth of its corresponding node π(u) in Bℓ. Gadgets have
three special sets of vertices as described on Figure 2, the in-ports, the out-ports, and the
connectors.

For any non-leaf node s of Bℓ, say with left child s1 and right child s2, we add a matching
between the left connectors of the gadget at s and the out-ports of the gadget at s1, and
another matching between the right connectors of the gadget at s and the out-ports of the
gadget at s2. The resulting graph is Hℓ. This is illustrated in Figure 3, bottom. In the
following we will also add edges to Hℓ between in-ports and out-ports of specified depths.

right out-portleft out-port

Figure 2. Gadget used to replace vertices of Bℓ. The out-ports (resp. in-
ports, connectors) are depicted with colored stars (resp. pentagons, circles).

4.1.2. Nested intervals systems. If X is a set of pairs of integers and i ∈ N, we denote by
X⊕ i the set {(x + i, x′ + i) : (x, x′) ∈ X}. For every ℓ ∈ N⩾1 the set Nℓ is recursively
defined as follows:{

N1 = {(1, 3)}, and
Nℓ = {(1, h(ℓ))} ∪ (Nℓ−1 ⊕ 1) ∪

(
Nℓ−1 ⊕ (h(ℓ− 1) + 1)

)
if ℓ > 1.

The elements of Nℓ are called intervals. Intuitively Nℓ is obtained by taking two copies
of Nℓ−1 (appropriately shifted so that they start after integer 1 and do not intersect) and
adding a new interval (1, h(ℓ)) containing the two copies. See Figure 4 for an illustration.

The following easy properties of Nℓ can be proved by a straightforward induction:

Remark 4.3. For every ℓ ∈ N⩾1 the following holds:
(1) the endpoints of the intervals in Nℓ range from 1 to h(ℓ) and are all distinct;
(2) every interval of Nℓ is of the form (i, i+ h(a)− 1) for some i ∈ {1, . . . , h(ℓ)} and

a ∈ {1, . . . , ℓ};
(3) for every interval (i, j) in Nℓ there is no other interval (i′, j′) in Nℓ such that

i < i′ < j < j′ (informally, intervals do not cross).

We call rank of an interval (i, j) ∈ Nℓ the aforementioned integer a ∈ {1, . . . , ℓ} such
that j = i+ h(a)− 1.
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Figure 3. Our modification (bottom) of the definition of [DR24] (right)
of Hℓ from a binary tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 4. The intervals of N3 with intervals of rank 1, 2, and 3 depicted
from top to bottom in green, blue, and orange, respectively.

4.1.3. Ribs. The function ribsℓ is defined on every pair (s, t) ∈ V (Bℓ)
2 of nodes such that

s ≺ t as the set of edges between π−1(s) and π−1(t) described in Figure 5.3
The graph Gℓ is obtained from Hℓ after the addition of the set of edges ribsℓ(s, t) for

every pair of nodes s, t ∈ V (Bℓ) of respective depth i, j such that s ≺ t and (i, j) ∈ Nℓ.
We call an edge uv in that set a rib. Hence the edges of Gℓ are partitioned into ribs,
gadget edges (i.e., edges with both endpoints in the same gadget) and tree edges (edges
connecting two gadgets corresponding to adjacent nodes of Bℓ).

3Note that these edges do not exist in Hℓ. We define this set in order to later construct a graph by
adding these edges to Hℓ.
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Figure 5. In color, the set ribs(s, t) of extra edges from out-ports of π−1(s)
(top left) to in-ports of π−1(t) (bottom right).

The following stems from the definition of a gadget.

Remark 4.4. The family of sets {π−1(t) : t ∈ V (Bℓ)} defines a partition of V (Gℓ) with
|π−1(t)| = 16 for every node t ∈ V (Bℓ).

4.2. The properties of Gℓ. In this section we describe the properties of the construction.
The proofs are straightforward and very similar to those in [DR24] so we omit them and
refer to the proofs of the corresponding results in [DR24].

Lemma 4.5. For every integer ℓ ⩾ 1, the graph Gℓ has a Hamiltonian path.

Lemma 4.6. For every integer ℓ ⩾ 1, |V (Gℓ)| ⩾ 22
ℓ.

Proof. Indeed, Bℓ is a complete binary tree of depth h(ℓ). Hence Bℓ has 2h(ℓ) − 1 nodes.
Since each node of Bℓ is replaced by a copy of the 16-vertex gadget to make Gℓ, we have
|V (Gℓ)| = 16(2h(ℓ) − 1) ⩾ 25·2

ℓ−1−2 − 1 ⩾ 22
ℓ+2ℓ−1 − 1 ⩾ 22

ℓ . □

Lemma 4.7. For every integer ℓ ⩾ 1, the graph Gℓ is 2-degenerate.

Let us note that the proofs in the upcoming Section 4.3 do not depend on gadgets
themselves but on the structure of the ribs. In the current proof the properties of the
gadgets are only used to show the above lemmas and in the last step of Section 4.5.

4.3. Ribs, sources, and their properties. In the rest of the proof we fix ℓ ∈ N⩾1. A
node s of the tree Bℓ is a source if there is an interval (i, j) ∈ Nℓ such that s has depth i.
Intuitively this means that in Gℓ there are ribs from the out-ports of the gadget at s to
the in-ports of the gadget at t, for every descendant t of s of depth j. For a source s of
Bℓ the rank of s is defined as the rank of (i, j), i.e., the integer a ∈ {1, . . . , ℓ} such that
j− i+1 = h(a). As for depth, we will extend this notation to gadgets and vertices of Gℓ:
rank(J) := rank(s) if J is the gadget at s, and rank(v) := rank(J) if v ∈ V (J).

We denote by Bℓ(s) the subtree of Bℓ rooted at s and of depth h(a). This means that
the leaves of Bℓ(s) are exactly those vertices t such that in Gℓ, the gadget at s sends
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ribs to the gadget at t. The graph Gℓ(s) is defined as the subgraph of Gℓ induced by
π−1
(
V (Bℓ(s))

)
.

The internal nodes of Bℓ(s) are those that are neither the root or leaves of Bℓ(s). For
every node x of Bℓ, we define τ(x) as the minimum rank of a source s such that x is an
internal node of Bℓ(s). Notice that if x is the root or a leaf of Bℓ then τ is not defined:
in this case we set τ(x) = ℓ + 1. We naturally extend the definition of τ to gadgets and
vertices of Gℓ as we did for rank above.

In a graph G, we say that a set X ⊆ V (G) separates two sets Y, Z ⊆ V (G) if every
path from a vertex of Y to a vertex of Z intersects X.

Remark 4.8. If two vertices u and v are adjacent in Gℓ, then π(u) and π(v) are ⪯-
comparable. In particular, if depth(u) = depth(v) then π(u) = π(v).

Remark 4.9. If s is a source of Bℓ, and L is the set of leaves of Bℓ(s), then

X :=
⋃

x∈L∪{s}

π−1(x)

separates Gℓ(s) from Gℓ \Gℓ(s).

Remark 4.10. Let s be a source of Bℓ of rank a ∈ {1, . . . , ℓ} and v ∈ V (Gℓ(s)).
(1) if π(v) is an internal node of Bℓ(s) then τ(v) ⩽ a;
(2) if π(v) = s or π(v) is a leaf of Bℓ(s), then τ(v) = a+ 1.

Remark 4.11. If uv is an edge of Gℓ such that depth(u) < depth(v) then either uv is a
tree edge or uv is a rib of source π(u). In the first case u is a connector and v an out-port,
in the second u is an out-port and v an in-port.

Lemma 4.12. If uv is an edge of Gℓ such that τ(u) > τ(v) then uv is a tree edge and
τ(u) = τ(v)+1. If in addition depth(v) ⩾ depth(u), then π(u) is a source, u is a connector
and v is an in-port.

Proof. Since τ(v) < τ(u) we have τ(v) ⩽ ℓ. Hence there exists a source s of minimum
rank such that π(v) is an internal node of Bℓ(s). By definition we have rank(s) = τ(v).

By Remark 4.9, the vertex u being adjacent to v, we obtain u ∈ V (Gℓ(s)). Since
τ(u) > rank(s), Remark 4.10 asserts that π(u) is either s or a leaf of Bℓ(s). In particular
τ(u) = rank(s) + 1 = τ(v) + 1.

Finally, since u and v are not in the same gadget, Remark 4.8 asserts that depth(u) ̸=
depth(v). Hence by Remark 4.11 uv is either a tree edge or a rib; but it cannot be a rib
as τ(u) ̸= τ(v). Hence uv is a tree edge. As the depth of the leaves of Bℓ(s) is larger
than the depth of its internal nodes, the case where depth(v) ⩾ depth(u) translates into
π(u) = s, u is a connector and v an in-port. □

We will need a last structural lemma, which gives a slightly more precise version of
Remark 4.9. For any source s, we denote the outside of Gℓ(s) by Out(s) := Gℓ \Gℓ(s) and
its interior by Int(s) := {v ∈ V (Gℓ) : π(v) is an internal node of Bℓ(s)}. Recall that for
a vertex v in a graph G, NG[v] = {v} ∪NG(v) denotes the closed neighborhood of v in G
(we omit subscripts when G is clear from the context).

Lemma 4.13. Let s be a source of Bℓ. Let uL (resp. uR) be the left (resp. right) out-port
of the gadget at s. Then:

• the set NGℓ(s)[uL] separates Out(s) ∪ {uR} from Int(s); and
• the set NGℓ(s)[uR] ∪ {uL} separates Out(s) from Int(s).
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Proof. Let P = v1, . . . , vp be any path from Int(s) to Out(s). Consider the minimal i such
that vi+1 ∈ Out(s) and vi ̸∈ Out(s).

Note that vi and vi+1 cannot be in the same gadget. Hence depth(vi) ̸= depth(vi+1). As
s is a source, there is an interval (a, b) ∈ Nℓ such that s has depth a. The intervals of Nℓ

do not cross and have distinct endpoints (Remark 4.3), so by definition of ribs the edge
vivi+1 is not a rib. Hence vivi+1 is a tree edge. Tree edges connect gadgets at adjacent
nodes of Bℓ. So either vi is an out-port of the gadget at s and vi+1 is a connector of the
parent of s, or vi is a connector of a gadget at some leaf of Bℓ(s) and vi+1 is an out-port
of the gadget at a child of this leaf.

We denote by C the set of connector vertices in the gadgets at leaves of Bℓ(s). By
construction, any neighbor of a vertex in C in Gℓ(s) is an in-port adjacent to uR, i.e.,
NGℓ(s)(C)∩V (Gℓ(s)) ⊆ NGℓ(s)(uR). Similarly, NGℓ(s)(NGℓ(s)(C))∩V (Gℓ(s)) ⊆ NGℓ(s)(uL).
Hence any path from Int(s) to C that stays in Gℓ(s) will intersect both NGℓ(s)(uR) and
NGℓ(s)(uL). Hence, a path going from Int(s) to Out(s) intersects either both NGℓ(s)(uL)
and NGℓ(s)(uR), or one of {uL, uR}. If vi ∈ {uL, uR} then either vi = uL, or vi = uR in
which case vi−1 ∈ N(uR), which implies that the subpath v1, . . . , vi−1 intersects NGℓ(s)[uL].

□

4.4. Special sources and length of induced paths. In this section, let Q be an
induced path of Gℓ.

Lemma 4.14. Then there is a unique node t ∈ V (Bℓ) of minimum depth subject to
π−1(t) ∩ V (Q) ̸= ∅.
Proof. Let us assume towards a contradiction that there are two different such nodes t, t′.
As they have the same depth, they are not ⪯-comparable in Bℓ. Recall that every edge
of Gℓ connects vertices whose image by π is ⪯-comparable. Therefore the subpath of Q
linking π−1(t) to π−1(t′) contains a vertex of π−1(t′′), for some common ancestor t′′ of t
and t′, which contradicts the minimality of the depth of those vertices. □

Lemma 4.15. There is a constant c4.15 such that if Q = u1, . . . , uq is an induced path of
Gℓ with τ(ui) = τ(u1) for all 2 ⩽ i ⩽ q, then |Q| ⩽ c4.15.

Proof. Let Q be such an induced path and s be the source of rank a = τ(u1) such that
π(u1) is an internal node of Bℓ(s). In order to show the statement of the lemma, we will
prove that Q visits a bounded number of distinct gadgets. This is enough since gadgets
have bounded size (Remark 4.4).

By Remark 4.10, if a vertex v ∈ V (Gℓ) belongs to the gadget at s or at some leaf of
Bℓ(s) then τ(v) = a+ 1. By Lemma 4.13 this implies that Q is contained in the union of
the gadgets at the internal nodes of Bℓ(s). Let us call Z the union of the vertex sets of
these gadgets.

If a = 1 there are at most two such gadgets so we are done. So we may now assume
a > 1.

As s is a source, there is an interval (i, i′′) ∈ Nℓ such that depth(s) = i and, for every
leaf t of Bℓ(s), depth(t) = i′′. We call s1 and s2 the two children of s. Let i′ = i+h(a−1).
By construction (i+ 1, i′), (i′ + 1, i′′ − 1) ∈ Nℓ; see Figure 6 for a representation of Bℓ(s).
(Notice that i′′ ⩾ i+ 2, by the third item of Remark 4.3, the definition of the function h
and the fact that a > 1.) Let D be the set of descendants of s that have depth i′ + 1 in
Gℓ (the colored nodes in the figure).

Let r ∈ D and let t be a leaf of Bℓ(r). Then t lies at depth i′′ − 1 in Bℓ. Observe that
in Gℓ each edge with only one endpoint in the gadget at t is of one of the following types:

• a tree edge from a vertex of π−1(t∗) where t∗ is the parent or a child of t; or
• a rib from an out-port of π−1(r).
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i

i+ 1

i′

i′ + 1

i′′ − 1

i′′

s

s1 s2

t1 t′

r1 r2

t2

Figure 6. The situation in Lemma 4.15. Picture from [DR24].

Note that edges of the former type lead to a vertex v with τ(v) = a ± 1. Therefore if
Q visits the gadget at t and other vertices of Z then Q follows a rib to an out-port of the
gadget at r. As there are 2 out-ports in the gadget at r and all vertices v of Gℓr with
τ(v) = a lie in the gadget at r or in some leaf of Bℓ(r), we deduce that there are at most
four nodes of Bℓ(r) whose gadget is intersected by Q: if 1 ⩽ α < β ⩽ q are the indices
such that uα and uβ are out-ports of the gadget at r, then Q may visit a leaf of Bℓ(r)
before uα, between uα and uβ and after uβ. Hence at most 3 leaves.

For each j ∈ {1, 2} the above argument also applies to sj and the leaves of Bℓ(sj):
there are at most four nodes of Bℓ(sj) where gadgets are intersected by Q, which are sj
and at most 3 leaves. We call these leaves t, t′ and t′′ (and choose them arbitrarily if Q
visits less than two gadgets at leaves).

Each of t, t′ and t′′ has two children in Bℓ. For each such child r, we observed above
(as r ∈ D) that Q intersects at most 4 gadgets of nodes of Bℓ(r). This shows that among
the gadgets of descendants of sj, Q intersects at most 1+ 3+ 3 · 2+ 3 · 2 · 3 = 28 of them.
So in total Q is contained in the union of at most 56 gadgets, as desired. □

4.5. The induced paths of Gℓ are short. The following definition is crucial in the rest
of the proof: a source s is said to be Q-special if Q contains two vertices u, v such that u
is an out-port of the gadget at s and π(v) is an internal node of Bℓ(s).

For an induced path Q, a Q-special source s is an important landmark as, intuitively, it
identifies a point where Q enters deeper in the tree-structure formed by the ribs. Because
of the ribs attached to the gadget at s, the subpath of Q − {u} containing v (for v, u
as in the definition above) will mostly be restricted to Gℓ(s) and will continue towards
Q-special sources of smaller rank. This will allow us to bound the length of the path if we
can also bound the length between two consecutive Q-special sources (see Lemma 4.16).
Notice that the definition of a special source above ignores the part of Q−{u} that does
not contain v, so in the final proof (see Lemma 4.24) we will need to consider separately
the two subpaths of Q− {u}.

Actually, due to our different construction, we cannot rely only on special sources as in
[DR24] so we will introduce the notion of Q-reducing sources in order to be able to show
that one side of the path is indeed confined to a smaller subgraph (Lemma 4.22).

Lemma 4.16. There is a constant c4.16 such that the following holds. Let Q be an induced
path in Gℓ such that no source in Bℓ is Q-special. Then |Q| ⩽ c4.16 · ℓ.
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Here the proof significantly deviates from that of [DR24] because of the different gadget
that we use.

Proof. Let Q = v1, . . . , vq be such an induced path. For any two integers i < j such that
• depth(vi) < depth(vi+1),
• depth(vi+1) = · · · = depth(vj−1), and
• depth(vj−1) > depth(vj),

we say that [i, j] is a plateau of Q. Informally, a plateau captures a local maximum of
depth along the path Q.

The proof of the lemma is split into four claims.

Claim 4.17. Let [i, j] be a plateau of Q. Then there is a source s such that vi and vj
are the two out-ports of the gadget at s, vivi+1 and vj−1vj are ribs and τ is constant on
{vi, . . . , vj}.

Proof. Since [i, j] is a plateau, depth is constant on {vi+1, . . . , vj−1}. Since any edge of Gℓ

between two gadgets connects gadgets of different depth, {vi+1, . . . , vj−1} are contained
in a unique gadget, say at node t. By definition of τ this implies that τ is constant on
{vi+1, . . . , vj−1}.

Since depth(vi) < depth(vi+1) and depth(vj) < depth(vj−1) the edges vivi+1 and vj−1vj
are either tree edges or ribs (Remark 4.11). If they are both tree edges, then vi and vj
are the two (adjacent) connectors of the gadget at the parent node of t; a contradiction
since Q is induced. Otherwise, if vivi+1 is a rib and vj−1vj is a tree edge, then vi is an
out-port of the gadget at a source s ∈ V (Bℓ) and vj is a connector of the parent t′ of t.
Observe that t′ is an internal node of Bℓ(s). So s is Q-special, a contradiction. If vivi+1 is
a tree edge and vj−1vj is a rib, we reach the same contradiction by symmetry. Hence we
conclude that vivi+1 and vj−1vj are both ribs. In particular vi and vj are out-ports of the
gadget at a source s. This implies that (depth(vi), depth(vi+1)) = (depth(vj), depth(vj−1))
is an interval of Nℓ, and thus τ is constant on {vi, . . . , vj}. ⌟

Corollary 4.18. Two different plateaux of Q cannot intersect.

Proof. Let [i, j] and [k, l] be plateaux with [i, j] ∩ [k, l] ̸= ∅. By the assumption on the
depth, we must have j = k or i = l. But Claim 4.17 implies that vi, vj, vk and vl are all
out-ports of the gadget at some source s. Since s has only two out-ports, [i, j] = [k, l]. ⌟

Let [i, j] be a plateau of Q. By Claim 4.17, vi and vj are at the same depth, say at depth
d. If depth(vk) > d for any k ∈ {1, . . . , i− 1}, then [i, j] is called a decreasing plateau. If
depth(vk) > d for any k ∈ {j + 1, . . . , q}, then [i, j] is called an increasing plateau.

Claim 4.19. Any plateau [i, j] of Q is a decreasing or increasing plateau.

Proof. Since [i, j] is a plateau of Q, an application of Claim 4.17 implies that vi and vj are
out-ports of a same gadget J at a source s. In particular vi−1 and vj+1 are not vertices of
J since otherwise vi−1vj or vivj+1 would be an edge.

Hence, vi−1vi and vjvj+1 are either tree edges or ribs. If they are both tree edges, then vi
and vj are two adjacent connectors of the gadget at the parent of s; a contradiction since
Q is induced. Hence vi−1vi is a rib, or vjvj+1 is a rib. We show that depth(vi) < depth(vk)
for any k ∈ {1, . . . , i− 1} when vi−1vi is a rib. The proof that depth(vi) < depth(vk) for
any k ∈ {j + 1, . . . , q} when vjvj+1 is a rib is symmetric.

Assume for the sake of contradiction that vi−1vi is a rib and that there exists an index
k ∈ {1, . . . , i− 1} such that depth(vi) ⩾ depth(vk), and take k maximum in {1, . . . , i− 1}
with this property. This implies that π(vi) is an ancestor of π(vk+1) (possibly π(vi) =
π(vk+1)): indeed every edge of Gℓ is between ⪯-comparable vertices, and since vk+1, . . . , vi
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is a path, some vertex among {π(vk+1), . . . , π(vi)} is a common ancestor in Bℓ of all the
others (Lemma 4.14); and since depth(vi) is minimal, π(vi) is this common ancestor, hence
it is an ancestor of π(vk+1).

In the case where depth(vi) > depth(vk), the vertex vk is an out-port of a gadget at a
source s′. The node π(vi) is in Bℓ(s

′) since depth(vk) < depth(vi) < depth(vk+1) and π(vi)
is a ancestor of π(vk+1). Hence the source s′ is Q-special; a contradiction. Otherwise
depth(vk) = depth(vi); we know that π(vi) is an ancestor of π(vk+1), so vk, vi and vj are all
in the gadget J . Since vi and vj are the two out-ports of J and depth(vk+1) > depth(vk),
we have that vk is a connector of J , and vkvk+1 is a tree edge. Hence s is Q-special,
a contradiction. ⌟

Claim 4.20. If [i, j] is a decreasing plateau, and [k, l] an increasing plateau of Q, then
j < k.

Proof. Indeed, let a < b < c < d such that [a, b] is a increasing plateau and [c, d] an
decreasing one. Then since a < c we have by the decreasing property (Claim 4.19) of [c, d]
applied with k := a and i := c that depth(va) > depth(vc); and by the increasing property
of [a, b] applied with k := c and i := a that depth(vc) > depth(va); a contradiction. ⌟

Claim 4.21. There exists a constant c4.21 (depending only on the gadget size in the con-
struction) and an integer α ∈ {1, . . . , q} such that for any pair 1 ⩽ i < j ⩽ q,

• if i < j ⩽ α− c4.21, then τ(vi) ⩾ τ(vj), and
• if α + c4.21 ⩽ i < j, then τ(vi) ⩽ τ(vj).

Proof. By Corollary 4.18, there is a finite sequence of interval ([ai, bi])1⩽i⩽p containing
exactly the plateaux of Q and such that bi ⩽ ai+1 for any i. Claim 4.20 asserts that initial
plateaux in the sequence are decreasing while final plateaux are increasing, hence there
is an index m ∈ {1, . . . , p} such that depth(va1) > · · · > depth(vam), and depth(vam+1) <
· · · < depth(vap).

Since any local maximum of depth is in a plateau, the depth of vertices along Q is de-
creasing between two decreasing plateaux and increasing between two increasing plateaux.
More precisely, there is an integer k ∈ {bm, . . . , am+1} such that for any i ∈ {1, . . . , k − 1},
either depth(vi) ⩾ depth(vi+1) or i and i + 1 are in some decreasing plateau; and sym-
metrically for i ∈ {k + 1, . . . , q} either depth(vi) ⩽ depth(vi+1) or i and i+ 1 are in some
increasing plateau.

We now prove that τ is decreasing on v1, . . . , vk−c4.21 (where c4.21 is the size of a gadget)
and that τ is increasing on vk+c4.21 , . . . , vq. Note that proving the increasing part proves
the decreasing part by reversing the order of Q.

The proof goes by contradiction. Let us assume that there is a (smallest) integer
i ∈ {k + c4.21, . . . , q − 1} such that τ(vi) > τ(vi+1), and let s = π(i). Since τ is constant
on plateaux, i and i+ 1 are not both in some plateau, hence depth(vi) ⩽ depth(vi+1).

By Lemma 4.12 and since depth(vi) ⩽ depth(vi+1), the node s is a source, vivi+1 is a
tree edge so vi is a connector of the gadget at s and vi+1 is an out-port of the gadget at
a child of s. Note that, since s is not Q-special, no out-ports of s are in Q.

We now look at the part of the path between vk and vi.
Assume there exists a largest integer i′ ∈ {k + 1, . . . , i} such that π(vi′) ̸= π(vi). The

edge vi′vi′+1 is either a tree edge or a rib, but Q does not contain an out-port of s, hence
vi′+1 is a connector of s. This implies depth(vi′) > depth(vi′+1). Hence there exists a
plateau [a, b] containing i′ and i′ + 1. This is impossible by Claim 4.17 since vi′+1 is not
an out-port.

Hence such an i′ does not exist, thus π(vk) = · · · = π(vi), and the gadget at π(vk)
contains c4.21 + 1 vertices; a contradiction. ⌟
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We are now ready to conclude the proof of Lemma 4.16. Recall that the function τ
has values in {1, . . . , ℓ+ 1}. By virtue of Claim 4.21, there is an integer k such that τ
is non-increasing on v1, . . . , vk−c4.21 and non-decreasing on vk+c4.21 , . . . , vq. Furthermore, τ
does not keep the same value on more than c4.15 consecutive vertices (Lemma 4.15). We
conclude that Q has order at most 2c4.15(ℓ+ 1) + 2c4.21, which is bounded from above by
c · ℓ for some constant c, as ℓ ⩾ 1. This concludes the proof of Lemma 4.16. □

We now show that if an induced path Q visits some out-port of the gadget at a source s,
as well as a gadget at an internal node of Bℓ(s), then a certain suffix of Q remains inside
V (Gℓ(s)).

Lemma 4.22. Let Q = v1, . . . , vq be an induced path of Gℓ such that v1 is an out-port of
the gadget at a source s. If s is a Q-special source, then:

• If Q does not contain the second out-port of s, then V (Q) ⊆ V (Gℓ(s)).
• Otherwise, let j > 1 such that vj is the second out-port of s, and consider the two

subpaths Q1 = v1, . . . , vj and Q2 = vj, . . . , vq of Q. Then s is not Q1-special, and
s is Q2-special (and in particular V (Q2) ⊆ V (Gℓ(s)), by the first item).

Proof. Recall that the definition of Int(s) and Out(s) is given shortly before the statement
of Lemma 4.13. Recall also that s has two out-ports: the left one that we denote by uL

and the right one that we refer to as uR. Let i ∈ {1, . . . , q} be such that vi ∈ Int(s),
which exists since s is Q-special.

Assume first that Q does not contain the second out-port of the gadget at the source s.
By Lemma 4.13, any subpath of Q from vi to Out(s) intersects a neighbor of v1. Since Q
is induced, Q cannot have a vertex in Out(s), hence V (Q) ⊂ V (Bℓ(s)).

Suppose now that there is an index j ∈ {1, . . . , q} such that vj is the second out-port
at the source s. If 1 < i < j, then either v1 or vj is the left out-port uL. Assume v1 = uL

(resp. assume vj = uL). Then by Lemma 4.13, N(v1) (resp. N(vj)) separates vi from
Out(s) ∪ {uR}, so vj cannot be uR (resp. v1 cannot be uR) otherwise Q is not induced;
a contradiction towards the definitions of v1 and vj. Hence we have 1 < j < i and the
second item is proved. □

In the setting of Lemma 4.22, if Q does not contain the second out-port of s, then we
say that s is a Q-reducing source. In this case, Lemma 4.22 states that V (Q) ⊆ V (Gℓ(s)).

Lemma 4.23. Let Q = v1, . . . , vq be an induced path of Gℓ, and for any 1 ⩽ i ⩽ q, define
the subpath Qi = vi, . . . , vq of Q. For any a ∈ {1, . . . , ℓ}, there is at most one index
1 ⩽ i ⩽ q such that π(vi) is a Qi-reducing source of rank a.

Proof. Indeed, let a ∈ {1, . . . , ℓ}. Assume for the sake of contradiction that there exist i <
j such that π(vi) and π(vj) are respectively Qi-reducing and Qj-reducing sources of rank a.
By definition of a reducing source and by Lemma 4.22, we have V (Qi) ⊆ V (Gℓ(π(vi))).
In particular, vj ∈ V (Gℓ(π(vi))). But since the rank of π(vj) is the same as the rank of
π(vi), and since π(vj) is a source, we have π(vi) = π(vj), and thus vj ∈ Qi is the second
out-port of π(vi). This implies that π(vi) is not Qi-reducing; a contradiction. □

We are now ready to prove that all induced paths in Gℓ are short.

Lemma 4.24. There is a constant c such that for any induced path Q = v1, . . . , vq of Gℓ,
q ⩽ cℓ2.

Proof. Let Q = v1, . . . , vq be an induced path of Gℓ. Note that for any i ∈ {1, . . . , q},
π(vi) is a Q-special source if and only if it is either a (vi, . . . , vq)-special source or a
(vi, vi−1, . . . , v1)-special source. By Lemma 4.23, for any a ∈ {1, . . . , ℓ} there is at most
one index ia such that π(via) is a (via , . . . , vq)-reducing source of rank a. Let i1 < · · · < ip
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with p ⩽ ℓ denote the sequence of such indices. Note that rank(π(vij)) > rank(π(vij+1
)):

indeed by Lemma 4.22 we have π(vij+1
) ∈ Bℓ(π(vij)).

It follows that for any k ∈ {ij + 1, . . . , ij+1}, π(vk) cannot be a (vij+1, . . . , vij+1
)-

special source: indeed for any such k we have vk ∈ Gℓ(π(vij)) by Lemma 4.22, and
thus rank(π(vij)) ⩾ rank(π(vk)), hence π(vk) cannot be a (vk, vk−1, . . . , vij)-special source,
and if π(vk) was a (vk, . . . , vij+1

)-special source, we would have

rank(vk) > rank(vij+1
),

a contradiction to the definition of vij+1
. Hence by Lemma 4.16, ij+1 − ij ⩽ c4.16ℓ, and

thus q − i1 ⩽ c4.16ℓ
2, and for any vertex va with a ⩽ i1, π(va) is not a (va, . . . , vi1)-special

source.
A completely symmetric argument on the path vi1 , vi1−1, . . . , v1 allows us to bound the

index j such that π(vj) is a (vj, vj−1, . . . , v1)-special source of maximal rank, by c4.16ℓ
2,

and ensure that for any va with a > j, π(va) is not a (va, va−1, . . . , vj)-special source. In
particular, no source is (vj, vj+1, . . . , vi1)-special, and by Lemma 4.16, |vj, vj+1, . . . , vi1| ⩽
c4.16 · ℓ. We can now deduce the desired bound:

|Q| ⩽ |v1, . . . , vj|+ |vj, . . . , vi1 |+ |vi1 , . . . , vq| ⩽ c4.16ℓ
2 + c4.16ℓ+ c4.16ℓ

2 ⩽ 3c4.16ℓ
2.

□

Before proving Theorem 4.2, we will need the following equivalent definition of constel-
lation. In an ordered graph G, we say that a vertex v is outside an induced subgraph H
of G if v precedes or succeeds the vertex set of H.

Lemma 4.25. Let H be an ordered star forest consisting only of left and right stars.
Then H is a constellation if and only if

(⋆) There is an ordering S1, . . . , St of the stars of H such that for any i < j, the center
of Si is outside Sj.

Proof. Assume first that H is a constellation. We prove (⋆) by induction on the number
of stars of H. If H is a concatenation H1 · H2 of two non-trivial constellations then (⋆)
certainly holds by induction on H1 and H2, as each star in H1 precedes each star in H2.
So we can assume that H is a left or right constellation, say a right constellation by
symmetry. Then H contains a star S1 whose center c is the first vertex of H, and thus the
result follows by induction on the constellation H−S1 (as c precedes all stars of H−S1).

Assume now that (⋆) holds, and consider the first star S1 in the order given by (⋆).
Assume by symmetry that S1 is a right star. If the center c1 of S1 precedes all the other
stars of H then c1 is the first vertex of H, and thus H is a right constellation (by induction
on H−S1). Otherwise let H1 be the subgraph of H induced by the stars Si which precede
c1, and let H2 = H − H1. By assumption H1 and H2 are non-empty, and since (⋆) is
closed under taking a subset of the stars, both H1 and H2 satisfy (⋆). It remains to
observe that H = H1 ·H2, by definition of S1 and c1, so by induction H is a concatenation
of constellations, and therefore also a constellation. □

We are now ready to prove Theorem 4.2, restated below for convenience.

Theorem 4.2. For any ordered graph H which is not a constellation,

gH(n) = O((log log n)2).

Proof. It suffices to show that for any ordered graph H which is not a constellation and
for every ℓ, the graph Gℓ, ordered along some Hamiltonian path P , avoids H as a pattern.
In particular it is enough to show that Gℓ − E(P ) (ordered along P ) is a constellation.
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Note that Gℓ has a natural Hamiltonian path P starting at the left out-port of the root
gadget and ending at the right out-port of the root gadget, which does not use any rib
(see Figure 7 for an illustration).

Figure 7. The Hamiltonian path P in Gℓ (in red). The dashed parts
consist of two Hamiltonian paths defined inductively in the left and right
subtrees of the root gadget.

We want to show that Gℓ −E(P ) (ordered according to P ) is a constellation, i.e., it is
a star forest in which each star is either a right or left star, and property (⋆) of Lemma
4.25 is satisfied.

Note that Gℓ − E(P ) indeed consists of a union of disjoint stars: the edges between
connectors form a matching and all the other stars consist of the ribs originating from some
out-port v, together with a single edge of the gadget containing the outport v. Hence, since
the ribs go from some gadget π(s) ∋ v to the vertices of Gℓ(s), and since the out-ports of
the gadget at s are the first and last vertex of Gℓ(s) visited by the Hamiltonian path P ,
v is either the smallest or largest vertex of the star. So each component of Gℓ − E(P ) is
indeed a left or right star.

Now, consider two stars S1 with center c1 and S2 with center c2, with c1 ̸= c2, and
assume that depth(c1) ⩽ depth(c2). Then c1 is outside of Gℓ(π(c2)), and thus also outside
of S2. This shows that if we order the stars of Gℓ − E(P ) by increasing depth of their
centers, property (⋆) of Lemma 4.25 is satisfied, and thus Gℓ−E(P ) is a constellation. □

5. Discussion

In [DER24], we have proved the following dichotomies, revealing jumps in the growth
rate of gH .

Corollary 5.1 ([DER24]). Let H be an ordered graph.
(1) gH(n) = nΩ(1) if and only if H is a subgraph of a non-crossing matching, and

otherwise gH(n) = O(log n);
(2) gH(n) = (log log n)Ω(1) if H is bipartite, with one partite set preceding the other in

the order;
(3) gH(n) = (log log log n)Ω(1) if and only if H is a subgraph of the ordered half-graph,

and otherwise gH(n) = O(1);

The following direct consequence of Theorems 3.2 and 4.1 can now be added to the list.

Corollary 5.2. Let H be an ordered graph. Then gH(n) = (log n)Ω(1) if and only if H is
a constellation, and otherwise gH(n) = O((log log n)2).

A natural question is whether the triple logarithm is necessary in Item 3 of Corollary 5.1.
It might very well be the case that this bound can be replaced by (log log n)Ω(1). This
would give a complete picture of the possible complexities of the function gH .
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Appendix A. Stars: proof of the crucial inequalities

In this section we prove Lemma 3.7 and Lemma 3.8, which are crucial steps in the proof
of Theorem 3.10 about induced paths in graphs avoiding a constellation. Recall that the
functions φ, γ, η, f , g, and h are given in Definitions 3.4 and 3.6.

We start with Lemma 3.7, which we restate below.

Lemma 3.7. For any integers p ⩾ 0, t ⩾ 1, and n such that logr+1 n ⩾ 4∗ 1
φ(t)·(φ(t−1)−η(t))

and p ⩽ 2 · (logr+1 n)
φ(t), we have

f(n, t− 1, p) ⩾ f(n, t, p), g(n, t− 1, p) ⩾ g(n, t, p), and h(n, t− 1, p) ⩾ h(n, t, p).

Proof. Monotonicity of f . Since p/2 appears on both sides of the inequality, we can
equivalently prove the following.(

logr+1 n
)φ(t) − 4 ∗ 1

φ(t− 1)− η(t)
⩽
(
logr+1 n

)φ(t−1) − 4 ∗ 1

φ(t− 2)− η(t− 1)
.(15)

Since φ(t − 1) > φ(t), the function n 7→
(
logr+1 n

)φ(t) − (logr+1 n
)φ(t−1) is decreasing.

Hence it is sufficient to prove the inequality for the lowest possible value of n, which is
logr+1 n = 4 ∗ 1

φ(t)·(φ(t−1)−η(t))
, and Equation (15) becomes

4∗ 1

φ(t− 1)− η(t)
−4∗ 1

φ(t− 1)− η(t)
⩽ 4∗ φ(t− 1)

φ(t)(φ(t− 1)− η(t))
−4∗ 1

φ(t− 2)− η(t− 1)
.

Hence, Equation (15) boils down to
1

φ(t− 2)− η(t− 1)
⩽

φ(t− 1)

φ(t)(φ(t− 1)− η(t))
.

Since φ(t− 1) ⩾ φ(t), and since φ(t− 2)− η(t− 1) > φ(t− 1)− η(t) (by Definition 3.4),
the following inequalities holds.

φ(t− 1)

φ(t)(φ(t− 1)− η(t))
⩾

1

φ(t− 1)− η(t)
⩾

1

φ(t− 2)− η(t− 1)

And thus Equation (15) holds.
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Monotonicity of h. We follow the exact same reasoning as for the function f above. In
particular, we want to prove(

logr+1 n
)η(t) − 4 ∗ 1

φ(t− 2)− η(t− 1)
⩽
(
logr+1 n

)η(t−1) − 4 ∗ 1

φ(t− 3)− η(t− 2)
.(16)

Recall that according to Definition 3.4, φ(t− 2)− η(t− 1) > φ(t− 1)− η(t) and that
η(t) > φ(t). Hence our assumption on n implies logr+1 n ⩾ 4 ∗ 1

η(t)·(φ(t−2)−η(t))
. Thus it is

sufficient to prove the following inequality to prove Equation (16).

4 ∗ 1

φ(t− 2)− η(t)
− 4 ∗ 1

φ(t− 2)− η(t− 1)

⩽ 4 ∗ η(t− 1)

η(t)(φ(t− 2)− η(t− 1))
− 4 ∗ 1

φ(t− 3)− η(t− 2)
.

Since η(t− 1) ⩾ η(t) (by Definition 3.4), the left-hand side is negative and thus in order
to prove Equation (16) it is sufficient to show

1

φ(t− 3)− η(t− 2)
⩽

η(t− 1)

η(t)(φ(t− 2)− η(t− 1))
.

Since η(t − 1) ⩾ η(t), and since φ(t − 3) − η(t − 2) > φ(t − 2) − η(t − 1), the following
inequalities holds.

η(t− 1)

η(t)(φ(t− 2)− η(t− 1))
⩾

1

φ(t− 2)− η(t− 1)
⩾

1

φ(t− 3)− η(t− 2)
,

and thus Equation (16) holds.
Monotonicity of g. We will prove the equivalent inequality

g(n, t− 1, p)

g(n, t, p)
⩾ 1.(17)

Let ℓ = logr+1 n. Equation (17) is true if and only if log6(r+1)

(
g(n,t−1,p)
g(n,t,p)

)
⩾ 0, which after

simplification gives the following.

ℓγ(t) · (3ℓφ(t) − p) ⩾ ℓγ(t−1) · (3ℓφ(t−1) − p).(18)

Recall that we assume p ⩽ 2 · ℓφ(t). Since γ(t) > γ(t− 1), the map p 7→ p ·
(
ℓγ(t) − ℓγ(t−1)

)
is increasing. Hence it is sufficient to prove the inequality when p = 2ℓφ(t), i.e., to show

ℓγ(t)+φ(t) ⩾ ℓγ(t−1)(3ℓφ(t−1) − 2ℓφ(t)).

From Definition 3.4 we have φ(t) > φ(t − 1) so the above inequality is implied by the
following, where we replaced 2ℓφ(t) with 2ℓφ(t−1):

ℓγ(t)+φ(t) ⩾ ℓγ(t−1)+φ(t−1).

This holds since γ(t)+φ(t) ⩾ γ(t−1)+φ(t−1), as can be deduced from Definition 3.4. □

Before proving Lemma 3.8, we will need two preliminary lemmas.

Lemma A.1. For any c0 ∈ (0, 1), c1 > 0, ℓ ⩾ max{1, c1/(1−c0)
1 }, and x ⩽ 1−c0− logℓ(2c1)

we have (ℓ− c1 · ℓc0)x ⩾ ℓx − 1/2.

Proof. The statement is equivalent (as ℓ is positive) to the following inequality:

(1− c1 · ℓc0−1)x ⩾ 1− ℓ−x/2.(19)

By assumption, c1/(1−c0)
1 ⩽ ℓ and thus (since 1 − c0 is positive) c1 ⩽ ℓ1−c0 . It follows

that c1ℓ
c0−1 ⩽ 1 and so 1− c1ℓ

c0−1 ∈ [0, 1]. Hence:
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(
1− c1ℓ

c0−1
)x

⩾ 1− c1ℓ
c0−1 as x ⩽ 1 and 1− c1ℓ

c0−1 ∈ [0, 1]

⩾ 1− ℓ−(1−c0−logℓ(2c1))

2
as ℓ ⩾ c

1/(1−c0)
1

⩾ 1− ℓ−x

2
as x ⩽ 1− c0 − logℓ(2c1) and ℓ ⩾ 1,

which is eq. (19). □

Lemma A.2. Let r ⩾ 1, t ⩾ 1, p ⩾ 0, n ⩾ 1 be integers and let ℓ = logr+1 n. If ℓ ⩾ 21/φ(t)

then we have:
s(n, t, p) ⩾

n

(6(r + 1)) ∗ (2ℓγ(t−1) (3ℓφ(t−1) − p) + 1)
.

Proof. By definition, we have:

s(n, t, p) =
g(n/3, t− 1, p)− 1

2r + 1

=
1

2r + 1
·

(
n/3

(6(r + 1)) ∗
(
2(logr+1(n/3))

γ(t−1) · (3(logr+1(n/3))
φ(t−1) − p)

) − 1

)

⩾
1

3(2r + 1)
·
(

n

(6(r + 1)) ∗ (2ℓγ(t−1) · (3ℓφ(t−1) − p))
− 3

)
=

n
3(2r+1)

− 1
2r+1

(6(r + 1)) ∗
(
2ℓγ(t−1) · (3ℓφ(t−1) − p)

)
(6(r + 1)) ∗ (2ℓγ(t−1) · (3ℓφ(t−1) − p))

.

Hence it would be sufficient to prove:
n

3(2r + 1)
− 1

2r + 1
(6(r + 1)) ∗

(
2ℓγ(t−1) · (3ℓφ(t−1) − p)

)
⩾

n

6(r + 1)
.(20)

Note that n
3(2r+1)

− n
6(r+1)

= n
(2r+1)·6(r+1)

= 1
2r+1

(6(r + 1)) ∗
(
log6(r+1) n− 1

)
. So Equa-

tion (20) can be rewritten as:

log6(r+1) n− 1 ⩾ 2ℓγ(t−1) · (3ℓφ(t−1) − p).

We now prove the above inequality.

log6(r+1) n− 1 =
log(r + 1)

log(r + 1) + log 6
logr+1 n− 1

⩾
1

1 + 3
ℓ− 1 as ℓ = logr+1 n, r + 1 ⩾ 2, and log 6 ⩽ 3

⩾
1

8
ℓ as ℓ ⩾ 8, by the assumption on n

⩾
1

8
ℓ7·φ(t−1)ℓγ(t−1)+φ(t−1)

as by Definition 3.4.(2), ℓ1−γ(t−1)−φ(t−1) ⩾ ℓ7·φ(t−1)

⩾
128

8
ℓγ(t−1)+φ(t−1) by assumption on ℓ

⩾ 2ℓγ(t−1) · (3ℓφ(t−1) − p). as p ⩾ 0.

This concludes the proof. □

We are now ready to prove Lemma 3.8, restated hereafter for convenience.
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Lemma 3.8. For any integers r ⩾ 1, t ⩾ 1, p ⩾ 0, n ⩾ 1, such that

logr+1 n ⩾ (2 + p/2)1/φ(t) + 4
1

φ(t)·(φ(t−1)−η(t)) and(5)

p < 2(logr+1 n)
φ(t),(6)

we have the following inequalities:

f
(
s(n, t, p), t, p+ 1

)
⩾ f(n, t, p)− 1,(7)

h
(
s(n, t, p), t, p+ 1

)
⩾ h(n, t, p),(8)

g
(
s(n, t, p), t, p+ 1

)
⩾ g(n, t, p),(9)

f(n/3, t− 1, p) ⩾ h(n, t, p), and(10)
s(n, t, p) ⩾ g(n, t, p).(11)

Proof. For the sake of readability in the upcoming equations, we define ℓ = logr+1 n. Note
that assumption (5) implies ℓφ(t) ⩾ 2.

Proof of (7). We want to prove(
logr+1 s(n, t, p)

)φ(t) − p+1
2

− 4
1

φ(t−1)−η(t) ⩾ (logr+1 n)
φ(t) − p

2
− 4

1
φ(t−1)−η(t) − 1,

or equivalently:
(logr+1 s(n, t, p))

φ(t) ⩾ ℓφ(t) − 1/2.

We have the following:(
logr+1 s(n, t, p)

)φ(t)
⩾
(
ℓ− logr+1

(
(6(r + 1)) ∗

(
2ℓγ(t−1)

(
3ℓφ(t−1) − p

)
+ 1
)))φ(t)

using Lemma A.2

⩾
(
ℓ− 6 logr+1(6(r + 1)) · ℓγ(t−1) · ℓφ(t−1) − logr+1(6(r + 1))

)φ(t)
because p ⩾ 0

⩾
(
ℓ− 7 logr+1(6(r + 1)) · ℓγ(t−1)+φ(t−1)

)φ(t)
as ℓγ(t−1)+φ(t−1) ⩾ ℓφ(t) ⩾ 2.

We will apply Lemma A.1 with c0 := γ(t − 1) + φ(t − 1), c1 := 7 logr+1(6(r + 1)) and
x := φ(t) to conclude the proof. Hence we need to satisfy the requirements of the lemma:

• c0 ∈ (0, 1) since 1 > γ(t) ⩾ γ(t− 1) + φ(t− 1) > 0 by Definition 3.4;
• max

(
1, c

1/(1−c0)
1

)
⩽ ℓ. For this note that 1 − c0 = 1 − γ(t − 1) − φ(t − 1) ⩾

7φ(t − 1) (where the last inequality follows from Definition 3.4). Note also that
c1 = 7 logr+1(6(r + 1)) ⩽ 7 + 7 log 6 ⩽ 25. Hence c

1/(1−c0)
1 ⩽ c

1/7
1 ⩽ 2

5
7 ⩽ ℓ, as

desired.
• φ(t) ⩽ 1− c0 − logℓ(2c1). Observe that

logℓ(2c1) =
log(2c1)

log ℓ
⩽

log(2c1)

1/φ(t)
= log(2c1)φ(t) ⩽ 6φ(t) ⩽ 6φ(t− 1).

Furthermore, as observed above 1−c0 ⩾ 7φ(t−1), thus 1−c0−log(2c1)−φ(t) ⩾ 0,
as desired.

Hence by an application of Lemma A.1 we have(
ℓ− 7 logr+1(6(r + 1)) · ℓγ(t−1)+φ(t−1)

)φ(t)
= (ℓ− c1 · ℓc0)φ(t) ⩾ ℓφ(t) − 1/2.

Thus, f
(
s(n, t, p), t, p+ 1

)
⩾ f(n, t, p)− 1, as desired.

Proof of (8). This calculation is very similar to the previous one, replacing φ(t) by η(t).
We want to prove(

logr+1 s(n, t, p)
)η(t)

+
p+ 1

2
− 4

1
φ(t)−η(t+1) ⩾ (logr+1 n)

η(t) +
p

2
− 4

1
φ(t)−η(t+1) ,
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or equivalently: (
logr+1 s(n, t, p)

)η(t)
⩾ ℓη(t) − 1/2.

Following the exact same steps, we end up applying Lemma A.1 with x := η(t) instead of
φ(t). As c0 and c1 are unchanged, we only need to verify that η(t) ⩽ 1 − c0 − logℓ(2c1).
As in the proof of (7), we have logℓ(2c1) ⩽ 6φ(t−1) and 1− c0 ⩾ 7φ(t−1). Furthermore,
we know that η(t) ⩽ φ(t− 1) (Definition 3.4), thus

1− c0 − log(2c1)− η(t) ⩾ 0.

Hence by an application of Lemma A.1 we have

(ℓ− c1 · ℓc0)η(t) ⩾ ℓη(t) − 1/2.

Thus, h
(
s(n, t, p), t, p+ 1

)
⩾ h(n, t, p).

Proof of (9). This is the main constraining inequality. Let x = n
g(s(n,t,p),t,p+1)

. In order
to show (9) we will prove the following equivalent inequality:

(21) log6(r+1) x ⩽ log6(r+1)

n

g(n, t, p)
.

Recall that (by definition) s(n, t, p) ⩽ g(n/3, t− 1, p) ⩽ n. Therefore

g
(
s(n, t, p), t, p+ 1

)
⩾

s(n, t, p)

(6(r + 1)) ∗ (2ℓγ(t) · (3ℓφ(t) − p− 1))
.

Using Lemma A.2 we get

g
(
s(n, t, p), t, p+ 1

)
⩾

n

(6(r + 1)) ∗
(
2ℓγ(t−1) · (3ℓφ(t−1) − p) + 2ℓγ(t) · (3ℓφ(t) − p− 1) + 1

) .
So

(22) x ⩽ (6(r + 1)) ∗
(
2ℓγ(t−1) · (3ℓφ(t−1) − p) + 2ℓγ(t) · (3ℓφ(t) − p− 1) + 1

)
.

Notice that from the definition of g we have

(23) log6(r+1)

n

g(n, t, p)
= 2ℓγ(t) · (3ℓφ(t) − p).

From (22) and (23) we obtain

log6(r+1) x− log6(r+1)

n

g(n, t, p)
⩽ 1 + 2ℓγ(t−1) · (3ℓφ(t−1) − p) + 2ℓγ(t) · (3ℓφ(t) − p− 1)

− 2(ℓγ(t) · (3ℓφ(t) − p))

⩽ 1 + 2
(
ℓγ(t−1) · (3ℓφ(t−1) − p)− ℓγ(t)

)
⩽ 1 + 2

(
3ℓγ(t−1)+φ(t−1) − ℓγ(t)

)
as p ⩾ 0.

Hence, for (21) to be true (i.e., for the left-hand side above to be negative) it is sufficient
that 3ℓγ(t−1)+φ(t−1) − ℓγ(t) ⩽ −1/2 or, equivalently, that

(24) ℓγ(t−1)+φ(t−1)
(
3− ℓγ(t)−γ(t−1)−φ(t−1)

)
⩽ −1/2.

Observe that we always have ℓγ(t−1)+φ(t−1) ⩾ 1 and that by our assumption (5) on n,

ℓγ(t)−γ(t−1)−φ(t−1) ⩾ 2 ∗ γ(t)− γ(t− 1)− φ(t− 1)

φ(t)

⩾ 2 ∗ 7φ(t− 1)

φ(t)
by Definition 3.4

⩾ 3.5 as φ(t) < φ(t− 1) by Definition 3.4

So (24) holds. As a consequence (21) holds, as desired. This concludes the proof of (9).
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Proof of (10). We want to prove

(logr+1(n/3))
φ(t−1) − p

2
− 4

1
φ(t−2)−η(t−1) ⩾ (logr+1 n)

η(t) + p
2
− 4

1
φ(t−2)−η(t−1) .

Since p ⩽ 2ℓφ(t) and log 3 ⩽ 2, it is sufficient to prove:

ℓφ(t−1) ⩾ ℓη(t) + 2ℓφ(t) + 2.

And since φ(t) ⩽ η(t) and ℓφ(t) ⩾ 2, it is sufficient to prove:

ℓφ(t−1) ⩾ 4ℓη(t).

By Equation (5), ℓ ⩾ 4
1

φ(t)·(φ(t−1)−η(t)) ⩾ 4
1

φ(t−1)−η(t) , hence the inequality holds.
Proof of (11). By Lemma A.2, it is enough to show that

n

(6(r + 1)) ∗ (2ℓγ(t−1) (3ℓφ(t−1) − p) + 1)
⩾ g(n, t, p) =

n

(6(r + 1)) ∗ (2ℓγ(t) · (3ℓφ(t) − p))
,

which is equivalent to

2ℓγ(t−1)
(
3ℓφ(t−1) − p

)
+ 1 ⩽ 2ℓγ(t) · (3ℓφ(t) − p).

Observe that the function p 7→ 2ℓγ(t) ·(3ℓφ(t)−p)−
(
2ℓγ(t−1)

(
3ℓφ(t−1) − p

)
+ 1
)

is increasing
(since the derivative is equal to 2ℓγ(t) − 2ℓγ(t−1) > 0), and thus it is enough to prove the
inequality above when p = 0, that is:

2ℓγ(t−1) · 3ℓφ(t−1) + 1 ⩽ 2ℓγ(t) · 3ℓφ(t) = 6ℓφ(t)+γ(t).(25)

We now remark that since ℓφ(t−1) ⩾ ℓφ(t) ⩾ 2 we have
2ℓγ(t−1)

(
3ℓφ(t−1)

)
+ 1 ⩽ 12ℓφ(t−1)+γ(t−1),

and therefore, the inequality in (25) is implied by

ℓφ(t)+γ(t)−φ(t−1)−γ(t−1) ⩾ 12/6 = 2.

Recall that by definition we have γ(t)− γ(t− 1) ⩾ 8φ(t− 1), and thus
φ(t) + γ(t)− φ(t− 1)− γ(t− 1) ⩾ φ(t) + 7φ(t− 1) ⩾ φ(t).

It follows that
ℓφ(t)+γ(t)−φ(t−1)−γ(t−1) ⩾ ℓφ(t) ⩾ 2,

as desired. □

(J. Duron) Univ. Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP
UMR5668, Lyon, France

Email address: julien.duron@ens-lyon.fr

(L. Esperet) Univ. Grenoble Alpes, CNRS, Laboratoire G-SCOP, Grenoble, France
Email address: louis.esperet@grenoble-inp.fr

(J.-F. Raymond) Univ. Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1,
LIP UMR5668, Lyon, France

Email address: jean-florent.raymond@cnrs.fr


	1. Introduction
	Organization of the paper

	2. Preliminaries
	Forbidden patterns

	3. Constellations
	4. Doubly polylogarithmic upper-bounds
	4.1. The construction
	4.2. The properties of Gl
	4.3. Ribs, sources, and their properties
	4.4. Special sources and length of induced paths
	4.5. The induced paths of Gl are short

	5. Discussion
	References
	Appendix A. Stars: proof of the crucial inequalities

