
Arithmetic Algorithms for Extended Precision
Using Floating-Point Expansions

Mioara Joldeş, Olivier Marty, Jean-Michel Muller, Senior Member, IEEE, and Valentina Popescu

Abstract—Many numerical problems require a higher computing precision than the one offered by standard floating-point (FP) formats.
One commonway of extending the precision is to represent numbers in amultiple component format. By using the so-called floating-point
expansions, real numbers are represented as the unevaluated sum of standardmachine precision FP numbers. This representation
offers the simplicity of using directly available, hardware implemented and highly optimized, FP operations. It is used bymultiple-
precision libraries such as Bailey’s QD or the analogueGraphics Processing Units (GPU) tuned version, GQD. In this article we briefly
revisit algorithms for adding andmultiplying FP expansions, then we introduce and prove new algorithms for normalizing, dividing and
square rooting of FP expansions. The newmethod used for computing the reciprocal a!1 and the square root

ffiffiffi
a
p

of a FP expansion
a is based on an adapted Newton-Raphson iteration where the intermediate calculations are done using “truncated” operations
(additions, multiplications) involving FP expansions. We give here a thorough error analysis showing that it allows very accurate
computations. More precisely, after q iterations, the computed FP expansion x ¼ x0 þ . . .þ x2q!1 satisfies, for the reciprocal algorithm,

the relative error bound: ðx! a!1Þ=a!1
"" "" & 2!2qðp!3Þ!1 and, respectively, for the square root one: x! 1=

ffiffiffi
a
p

j j & 2!2qðp!3Þ!1=
ffiffiffi
a
p

, where

p > 2 is the precision of the FP representation used (p ¼ 24 for single precision and p ¼ 53 for double precision).

Index Terms—Floating-point arithmetic, floating-point expansions, high precision arithmetic, multiple-precision arithmetic, division,

reciprocal, square root, Newton-Raphson iteration

Ç

1 INTRODUCTION

MANY numerical problems in dynamical systems or
planetary orbit dynamics, such as the long-term sta-

bility of the solar system [1], finding sinks in the Henon
Map [2], iterating the Lorenz attractor [3], etc., require
higher precisions than the standard double precision (now
called binary64 [4]). Quad or higher precision is rarely
implemented in hardware, and the most common solution
is to use software emulated higher precision libraries, also
called arbitrary precision libraries. There are mainly two
ways of representing numbers in higher precision. The first
one is the multiple-digit representation: numbers are repre-
sented by a sequence of possibly high-radix digits coupled
with a single exponent. An example is the representation
used in GNU MPFR [5], an open-source C library, which,
besides arbitrary precision, also provides correct rounding
for each atomic operation. The second way is the multiple-
term representation in which a number is expressed as the
unevaluated sum of several standard floating-point (FP)
numbers. This sum is usually called a FP expansion. Bailey’s
library QD [6] uses this approach and supports double-

double (DD) and quad-double (QD) computations, i.e.,
numbers are represented as the unevaluated sum of 2 or 4
standard double-precision FP numbers. The DD and QD
formats and the operations implemented in that library are
not compliant with the IEEE 754-2008 standard, and do not
provide correctly rounded operations. However, this multi-
ple-term representation offers the simplicity of using
directly available and highly optimized hardware imple-
mented FP operations. This makes most multiple-term algo-
rithms straightforwardly portable to highly parallel
architectures, such as GPUs. In consequence, there is a
demand for algorithms for arithmetic operations with FP
expansions, that are sufficiently simple yet efficient, and for
which effective error bounds and thorough proofs are
given. Several algorithms already exist for addition and
multiplication [6], [7, Thm. 44, Chap. 14].

In this article we mainly focus on division (and hence,
reciprocal) and square root, which are less studied in litera-
ture. For these algorithms we provide a thorough error anal-
ysis and effective error bounds. There are two classes of
algorithms for performing division and square root: the so-
called digit-recurrence algorithms [8], that generalize the
paper-and-pencil method, and the algorithms based on the
Newton-Raphson (NR) iteration [9], [10]. While the algo-
rithms suggested so far for dividing expansions belong to
the former class, here we will be interested in studying the
possible use of the latter class: since its very fast, quadratic
convergence is appealing when high precision is at stake.

Another contribution of this article is a new method for
the renormalization of FP expansions. This operation
ensures certain precision related requirements and is an
important basic brick in most computations with FP expan-
sions. Our renormalization procedure takes advantage of
the computer’s pipeline, so it is fast in practice. For the sake

' M. Joldeş is with the CNRS, LAAS Laboratory, 7 Avenue du Colonel
Roche, 31077 Toulouse, France. E-mail: mmjoldes@laas.fr.

' O. Marty is with the ENS Cahan, 61 Avenue du Pr!esident Wilson , 94230
Cachan, France. E-mail: omarty@ens-cachan.fr.

' J.-M. Muller is with the CNRS, LIP Laboratory, ENS Lyon, 46 All!ee
d’Italie, 69364 Lyon Cedex 07, France.
E-mail: jean-michel.muller@ens-lyon.fr.

' V. Popescu is with the LIP Laboratory, ENS Lyon, 46 All!ee d’Italie, 69364
Lyon Cedex 07, France. E-mail: valentina.popescu@ens-lyon.fr.

Manuscript received 30 Jan. 2015; revised 29 May 2015; accepted 1 June 2015.
Date of publication 3 June 2015; date of current version 17 Mar. 2016.
Recommended for acceptance by P. Tang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2441714

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016 1197

0018-9340! 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

of completeness, we also briefly present a variant of addi-
tion and multiplication algorithms which we implemented,
and for which we intend on providing a full error analysis
in a future related article.

A preliminary version of our work concerning only the
case of division was recently presented in [11].

The outline of the paper is the following: in Section 2 we
recall some basic notions about FP expansions and the algo-
rithms used for handling them. Then, in Section 3 we give
the new renormalization algorithm along with the proof of
correctness. In Section 4 we present methods for performing
divisions, including existing algorithms based on long clas-
sical division on expansions (Section 4.1) and the Newton
based method (Section 4.2), followed by the correctness
proof, the error analysis and the complexity analysis. After
that, in Section 5 we give a similar method for computing
the square root of an expansion along with the complexity
analysis of the algorithm. Finally, in Section 6 we assess the
performance of our algorithms—in terms of number of FP
operations and proven accuracy bounds.

2 FLOATING-POINT EXPANSIONS

A normal binary precision-p floating-point number is a
number of the form

x ¼ Mx (2ex!pþ1;

with 2p!1 & Mxj j & 2p ! 1, where Mx is an integer. The inte-
ger ex is called the exponent of x, and Mx (2!pþ1 is called the
significand of x. We denote accordingly to Goldberg’s defini-
tion: ulpðxÞ ¼ 2ex!pþ1 [7, Chap. 2] (ulp is an acronym for unit
in the last place). Another useful concept is that of unit in the
last significant place: ulsðxÞ ¼ ulpðxÞ (2zx , where zx is the
number of trailing zeros at the end ofMx.

In order to ensure the uniqueness of the representation
we need to set the first bit of the significand to 1 and adjust
the exponent according to that. This is called a normalized
representation. This is not possible if x is less than 2emin ,
where emin is the smallest allowed exponent. Such numbers
are called subnormal, where the first bit of the significand is
0 and the exponent is the minimum representable one. The
IEEE 754 standard specifies that an underflow exception is
raised every time a subnormal number occurs and the oper-
ation is inexact.

A natural extension of the notion of DD or QD is the
notion of floating-point expansion. The arithmetic on FP
expansions was first developed by Priest [12], and in a
slightly different way by Shewchuk [13]. If, starting from a
set of FP inputs, we only perform exact operations, then the
values we obtain are always equal to finite sums of FP num-
bers. Such finite sums are called expansions. A natural idea
is to try to manipulate such expansions, for performing cal-
culations that are either exact, either approximate yet very
accurate.

Definition 2.1. A FP expansion u with n terms is the unevalu-
ated sum of n FP numbers u0; . . . ; un!1, in which all nonzero
terms are ordered by magnitude (i.e., ui 6¼ 0) uij j) uiþ1j j).
Each ui is called a component of u.

The notion of expansion is “redundant” since a nonzero
number always has more than one representation as a FP

expansion. To make the concept useful in practice and easy
tomanipulate, wemust introduce a constraint on the compo-
nents: the ui’s cannot “overlap”. The notion of overlapping
varies depending on the authors. We give here two very dif-
ferent definitions, using the above-introduced notation.

Definition 2.2. (Nonoverlapping FP numbers) Assuming x and
y are normal numbers with representations Mx (2ex!pþ1 and
My (2ey!pþ1 (with 2p!1 & Mxj j; My

"" "" & 2p ! 1), they are
P-nonoverlapping (that is, nonoverlapping according to
Priest’s definition [14]) if ey ! ex

"" "") p.

Definition 2.3. An expansion is P-nonoverlapping (that is,
nonoverlapping according to Priest’s definition [14]) if all of
its components are mutually P-nonoverlapping.

A visual representation of Definition 2.3, inspired from
[17] can be seen in Fig. 1a. Shewchuk [13] weakens this into
nonzero-overlapping sequences as shown in Fig. 1b (also
inspired from [17]):

Definition 2.4. An expansion u0, u1; . . . ; un!1 is S-nonoverlap-
ping (that is, nonoverlapping according to Shewchuk’s defini-
tion [13]) if for all 0 < i < n, we have eui!1 ! eui)
p! zui!1 .

In general, a P-nonoverlapping expansion carries more
information than an S-nonoverlapping one with the same
number of components. In the worst case, in radix 2, an
S-nonoverlapping expansion with 53 components may not
contain more information than one double-precision FP
number; it suffices to put one bit of information into every
component.

When Priest first started developing the FP expansion
arithmetic, he considered that all the computations were
done in faithful FP arithmetic (see [14]), since round-to-
nearest rounding mode was not so common. More recently,
a slightly stronger sense of nonoverlapping was introduced
in 2001 by Hida et al. [6]:

Definition 2.5. An expansion u0, u1; . . . ; un!1 is B-nonover-
lapping (that is, nonoverlapping according to Bailey’s defini-
tion [6]) if for all 0 < i < n, we have uij j & 1

2 ulpðui!1Þ.

Remark 2.6. For P-nonoverlapping expansions we have
uij j & ð2p ! 1Þ=2pulpðui!1Þ and for S-nonoverlapping
expansions uij j & ð2p ! 1Þ=2pulsðui!1Þ.

Even though we presented here three different types of
nonoverlapping, in what follows we will focus only on the

Fig. 1. Nonoverlapping sequence by (a) Priest’s scheme and
(b) Shewchuk’s scheme [17].

1198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

P and B-nonoverlapping expansions, since, in general, they
provide more precision per given number of terms of a FP
expansion.

2.1 Error Free Transforms
Most algorithms performing arithmetic operations on
expansions are based on the so-called error-free transforms
(EFT), that make it possible to compute both the result and
the rounding error of a FP addition or multiplication. This
implies that in general, each such EFT, applied to two FP
numbers, still returns two FP numbers. Although these
algorithms use native precision operations only, they keep
track of all accumulated rounding errors, ensuring that no
information is lost.

We present here two EFTs that we use as basic bricks for
our work. Algorithm 2Sum (Algorithm 1) computes the
exact sum of two FP numbers a and b and returns the result
under the form sþ e, where s is the result rounded to near-
est and e is the rounding error. It requires only six native FP
operations (flops), which it was proven to be optimal in [15],
if we have no information on the ordering of a and b.

Algorithm 1. 2Sum ða; bÞ.
s RNðaþ bÞ
// RN stands for performing the operation in rounding to
nearest mode.
t RNðs! bÞ
e RNðRNða! tÞ þ RNðb! RNðs! tÞÞÞ
return ðs; eÞ such that s ¼ RNðaþ bÞ and sþ e ¼ aþ b

There exists a similar EFT, that performs the same addi-
tion using only three native precision FP operations. This
one is called Fast2Sum [7] and it requires the exponent of a to
be larger than or equal to that of b. This condition might be
difficult to check, but of course, if aj j) bj j, it will be satisfied.

For multiplying two FP numbers there exist two algo-
rithms: Dekker’s product and 2MultFMA. They compute
the product of two FP numbers a and b and return the exact
result as p, the result rounded to nearest plus e, the round-
ing error. The first one requires 17 flops. The most expensive
part of the algorithm is the computation of the error
e ¼ a (b! p, but if a fused-multiply-add (FMA [7]) instruc-
tion, that takes only one flop, is available, it is easily com-
puted. This gives Algorithm 2MultFMA (Algorithm 2), that
takes only two flops. This algorithm works providing that
the product a (b does not overflow and ea þ eb)
emin þ p! 1, where ea and eb are the exponents of a and b
and emin is the minimum representable exponent. If the sec-
ond condition is not satisfied, the product may not be repre-
sentable as the exact sum of two FP numbers (e would be
below the underflow threshold).

Algorithm 2. 2MultFMA ða; bÞ.
p RNða (bÞ
// RN stands for performing the operation in rounding to
nearest mode.
e fmaða; b;!pÞ
return ðp; eÞ such that p ¼ RNða (bÞ and pþ e ¼ a (b

These EFT can be extended to work on several inputs by
chaining, resulting in the so-called distillation algorithms
[16]. From these we make use of an algorithm called VecSum
by Ogita et al. [13], [17]. VecSum, presented in Fig. 2 and
Algorithm 3, is simply a chain of 2Sum that performs an
EFT on n FP numbers.

Algorithm 3. VecSum ðx0; . . . ; xn!1Þ.
Input: x0; . . . ; xn!1 FP numbers.
Output: e0 þ (((þ en!1 ¼ x0 þ (((þ xn!1.
sn!1 xn!1

for i n! 2 to 0 do
ðsi; eiþ1Þ 2Sumðxi; siþ1Þ
end for
e0 s0
return e0; . . . ; en!1

2.2 Addition and Multiplication Algorithms
for Expansions

An algorithm that performs the addition of two expansions
a and b with n and m terms, respectively, will return a FP
expansion with at most nþm terms. Similarly, for multipli-
cation, the product can have at most 2nm terms [12]. So-
called normalization algorithms are used to render the
result nonoverlapping, and this also implies a potential
reduction in the number of terms.

Many variants of algorithms that compute the sum and
the product of two FP expansions have been presented in
the literature [6], [12], [13], [16]. Here, we only briefly pres-
ent the algorithms that we used in our actual implementa-
tion. The addition is based on the merge algorithm and the
multiplication is a generalization of Bailey’s algorithm for
DD and QD [6] and it was first presented in [2].

The addition presented in Algorithm 4 and Fig. 3 is per-
formed by merging the two FP expansions, a, with n and b,
with m terms, respectively, and normalizing the resulted
array for obtaining an approximation s on r terms of the
sum aþ b.

Subtraction is performed simply by negating the FP
terms in b.

Fig. 2. VecSum with n terms. Each 2Sum box performs Algorithm 1, the
sum is outputted to the left and the error downwards. Fig. 3. Addition of FP expansions with n and m terms. The Merge box

performs a classic algorithm for merging two arrays and the Renormalize
box performs Algorithm 6.

JOLDEŞ ET AL.: ARITHMETIC ALGORITHMS FOR EXTENDED PRECISION USING FLOATING-POINT EXPANSIONS 1199

Algorithm 4. Algorithm of addition of FP expansions.

Input: FP expansions a ¼ a0 þ (((þ an!1; b ¼ b0 þ (((þ bm!1.; r
length of the result.

Output: FP expansion s ¼ s0 þ (((þ sr!1.
1: f ½0 : mþ n! 1+ Mergeða½0 : n! 1+; b½0 : m! 1+Þ
2: s½0 : r! 1+ Renormðf½0 : mþ n! 1+; rÞ
3: return FP expansion s ¼ s0 þ (((þ sr!1.

In Fig. 4 and Algorithm 5 we present the multiplication
algorithm. Although we have implemented fully custom-
ized versions, for simplicity, we give here only the “k input -
k output” variant of the algorithm. We consider two expan-
sions a and b, each with k terms and we compute the k most
significant components of the product r ¼ a (b. In the
renormalization step (line 15 of Algorithm 5), we use an
extra error correction term, so we perform our “error free
transformation scheme” kþ 1 times.

Here, we just give an intuitive explanation of the multi-
plication algorithm. Let " ¼ 1

2 ulpðr0Þ. Roughly speaking, if
r0 is of the order of L, then e0 is of order Oð"LÞ. So for the
product ðp; eÞ ¼ 2MultFMAðai; bjÞ, p is of order Oð"nLÞ and
e of order Oð"nþ1LÞ, where n ¼ iþ j, and we consider only
the terms for which 0 & n & k. This implies that for each n
we have nþ 1 products to compute (line 4 of Algorithm 5).
Next, we need to add all terms of the same order of magni-
tude. Beside the nþ 1 products, we also have n2 terms
resulting from the previous iteration. This addition is per-
formed using VecSum (Algorithm 3) to obtain rn in line 6.

The remaining terms are concatenated with the errors from
the nþ 1 products, and the entire e0; . . . ; eðnþ1Þ2!1 array is

used in the next iteration. The ðkþ 1Þ-st component rk is
obtained by simple summation of all remaining errors with
the simple products of order Oð"kLÞ. EFT are not needed in
the last step since the errors are not reused.

Algorithm 5. Algorithm of multiplication of FP
expansions with k terms.

Input: FP expansions a ¼ a0 þ (((þ ak!1; b ¼ b0 þ (((þ bk!1.
Output: FP expansion r ¼ r0 þ (((þ rk!1.
1: ðr0; e0Þ 2MultFMAða0; b0Þ
2: for n 1 to k! 1 do
3: for i 0 to n do
4: ðpi; êiÞ 2MultFMAðai; bn!iÞ
5: end for
6: rn; e½0 : n2 þ n! 1+ VecSumðp½0 : n+; e½0 : n2 ! 1+Þ
7: e½0 : ðnþ 1Þ2 ! 1+ e½0 : n2 þ n! 1+; ê½0 : n+
8: end for
9: for i 1 to k! 1 do
10: rk rk þ ai (bk!i

11: end for
12: for i 0 to k2 ! 1 do
13: rk rk þ ei
14: end for
15: r½0 : k! 1+ Renormalizeðr½0 : k+Þ
16: return FP expansion r ¼ r0 þ (((þ rk!1.

For the addition and multiplication algorithms presented
in this section, we will provide an effective error analysis in

Fig. 4. Multiplication of FP expansions with k terms. Each 2MultFMA box performs Algorithm 2, the product is outputted downwards and the error to
the right; the VecSum box performs Algorithm 3, in which the most significant component of the sum is outputted downwards; the circled þ and ,
signs represent standard round-to-nearest FP addition and multiplication.

1200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

a subsequent paper. An important step for this goal is to
provide a thorough proof for the renormalization, which is
used at the end of each of these two algorithms. So, in what
follows we focus on our new algorithm for renormalization
of expansions.

3 RENORMALIZATION ALGORITHM FOR

EXPANSIONS

While several renormalization algorithms have been pro-
posed in literature, Priest [12] algorithm seems to be the
only one provided with a complete correctness proof. It has
many conditional branches, which make it slow in practice,
and has a worst case FP operation count of: RðnÞ ¼
20ðn! 1Þ, for an input FP expansion with n-terms.

In an attempt to overcome the branching problem we
developed a new algorithm (Algorithm 6), for which we
provide a full correctness proof.

First, we need to define the concept of FP numbers that
overlap by at most d digits.

Definition 3.1. Consider an array of FP numbers:
x0; x1; . . . ; xn!1. According to Priest’s [12] definition, they
overlap by at most d digits (0 & d < p) if and only if
8i; 0 & i & n! 2; 9ki; di such that:

2ki & xij j < 2kiþ1; (1)

2ki!di & xiþ1j j & 2ki!diþ1; (2)

di) p! d; (3)

di þ diþ1) p! zi!1; (4)

where zi!1 is the number of trailing zeros at the end of xi!1 and
for i ¼ 0, z!1 :¼ 0.

Proposition 3.2. Let x0; x1; . . . ; xn!1 be an array of FP numbers
which overlap by at most d digits (0 & d < p). The following
properties hold:

xjþ1

"" "" < 2dulpðxjÞ; (5)

ulpðxjþ1Þ & 2d!pulpðxjÞ; (6)

xjþ2 þ xjþ1

"" "" & ð2d þ 22d!pÞulpðxjÞ: (7)

Proof. We have ulpðxjÞ ¼ 2kj!pþ1 and from (3) we get
xjþ1

"" "" < 2kj!djþ1 < 2p!djulpðxjÞ < 2dulpðxjÞ. This
proves that (5) holds for all 0 & j < n! 1.

By applying (3) we get ulpðxjþ1Þ ¼ 2kj!dj!pþ1 &
2d!pulpðxjÞ, which proves that (6) holds for all
0 & j < n! 1.

We have xjþ1

"" "" & 2dulpðxjÞ and xjþ2

"" "" & 2dulpðxjþ1Þ &
22d!pulpðxjÞ from which (7) follows. tu

The renormalization algorithm (Algorithm 6, illustrated
in Fig. 5) is based on different layers of chained 2Sum. For
the sake of simplicity, these are grouped in simpler layers
based on VecSum. We will prove that our algorithm returns
a P-nonoverlapping sequence.

Proposition 3.3. Consider an array x0; x1; . . . ; xn!1 of FP num-
bers that overlap by at most d & p! 2 digits and let m be an
input parameter, with 1 & m & n! 1. Provided that no
underflow / overflow occurs during the calculations, Algorithm
6 returns a “truncation” to m terms of a P-nonoverlapping
FP expansion f ¼ f0 þ (((þ fn!1 such that
x0 þ (((þ xn!1 ¼ f .

Algorithm 6. Renormalization algorithm

Input: FP expansion x ¼ x0 þ (((þ xn!1 consisting of FP num-
bers that overlap by at most d digits, with d & p! 2; m
length of output FP expansion.

Output: FP expansion f ¼ f0 þ (((þ fm!1 with fiþ1 &
ð12 þ 2!pþ2 þ 2!pÞulpðfiÞ, for all 0 & i < m! 1.

1: e½0 : n! 1+ VecSumðx½0 : n! 1+Þ
2: f ð0Þ½0 : m+ VecSumErrBranchðe½0 : n! 1+;mþ 1Þ
3: for i 0 tom! 2 do
4: f ðiþ1Þ½i : m+ VecSumErrðf ðiÞ½i : m+Þ
5: end for
6: return FP expansion f ¼ f ð1Þ

0 þ (((þ f ðm!1Þ
m!2 þ f ðm!1Þ

m!1 .

To prove this proposition, in what follows, we first prove
several intermediate properties. The notations used in the
proof (si; ei; "i; fi; ri and gi) are defined on the schematic
drawings of the algorithms discussed. We also raise the
important remark that at each step we prove that all the
2Sum blocks can be replaced by Fast2Sum ones, but for sim-
plicity of the proof we chose to present first the 2Sum version.

First Level (Line 1, Algorithm 6)
It consists in applying Algorithm 3, VecSum (see also Fig. 2)
on the input array, from where we obtain the array
e ¼ ðe0; e1; . . . ; en!1Þ.

Proposition 3.4. After applying the VecSum algorithm, the out-
put array e ¼ ðe0; e1; . . . ; en!1Þ is S-nonoverlapping and
may contain interleaving zeros.

Fig. 5. Renormalization of FP expansions with n terms. The VecSum box
performs Algorithm 3, the VecSum-ErrBranch box, Algorithm 7 and the
VecSumErr box, Algorithm 8.

JOLDEŞ ET AL.: ARITHMETIC ALGORITHMS FOR EXTENDED PRECISION USING FLOATING-POINT EXPANSIONS 1201

Proof. Since si ¼ RNðxi þ siþ1Þ, si is closer to xi þ siþ1 than
xi. Hence ðxi þ siþ1Þ ! sij j & ðxi þ siþ1Þ ! xij j, and so
eiþ1j j & siþ1j j. Similarly, si is closer to xi þ siþ1 than siþ1,
so eiþ1j j & xij j. From (5) we get:

xjþ1

"" ""þ xjþ2

"" ""þ . . . &
& ½2d þ 22d!p þ 23d!2p þ 24d!3p þ . . .+ulpðxjÞ

& 2d
2p

2p ! 1
ulpðxjÞ:

(8)

We know that sjþ1 ¼ RNðxjþ1 þRNð. . .þ xn!1ÞÞ and
by using a property given by Jeannerod and Rump in
[18] we get:

jsjþ1 ! ðxjþ1 þ (((þ xn!1Þj
& ðn! j! 2Þ (2!p (xjþ1

"" ""þ (((þ xn!1j j
$

:
(9)

From (8) and (9) we have:

sjþ1

"" "" & 2d
2p

2p ! 1
ð1þ ðn! j! 2Þ2!pÞulpðxjÞ:

It is easily seen that

2d
2p

2p ! 1
ð1þ ðn! j! 2Þ2!pÞ & 2p!1; (10)

is satisfied for p) 4 and n & 16, for p) 5 and n & 32 and
so on. This includes all practical cases, when d & p! 2,
so that ulpðsjþ1Þ < ulpðxjÞ. Therefore xj and sjþ1 are
multiples of ulpðsjþ1Þ, thus xj þ sjþ1 is multiple of
ulpðsjþ1Þ, hence RNðxj þ sjþ1Þ is multiple of ulpðsjþ1Þ
and ejþ1

"" "" ¼ xj þ sjþ1 ! RNðxj þ sjþ1Þ
"" "" is multiple of

ulpðsjþ1Þ.
Also, by definition of 2Sum, we have

ejþ2

"" "" & 1
2 ulpðsjþ1Þ. Now, we can compare ejþ1

"" "" and

ejþ2

"" "". Since ejþ1

"" "" is a multiple of ulpðsjþ1Þ, either

ejþ1 ¼ 0 or ejþ1 is larger than 2 ejþ2

"" "" and multiple of 2k,

such that 2k > ejþ2

"" "". This implies that the array
e ¼ ðe0; e1; . . . ; en!1Þ is S-nonoverlapping and may have
interleaving zeros. tu

Remark 3.5. Since we have sjþ1

"" "" & 2p!1ulpðxjÞ, for d & p! 2
and p) 4 for n up to 16 and also ulpðxjÞ & 21!p xj

"" "" we

deduce that sjþ1

"" "" & xj

"" "". Hence, at this level we can use
instead of 2Sum basic blocks the Fast2Sum ones.

Second Level (Line 2, Algorithm 6)
It is applied on the array e obtained previously. This is also
a chain of 2Sum, but instead of starting from the least signifi-
cant, we start from the most significant component. Also,
instead of propagating the sums we propagate the errors. If
however, the error after a 2Sum block is zero, then we prop-
agate the sum (this is shown in Fig. 6). In what follows
we will refer to this algorithm by VecSumErrBranch (see
Algorithm 7). The following property holds:

Proposition 3.6. Let an input array e ¼ ðe0; . . . ; en!1Þ of S-non-
overlapping terms and 1 & m & n the required number of out-
put terms. After appling VecSumErrBranch, the output array
of f ¼ ðf0; . . . ; fm!1Þ, with 0 & m & n! 1 satisfies
fiþ1j j & ulpðfiÞ for all 0 & i < m! 1.

Algorithm 7. Second level of the renormalization
algorithm - VecSumErrBranch

Input: S-nonoverlapping FP expansion e ¼ e0 þ (((þ en!1; m
length of the output expansion.

Output: FP expansion f ¼ f0 þ (((þ fm!1 with fjþ1 & ulpðfjÞ,
0 & j < m! 1.

1: j 0
2: "0 ¼ e0
3: for i 0 to n! 2 do
4: ðfj; "iþ1Þ 2Sumð"i; eiþ1Þ
5: if "iþ1 6¼ 0 then
6: if j) m! 1 then
7: return FP expansion f ¼ f0 þ (((þ fm!1.

//enough output terms
8: end if
9: j jþ 1
10: else
11: "iþ1 fj
12: end if
13: end for
14: if "n!1 6¼ 0 and j < m then
15: fj "n!1

16: end if
17: return FP expansion f ¼ f0 þ (((þ fm!1.

Proof. The casewhen e contains 1 or 2 elements is trivial. Con-
sider now at least 3 elements. By definition of 2Sum, we
have "1j j & 1

2 ulpðf0Þ and by definition ofS-nonoverlapping,

e0 ¼ E0 (2k0 with e1j j < 2k0 ;

e1 ¼ E1 (2k1 with e2j j < 2k1 :

Hence, f0 and "1 are both multiples of 2k1 . Two possible
cases may occur:

(i) "1 ¼ 0. If we choose to propagate directly "1 ¼ 0,
then f1 ¼ e2 and "2 ¼ 0. This implies by induction that
fi ¼ eiþ1; 8i) 1. So, directly propagating the error poses a
problem, since the whole remaining chain of 2Sum is exe-
cuted without any change. So, as shown in Algorithm 7,
line 11, when "iþ1 ¼ 0we propagate the sum fj.

(ii) "1 6¼ 0. Then e2j j < "1j j and "1 þ e2j j < 2 "1j j, from
where we get f1j j ¼ RNð"1 þ e2Þj j & 2 "1j j & ulpðf0Þ.

We prove by induction the following statement: at
step i > 0 of the loop in Algorithm 7, both fj!1 and "i are
multiples of 2ki with eiþ1j j < 2ki . We proved above that
i ¼ 1 holds. Suppose now it holds for i and prove it for
iþ 1. Since fj!1 and "i are multiples of 2ki with

eiþ1j j < 2ki and eiþ1 ¼ Eiþ1 (2kiþ1 with eiþ2j j < 2kiþ1 (by
definition of S-nonoverlapping), it follows that both fj and

"iþ1 are multiples of 2kiþ1 (by definition of 2Sum).

Fig. 6. VecSumErrBranch with n terms. Each 2Sum box performs
Algorithm 1, the sum is outputted downwards and the error to the right. If
the error is zero, the sum is propagated to the right.

1202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

Finally, we prove the relation between fj and fj!1. If
"iþ1 ¼ 0, we propagate fj, i.e., "iþ1 ¼ fj. Otherwise
eiþ1j j < "ij j, so eiþ1 þ "ij j < 2 "ij j and finally
fj
"" "" ¼ RNðeiþ1 þ "iÞj j & 2 "ij j & ulpðfj!1Þ. tu

Remark 3.7. For this algorithm we can also use Fast2Sum
instead of 2Sum. We already showed that either
eiþ1j j < "ij j, or "i ¼ 0, in which case we replace "i ¼ fj!1,

which is a multiple of 2ki with eiþ1j j < 2ki .

Third Level and Further (Lines 3-5, Algorithm 6)
On the previously obtained array we apply a similar chain
of 2Sum, starting from the most significant component and
propagating the error. In these subsequent levels, no condi-
tional branching is needed anymore (see Algorithm 8 and
Fig. 7).

Algorithm 8. Third level of the renormalization
algorithm - VecSumErr

Input: FP expansion f ¼ f0 þ (((þ fm with fiþ1j j & ulpðfiÞ, for
all 0 & i & m! 1.

Output: FP expansion g ¼ g0 þ (((þ gm with g1j j & 1
2 þ 2!pþ2
$

ulpðg0Þ and giþ1j j & ulpðgiÞ, for 0 < i & m! 1.
1: r0 ¼ f0
2: for i 0 tom! 1 do
3: ðgi; riþ1Þ 2Sumðri; fiþ1Þ
4: end for
5: gm "m
6: return FP expansion g ¼ g0 þ (((þ gm.

We prove the following property:

Proposition 3.8. After applying Algorithm 8, VecSumErr on an
input array f ¼ ðf0; . . . ; fmÞ, with fiþ1j j & ulpðfiÞ, for all
0 & i & m! 1, the output array g ¼ ðg0; . . . ; gmÞ satisfies
g1j j & 1

2 þ 2!pþ2
$

ulpðg0Þ and giþ1j j & ulpðgiÞ, for
0 < i & m! 1.

Proof. Since f1j j & ulpðf0Þ and g0 ¼ RNðf0 þ f1Þ we have:
ð1=2Þulpðf0Þ & ulpðg0Þ & 2ulpðf0Þ; and r1j j & ð1=2Þ
ulpðg0Þ:We also have:

f1j j & ulpðf0Þ; which implies ulpðf1Þ & 2!pþ1ulpðf0Þ;
f2j j & ulpðf1Þ & 2!pþ2ulpðg0Þ:

Hence:

r1 þ f2j j & 1=2þ 2!pþ2
$

ulpðg0Þ:

Since 1=2þ 2!pþ2ð Þulpðg0Þ is a FP number, we also have:

g1j j ¼ RNðr1 þ f2Þj j & 1=2þ 2!pþ2
$

ulpðg0Þ:

This bound is very close to ð1=2Þulpðg0Þ and it seems
that in most practical cases, one actually has
g1j j & 1

2 ulpðg0Þ. This implies that g0 and g1 are “almost”
B-nonoverlapping and a simple computation shows that
they are P-nonoverlapping as soon as p) 3, which occurs
in all practical cases. As we iterate further, we get:

riþ1

"" "" & ð1=2ÞulpðgiÞ;
fiþ1j j & ulpðfiÞ, which implies ulpðfiþ1Þ & 2!pþ1ulpðfiÞ:

We know that ri is multiple of ulpðfiÞ and from this
we derive two cases: (i) ri ¼ 0, and as a consequence
8j) i; gj ¼ fjþ1 and gm ¼ 0. In the second case (ii)we get:

fiþ1j j & rij j & ð1=2Þulpðgi!1Þ;
fiþ1 þ rij j & ulpðgi!1Þ;

gij j ¼ RNðfiþ1 þ riÞj j & ulpðgi!1Þ: tu

Remark 3.9. For Algorithm 8 we can also use the faster algo-
rithm, Fast2Sumðri; fiþ1Þ, because we either have ri ¼ 0
or fiþ1j j & rij j.

The above proposition shows that while we obtain a
nonoverlapping condition for the first two elements of the
resulting array g, for the others we don’t strengthen the
existing bound giþ1j j & ulpðgiÞ. There is an advantage how-
ever: if zeros appear in the summation process, they are
pushed at the end; we don’t use any branching. This sug-
gests to continue applying a subsequent level of the same
algorithm on the remaining elements, say g1; . . . ; gm. This is
the idea of applying m! 1 levels of VecSumErr in lines 3-5,
Algorithm 6. We are now able to prove Proposition 3.3.

Proof (of Proposition 3.3). Consider m) 2, otherwise the
output reduces to only one term. The loop in lines 3-5 of
Algorithm 6 is executed at least once. From Propositions

3.4, 3.6 and 3.8 we deduce that jfð1Þ1 j & ð1=2þ 2!pþ2Þ
ulpðf ð1Þ

0 Þ and jfð1Þiþ1j & ulpðfð1Þi Þ, for i > 0. If m ¼ 2 then

f ð1Þ
0 ; f ð1Þ

1 are outputted and the proposition is proven. Oth-

erwise, fð1Þ0 is kept unchanged and another VecSumErr is

applied to remaining f ð1Þ
1 ; . . . ; f ð1Þ

m . We have:

f ð1Þ
1

"""
""" & 1=2þ 2!pþ2

$
ulpðf ð1Þ

0 Þ;

f ð1Þ
2

"""
""" & ulpðf ð1Þ

1 Þ & 2!pþ1 1=2þ 2!pþ2
$

ulpðf ð1Þ
0 Þ;

& 2!pþ1ulpðfð1Þ0 Þ:

Hence,

f ð2Þ
1

"""
""" ¼ RNðf ð1Þ

1 þ fð1Þ2 Þ
"""

""";

& 1=2þ 2!pþ2 þ 2!pþ1
$

ulpðf ð1Þ
0 Þ:

Similarly,

f ð2Þ
2

"""
""" & 1=2þ 2!pþ2

$
ulpðfð2Þ1 Þ;

f ð2Þ
3

"""
""" & ulpðf ð2Þ

2 Þ & 2!pþ1 1=2þ 2!pþ2
$

ulpðf ð2Þ
1 Þ;

& 2!pþ1ulpðf ð2Þ
1 Þ:

Fig. 7. VecSumErr with mþ 1 terms. Each 2Sum box performs
Algorithm 1, sums are outputted downwards and errors to the right.

JOLDEŞ ET AL.: ARITHMETIC ALGORITHMS FOR EXTENDED PRECISION USING FLOATING-POINT EXPANSIONS 1203

So, f ð1Þ
0 ; f ð2Þ

1 ; f ð2Þ
2 are nonoverlapping. It follows by induc-

tion that after m! 1 loop iterations the output

f ð1Þ
0 ; . . . ; f ðm!1Þ

m!2 ; f ðm!1Þ
m!1 is a P-nonoverlapping expansion.

Finally, when all n! 1 terms are considered, after at
most n! 1 loop iterations we have: x0 þ (((þ
xn!1 ¼ f ð1Þ

0 þ (((þ fðn!1Þ
n!2 þ fðn!1Þ

n!1 . tu

Fig. 8 gives an intuitive drawing showing the different
constraints between the FP numbers before and after the
first two levels of Algorithm 6. The notation is the same as
in Fig. 5.

Remark 3.10. In the worst case, Algorithm 6 performs n! 1
Fast2Sum calls in the first level and n! 2 Fast2Sum calls
plus n! 1 comparisons in the second one. During the fol-
lowing m! 1 levels we perform m! i Fast2Sum calls,
with 0 & i < m! 2. This accounts for a total of
Rnewðn;mÞ ¼ 7nþ 3

2m
2 þ 3

2m! 13 FP operations.

Table 1 shows some effective values of the worst case FP
operation count for Priest’s renormalization algorithm [12]
and Algorithm 6. One can see that for n & 7 our algorithm
performs better or the same. Even though from values of
n > 7 Algorithm 6 performs worse in terms of operation
count than Priest’s one, in practice, the last m! 1 levels will
take advantage of the computers pipeline, because we do
not need branching conditions anymore, which makes it
faster in practice.

In what follows we denote by AddRoundE
ðx½0 : n! 1+; y½0 : m! 1+; rÞ, an algorithm for expansions
addition, which given two (P! or B!) nonoverlapping
expansions, returns the r most significant terms of the exact
normalized (P! or B!) nonoverlapping sum. If no request
is made on the number of terms to be returned, then we
denote simply by AddEðx½0 : n! 1+; y½0 : m! 1+Þ. Similarly,
we denote by MulRoundE, MulE, SubRoundE, SubE,
DivRoundE, RenormalizeE algorithms for multiplication, sub-
traction, division and normalization.

4 RECIPROCAL ALGORITHM

4.1 Algorithms Using Classical Long Division
on Expansions

In reference [12], division is done using the classical long
division algorithm (a variation of the paper-and-pencil
method), which is recalled in Algorithm 9. Bailey’s division
algorithm [6] is similar. For instance, let a ¼ a0þ a1 þ a2 þ
a3 and b ¼ b0 þ b1 þ b2 þ b3 be QD numbers. First, one
approximates the quotient q0 ¼ a0=b0, then computes the

remainder r ¼ a! q0b in quad-double. The next correction
term is q1 ¼ r0=b0. Subsequent terms qi are obtained by con-
tinuing this process. At each step when computing r, full
quad-double multiplication and subtraction are performed
since most of the bits will be canceled out when computing
q3 and q4, in Bailey’s algorithm. A renormalization step is
performed only at the end, on q0 þ q1 þ q2 þ ::: in order to
ensure non-overlapping. No error bound is given in [6].

Note that in Algorithm 9 [12] a renormalization step is
performed after each computation of r ¼ r! qib. An error
bound is given in [12]:

Algorithm 9. Priest’s [12] division algorithm. We denote
by f ½0 : . . .+ and expansion f whose number of terms is
not known in advance.

Input: FP expansion a ¼ a0 þ (((þ an!1; b ¼ b0 þ (((þ bm!1;
length of output quotient FP expansion d.

Output: FP expansion q ¼ q0 þ . . . with at most d terms s.t.
q!a=b
a=b

"""
""" < 21!bðp!4Þd=pc.

1: q0 ¼ RNða0=b0Þ
2: rð0Þ½0 : n! 1+ a½0 : n! 1+
3: for i 1 to d! 1 do
4: f ½0 : . . .+ MulEðqi!1; b½0 : m! 1+Þ
5: rðiÞ½0 : . . .+ RenormalizeEðSubEðrði!1Þ½0 : . . .+; f ½0 : . . .+ÞÞ
6: qi ¼ RNðrðiÞ0 =b0Þ
7: end for
8: q½0 : . . .+ RenormalizeEðq½0 : d! 1+Þ
9: return FP expansion q ¼ q0 þ

Proposition 4.1. [12] Consider two P-nonoverlapping expan-
sions: a ¼ a0 þ (((þ an!1 and b ¼ b0 þ (((þ bm!1, Priest
division algorithm [12] computes a quotient expansion
q ¼ q0 þ (((þ qd!1 s.t.

q ! a=b

a=b

""""

"""" < 21!bðp!4Þd=pc: (11)

Daumas and Finot [19] modify Priest’s division algo-
rithm by using only estimates of the most significant com-
ponent of the remainder r0 and storing the less significant
components of the remainder and the terms !qib
unchanged in a set that is managed with a priority queue.
While the asymptotic complexity of this algorithm is better,
in practical simple cases Priest’s algorithm is faster due to
the control overhead of the priority queue [19]. The error
bound obtained with Daumas’ algorithm is (using the same
notations as above):

q ! a=b

a=b

""""

"""" < 2!dðp!1Þ
Yd!1

i¼0

ð4iþ 6Þ: (12)

TABLE 1
FP Operation Count for Algorithm 6 versus Priest’s

Renormalization Algorithm [12]

q 2 4 7 8 10 12 16

Alg. 6 10 45 120 151 222 305 507
Priest’s alg. [12] 20 60 120 140 180 220 300

We consider that both algorithms compute n! 1 terms in the output
expansion.

Fig. 8. Illustration of the effect of Algorithm 6. Expansion x is the input FP
sequence, e is the sequence obtained after the first level and f ð0Þ is the
sequence obtained after the second level.

1204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

4.2 Reciprocal of Expansions with an Adapted
Newton-Raphson Iteration

The classical Newton-Raphson iteration for computing recip-
rocals [7, Chap. 2] [9], [10], is based on the general NR itera-
tion for computing the roots of a given function f , which is:

xnþ1 ¼ xn !
fðxnÞ
f 0ðxnÞ

: (13)

When x0 is close to a root a, f 0ðaÞ 6¼ 0, the iteration con-
verges quadratically. For computing 1=a we choose
fðxÞ ¼ 1=x! a, which gives

xnþ1 ¼ xnð2! axnÞ: (14)

The iteration converges to 1=a for all x0 2 ð0; 2=aÞ. However,
taking any point in ð0; 2=aÞ as the starting point x0 would be
a poor choice. A much better choice is to choose x0 equal to
a FP number very close to 1=a. This only requires one FP
division. The quadratic convergence of (14) is deduced from

xnþ1 ! 1=a ¼ !aðxn ! 1=aÞ2. This iteration is self-correcting
because rounding errors do not modify the limit value.

Algorithm 10. Truncated Newton iteration based
algorithm for reciprocal of an FP expansion.

Input: FP expansion a ¼ a0 þ (((þ a2k!1; length of output FP
expansion 2q.

Output: FP expansion x ¼ x0 þ (((þ x2q!1 s.t. x! 1
a

"" "" &
2!2q ðp!3Þ!1

aj j .

1: x0 ¼ RNð1=a0Þ
2: for i 0 to q ! 1 do
3: v̂½0 : 2iþ1! 1+ MulRoundEðx½0 : 2i ! 1+; a½0 : 2iþ1 ! 1+; 2iþ1Þ
4: ŵ½0 : 2iþ1 ! 1+ SubRoundEð2; v̂½0 : 2iþ1 ! 1+; 2iþ1Þ
5: x½0 : 2iþ1! 1+ MulRoundEðx½0 : 2i ! 1+; ŵ½0 : 2iþ1 ! 1+; 2iþ1Þ
6: end for
7: return FP expansion x ¼ x0 þ (((þ x2q!1.

While iteration (14) is well known, in Algorithm 10 we
use an adaptation for computing reciprocals of FP expan-
sions, with truncated operations involving FP expansions.
Our algorithm works with both B- and P-nonoverlapping FP
expansions. For the sake of clarity we consider first the case
of B-nonoverlapping FP expansions, and then make the
necessary adjustments for P-nonoverlapping expansions in
Proposition 4.4.

4.3 Error Analysis of Algorithm 10
Let a ¼ a0 þ (((þ a2k!1 be a B-nonoverlapping FP expansion
with 2k terms and q) 0. We will prove that our algorithm
returns an approximation x ¼ x0 þ (((þ x2q!1 of 1=a, in
the form of a B-nonoverlapping FP expansion with 2q terms,
such that

x! 1=aj j & 2!2qðp!3Þ!1= aj j: (15)

We will first prove the following proposition:

Proposition 4.2. Consider a B-nonoverlapping expansion
u ¼ u0 þ u1 þ (((þ uk with k normal binary FP terms of pre-
cision p. Denote uðiÞ ¼ u0 þ u1 þ (((þ ui; i) 0, i.e., “a
truncation” of u to iþ 1 terms. The following inequalities hold
for 0 & i & k:

uij j & 2!ip u0j j; (16)

u! uðiÞ
"" "" & 2!ip uj j

h

1! h
; (17)

1! 2!iph

1! h

% &
uj j & uðiÞ"" "" & 1þ 2!iph

1! h

% &
uj j; (18)

1=u! 1=u0j j & h= uj j; (19)

where

h ¼
X1

j¼0

2ð!j!1Þp ¼ 2!p

1! 2!p
:

Proof. By definition of a B-nonoverlapping expansion and
since for any normal binary FP number ui,
ulpðuiÞ & 2!pþ1 uij j we have uij j & ð1=2Þulpðui!1Þ &
2!p ui!1j j and (16) follows by induction.

Consequently we have u! u0j j ¼ u1 þ u2 þ (((þ ukj j
& 2!p u0j jþ 2!2p u0j jþ (((þ 2!kp u0j j & u0j jh. One observes
that u and u0 have the same sign. A possible proof is by
noticing that 1! h > 0 and ! u0j jh & u! u0 & u0j jh. Sup-
pose u0 > 0, then !u0h & u! u0 & u0h, hence
u0ð1! hÞ & u & u0ð1þ hÞ which implies u > 0. The case
u0 < 0 is similar. It follows that

uj j=ð1þ hÞ & u0j j & uj j=ð1! hÞ: (20)

For (17) we use (20) together with:

u! uðiÞ
"" "" &

X1

j¼0

2ð!i!j!1Þp u0j j & 2!iph u0j j;

and (18) is a simple consequence of (17). Similarly,
(19) follows from 1=u! 1=u0j j ¼ ð1= uj jÞ (ðu0 ! uÞ=u0j j &
h= uj j: tu

Proposition 4.3. Provided that no underflow / overflow occurs
during the calculations, Algorithm 10 is correct when run
with B-nonoverlapping expansions.

Proof. The input of the algorithm is a non-overlapping FP
expansion a ¼ a0 þ a1 þ (((þ a2k!1; in which every term
ai is a normal binary FP number of precision p. Let

fi ¼ 2iþ1 ! 1 and aðfiÞ ¼ a0 þ a1 þ (((þ afi i.e., “a
truncation” of a to fi þ 1 terms, with 0 & i.

For computing 1=a we use Newton iteration:

x0 ¼ RNð1=a0Þ, xiþ1 ¼ xið2! aðfiÞxiÞÞ; i) 0 by truncating
each FP expansion operation as follows:

' let vi :¼ ðaðfiÞ (xiÞ be the exact product repre-

sented as a non-overlapping expansion on 22ðiþ1Þ

terms, we compute v̂i :¼ vð2
iÞ

i i.e., vi “truncated to”
2iþ1 terms;

' let wi :¼ 2! v̂i be the exact result of the subtrac-
tion represented as a non-overlapping expansion

on 2iþ1 þ 1 terms, we compute ŵi :¼ wð2iÞ
i i.e., vi

“truncated to” 2iþ1 terms;
' let ti :¼ xi (ŵi be the exact product represented as

a non-overlapping expansion on 2 (2ið2iþ1Þ terms,

we compute xiþ1 :¼ t
ð2iþ1!1Þ
i i.e., ti “truncated to”

2iþ1 terms.

JOLDEŞ ET AL.: ARITHMETIC ALGORITHMS FOR EXTENDED PRECISION USING FLOATING-POINT EXPANSIONS 1205

Let us first prove a simple upper bound for the
approximation error in x0:

"0 ¼ x0 ! 1=aj j & 2h= aj j: (21)

Since x0 ¼ RNð1=a0Þ, then x0 ! 1=a0j j & 2!p 1=a0j j, so
x0 ! 1=aj j & 2!p 1=a0j jþ 1=a! 1=a0j j &
ðð1þ hÞ2!p þ hÞ= aj j & 2h= aj j (from (20)).

Let us deduce an upper bound for the approximation
error in x at step iþ 1, "iþ1 ¼ xiþ1 ! 1=aj j. For this, we
will use a chain of triangular inequalities that make
the transition from our “truncated” Newton error to the

“untruncated” one. Let gi ¼ 2!ð2iþ1!1Þph=ð1! hÞ. We have
from Proposition 4.2, eq. (17):

xiþ1 ! tij j & gi xi (ŵij j; (22)

wi ! ŵij j & gi wij j & gi 2! v̂ij j; (23)

vi ! v̂ij j & gi a
ðfiÞ (xi

"" ""; (24)

a! aðfiÞ
"" "" & gi aj j: (25)

From (22) we have:

"iþ1 & xiþ1 ! tij jþ ti ! 1=aj j
& gi xi (ŵij jþ xi (ŵi ! 1=aj j
& gi xiðwi ! ŵiÞj jþ gi xiwij jþ xi (ŵi ! 1=aj j
& ð1þ giÞ xij j wi ! ŵij jþ gi xiwij j
þ xi (wi ! 1=aj j:

Using (23) and (24):

"iþ1 & xi (wi ! 1=aj jþ ðð1þ giÞgi þ giÞ xiwij j
& xi (ð2! viÞ ! 1=aj jþ xij j (ðvi ! v̂iÞj j
þ ðgið1þ giÞ þ giÞ xij jð ð2! viÞj jþ vi ! v̂ij jÞ

& xi (ð2! aðfiÞ (xiÞ ! 1=a
"" ""

þ gið1þ giÞ
2 x2i
"" "" aðfiÞ

"" ""

þ ðgið1þ giÞ þ giÞ xið2! aðfiÞ (xiÞ
"" "":

By (25), we have:

xi (ð2! aðfiÞ (xiÞ ! 1=a
"" "" & aj j xi ! 1=aj j2þgi xij j2 aj j;

xij j2 aðfiÞ
"" "" & 1þ gið Þ xij j2 aj j;

and

xi (ð2! aðfiÞ (xiÞ
"" "" & aj j xi ! 1=aj j2þgi xij j2 aj jþ 1= aj j:

Hence we have:

"iþ1 & ð1þ giÞ
2 aj j xi ! 1=aj j2

þ gið1þ giÞ
2ð2þ giÞ x2i

"" "" aj j
þ gið2þ giÞ1= aj j:

(26)

We now prove by induction that for all i) 0:

"i ¼ xi ! 1=aj j & 2!2iðp!3Þ!1= aj j: (27)

For i ¼ 0, this holds from (21) and the fact that
h ¼ 1=ð2p ! 1Þ & 2!pþ1. For the induction step, we have
from (26):

"iþ1 & ð1þ giÞ
2 aj j "ij j2

þ gið1þ giÞ
2ð2þ giÞ 1- "i aj jð Þ2 1

aj j

þ gið2þ giÞ
1

aj j
;

(28)

which implies

aj j"iþ1

2!2iþ1ðp!3Þ
& ð1þ giÞ

2

4
þ ð1þ 2!pþ2Þð2þ giÞ

64

(ð1þ ð1þ giÞ
2ð1þ 2!2iðp!3Þ!1Þ2Þ

& 1=2:

(29)

This completes our proof. tu

Proposition 4.4. Algorithm 10 is correct when run with
P-nonoverlapping expansions.

Proof. The previous analysis holds provided that we use
Remark 2.6. This mainly implies the following changes

h0 ¼ 2
2p!3, g

0
i ¼ 2

2p!1

$2iþ1!1 h0

1!h0. With this change it is easy

to verify that equations (21)-(28) hold as soon as p > 2.
Note that for the induction step at i ¼ 1, a tighter bound

is needed for "00 &
2!pð1þh0Þþh0

aj j & 2h0

aj j
3!2!p

4 , but the rest of the

proof is identical, safe for some tedious computations. tu

4.4 Complexity Analysis for Reciprocal
Our algorithm has the feature of using “truncated” expan-
sions, while some variants of Add-RoundE and MulRoundE
compute the result fully and only then truncate. This is the
case of Priest’s algorithms, which are not tuned for obtaining
“truncated” expansions on the fly—and thus penalize our
algorithm—. On the other hand, the algorithms presented in
Section 2.2, can take into account only the significant terms
of the input expansions in order to compute the result. Even
though these algorithms have not yet been proven to work
properly, we obtained promising results in practice, so we
will perform the complexity analysis based on them.

We present here the operation count of our algorithms,
by taking ([7]) 6 FP operations for 2Sum, 3 for Fast2Sum and
2 for 2MultFMA. For the sake of simplicity, for multiplica-
tion, we will consider that the input expansions have the
same number of terms.

– The renormalization (Algorithm 6) of an overlapping
expansion x with n terms, requires ð2n! 3Þ þPm!2

i¼0 m! i Fast2Sum calls and n! 1 comparisons.
This accounts for Rnewðn;mÞ ¼ 7nþ 3

2m
2 þ 3

2m! 13
FP operations.

– The addition (Algorithm 4) of two P-nonoverlapping
expansions requires nþm! 1 comparisons and a
renormalization Rnewðnþm; rÞ. This accounts for
Aðn;m; rÞ ¼ 3

2 r
2 þ 3

2 rþ 8nþ 8m! 14 FP operations.
– The multiplication (Algorithm 5) of two P-nonoverlap-

ping expansions requires
Pk

i¼1 i 2MultFMA calls,
Pk!1

i¼1 ðn2 þ nÞ 2Sum calls, k! 1 FP multiplications,

followed by k2 þ k! 2 FP additions and a

1206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

renormalization Rnewðkþ 1; kÞ in the end. This
accounts forMðkÞ ¼2k3 þ 7

2 k
2 þ 19

2 k! 9 FP operations.
–> The special case of multiplying a FP expansion to a

single FP value accounts for only M1ðkÞ ¼ 9
2 k

2 þ
17
2 k! 7.

– Using these algorithms for addition and multiplica-
tion of FP expansions, Priest’s division (Algorithm 9)
requires d divisions and ðd! 1ÞðM1ðkÞÞ þPd!1

i¼0 Aðk þ 2kði! 1Þ; k þ 2kði! 1Þ; kþ 2kði! 1ÞÞ þ
Rnewðd; dÞ function calls in the worst case. This
accounts for Dðd; kÞ ¼ 2d3k2 ! 6d2k2 þ 32

2 d
2kþ 3

2 d
2 þ

10dk2 ! 52
2 dk!

23
2 d!

9
2 k

2 ! 17
2 k! 6 FP operations.

Proposition 4.5. Using for addition and multiplication of
FP expansions the algorithms presented in Section 2.2,
Algorithm 10 requires 32

7 8
q þ 34

3 4
q þ 57 (2q ! 24q ! 1510

21 FP
operations.

Proof. During the ith iteration the following operations
with expansions are performed: two multiplications
Mð2iþ1Þ; one addition Að2iþ1; 1; 2iþ1Þ. Since q iterations
are done, the total number of FP operations is:
32
7 8

q þ 34
3 4

q þ 57 (2q ! 24q ! 1510
21 FP operations. tu

Remark 4.6.Division is simply performedwithAlgorithm10
followed by a multiplication Mð2qÞ where the numerator
expansion has 2q terms.

5 SQUARE ROOT ALGORITHMS

The families of algorithms most commonly used are exactly
the same as for division, although, in the case of FP expan-
sions the digit-recurrence algorithm is typically more
complicated than for division. This is why a software imple-
mentation would be tedious. Moreover, Newton-Raphson
based algorithms offer the advantage of assuring a qua-
dratic convergence.

5.1 Square Root of Expansions with an Adapted
Newton-Raphson Iteration

Starting from the general Newton-Raphson iteration (13),
we can compute the square root in two different ways. We
can look for the zeros of the function fðxÞ ¼ x2 ! a that
leads to the so called “Heron iteration”:

xnþ1 ¼
1

2
xn þ

a

xn

% &
: (30)

If x0 > 0, then xn goes to
ffiffiffi
a
p

. This iteration needs a division
at each step, which counts as a major drawback.

To avoid performing a division at each step we can look
for the positive root of the function fðxÞ ¼ 1=x2 ! a. This
gives the iteration

xnþ1 ¼
1

2
xn

#
3! ax2

n

$
: (31)

This iteration converges to 1=
ffiffiffi
a
p

, provided that

x0 2 ð0;
ffiffiffi
3
p

=
ffiffiffi
a
p

Þ. The result can be multiplied by a in order
to get an approximation of

ffiffiffi
a
p

. To obtain fast, quadratic,
convergence, the first point x0 must be a close approxima-
tion to 1=

ffiffiffi
a
p

. The division by 2 is done by multiplying each
of the terms of the input expansion by 0:5, separately.

As in the case of the reciprocal (Section 4.2), in
Algorithm 11 we use an adaption of iteration (31), using the
truncated algorithms presented above.

Algorithm 11. Truncated “division-free” Newton itera-
tion (31) based algorithm for reciprocal of the square
root of an FP expansion. By “division-free” we mean that
we do not need a division of FP expansions.

Input: FP expansion a ¼ a0 þ (((þ a2k!1; length of output FP
expansion 2q.

Output: FP expansion x ¼ x0 þ (((þ x2q!1 s.t.

x! 1=
ffiffiffi
a
p"" "" & 2!2qðp!3Þ!1=

ffiffiffi
a
p

: (32)

1: x0 ¼ RNð1= ffiffiffiffiffi
a0
p Þ

2: for i 0 to q ! 1 do
3: v̂½0 : 2iþ1 ! 1+ MulRoundEðx½0 : 2i ! 1+; a½0 : 2iþ1 ! 1+; 2iþ1Þ
4: ŵ½0 : 2iþ1 ! 1+ MulRoundEðx½0 : 2i ! 1+; v̂½0 : 2iþ1 ! 1+; 2iþ1Þ
5: ŷ½0 : 2iþ1 ! 1+ SubRoundEð3; ŵ½0 : 2iþ1 ! 1+; 2iþ1Þ
6: ẑ½0 : 2iþ1 ! 1+ MulRoundEðx½0 : 2i ! 1+; ŷ½0 : 2iþ1 ! 1+; 2iþ1Þ
7: x½0 : 2iþ1 ! 1+ ẑ½0 : 2iþ1 ! 1+ , 0:5
8: end for
9: return FP expansion x ¼ x0 þ (((þ x2q!1.

The error analysis for this algorithm follows the same
principle as the one for the reciprocal algorithm. The
detailed proof is given in Appendix A. We show that the rel-
ative error decreases after every loop of the algorithm, by
taking into account the truncations performed after each
operation. The strategy is to make the exact Newton itera-
tion term and bound appear. We show that by the end
of the ith iteration of the loop, "i ¼ jxð2

iÞ ! 1=
ffiffiffi
a
p
j &

2!2iðp!3Þ!1=
ffiffiffi
a
p

.
In his library, QD, Bailey also uses the Newton iteration

for the square root computation. Although he uses the same
function as we do, he uses the iteration under the form:
xiþ1 ¼ xi þ 1

2xið1! ax2
i Þ, which from a mathematical point

of view is the same, but it requires a different implementa-
tion. Even though Bailey does not provide an error analysis
for his algorithm, we managed to prove that the error bound
is preserved when using this iteration (see Appendix A for
the detailed proof).

Algorithm 12. Truncated “Heron iteration” (30) based
algorithm for square root of an FP expansion.

Input: FP expansion a ¼ a0 þ (((þ a2k!1; length of output FP
expansion 2q.

Output: FP expansion x ¼ x0 þ (((þ x2q!1 s.t.

x!
ffiffiffi
a
p"" "" & 3

ffiffiffi
a
p

(2!2qðp!3Þ!2: (33)

1: x0 ¼ RNð ffiffiffiffiffi
a0
p Þ

2: for i 0 to q ! 1 do
3: v̂½0 : 2iþ1 ! 1+ DivRoundEða½0 : 2iþ1 ! 1+; x½0 : 2i ! 1+; 2iþ1Þ
4: ŵ½0 : 2iþ1 ! 1+ AddRoundEðx½0 : 2i ! 1+; v̂½0 : 2iþ1 ! 1+; 2iþ1Þ
5: x½0 : 2iþ1 ! 1+ ŵ½0 : 2iþ1 ! 1+ , 0:5
6: end for
7: return FP expansion x ¼ x0 þ (((þ x2q!1.

JOLDEŞ ET AL.: ARITHMETIC ALGORITHMS FOR EXTENDED PRECISION USING FLOATING-POINT EXPANSIONS 1207

“Heron Iteration” Algorithm

The same type of proof as above can be applied for the algo-
rithm using the “Heron iteration” (30) and the same type of
truncations. In this case (Algorithm 12) we obtain a slightly
larger error bound for both types of nonoverlapping FP
expansions: x!

ffiffiffi
a
p

j j & 3
ffiffiffi
a
p

(2!2qðp!3Þ!2.

5.2 Complexity Analysis for Square Root
We will perform our operation count based on the addition
and multiplication presented in Section 2.2, the same as in
Section 4.4.

Proposition 5.1. Using for addition, multiplication and division
of FP expansions the algorithms previously presented,
Algorithm 11 requires 48

7 8
q þ 16 (4q þ 78 (2q ! 33q ! 699

7 FP
operations.

Proof. During the ith iteration, three multiplications
Mð2iþ1Þ, one addition Að2iþ1; 1; 2iþ1Þ and one division by
2 are performed. Since q iterations are done, the total
number of FP operations is: 487 8

q þ 16 (4q þ 78 (2q ! 33q!
699
7 . tu

Remark 5.2. We obtain the square root of an expansion by
simply multiplying the result obtained from Algorithm
11 by the input expansion a. This means an additional
Mð2qÞ, where 2q is the number of terms in a.

Proposition 5.3. Using for addition, multiplication and division
of FP expansions the algorithms previously presented, Algo-
rithm 12 requires 368

49 8
q þ 196

9 4q þ 170 (2q! 12q2 ! 2245
21 q ! 87445

441
FP operations.

Proof. One addition Að2iþ1; 2iþ1; 2iþ1Þ, one division Dð2iþ1Þ
and a division by 2 are performed during each ith itera-
tion. Since q iterations are done, the total number of FP
operations is: 36849 8

q þ 196
9 4q þ 170 (2q ! 12q2 ! 2245

21 q ! 87445
441 . tu

Based on these values, Algorithm 11 performs slightly
better than Algorithm 12, and in the same time the obtained
error bound is tighter.

6 COMPARISON AND DISCUSSION

In Table 2 we show values of the bounds provided by our
error analysis, compared with those of Priest and Daumas
for the reciprocal computation. Our algorithm performs

better for the same number of terms in the computed quo-
tient, say d ¼ 2q in equations (11) and (12). Moreover, our
algorithm provides a unified error bound with quadratic
convergence independent of using underlying P- or B-
nonoverlapping expansions. In the last column of the same
table we give the largest errors that we actually obtained
through direct computation of the reciprocal using our
algorithm. The given value represents the obtained value
upper rounded to the immediate power of 2. For each table
entry we performed one million random tests.

The complexity analysis shows that our algorithm per-
forms better, for expansions with more than two terms,
even if no error bound is requested (see Table 3 for some
effective values of the worst case FP operation count).

Note that, for instance, to guarantee an error bound of

2!dðp!3Þ!1, Priest’s algorithm (based on the bound given in
Prop. 4.1) needs at least ðdp! 3dþ 2Þp=ðp! 4Þ terms, which
entails a very poor complexity. This implies that Daumas’
algorithm might be a good compromise in this case, pro-
vided that the priority queue used there can be efficiently
implemented.

This plus the performance tests that we ran confirm our
hypothesis that for higher precisions the Newton-Raphson
iteration is preferable to classical division.

In the case of the square root, because no error bound is
given for the digit-recurrence algorithm we can only compare
between the errors that we obtain if using the two different
types of Newton iteration available for computing the
square root. The effective values of the bounds are given in
Table 4. The bound provided for Algorithm 11 is only
slightly tighter that the one for Algorithm 12. The same as
for the reciprocal, in the last column we present the bounds
obtained through direct computation using Algorithm 11.

In Table 5 we give some effective values of the worst case
FP operation count for Algorithm 11 versus Algorithm 12
based on Section 5.2.

TABLE 2
Error Bounds Values for Priest (11) versus Daumas (12)

versus Our Analysis (15)

Prec, iteration Eq. (11) Eq. (12) Eq. (15) b

p ¼ 53; q ¼ 0 2 2!49 2!51 2!52

p ¼ 53; q ¼ 1 1 2!98 2!101 2!104

p ¼ 53; q ¼ 2 2!2 2!195 2!201 2!208

p ¼ 53; q ¼ 3 2!6 2!387 2!401 2!416

p ¼ 53; q ¼ 4 2!13 2!764 2!801 2!833

p ¼ 24; q ¼ 0 2 2!20 2!22 2!23

p ¼ 24; q ¼ 1 1 2!40 2!43 2!46

p ¼ 24; q ¼ 2 2!2 2!79 2!85 2!92

p ¼ 24; q ¼ 3 2!5 2!155 2!169 *
p ¼ 24; q ¼ 4 2!12 2!300 2!337 *

b gives the largest obtained errors for Algorithm 10 using the standard FP
formats double and single. *underflow occurs.

TABLE 3
FP Operation Count for Priest versus Our Algorithm;

d ¼ 2q Terms Are Computed in the Quotient

d 2 4 8 16

Alg. 9 [12] 24 1; 714 52; 986 1; 808; 698
Alg. 10 + Alg. 5 140 795 4; 693 31; 601

TABLE 4
Error Bounds Values for (44) versus (33)

Prec, iteration Eq. (44) Eq. (33) b

p ¼ 53; q ¼ 0 2!51 3 (2!52 2!52

p ¼ 53; q ¼ 1 2!101 3 (2!102 2!103

p ¼ 53; q ¼ 2 2!201 3 (2!202 2!206

p ¼ 53; q ¼ 3 2!401 3 (2!402 2!412

p ¼ 53; q ¼ 4 2!801 3 (2!802 2!823

p ¼ 24; q ¼ 0 2!22 3 (2!23 2!23

p ¼ 24; q ¼ 1 2!43 3 (2!44 2!45

p ¼ 24; q ¼ 2 2!85 3 (2!86 2!90

p ¼ 24; q ¼ 3 2!169 3 (2!170 *
p ¼ 24; q ¼ 4 2!337 3 (2!338 *

b gives the Largest Obtained Errors for Algorithm 11 using the Standard FP
formats double and single. *underflow occurs.

1208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

The algorithms presented in this article were imple-
mented in the CAMPARY (CudA Multiple Precision
ARithmetic librarY) software available at http://
homepages.laas.fr/mmjoldes/campary. The library is
implemented in CUDA—an extension of the C language
developed by NVIDIA [20] for their GPUs. The algorithms
presented are very suitable for the GPU: all basic opera-
tions ðþ;!; ,; =; ffip Þ conform to the IEEE 754-2008 standard
for FP arithmetic for single and double precision; support
for the four rounding modes is provided and dynamic
rounding mode change is supported without any penalties.
The fma instruction is supported for all devices with Com-
pute Capability at least 2:0.

In the implementation we use templates for both the
number of terms in the expansion and the native type for
the terms. In other words, we allow static generation of any
input-output precision combinations (e.g. add a double-
double with a quad-double and store the result on triple-
double) and operations with types like single-single, quad-
single, etc. are supported. All the functions are defined
using __host__ __device__ specifiers, which allows for the
library to be used on both CPU and GPU.

In Table 6 we give some GPU performance measure-
ments for the reciprocal and square root algorithms
implemented in CAMPARY compared to the GQD
implementation. The tests were performed on a Tesla
C2075 GPU, using CUDA 7.0 software architecture, using
a single thread of execution. More extensive compari-
sons, on both CPU and GPU, can be consulted at http://
homepages.laas.fr/mmjoldes/campary.

As a future work we intend to generalize the theoretical
analysis of DD and QD addition/multiplication algorithms
and thus to be able to provide a full error analysis for these
algorithms.

ACKNOWLEDGMENTS

The Authors would like to thank R!egion Rhône-Alpes and
ANR FastRelax Project for the grants that support this
activity.

REFERENCES

[1] J. Laskar and M. Gastineau, “Existence of collisional trajectories of
Mercury, Mars and Venus with the Earth,” Nature, vol. 459,
no. 7248, pp. 817–819, Jun. 2009.

[2] M. Joldes, V. Popescu, and W. Tucker, “Searching for sinks for the
h!enon map using a multipleprecision gpu arithmetic library,”
SIGARCH Comput. Archit. News, vol. 42, no. 4, pp. 63–68, Dec.
2014.

[3] A. Abad, R. Barrio, and A. Dena, “Computing periodic orbits with
arbitrary precision,” Phys. Rev. E, vol. 84, pp. 016701, Jul. 2011.

[4] IEEE Computer Society. (2008, Aug.) IEEE Standard for Floating-
Point Arithmetic. IEEE Standard 754-2008. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[5] L. Fousse, G. Hanrot, V. Lef"evre, P. P!elissier, and P. Zimmermann.
(2007). MPFR: A multiple-precision binary floating-point library
with correct rounding. ACM Trans. Math. Softw. [Online]. 33(2).
Available: http://www.mpfr.org/

[6] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in Proc. 15th IEEE Symp. Com-
put. Arithmetic, Jun. 2001, pp. 155–162.

[7] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V.
Lef"evre, G. Melquiond, N. Revol, D. Stehl!e, and S. Torres, Hand-
book of Floating-Point Arithmetic. Boston, MA, USA: Birkh€auser,
2010.

[8] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Boston, MA, USA:
Kluwer, 1994.

[9] T. J. Ypma, “Historical development of the Newton-Raphson
method,” SIAM Rev., vol. 37, no. 4, pp. 531–551, Dec. 1995.

[10] M. Cornea, R. A. Golliver, and P. Markstein, “Correctness proofs
outline for Newton–Raphson-based floating-point divide and
square root algorithms,” in Proc. 14th IEEE Symp. Comput. Arithme-
tic, Los Alamitos, CA, USA, Apr. 1999, pp. 96–105.

[11] M. Joldes, J.-M. Muller, and V. Popescu, “On the computation
of the reciprocal of floating point expansions using an adapted
Newton-Raphson iteration,” in Proc. IEEE 25th Int. Conf. Appl.-
Specific Syst., Archit. Processors, Jun. 2014, pp. 63–67.

[12] D. M. Priest, “Algorithms for arbitrary precision floating point
arithmetic,” in Proc. 10th IEEE Symp. Comput. Arithmetic, Los
Alamitos, CA, USA, Jun. 1991, pp. 132–144.

[13] J. R. Shewchuk. (1997). Adaptive precision floating-point arithme-
tic and fast robust geometric predicates. Discrete Comput. Geom.
[Online]. 18, pp. 305–363. Available: http://link.springer.de/
link/service/journals/00454/papers97/18n3p305.pdf

[14] D. M. Priest, “On properties of floating-point arithmetics: Numeri-
cal stability and the cost of accurate computations,” Ph.D. disser-
tation, Univ. of California, Berkeley, CA, USA, 1992.

[15] P. Kornerup, V. Lef"evre, N. Louvet, and J.-M. Muller, “On the
computation of correctly-rounded sums,” in Proc. 19th IEEE Symp.
Comput. Arithmetic, Portland, OR, USA, Jun. 2009.

[16] S. M. Rump, T. Ogita, and S. Oishi. (2008). Accurate floating-point
summation part I: Faithful rounding. SIAM J. Sci. Comput.
[Online] 31(1), pp. 189–224. Available: http://link.aip.org/link/?
SCE/31/189/1

[17] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot
product,” SIAM J. Sci. Comput., vol. 26, no. 6, pp. 1955–1988, 2005.

[18] C.-P. Jeannerod and S. M. Rump, “Improved error bounds for
inner products in floating-point arithmetic,” SIAM J. Matrix Anal.
Appl., vol. 34, no. 2, pp. 338–344, Apr. 2013.

[19] M. Daumas and C. Finot, “Division of floating point expansions
with an application to the computation of a determinant,” J. Uni-
versal Comput. Sci., vol. 5, no. 6, pp. 323–338, Jun. 1999.

[20] NVIDIA, NVIDIA CUDA Programming Guide 5.5, 2013.

TABLE 5
FP Operation Count for Algorithm 11 versus Algorithm 12;

2q Terms Are Computed in the Quotient

q 1 2 3 4

Alg. 11 + Alg. 5 182 1;054 6;275 42;430
Alg. 12 170 1;049 5;972 38;239

TABLE 6
GPUPerformance inMFlops=s for the Reciprocal, Division and
SquareRoot Algorithms Implemented in CAMPARY versusGQD

CAMPARY QD

di; do Alg. 10 Alg. 10+Alg. 5 Alg. 11 Div. Sqrt.

2; 2 0:0501 0:0348 0:027 0:0632 0:0495
4; 4 0:0114 0:0083 0:0063 0:0044 0:0015
8; 8 0:0025 0:0017 0:0013 , ,
16; 16 0:00031 0:00023 !!! , ,
1; 2 0:0672 0:0419 0:0338 0:102 ,
2; 4 0:012 0:0086 0:0068 , ,
1; 4 0:0122 0:0087 0:0074 0:2564 ,
4; 2 0:0501 0:0348 0:0268 , ,
2; 8 0:0030 0:002 0:0016 , ,
4; 8 0:0027 0:0018 0:0014 , ,
4; 16 0:0004 0:00028 !!! , ,
8; 16 0:00039 0:00027 !!! , ,

di represents the input size (the numerator size for division) and do is the size
of the computed result (the denominator and the quotient for division). !!!
error due to the GPU’s limited stack size and local memory.

JOLDEŞ ET AL.: ARITHMETIC ALGORITHMS FOR EXTENDED PRECISION USING FLOATING-POINT EXPANSIONS 1209

Mioara Joldeş received the PhD degree in 2011
from the !Ecole Normale Superieure de Lyon. She
is charg!ee de recherches (junior researcher) at
CNRS, France. Her research interests include
computer arithmetic, validated computing, and
computer algebra.

Olivier Marty received the L3 degree in 2014
from the Ecole Normale Superieure de Cachan
and he is now in the parisian master of research
in computer science at this school. His research
interest includes algorithm design and theoretical
computer science.

Jean-Michel Muller received the PhD degree in
1985 from the Institut National Polytechnique de
Grenoble. He is directeur de recherches (senior
researcher) at CNRS, France, and he is the co-
head of GDR-IM. His research interest includes
computer arithmetic. He was a co-program chair
of the 13th IEEE Symposium on Computer Arith-
metic (Asilomar, USA, June 1997), a general
chair of SCAN’97 (Lyon, France, sept. 1997), a
general chair of the 14th IEEE Symposium on
Computer Arithmetic (Adelaide, Australia, April

1999), a general chair of the 22nd IEEE Symposium on Computer Arith-
metic (Lyon, France, June 2015). He is the author of several books,
including Elementary Functions, Algorithms and Implementation
(2nd edition, Birkhauser, 2006), and he coordinated the writing of the
Handbook of Floating-Point Arithmetic (Birkhauser, 2010). He is an
associate editor of the IEEE Transactions on Computers, and a senior
member of the IEEE.

Valentina Popescu received the MS degree in
2014 from the Universite Toulouse 3-Paul Sabat-
ier. She is working towards the PhD degree in the
AriC team, LIP Laboratory, ENS-Lyon, France.
Her research interests include computer arithme-
tic and validated computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 4, APRIL 2016

