
Accelerating Correctly Rounded Floating-Point

Division When the Divisor is Known in Advance

Nicolas Brisebarre, Jean-Michel Muller and Saurabh Kumar Raina

Laboratoire LIP, ENSL/CNRS/INRIA Arenaire Project

Ecole Normale Suṕerieure de Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, FRANCE

Nicolas.Brisebarre@ens-lyon.fr, Jean-Michel.Muller@ens-lyon.fr, Saurabh-Kumar.Raina@ens-lyon.fr

December 10, 2003

Index terms: Computer arithmetic, Floating-point arithmetic, Division by software,

Division with fused-mac, Compilation optimization.

Abstract

We present techniques for accelerating the floating-point computation ofx/y

wheny is known beforex. The proposed algorithms are oriented towards archi-

tectures with available fused-mac operations. The goal is to get exactly the same

result as with usual division with rounding to nearest. It is known that the advanced

computation of1/y allows performing correctly rounded division in one multipli-

cation plus two fused-macs. We show algorithms that reduce this latency to one

1

multiplication and one fused-mac. This is achieved if a precision of at leastn + 1

bits is available, wheren is the number of mantissa bits in the target format, or ify

satisfies some properties that can be easily checked at compile-time. This requires

a double-word approximation of1/y (we also show how to get it). These tech-

niques can be used by compilers to accelerate some numerical programs without

loss of accuracy.

Motivation of this research

We wish to provide methods for accelerating floating-point (FP for short) divisions of the

form x/y, wheny is known beforex, either at compile-time (i.e.,y is a constant; in such

case, much pre-computation can be performed), or at run time. We want to get the result

more quickly than by just performing a division, yet with the same accuracy: we need a

correctly rounded value, as required by the IEEE 754 Standard for FP arithmetic [1, 6].

Divisions by constants are a clear application of our work. There are other appli-

cations, for instance when many divisions by the samey are performed (an example is

Gaussian elimination).

We assume that a fused multiply-accumulator is available, and that division is done

in software (this happens for instance on RS6000, PowerPC or Itanium architectures). In

this paper, we focus on rounding to nearest only. Presentation of conventional division

methods can be found in [4, 9, 12].

2

1 Introduction

For computingx/y wheny is known in advance, a naive approach consists in computing

the reciprocal ofy (with rounding to nearest), and then, oncex is available, multiplying

the obtained result byx. It is well known that such a “naive method” does not always

produce a correctly rounded result. And yet, if the probability of getting an incorrect

rounding was small enough, one could choose to use that method anyway, to check if

the result is correctly rounded, and to perform some correction step when this is not the

case. Also, one could imagine that there might exist some values ofy for which the

naive method always work (for anyx). For these reasons, we have decided to dedicate

a short section to the analysis of the naive method.

Our main approach starts as previously: oncex is known, it is multiplied by the

precomputed reciprocal ofy. Then a “remainder” is computed, and used to correct the

final result. This does not require testing. That approach looks like the final steps of

a Newton-Raphson division. It is clear from the literature that the iterative algorithms

for division require an initial approximation of the reciprocal of the divisor, and that the

number of iterations is reduced by having a more accurate initial approximation. Of

course this initial approximation can be computed in advance if the divisor is known,

but some care is needed to get correctly rounded results at low cost.

In Section 4.1, we show that under some conditions ony, that could be checked

at compile-time, we can return a correctly rounded quotient using one multiplication

and one fused-mac. In Section 4.2, we show that if a larger internal precision than the

target precision is available (one more bit suffices) then we can always return a correctly

3

rounded quotient using one multiplication and one fused-mac.

To make this paper easier to read and to save space, we have put all proofs, tables,

intermediate lemmas and supplementary material in an appendix that is available on the

IEEE web databases or on our own web site [2].

2 Definitions and notations

DefineMn as the set of exponent-unbounded,n-bit mantissa, binary FP numbers (with

n ≥ 1), that is: Mn =
{
M × 2E, 2n−1 ≤ M ≤ 2n − 1, M, E ∈ Z

}
∪ {0}. It is an

“ideal” system, with no overflows or underflows. We will show results inMn. These re-

sults will remain true in actual systems that implement the IEEE-754 standard, provided

that no overflows or underflows do occur. Themantissaof a nonzero elementM × 2E

of Mn is the numberm(x) = M/2n−1.

We assume that the reader is familiar with the notions of rounding modes, ulps,

floating-point successor and predecessor. See [6] for definitions. In the following◦ν(t)

meanst rounded to the nearest even,◦d(t) meanst rounded to−∞, and◦u(t) meanst

rounded to+∞.

3 Preliminary results

3.1 The naive method

As said in the introduction, we have to evaluatex/y, andy is known beforex, wherex

andy belong toMn. An obvious solution consists in pre-computingz = 1/y (or more

4

preciselyz rounded-to-nearest, that is,zh = ◦ν(1/y)), and then to multiplyx by zh. We

will refer to this as “the naive method”. We assume round-to-nearest mode.

3.1.1 Maximum error of the naive solution

Property 1 The naive solution returns a result that is at most at distance1.5 ulps from

the exact result ifm(x) < m(y) (reminder:m(u) is the mantissa ofu); and 1 ulp from

the exact result ifm(x) ≥ m(y).

Property 1 gives tight bounds: there are valuesx andy for which the naive solution

leads to an error very close to1.5 ulps. More precisely,

Property 2 We have shown [2] that the maximum error of the naive algorithm can be

obtained through a reasonably fast algorithm. This maximum error converges to1.5

ulps asn →∞.

For instance, in the IEEE-754 double precision format (n = 53), the division of

x = 268435449
134217728

by y = 9007199120523265
4503599627370496

by the naive algorithm leads to an error equal to

1.4999999739 · · · ulps.

3.1.2 Probability of getting a correctly rounded result using the naive solution

For the first few values ofn, we have computed, through exhaustive testing, the propor-

tion of couples(x, y) for which the naive method gives an incorrectly rounded result.

The proportion seems to converge, asn grows, to a constant value that is around27%.

More precisely,

5

Conjecture 1 Assuming a uniform distribution of the mantissas of FP numbers, round-

ing to nearest, andn bits of mantissa, the probability that the naive method return a

result different from◦ν(x/y) goes to13/48 = 0.2708 · · · asn goes to+∞.

This conjecture is an “half-conjecture” only, since we have a rough sketch of a proof [2].

This tends to show that for anyn, the naive method gives a proportion of incorrectly

rounded results that is far too large to be neglected.

3.1.3 Values ofy for which the naive method always works

Depending onn, there are a very few values ofy for which the naive method always

works (i.e., for all values ofx). For instance, forn = 13, the four values ofy between

1 and2 for which the naive method always works are1, 4411/4096, 4551/4096 and

4915/4096. We are not able to compute them much faster than by exhaustive testing,

which does not allow to tackle with the most interesting values ofn, namely24, 53 and

113.

3.2 Division with one multiplication and two fused-macs

On some modern processors (such as the PowerPC, the IBM RISCSystem/6000 [11]

and IA64-based architectures [3, 10]), a fused-multiply accumulate instruction (fused-

mac) is available. This makes it possible to evaluate an expressionax + b with one final

rounding only, which facilitates software implementation of division and elementary

functions. Let us now investigate how can such an instruction be used to solve our

problem. The following result (see the work of Markstein [3, 10, 11] for this kind

6

of algorithm) shows that one multiplication and two fused-macs allow to get correctly

rounded results.

Theorem 1 (Division with one multiplication and two fused-macs [10, 11]) Algorithm 1,

given below, always returns the correctly rounded (to nearest) quotient◦ν(x/y).

Algorithm 1 (Division with one multiplication and two fused-macs)

• In advance, evaluatezh = ◦ν(1/y);

• as soon asx is known, computeq = ◦ν(xzh), r = ◦ν(x−qy) andq′ = ◦ν(q+rzh);

This method requires one division beforex is known, one multiplication and two fused-

macs oncex is known. In the following section, we try to design a faster algorithm.

Unfortunately, either there are a few (predictable) values ofy for which it does not

work, or it requires the availability of an internal precision slightly larger than the target

precision.

4 Proposed techniques

4.1 Division with one multiplication and one fused-mac

Using the method presented in Section 3.2, we could computex/y using one multi-

plication and two fused-macs, oncex is known. Let us show that in many cases, one

multiplication and one fused-mac (oncex is known) do suffice. To do this, we need a

double-word approximation to1/y. Let us first see how can such an approximation be

computed.

7

4.1.1 Preliminary result: Getting a double-word approximation to 1/y.

Kahan [7] explains that the fused-mac allows to compute remainders exactly. This is

done as follows.

Property 3 Let x, y, q ∈ Mn, such thatq ∈ {◦d(x/y), ◦u(x/y)}. The remainderr =

x− qy is computed exactly with a fused-mac. That is,◦ν(x− qy) = x− qy.

The algorithms we are going to examine require a double-word approximation to1/y,

that is,2 FP valueszh andz` such thatzh = ◦ν(1/y) andz` = ◦ν(1/y − zh). The only

reasonably fast algorithm we know for getting these values requires a fused-mac. Using

Property 3,zh andz` can be computed as follows.

Property 4 Assumey ∈ Mn, y 6= 0. The following sequence of3 operations computes

zh andz` such thatzh = ◦ν(1/y) andz` = ◦ν(1/y − zh):

zh = ◦ν(1/y), ρ = ◦ν(1− yzh), z` = ◦ν(ρ/y).

4.1.2 The algorithm

We assume that fromy, we have computedz = 1/y, zh = ◦ν(z) andz` = ◦ν(z − zh)

(for instance using Property 4). We suggest the following2-step method:

Algorithm 2 (Division with one multiplication and one fused-mac)

Compute:q1 = ◦ν(xz`) andq2 = ◦ν(xzh + q1).

This algorithm almost always works, and forn ≤ 7, it always works. Exhaustive

searching [2] shows that forn ≤ 29, there are more than98.7% of values ofy for which

8

the algorithm returns a correctly rounded quotient for all values ofx (these figures have

been obtained through exhaustive checking). Moreover, in the other cases (see the proof

of Theorem 2 in [2]), for a giveny, there isat most one value of the mantissa ofx (that

can be computed in advance) for which the algorithm may return an incorrectly rounded

quotient.

Theorem 2 Algorithm 2 gives a correct result (that is,q2 = ◦ν(x/y)), as soon as at

least one of the following conditions is satisfied:

1. the last mantissa bit ofy is a zero;

2. |z`| < 2−n−2−e, wheree is the exponent ofy (i.e.,2e ≤ |y| < 2e+1) ;

3. Algorithm 3, given below, returnstrue when the input value is the integerY =

y × 2n−1−ey , whereey is the exponent ofy (Y is the mantissa ofy, interpreted as

an integer).

Algorithm 3 We give the algorithm as a Maple program (to make it more didactic).

If it returns “true” then Algorithm 2 always returns a correctly rounded result when

dividing byy. It requires the availability of2n + 1-bit integer arithmetic.

TestY := proc(Y,n)

local Pminus, Qminus, Xminus, OK, Pplus, Qplus, Xplus;

Pminus := (1/Y) mod 2ˆ(n+1);

requires computation of a modular inverse

Qminus := (Pminus-1) / 2; Xminus := (Pminus * Y - 1) / 2ˆ(n+1);

if (Qminus >= 2ˆ(n-1)) and (Xminus >= 2ˆ(n-1))

9

then OK := false

else

OK := true;

Pplus := 2ˆ(n+1)-Pminus; Qplus := (Pplus-1) / 2;

Xplus := (Pplus * Y + 1) / 2ˆ(n+1);

if (Qplus >= 2ˆ(n-1)) and (Xplus >= 2ˆ(n-1))

then OK := false end if; end if;

print(OK)

end proc;

Translation of Algorithm 3 into a C or Fortran program is easily done, since comput-

ing a modular reciprocal modulo a power of two requires a few operations only, using

the extended Euclidean GCD algorithm [8]. Algorithm 3 also computes the only possi-

ble mantissaX for which, for the considered value ofY , Algorithm 2 might not work.

Hence, if the algorithm returnsfalse, it suffices to check this very value ofX to know if

the algorithm will always work, or if it will work for allX ’s but this one.

Let us discuss the consequences of Theorem 2.

• Condition “the last mantissa bit ofy is a zero” is easily checked on most systems.

Hence, that condition can be used for accelerating divisions wheny is known at

run-time, soon enough1 beforex. That condition allows to accelerate half divi-

sions;

• Assuming a uniform distribution ofz` in (−2−n−1−e, +2−n−1−e), which is rea-

1The order of magnitude behind this “soon enough” highly depends on the architecture and operating

system.

10

sonable (see [5]), Condition “|z`| < 2−n−2−e” allows to accelerate half remaining

cases;

• Our experimental testings up ton = 24 show that condition “Algorithm 3 returns

true” allows to accelerate around39% of the remaining cases (i.e., the cases for

which the last bit ofy is a one and|z`| ≥ 2−n−2−e). If Algorithm 3 returnsfalse,

then checking the only value ofx for which the division algorithm might not work

suffices to deal with all remaining cases. This requires much more computation:

it is probably not interesting ify is not known at compile-time.

4.2 If a larger precision than target precision is available

A larger precision than the target precision is frequently available. A typical example

is the double extended precision that is available on Intel microprocessors. We now

show that if an internal format is available, with at leastn + 1-bit mantissas (which is

only one bit more than the target format), then an algorithm very similar to Algorithm 2

always works. In the following,◦t:+p(x) meansx rounded ton + p bits, with rounding

modet. Definez = 1/y. We assume that fromy, we have computedzh = ◦ν(z) and

z` = ◦ν:+1(z − zh). They can be computed through:

zh = ◦ν(1/y), ρ = ◦ν(1− yzh), z` = ◦ν:+1(ρ/y).

We suggest the following2-step method:

Algorithm 4 (Division with one multiplication and one fused-mac) Compute:

q1 = ◦ν:+1(xz`), q2 = ◦ν(xzh + q1).

11

Theorem 3 Algorithm 4 always returns a correctly rounded quotient.

If the first operation returns a result with more thann + 1 bits, the algorithm still

works. We can for instance perform the first operation in double extended precision, if

the target precision is double precision.

5 Comparisons

Let us give an example of a division algorithm used on an architecture with an avail-

able fused-mac. In [10], Markstein suggests the following sequence of instructions for

double-precision division on IA-64. The intermediate calculations are performed using

the internal double-extended format. The first instruction,frcpa , returns a tabulated

approximation to the reciprocal of the operand, with at least8.886 valid bits. When two

instructions are put on the same line, they can be performed “in parallel”. The returned

result is the correctly rounded quotient with rounding mode◦t.

Algorithm 5 (Double precision division. This is Algorithm 8.10 of [10])

1. z1 = frcpa (y);

2. e = ◦ν(1− yz1);

3. z2 = ◦ν(z1 + z1e); e1 = ◦ν(e× e);

4. z3 = ◦ν(z2 + z2e1); e2 = ◦ν(e1 × e1);

5. z4 = ◦ν(z3 + z3e2);

6. q1 = ◦ν(xz4);

12

7. r = ◦ν(x− yq1);

8. q = ◦t(q1 + rz4).

This algorithm requires8 FP latencies, and uses10 instructions. The last3 lines of

this algorithm are Algorithm 1 of this paper (with a slightly different context, since Al-

gorithm 5 uses extended precision). Another algorithm also given by Markstein (Algo-

rithm 8.11 of [10]) requires7 FP latencies only, but uses11 instructions. The algorithm

suggested by Markstein for extended precision is Algorithm 8.18 of [10]. It requires8

FP latencies and uses14 FP instructions.

These figures show that replacing conventional divisionx/y by specific algorithms

whenevery is a constant or division by the samey is performed many times in a loop is

worth being done. For double-precision calculations, this replaces7 FP latencies by3

(using Algorithm 1) or2 (using Algorithm 2 ify satisfies the conditions of Theorem 2,

or Algorithm 4 if a larger internal precision – e.g., double-extended precision – is avail-

able). Therefore, whenever an even slightly larger precision is available (one more bit

suffices), Algorithm 4 is of interest. Algorithm 2 is certainly interesting when the last

bit of y is a zero, and, possibly, when|z`| < 2−n−2−e. In the other cases, the rather

large amount of computation required by checking whether that algorithm can be used

(we must run Algorithm 3 at compile-time) limits its use to divisions by constants in

applications for which compile time can be large and running time must be as small as

possible.

13

Conclusion

We have presented several ways of accelerating a divisionx/y, wherey is known be-

fore x. Our methods could be used in optimizing compilers, to make some numerical

programs run faster, without any loss of accuracy. Algorithm 1 always works and does

not require much pre-computation (so it can be used even ify is known a few tens of

cycles only beforex). Algorithm 2 is faster, and yet it requires much pre-computation

(for computingzh andz`, and making sure that the algorithm works) so it is more suited

for division by a constant. Algorithm 4 always works and requires two operations only

oncex is known, but it requires the availability of a slightly larger precision.

References

[1] American National Standards Institute and Institute of Electrical and Electronic

Engineers. IEEE standard for binary floating-point arithmetic.ANSI/IEEE Stan-

dard, Std 754-1985,New York, 1985.

[2] N. Brisebarre, J.-M. Muller and S. K. Raina. Supplementary material to “Accel-

erating Correctly Rounded Floating-Point Division When the Divisor is Known

in Advance”. Available through the Computer Society web databases, or at

http://perso.ens-lyon.fr/jean-michel.muller/fpdiv.html

[3] M. Cornea-Hasegan and B. Norin. IA-64 floating-point operations and the IEEE

standard for binary floating-point arithmetic.Intel Technology Journal, Q4, 1999.

14

[4] M. D. Ercegovac and T. Lang.Division and Square Root: Digit-Recurrence Algo-

rithms and Implementations. Kluwer Academic Publishers, Boston, 1994.

[5] A. Feldstein and R. Goodman.Convergence estimates for the distribution of trail-

ing digits. Journal of the ACM, 23: 287–297, 1976.

[6] D. Goldberg. What every computer scientist should know about floating-point

arithmetic.ACM Computing Surveys, 23(1):5–47, March 1991.

[7] W. Kahan. Lecture notes on the status of IEEE-754. File accessible at

http://http.cs.berkeley.edu/∼wkahan/ieee754status/ieee754.ps, 1996.

[8] D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, Read-

ing, MA, 1973.

[9] I. Koren. Computer arithmetic algorithms. Prentice-Hall, Englewood Cliffs, NJ,

1993.

[10] P. W. Markstein.IA-64 and Elementary Functions : Speed and Precision. Hewlett-

Packard Professional Books. Prentice Hall, 2000. ISBN: 0130183482.

[11] P. W. Markstein. Computation of elementary functions on the IBM Risc Sys-

tem/6000 processor.IBM Journal of Research and Development, 34(1):111–119,

Jan. 1990.

[12] S. F. Oberman and M. J. Flynn. Division algorithms and implementations.IEEE

Transactions on Computers, 46(8):833–854, Aug. 1997.

15

