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Abstract—We propose algorithms and provide some related
results that make it possible to implement decimal floating-
point arithmetic on a processor that does not have decimal
operators, using the available binary floating-point functions.
In this preliminary study, we focus on round-to-nearest mode
only. We show that several functions in decimal32 and dec-
imal64 arithmetic can be implemented using binary64 and
binary128 floating-point arithmetic, respectively. We discuss
the decimal square root and some transcendental functions.
We also consider radix conversion algorithms.

Keywords-decimal floating-point arithmetic; square root;
transcendental functions; radix conversion.

I. INTRODUCTION

The IEEE 754-2008 standard for floating-point (FP) arith-
metic [8], [13] specifies decimal formats. Decimal arithmetic
is mainly used in financial applications. This has the follow-
ing implications:
• An implementation must be correct (especially, the

arithmetic operations must round correctly), but on
most platforms (except those specialized for finance
applications), it does not necessarily need to be fast.

• Because some functions, such as the trigonometric
functions, may be rarely used, user reporting will be
infrequent, so that bugs may remain hidden for years.

A natural solution would be to implement the decimal
functions using the binary ones and radix conversions. If the
conversions are overlapped with the binary functions, good
throughput would be kept. Also, validating the “new” set of
decimal functions would just require validating once and for
all the conversion algorithms. Note that using this approach
in a naive way could sometimes lead to poor accuracy.

We focus on the “binary encoding” format of decimal
floating-point arithmetic. Cornea et al. describe a software
implementation of IEEE 754 decimal arithmetic using that
encoding [4]. Harrison [7] suggests re-using binary functions
as much as possible, and to use radix conversions, with
ad-hoc improvements when needed, to implement decimal
transcendental functions. He notices that for implementing
a function f , the naive method fails when the “condition
number” |x · f ′(x)/f(x)| is large. A typical example is
the evaluation of trigonometric functions. We will partially

circumvent that problem by merging a kind of “modular
range reduction” with the radix conversion. In the following,
we follow the Harrison’s approach, mainly focusing on low-
level aspects. We assume that we wish to implement a
precision-p10, rounded to nearest, decimal arithmetic, and
that the underlying binary arithmetic is of precision p2.
One of our goals is to estimate what value of p2 will
allow for good quality precision-p10 decimal arithmetic. We
denote RNp

β(x) the number x rounded to the nearest radix-
β, precision-p FP number. We assume that the binary format
is wide enough, so that there are no over/underflow issues
to be considered when converting from decimal to binary.
We call a midpoint the exact middle of two consecutive FP
numbers.

Even if our goal is correctly rounded functions, fulfilling
that goal will not necessarily require correctly-rounded con-
versions. The conversion algorithms presented in Section II
sometimes return a result within slightly more than 1/2 ulp
from the exact value. We assume that, when converting a
precision-p10 decimal FP number x10 to precision-p2 binary,
we get a result

x2 = R10→2(x10) = x10(1 + ε),
with |ε| ≤ 2−p2 + 3 · 2−2p2 ;

(1)

and when converting a precision-p2 binary FP number z2 to
precision-p10 decimal, we get a result

z10 = R2→10(z2) = RNp10
10 (z∗2),

with z∗2 = z2(1 + ε) and |ε| ≤ 2−p2 + 3 · 2−2p2 .
(2)

The conversion algorithms presented in Section II satisfy
these requirements. If the conversions are correctly rounded
(to the nearest), then (1) and (2) are also satisfied.

II. RADIX CONVERSION ALGORITHMS

We now present two conversion algorithms that do not
always return a correctly-rounded result. They require the
availability of a fused multiply-add (FMA) instruction in
binary FP arithmetic. Their accuracy suffices for our pur-
pose (implementing decimal functions), but they cannot be
directly used for implementing the conversions specified by
the IEEE 754-2008 standard. One may precompute the input

978-1-4244-6965-9/10/$26.00 c© 2010 IEEE 317 ASAP 2010



values for which these algorithms do not provide correctly-
rounded conversions, and use this information to design
correctly-rounding variants.

Early works on radix conversion were done by Gold-
berg [6] and by Matula [11]. Assuming a radix-2 internal
arithmetic, algorithms for input and output radix conversion
can be found in the literature [2], [3], [14].

IEEE 754–2008 specifies two encoding systems for deci-
mal floating-point arithmetic, called the decimal and binary
encodings. We focus here on the binary encoding. The
exponent as well as 3 to 4 leading bits of the significand
are stored in a “combination field”, and the remaining
significand bits are stored in a “trailing significand field”.
We can assume here that a decimal number x10 is repre-
sented by an exponent e10 and an integral significand X10,
|X10| ≤ 10p10 − 1 such that x10 = X10 · 10e10−p10+1.

Converting from decimal to binary essentially consists in
performing, in binary arithmetic, the multiplication X10 ×
10e10−p10+1, where X10 is already in binary, and the binary
representation of a suitable approximation to 10e10−p10+1 is
precomputed and stored. Conversion from binary to decimal
will essentially consist in performing a multiplication by an
approximation to the inverse constant.

In [4], Cornea et al. give constraints on the accuracy of
the approximation to the powers of ten used in conversions.

Our goal is to implement conversions using, for perform-
ing the multiplications by the factors 10e10−p10+1, a fast FP
multiply-by-a-constant algorithm suggested by Brisebarre
and Muller [1], and then to use these conversions for
implementing functions in decimal arithmetic using already
existing binary functions.

A. Multiplication by a constant
We want to compute C ·x with correct rounding (to nearest

even) in binary, precision-p2, FP arithmetic, where C is a
high-precision constant, and x is a FP number. We assume
that an FMA instruction is available. We also assume that
the two following FP numbers are precomputed:

Ch = RNp2
2 (C) and C` = RNp2

2 (C − Ch). (3)

We use the following multiplication algorithm:
Algorithm 1: (Multiplication by C). From x, compute{

u = RNp2
2 (C`x),

v = RNp2
2 (Chx+ u).

(4)

The result to be returned is v.
Brisebarre and Muller give methods that allow one to check,
for a given C and a given precision p2, whether Algorithm 1
always returns a correctly-rounded product or not. For the
constants C for which it does not always return a correctly-
rounded result, their methods also give the (in general, very
few) values of x for which it does not.

Even when the multiplication is not correctly rounded,
one can easily show that for p2 ≥ 2:

v = C · x · (1 + α), with |α| ≤ 2−p2 + 3 · 2−2p2 . (5)

B. Decimal to binary conversion, possibly with range re-
duction

Converting x10 = X10 · 10e10−p10+1 to binary consists
in getting 10e10−p10+1 in binary, and then to multiply it by
X10. In all the cases considered in this paper, X10 is exactly
representable in precision-p2 binary arithmetic. Hence, our
problem is to multiply, in binary, precision-p2 arithmetic,
the exact floating-point number X10 by 10e10−p10+1, and
to get the product possibly rounded-to-nearest. To perform
the multiplication, we use Algorithm 1: we assume that two
precomputed tables TH and TL, addressed by e10, of binary,
precision-p2 FP numbers contain the following values:{

TH [e10] = RNp2
2

(
10e10−p10+1

)
,

TL[e10] = RNp2
2

(
10e10−p10+1 − TH [e10]

)
.

The multiplication algorithm consists in computing, using
a multiplication followed by an FMA, u = RNp2

2 (TL[e10] ·
X10), and x2 = RNp2

2 (TH [e10] ·X10 + u). (5) implies that
x2 = x10 · (1 + α), with |α| ≤ 2−p2 + 3 · 2−2p2 .

A potential benefit of our approach is that range reduction
can be partly merged with conversion, which avoids the
loss of accuracy one might expect with the trigonometric
functions of an argument close to a large multiple of π. For
that, we run the same algorithm, replacing the values TH
and TL given above by{

TH [e10] = RNp2
2

(
10e10−p10+1 mod (2π)

)
TL[e10] = RNp2

2

(
10e10−p10+1 mod (2π)− TH [e10]

)
.

The obtained binary result is equal to x10 plus or minus a
multiple of 2π, and is of absolute value ≤ 2 · (10p10 − 1)π.
To estimate accuracy obtained using this process, one must
compute the “hardest to range-reduce” number of that
decimal format. This is done using a continued-fraction
based algorithm due to Kahan. See [12] for details. This
range reduction algorithm process is close to Daumas et al’s
“modular” range reduction [5] (with the addition of the radix
conversion).

C. Binary to decimal conversion

Assume the input binary FP value z2 to be con-
verted to decimal is of exponent k. Let us call z10 the
decimal floating-point value we wish to obtain. Again,
we suggest a conversion strategy that almost always
provides a correctly rounded result—namely, RNp10

10 (z2),
and, when it does not, has error bounds that allow
some correctly rounded decimal functions. We assume
that we have tabulated T ′H [k] = RNp2

2

(
10p10−1−m)

and T ′L[k] = RNp2
2

(
10p10−1−m − T ′H [k]

)
, where m =

bk · ln(2)/ln(10)c . We will have 1 ≤ z2 · 10−m < 20, so
that m is the “tentative” exponent of z10. This gives the
following method:

1) approximate z2 · 10p10−1−m using again Algorithm 1,
i.e., compute u = RNp2

2 (T ′L[k] · z2) and v =
RNp2

2 (T ′H [k] · z2 + u), using an FMA. The returned
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value v satisfies v = z2 · 10p10−1−m(1 + α), where
|α| ≤ 2−p2 + 3 · 2−2p2 ,

2) round v to the nearest integer, say Ztent
10 ;

3) if |Ztent
10 | < 10p10 , then return Z10 = Ztent

10 as the
integral significand, and m as the exponent, of z10. We
have z10 = z2(1 + β)(1 + α), with |β| ≤ 1

210−p10+1;
4) if |Ztent

10 | ≥ 10p10 , then the right exponent for z10 was
m + 1: repeat the same calculation with m replaced
by m+ 1.

When the product z2×10p−1−m is correctly rounded, then
we get a correctly rounded conversion, provided that when
rounding v to the nearest integer, we follow the same rule
in case of a tie as that specified by the rounding direction
attribute being chosen.

D. Correctly rounded conversions

When e10 is such that multiplication by 10e10−p10+1 using
Algorithm 1 is correctly rounded, the decimal-to-binary
conversion of any decimal number of exponent e10 will be
correctly rounded; and when m = bk ln(2)/ ln(10)c is such
that multiplication by 10p10−1−m and by 10p10−2−m using
Algorithm 1 are correctly rounded, the binary-to-decimal
conversion of any binary number of exponent k will be
correctly rounded. To the tables TH and T ′H , we may add
a one-bit information saying if with their corresponding
inputs the conversions are always correctly rounded (except
possibly when the exact result is a midpoint of the target
format: such cases are easily filtered out).

III. IMPLEMENTING SQUARE ROOT

Assume we wish to implement decimal square root, using
the available binary square root. We assume that the binary
square root is correctly rounded (to the nearest), and that the
radix conversion functions R10→2 and R2→10 satisfy (1) and
(2). The input is a decimal number x10 with precision-p10.
We would like to obtain the decimal number z10→10 nearest
to its square root, namely:

z10→10 = RNp10
10 (
√
x10).

We successively compute x2 = R10→2(x10) (conversion),
z2 = RNp2

2 (
√
x2) (square root evaluation in binary arith-

metic), and z10→2→10 = R2→10(z2) (final conversion).
Hence, for a given value of p10, we wish to find the smallest
value of p2 for which we always have z10→2→10 = z10→10.

One can show (see http://prunel.ccsd.cnrs.fr/
ensl-00463353_v1/ for details), that

Theorem 1 (Decimal sqrt through binary arithmetic): If
the precisions and extremal exponents of the decimal and
binary arithmetics satisfy 2p2 ≥ 3 · 102p10+1, 10e10,max+1 <
2e2,max+1, 10e10,min−p10+1 > 2e2,min , and p2 ≥ 5, then
RNp10

10 (
√
x10) = R2→10

(
RNp2

2

√
R10→2(x10)

)
for all

decimal, precision-p10, FP numbers x10.
Table I gives, for the basic decimal formats of the IEEE

754-2008 standard, the smallest value of p2 such that, from

p10 min
{

p2; ∀ decimal x, R2→10(RNp2
2

√
R10→2(x10) ) = RNp10

10

√
x
}

7 52
16 112
34 231

Table I
SMALLEST p2 GIVING A CORRECTLY ROUNDED DECIMAL SQUARE ROOT

Theorem 1, the method proposed here is shown to al-
ways produce a correctly-rounded square root. Interestingly
enough, these results show that to implement a correctly
rounded square root in the decimal32 format, using the
binary64 (p2 = 53) format suffices; and to implement a
correctly rounded square root in the decimal64 format, using
the binary128 (p2 = 113) format suffices.

IV. OTHER ARITHMETIC OPERATIONS

It is possible to design algorithms for +, −, ×, and ÷ us-
ing our approach. They are more complex than square root,
because the result can be a decimal midpoint. Concerning
+, −, and ×, it is likely that the algorithms given in [4] have
better performance. Division is a case we wish to investigate.

V. SOME RESULTS ON TRANSCENDENTAL FUNCTIONS

We wish to evaluate a function f using the approach
we used for the square root: decimal-to-binary conversion,
evaluation of f in precision-p2 binary arithmetic, and then
binary-to-decimal conversion. Estimating what value of p2—
and what accuracy of the binary function—guarantees a
correctly-rounded decimal function requires to solve the
Table maker’s dilemma (TMD) for f in radix 10. Up to
now, authors have mainly focused on that problem in binary
arithmetic (see e.g. [9]). The first authors to get all the
hardest-to-round cases for a nontrivial function in the deci-
mal64 format were Lefèvre, Stehlé and Zimmerman [10].

A. A simple example: the exponential function

Assume we wish to evaluate ex10 . We successively com-
pute x2 = R10→2(x10), and (assuming a correctly-rounded
exponential function in binary), z2 = RNp2

2 (ex2) , and,
finally, z10→2→10 = R2→10(z2). We would like to obtain

z10→2→10 = RNp10
10 (ex10).

Using the bound of the decimal-to-binary conversion algo-
rithm, and the relative error bound of the binary exponential
function, we find R2→10(z2) = RNp10

10 (z∗2), where

z∗2 = ex10(1 + η), with |η| ≤ 4 · 2−p2 . (6)

If the hardest-to-round case is within w∗ ulp of the
decimal format from a midpoint of that decimal format, then
for any midpoint m, |ex10 −m| ≥ w∗ ·x10 ·10−p10+1, which
implies, combined with (6) that if w∗ · 10−p10+1 ≥ 4 · 2−p2 ,
then our strategy will always produce correctly rounded
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results. For instance, for the decimal32 format (p10 = 7) and
the exponential function, we get w∗ = 5.35 · · · × 10−9 ulp,
so that w∗ · 10−p10+1 = 5.35 · · · × 10−15. If p2 = 53, we
find 4 · 2−p2 = 4.44× 10−15. From this we deduce

Theorem 2: If the decimal format is the decimal32 format
of IEEE 754-2008 and the binary format is the binary64
format, then our strategy always produces correctly rounded
decimal exponentials.

In the decimal64 format (p10 = 16), the hardest-to-round
case for the exponential function with round-to-nearest is
known, and allows us to conclude that

Theorem 3: If the decimal format is the decimal64 format
and the binary format is the binary128 format, then our
strategy always produces correctly rounded decimal expo-
nentials.

B. Preliminary results on the logarithm function

Performing an analysis similar to that of the exponential
function, we can show that if the hardest-to-round case is
within w∗ (decimal) ulp from a midpoint of the decimal
format, then our strategy will produce a correctly-rounded
result, for 0 < x10 < 1/e or x10 > e, as soon as

w∗ · 10−p10+1 ≥ 5 · 2−p2 .
The hardest-to-round case for logarithms of decimal32 num-
bers is within w∗ ≈ 0.235 × 10−8 ulp from a midpoint of
the decimal format. This gives

Theorem 4: If the decimal format is the decimal32 format
and the binary format is the binary64 format, then our
strategy always produces correctly rounded logarithms for
input numbers x10 ∈ [10−28, 1/e]

⋃
[e, 1022].

The hardest-to-round case for the logarithm of decimal32
numbers corresponds to x = 6.436357 × 10−29. For that
value, we have w∗ · 10−p10+1 = 0.8112 · · · 10−16: our
method may not work on that value. And yet, still using
our computed tables of hardest-to-round cases, we can show
that the only decimal32 input values not in [1/e, e] for which
our method may not work are 3.3052520E-83, 6.436357E-
29, 6.2849190E+22, and 4.2042920E+44: these four values
could easily be processed separately.

Implementing logarithms for decimal inputs close to 1
would require a different approach.

VI. CONCLUSION AND FUTURE WORK

We have analyzed a way of implementing decimal
floating-point arithmetic on a processor that does not have
decimal operators. We have introduced fast conversion al-
gorithms that, without providing correctly rounded conver-
sions, guarantee correctly rounded decimal arithmetic for
several functions. Our future work will consist in improv-
ing the conversion algorithms, and getting hardest-to-round
cases in the decimal64 format.
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