
Modular Multiplication of Large Integers on FPGA
Rachid Beguenane∗, Jean-Luc Beuchat†, Jean-Michel Muller†, and Stéphane Simard∗

∗ERMETIS – Département des Sciences Appliquées
Université du Québec à Chicoutimi

555, Boulevard de l’Université
Chicoutimi (QC), G7H 2B1, Canada

†Projet Arénaire
UMR CNRS – ÉNS Lyon – UCB Lyon – INRIA 5668

46, Allée d’Italie
69364 Lyon Cedex 07, France

Abstract— Public key cryptography often involves modular
multiplication of large operands (160 up to 2048 bits). Several
researchers have proposed iterative algorithms whose internal
data are carry-save numbers. This number system is unfortu-
nately not well suited to today’s Field Programmable Gate Arrays
(FPGAs) embedding dedicated carry logic.

We propose to perform modular multiplication in a high-radix
carry-save number system, where the sum bit of the well-known
carry-save representation is replaced by a sum word. Two digits
are then added by means of a small Carry-Ripple Adder (CRA).
The originality of our approach is to analyze the modulus in order
to select the most efficient high-radix carry-save representation.

I. INTRODUCTION

This paper is devoted to the study of modular multiplica-
tion of large operands on Field Programmable Gate Arrays
(FPGAs), which is a crucial operation in many public key
cryptosystems (Elliptic Curve Cryptography, XTR, RSA). In
order to compute 〈XY 〉M = XY mod M , where M is an
n-bit integer such that 2n−1 < M < 2n, our algorithm is
described by an iterative procedure based on Horner’s rule:

〈XY 〉M = 〈(. . . ((xr−1Y)2 + xr−2Y)2 + . . .)2 + x0Y 〉M ,

where X is an unsigned r-bit number and Y is an n-bit number
belonging to {0, . . . , M − 1}. This equation can be expressed
recursively as follows:

Q[i] = 〈2Q[i + 1] + xiY 〉M , (1)

where Q[r] = 0 and Q[0] = 〈XY 〉M . Since Q[i + 1] and Y
are less than or equal to M − 1, Q[i] < 3M and Equation (1)
is implemented by means of a left shift, an addition, and up
to two subtractions to perform the modulo M reduction [1].

Several improvements of the algorithm sketched by Equa-
tion (1) have been proposed. The basic idea consists in
computing a number congruent with Q[i] modulo M , which
requires less hardware than a modulo M addition. Koç and
Hung proposed a carry-save algorithm based on a sign es-
timation technique [2], [3]. At each step −M , 0, or M is
added to 2Q[i + 1] + xiY according to a few most significant
digits of Q[i + 1]. When M is known at design time, which
is often the case in public key cryptography, another method

consists in building a table ψ(a) =
〈
a · 2β

〉
M

and in defining
the following iteration:

T [i] = 2P [i + 1] + xiY, (2)

P [i] = ψ(T [i] div 2β) + 〈T [i]〉
2β , (3)

where P [r] = 0 and β is generally chosen equal to n or n−1.
Carry-save implementations of Equations (2) and (3) have for
instance been proposed by Jeong and Burleson [4], Kim and
Sobelman [5], and Peeters et al. [6]. These algorithms are
well-suited for ASIC design. However, carry-save arithmetic
is expensive on Xilinx FPGAs (Virtex and Spartan families): a
Full-Adder (FA) cell described in VHDL by its logic equations
requires two Look-Up Tables (LUTs) to compute the sum bit
and the carry bit, whereas a single LUT and the dedicated carry
logic implement an FA cell of a Carry-Ripple Adder (CRA). It
is of course possible to write a low level description of an FA
cell based on libraries provided by Xilinx to take advantage of
the carry logic. Since each slice embeds a single carry input,
we can implement a single FA cell with this approach. The
second LUT can only be used to implement the ψ(a) table or
a control unit. Though reducing the number of LUTs in the
design, this solution leads to larger operators (Table I).

TABLE I

AREA AND NUMBER OF LUTS OF THREE CARRY-SAVE ITERATION STAGES.

Algorithm
Without carry logic With carry logic

n = 32 n = 64 n = 32 n = 64

Jeong and 107 slices 210 slices 119 slices 232 slices
Burleson [4] 200 LUTs 392 LUTs 141 LUTs 271 LUTs
Kim and 74 slices 166 slices 93 slices 188 slices
Sobelman [5] 139 LUTs 268 LUTs 123 LUTS 249 LUTs
Peeters 74 slices 160 slices 95 slices 190 slices
et al. [6] 140 LUTs 271 LUTs 95 LUTs 190 LUTs

Beuchat and Muller proposed a family of radix-2 algorithms
designed for FPGAs embedding 4-input LUTs and dedicated
carry logic [7] (Algorithm 1). The resulting operators are
efficient for moduli up to 32 bits. Since the computation of
ψ(a) only requires three bits, the reduction table can be stored
within the LUTs of the second CRA. However, operators

13611424401321/05/$20.00 ©2005 IEEE

based on carry-save adders are much faster for larger operands
(Table II).

Algorithm 1 Radix-2 modulo M multiplication [7].

Require: An r-bit number X ∈ N, 0 < Y ≤ Ymax < (2n+2 +
11 − 4 · (n mod 2))/3, and ψ(a) =

〈
a · 2n−1

〉
M

, ∀a ∈
{0, . . . , 7}

Ensure: P [0] ≤ Ymax and P = 〈XY 〉M
1: P [r] ← 0;
2: for i in r − 1 downto 0 do
3: T [i] ← 2P [i + 1] + xiY ;
4: P [i] ← ψ(T [i] div 2n−1) + 〈T [i]〉

2n−1 ;
5: end for
6: if P [0] ≥ M then
7: P ← P [0] − M ;
8: else
9: P ← P [0];

10: end if

In this paper, we describe an implementation of Algorithm 1
in a high-radix carry-save number system, which is briefly
reviewed in Section II. The basic idea consists in replacing the
sum bits of the carry-save representation by sum words which
are efficiently added by means of small CRAs. Our high-radix
carry-save modular multiplication algorithm is described in
Section III. Its main originality is to analyze the modulus M
in order to choose the best high-radix carry-save representation
of P [i] and T [i]. Consequently, both architecture and perfor-
mance of our operators depend on M . We wrote a VHDL
code generator to easily build several modulo M multipliers
and to compare them against previously published solutions
(Section IV). Finally, we conclude in Section V.

TABLE II

AREA AND DELAY OF CARRY-SAVE AND RADIX-2 ITERATION STAGES.

Algorithm n = 16 n = 32 n = 64

Jeong and Burleson [4]
58 slices 127 slices 236 slices
9 ns 11 ns 14 ns

Kim and Sobelman [5]
41 slices 79 slices 150 slices
8 ns 10 ns 12 ns

Peeters et al. [6]
50 slices 86 slices 163 slices
8 ns 11 ns 12 ns

Beuchat and Muller [7]
21 slices 40 slices 80 slices
12 ns 14 ns 20 ns

II. HIGH-RADIX CARRY-SAVE NUMBERS

Definition 1: A k-digit high-radix carry-save number X is
denoted by

X = (xk−1, . . . , x0) =
((

x
(c)
k−1

, x
(s)
k−1

)
, . . . ,

(
x

(c)
0

, x
(s)
0

))
,

where the jth digit xj consists of an nj-bit sum word x
(s)
j

and a carry bit x
(c)
j such that xj = x

(s)
j + x

(c)
j 2nj . Note that

this representation does not require a fixed radix. We have:

X = x0 + x12n0 + x22n0+n1 + . . . + xk−12n0+...+nk−2

= x
(s)
0

+
k−2∑
i=0

(
x

(c)
i + x

(s)
i+1

)
2

∑ i
j=0 ni + x

(c)
k−1

2
∑ k−1

j=0 ni .

Example 1: Consider the 5-digit high-radix carry-save
number X = ((5, 1), (0, 0), (3, 1), (6, 1), (4, 0)) with n4 =
n3 = n0 = 3, n2 = 2, and n1 = 4 (Figure 1). According
to Definition 1, X represents 54324:

X = 4 + (0 + 6) · 23 + (1 + 3) · 27 + (1 + 0) · 29 +
(0 + 5) · 212 + 1 · 215 = 54324.

n = 41 n = 30n = 22n = 34 n = 33

1111 0 0 0000 0101

x
(s)
4 x

(s)
3 x

(s)
2 x

(s)
1 x

(s)
0

011 10

x
(c)
0x

(c)
1x

(c)
2x

(c)
3x

(c)
4

1

Carry bits

Sum

words

Fig. 1. High-radix carry-save number.

III. HIGH-RADIX CARRY-SAVE MODULAR

MULTIPLICATION

A. High-Radix Carry-Save Iteration Stage

Assume that P [i + 1] is a k-digit high-radix carry-save
number whose sum words are n0-, . . . , nk−1-bit unsigned
integers such that n0 + . . . + nk−1 = n. The addition
of 2P [i + 1] and the unsigned binary number xiY can be
performed by means of k CRAs, thus taking advantage of the
dedicated carry logic available in today’s FPGAs. The first
digit of 2P [i + 1] is constituted of the (n0 + 1)-bit word
2p

(s)
0

[i+1] and of the carry bit p
(c)
0

[i+1] of weight 2n0+1. We
split xiY into k words w0[i], . . . , wk−1[i] whose respective
widths are (n0 + 1), . . . , nk−1. Assume that the msb function
returns the most significant bit of its argument. Since xiY is an
n-bit number, msb(wk−1[i]) = 0. Consequently, the jth digit
of T [i] is obtained by adding the jth sum word of 2P [i + 1]
and the jth word of xiY with a CRA whose input carry is set
to p

(c)
j−1

[i+ 1], where 0 ≤ j ≤ k− 1 and p
(c)
−1

[i+ 1] = 0. Note
that the most significant digit of T [i] contains two carry bits:
the output carry of the kth adder and p

(c)
k−1

[i + 1]. However,
these bits will address the table responsible for the modular
reduction and this special intermediate format does not require
a conversion.

Example 2: Figure 2 describes an iteration stage of a 15-bit
modulo M multiplier with P [i + 1] = 108648, xiY = 26006,
and M = 32761. The format of the high-radix number P [i+1]
is defined by the set {n0 = 3, n1 = 4, n2 = 2, n3 = 3, n4 =
3}. The least significant digit of T [i] is therefore constituted
of an (n0 + 1) = 4-bit sum word and a carry bit such that

1362

24t
(c)
0

[i] + t
(s)
0

[i] = 8 + 6 = 14. Since the outputs of the five
CRAs are: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t
(s)
0

[i] = 14, t
(c)
0

[i] = 0,

t
(s)
1

[i] = 15, t
(c)
1

[i] = 0,

t
(s)
2

[i] = 1, t
(c)
2

[i] = 1,

t
(s)
3

[i] = 2, t
(c)
3

[i] = 0,

t
(s)
4

[i] = 0, t
(c)
4

[i] = 1,

we check that

2P [i + 1] + xiY

= 2 · 54324 + 26006

= 14 + (0 + 15) · 24 + (0 + 1) · 28 + (1 + 2) · 210+

(0 + 0) · 213 + (1 + 1) · 216

= 134654.

1 0 0 1 0 1 0 0 1 0 1 11 01

0

1111

1

010 1 1 1 0

0

0 1

0

0 0 0

11 0000 0

011

1 0 0

1

11

0

1 0 1

n = 41 n = 30n = 22n = 34 n = 33

n +1 = 40

p [i+1]
(c)
3 p [i+1]

(c)
2p [i+1]

(c)
4 p [i+1]

(c)
1 p [i+1]

(c)
0

t [i]
(c)
3 t [i]

(c)
2 t [i]

(c)
1 t [i]

(c)
0

x Yi

1

1

t [i]
(c)
4

p [i+1]
(c)
4

1100000ROM

p [i+1]
(s)
1p [i+1]

(s)
3p [i+1]

(s)
4

t [i]
(s)
2t [i]

(s)
3t [i]

(s)
4

ψ (a)

t [i]
(s)
0t [i]

(s)
1

u [i]0

v [i]0

010

1

01

1

0011

0

011

0

000

0

n = 41 n = 30n = 22n = 34 n = 33

0 00 0 0 1 0 0
v [i]1v [i]2v [i]3v [i]4

p [i+1]
(s)
0

2P
[i

+
1]

T
[i

]

a

P[
i]

Fig. 2. Iteration stage of a high-radix carry-save modulo 32761 multiplier.

The modulo M reduction of T [i] is the crucial operation of
our algorithm. The most significant bit of t

(s)
k−1

[i] as well as the

two carry bits t
(c)
k−1

[i] and p
(c)
k−1

[i+1] address a table containing
multiples of 2n modulo M . Since msb(wk−1[i]) = 0, we have

2nk−1t
(c)
k−1

[i] + t
(s)
k−1

[i]

= p
(s)
k−1

[i + 1]︸ ︷︷ ︸
≤2

nk−1

+ wk−1[i]︸ ︷︷ ︸
≤2

nk−1−1

+p
(c)
k−2

≤ 2nk + 2nk−1 − 1.

Thus, if t
(c)
k−1

[i] = 1, then msb(t(s)k−1
[i]) = 0 and

2t
(c)
k−1

[i] + 2p
(c)
k−1

[i + 1] + msb(t(s)k−1
[i]) ≤ 4.

We deduce from this inequality that the table only contains
the five unsigned numbers 〈a · 2n〉M with a ∈ {0, . . . , 4}.
Remember now that the least significant sum word of T [i] is
an (n0 + 1)-bit number. The last step of our algorithm thus
consists in adding the output of the table while converting the
result to the format of P [i + 1]. The main difficulty arises
from the carry bits of T [i] which can not be considered as
input carries of the CRAs. The weight of t

(c)
0

[i] is for instance
2n0+1, whereas the one of p

(c)
0

[i] is 2n0 .
Example 3 (example 2 continued): Since t

(c)
4

[i] = p
(c)
4

[i +
1] = 1 and msb(t(s)

4
[i]) = 0 (Figure 2), the table responsible

for the modular reduction returns ψ(4) =
〈
2n+2

〉
32761

= 28.
Then, we split the word made up of the n least significant
sum bits of T [i] into four words of n0, n1, n2, and n3 bits.
We obtain u0[i] = 6, u1[i] = 15, u2[i] = 3, u3[i] = 4, and
u4[i] = 0. We also split ψ(4) into four words v0[i] = 4,
v1[i] = 3, and v2[i] = v3[i] = v4[i] = 0. The first digit of P [i]
can be computed with a CRA. From

23p
(c)
0

[i] + p
(s)
0

= u0[i] + v0[i] = 10,

we deduce that p
(c)
0

[i] = 1 and p
(s)
0

= 2. However, the
computation of the remaining digits is defined by:

2nj p
(c)
j [i] + p

(s)
j = uj [i] + vj [i] + 2t

(c)
j−1

[i],

where 1 ≤ j < k, and requires three-operand adders. We
obtain P [i] = ((0, 0), (0, 6), (0, 3), (1, 2), (1, 2)) = 3610 and
verify that

134654 ≡ 3610 (mod 32761).
In the following, we propose a method to efficiently merge
the carry bits and ψ(a) so that the computation of P [i]
only requires k CRAs. The format of the high-radix carry-
save numbers as well as the architecture of the operator will
therefore depend on the chosen modulus M .

B. Modulo M Reduction Table

Let us consider the 32-bit modulus M = 4294967111
whose correction table is stored in the matrix ΨM :

ΨM =

⎡
⎢⎢⎢⎢⎣

0 . . . 0 0 0 0 0 0 0 0 0 0 0
0 . . . 0 0 0 1 0 1 1 1 0 0 1
0 . . . 0 0 1 0 1 1 1 0 0 1 0
0 . . . 0 1 0 0 0 1 0 1 0 1 1
0 . . . 0 1 0 1 1 1 0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ .

In this example, ψ(a) is a 10-bit word, ∀a ∈ {0, . . . , 4}. If
n0 = 9, we can therefore merge the output of the table and
the carry bits t

(c)
j [i] as follows:

vj [i] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

9∑
q=0

ψq(a) if j = 0,

2t
(c)
0

[i] + ψ9(a) if j = 1,

2t
(c)
j−1

[i] otherwise.

Figure 3 describes the hardware architecture of an iteration
stage. We assume here that n1 = 5 and the critical path
includes therefore a 10-bit CRA and a 5-bit CRA on Virtex

1363

or Spartan FPGAs (a dedicated AND gate is associated with
each LUT to compute xiY and each bit of ψ(a) is computed
within a LUT of the second CRA). It is however possible to
further reduce n0 at the price of a slightly more complex logic.
Suppose for instance that n0 = 1. We have to combine a carry
bit t

(c)
0

[i] of weight 2n0+1 with the output of the table. Adding
t
(c)
0

[i] to ψ2(a) only generates a carry bit for a = 4. However,
ψ3(4) = 0 and the carry propagation is limited to one position.
Consequently, if ΨM does not contain enough columns such
that ψi(a) = 0, ∀a ∈ {0, . . . , 4}, we have to identify a set
of columns minimizing the carry propagation induced by the
addition of t

(c)
i [i].

u [i]0v [i]0

t [i]
(s)
0t [i]

(c)
0t [i]

(c)
1

p [i]
(s)
0p [i]

(s)
1

p [i]
(c)
1

2

p [i+1]
(s)
0p [i+1]

(s)
1

p [i+1]
(c)
0

ψ (a)

p [i]
(c)
0

10 10

4

99

10
5

5

95

Critical path

Fig. 3. Architecture of a modulo 4294967111 multiplier with n0 = 9 and
n1 = 5.

However, these two strategies fail for several moduli whose
reduction table is as follows:

ΨM =

⎡
⎢⎢⎢⎣

. . . 0 0 0 0 0 0 0 0 0 0 0 . . .

. . . 0 1 1 1 1 1 1 1 1 1 0 . . .

. . .
...

...
...

...
...

...
...

...
...

...
... . . .

. . . 0 1 1 1 1 1 1 1 1 1 0 . . .

⎤
⎥⎥⎥⎦ .

Let us consider the nine non-zero columns of this matrix. We
define

ψ′(a) =

{
0 if a = 0,

29 − 1 if 1 ≤ a ≤ 4.

A HA cell computes ψ′
0
(a) + t

(c)
j [i] and returns a sum and a

carry bit respectively denoted by σ(s) and σ(c). Consequently,

we have

ψ′(a) + t
(c)
j [i] =⎧⎪⎨

⎪⎩
σ(s) if a = 0,

29 − 1 + σ(s) = σ(c)29 +
8∑

i=1

σ̄(c) + σ(s) if 1 ≤ a ≤ 4.

Therefore, the modification of the reduction table only requires
a HA cell, an inverter, and an AND gate:

ψ′(a) + t
(c)
j [i] = σ(c)29 +

8∑
i=1

ψ′
0
(a)σ̄(c) + σ(s).

We can apply the same strategy to combine several carry bits
t
(c)
j+q with ψ′(a) (Figure 4). Algorithm 2 summarizes the high-

radix carry-save modular multiplication method proposed in
this paper.

FA

ROM

HAFA

t [i]
(c)
jt [i]

(c)
j+1t [i]

(c)
j+2

j+1v [i] v [i]jj+2v [i]

3

a

ψ ’(a)

Fig. 4. Modification of the reduction table ΨM when ψj(a) = 1, 1 ≤ a ≤
4, for several successive values of j.

IV. IMPLEMENTATION RESULTS

In order to compare our algorithm against the one proposed
by Peeters et al. [6], which is to our knowledge the best
previously published modular multiplier based on Horner’s
rule, we generated 250 prime numbers of 64, 128, 192, and
256 bits. In all experiments, the maximum width of a sum
word was 8 bits. We selected moduli for which the table
ΨM contains almost only 1s. Such numbers are considered
as worst-case moduli because they require two levels of logic
(a CRA and AND gates) to combine the carry bits and the
table (see Figure 4). For such moduli, our approach allows
to reduce the area by 35 to 40% (Figure 5) at the price of
a slightly larger critical path (Figure 6)1. For moduli whose
table ΨM is a sparse matrix, our first experiments indicate that
our method roughly divide by two the number of slices of an
iteration stage without increasing the critical path. However,
we have to consider a larger set of moduli to confirm these
results.

1We found only a few moduli for which our method significantly increases
the critical path. There is for instance a single 256-bit modulus whose delay
is 15.3 ns. It should be possible to shorten the critical path by reducing the
maximal width of sum words.

1364

Algorithm 2 High-radix carry-save modulo M multiplication.

Require: An r-bit number X ∈ N, Y ∈ {0, . . . ,M − 1},
ψ(a) = 〈a · 2n〉M , ∀a ∈ {0, . . . , 4}, the function msb(Z)
which returns the most significant bit of Z, the function
merge(ψ(a), t(c)k−2

[i], . . . , t(c)
0

[i]) which combines the out-
put of the correction table and k−1 carry bits, and the set
{n0, . . . , nk−1} which defines the format of the high-radix
carry-save numbers P [i] and T [i]

Ensure: P = 〈XY 〉M
1: P[r] ← 0;
2: for i in r − 1 downto 0 do
3: Split xiY into k words w0[i], w1[i], . . . , wk−2[i],

wk−1[i] of respective widths (n0 + 1), n1, . . . , nk−2,
(nk−1 − 1);

4: 2n0+1t
(c)
0

[i] + t
(s)
0

[i] ← 2p
(s)
0

[i + 1] + w0[i];
5: for j in 1 to k − 1 do
6: 2nj t

(c)
j [i]+t

(s)
j [i] ← p

(s)
j [i+1])+wj [i]+p

(c)
j−1

[i+1];
7: end for
8: U [i] ← n least significant sum bits of T [i];
9: a ← 2p

(c)
k−1

[i + 1] + 2t(c)k−1
[i] + msb(t(s)k−1

[i]);
10: V [i] ← merge(ψ(a), t(c)k−2

[i], . . . , t(c)
0

[i]);
11: Split U [i] and V [i] into k words of respective widths

n0,. . . , nk−1;
12: for j in 0 to k − 1 do
13: 2nj p

(c)
j [i] + p

(s)
j [i] ← uj [i] + vj [i];

14: end for
15: end for
16: P ← 〈p0[0] + p1[0]2n0 + . . . + pk−1[0]2n0+...+nk−2〉M ;

V. CONCLUSION

In this paper, we have proposed a high-radix carry-save
FPGA implementation of modular multiplication. Our results
indicate that this approach significantly reduces the area of
the iteration stage compared to previously published solutions,
while only slightly increasing the critical path for some
moduli.

Our algorithm returns a high-radix carry-save number P [0]
which we have to convert to standard binary representation.
This operation requires a modular adder whose architecture
depends on the modulus M . The second addition of the
iteration stage involves the n least significant sum bits of T [0]
and (k − 1) carry-bits combined with ψ(a). Therefore,

P [0] ≤ 2n−1+2n0+...+nk−2+1 + . . .+2n0+1 + max
1≤a≤4

(ψ(a)).

We can use this equation to find an integer q such that P [0] <
qM . The conversion is however expensive if q ≥ 2. We plan
to design an algorithm which guarantees that P [0] = 〈XY 〉M
or P [0] = 〈XY 〉M + M .

REFERENCES

[1] G. R. Blakley, “A computer algorithm for calculating the product ab
modulo m,” IEEE Trans. Comput., vol. C–32, no. 5, pp. 497–500, 1983.

[2] C. K. Koç and C. Y. Hung, “Carry-save adders for computing the product
AB modulo N,” Electronics Letters, vol. 26, no. 13, pp. 899–900, June
1990.

 600

 430
 380

 300

 180

 90

 256 192 128 64

A
re

a
[s

lic
es

]

Operand width [bits]

Our algorithm
Algorithm proposed by Peeters et al.

Fig. 5. Area comparison for worst-case moduli (place-and-route results,
Spartan-3 FPGA).

 16

 14

 12

 10

 8

 6

 256 192 128 64

D
el

ay
 [n

s]

Operand width [bits]

Our algorithm
Algorithm proposed by Peeters et al.

Fig. 6. Delay comparison for worst-case moduli (place-and-route results,
Spartan-3 FPGA).

[3] ——, “A fast algorithm for modular reduction,” IEE Proceedings: Com-
puters and Digital Techniques, vol. 145, no. 4, pp. 265–271, July 1998.

[4] Y.-J. Jeong and W. P. Burleson, “VLSI array algorithms and architectures
for RSA modular multiplication,” IEEE Trans. VLSI Syst., vol. 5, no. 2,
pp. 211–217, June 1997.

[5] S. Kim and G. E. Sobelman, “Digit-serial modular multiplication using
skew-tolerant domino CMOS,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 2. IEEE
Computer Society, 2001, pp. 1173–1176.

[6] E. Peeters, M. Neve, and M. Ciet, “XTR implementation on reconfig-
urable hardware,” in Cryptographic Hardware and Embedded Systems –
CHES 2004, ser. Lecture Notes in Computer Science, M. Joye and J.-J.
Quisquater, Eds., no. 3156. Springer, 2004, pp. 386–399.

[7] J.-L. Beuchat and J.-M. Muller, “Modulo m multiplication-addition:
Algorithms and FPGA implementation,” Electronics Letters, vol. 40,
no. 11, pp. 654–655, May 2004.

ACKNOWLEDGMENT

J.-L. Beuchat is funded by Swiss National Science Founda-
tion fellowship for advanced researchers PA002–101386.

1365

