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ABSTRACT

We describe a hardware-oriented design of a complex division algorithm proposed in .6 This algorithm is
similar to a radix-r digit-recurrence division algorithm with real operands and prescaling. Prescaling of complex
operands allows efficient selection of complex quotient digits in higher radix. The use of the digit-recurrence
method allows hardware implementation similar to that of conventional dividers. Moreover, this method makes
correct rounding of complex quotient possible. On the other hand, the proposed scheme requires the use of
prescaling tables which are more demanding than tables in similar dividers with real operands. In this paper we
present main design ideas, implementation details, and give a rough estimate of the expected latency. We also
make a comparison with the estimated latency of the Smith’s algorithm used in software routines for complex
division.
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1. INTRODUCTION

As mentioned in,6 complex division is used in diverse applications such as earthfault distance protection,8

acoustic pulse reflectometry,9 astronomy,3 non-linear RF measurement,16 as well as in many digital signal
processing applications such as the complex SVD . While hardware implementations of complex multipliers are
common, complex division has been largely provided in software.

A software routine using the conventional formula

a + ib

c + id
=

ac + bd + i(bc− ad)
c2 + d2

. (1)

may lead to overflows during the intermediate computations although the final result is representable in the
floating-point format. This drawback has been discussed in 1, 10 and by Smith14 who proposed a more robust
algorithm:

a + ib

c + id
=


a + b(d/c)
c + d(d/c)

+ i
b− a(d/c)
c + d(d/c)

( if |c| ≥ |d|)

b + a(c/d)
d + c(c/d)

+ i
a− b(c/d)
d + c(c/d)

( if |c| ≤ |d|)
(2)

Stewart15 proposes further improvements to the Smith’s algorithm resulting in even more complicated algo-
rithm. In spite of their robustness, these algorithms cannot guarantee correct rounding of the real and imaginary
parts of the quotient. A direct hardware implementation of the Smith’s or Stewart’s algorithms is not attractive
since it would require costly hardware implementation without significant performance gain over software-based
solutions.

Hardware algorithms and implementations for complex division have not been studied frequently. A hardware
implementation of complex division has been developed in11 using a radix-2 on-line algorithm and implemented
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(1) on a reconfigurable hardware. This approach, however, is not suitable for higher radices because it uses
quotient-digit selection function with selection constants.

The key idea of the approach proposed in6 is to apply a high-radix (real) digit-recurrence division algorithm
with prescaling of operands4, 5 to complex division. That is, the proposed division algorithm uses a standard
residual recurrence with complex variables

w[j + 1] = rw[j]− qj+1y (3)

where w[0] = x is the complex dividend, y is the complex divisor, and the complex quotient digits qj ’s are chosen
in a radix-r redundant digit-set, so that the complex residuals w[j] remain bounded.

Several approaches to quotient-digit selection in high radix division algorithms have been discussed in the
literature.5 Among them, the prescaling technique is most suitable for higher radix: it consists of multiplying
the dividend x and the divisor y by a constant K such that Ky is close to 1. Consequently, one can choose qj+1

by rounding rw[j] (or its low-precision estimate) to the nearest integer.

In the rest of the paper we first review the algorithm for complex division. Then we discuss a design and
implementation details followed by a rough estimate of the expected cycle time and overall latency. We compare
these estimates with delay characteristics of compatible dividers operating on real operands.

Throughout the paper, i is
√
−1, and if z is a complex number, then zR = Re(z) and zI = Im(z) denote the

real and imaginary parts of z. The norm ||z||∞ denotes max{|zR|, |zI|}, whereas |z| denotes the usual complex
absolute value

√
(zR)2 + (zI)2.

2. COMPLEX DIVISION ALGORITHM - AN OVERVIEW

2.1. General scheme

The algorithm for complex division developed in6 computes

q = qR + iqI = z/d =
zR + izI

dR + idI
(4)

by performing the following steps:

Prescaling. Obtain a complex scaling factor K = K1 + iK2 as a short approximation of 1/d such that

||Kd− 1||∞ < 2−p (5)

where the integer p depends on the radix r. Then, compute scaled complex dividend and divisor{
w[0] = zK
y = dK

(6)

Prescaling of the divisor and dividend allows simplified and separate selection of the real and imaginary
parts of the complex quotient digits.

Iterations. Perform radix-r = 2k iterations to produce n + 1 quotient digits

w[j + 1] = rw[j]− qj+1y (7)

where r is the radix of the division, qj+1 = qRj+1 + iqIj+1, and qRj+1 and qIj+1 belong to the redundant
digit-set DS = {−a, . . . , a}.

Any choice of the qj ’s for which the ||w[j]||∞’s remain bounded l suffices to produce the quotient digits
satisfying

0.qR1qR2qR3 · · · qRn + i0.qI1qI2qI3 · · · qIn → z/d



2.2. Prescaling expressions

The expressions for the prescaling of complex operands using K = K1 + iK2 are

xR = zR ·K1− zI ·K2

xI = zI ·K1 + zR ·K2

yR = dR ·K1− dI ·K2

yI = dI ·K1 + dR ·K2

(8)

which can be implemented with rectangular multipliers.

2.3. The complex residual recurrences

The recurrences for computing real and imaginary residuals, given below, can be computed in parallel. They
contain one additional term compared to the residual recurrence of conventional division.{

wR[j + 1] = rwR[j]− qRj+1yR + qIj+1yI

wI[j + 1] = rwI[j]− qIj+1yR− qRj+1yI
(9)

2.4. Selection of the quotient digits

Since the prescaled divisor is close to 1, the (j + 1)-st quotient digit can be obtained by rounding the residual to
its integer part. Moreover, a short-precision estimate of the residual suffices for this rounding so that residuals
can be obtained in redundant form (e.g., carry-save or signed-digit). That is, the selection is performed by
rounding to the nearest integer the real and imaginary parts of ŵ[j], where ŵ[j] is obtained by truncating a
redundant w[j] after some fractional position t. Specifically,

qRj+1 = Sel
( ̂rwR[j]

)
qIj+1 = Sel

( ̂rwI[j]
) (10)

where the quotient digits qRj+1 and qIj+1 are from the redundant digit-set DS = {−a, . . . , a} with 2a + 1 > r.
Due to rounding of a truncated residual the selection function Sel satisfies

|Sel(x)− x| < 1
2

+ 2−t (11)

One can meet this requirement by truncating a carry-save representation of x after the (t + 1)-st fractional
position, and rounding the obtained result to the nearest integer. If x is represented in borrow-save form, it
suffices to truncate it after the t-th fractional position before rounding it to the nearest. In this paper we use a
carry-save representation.

The containment condition of the residual guarantees that the selection function (10) always produces a digit
from the set DS, is

||w[j]||∞ ≤ 1
r

(
a +

1
2
− 2−t

)
= Ω (12)

Since εy = y − 1. From (7) and (11), we get

w[j + 1] = −εyqRj+1 −
[
Sel( ̂rwR[j])− rwR[j]

]
−iεyqIj+1 − i

[
Sel( ̂rwI[j])− rwI[j]

] (13)



r a p t Ω
2 1 4 4 23/32

2 3 3 19/16
4 2 6 5 79/128

3 5 3 27/32
4 4 4 71/64

8 4 8 6 287/512
7 6 3 59/64
8 5 5 271/256

16 8 10 7 1087/2048
15 7 3 123/128
16 6 6 1055/1024

Table 1. Values of the parameters p, t and Ω of the algorithm, depending on r and a.

or,
w[j + 1] = εyqj+1 + A + iB (14)

where A and B are real numbers of absolute value less than 1
2 + 2−t, ||qj+1||∞ ≤ a and ||εy||∞ < 2−p. From

that, we get

||w[j + 1]||∞ < 2−p+1a +
1
2

+ 2−t (15)

Finally, the residual bounds (12) and (15) define the relation between the parameters a, p, r and t which
guarantees the convergence of the complex division algorithm:

2−p+1a +
1
2

+ 2−t ≤ 1
r

(
a +

1
2
− 2−t

)
(16)

Examples of parameters that meet these constraints are given in Table 1.

3. PRESCALING OF OPERANDS

As mentioned above, the method obtains a scaling factor K from the divisor d such that ||Kd− 1||∞ < 2−p. We
consider a table lookup approach and determine the number of address bits and the precision of entries in the
table. We assume that the divisor d = dR + idI is normalized, i.e.,

1
2
≤ ||d||∞ < 1. (17)

Consequently, dR1 = 1 or dI1 = 1. Let a = d̂R = {dR}q and b = d̂I = {dI}q be the estimates of the real and
imaginary parts of the divisor rounded to the nearest q-fractional bit number, respectively. The scaling factor,
defined as

K =
1

a + ib
=

a

a2 + b2
− ib

a2 + b2
= K1 + iK2 (18)

is obtained from a table addressed by 2q−1 address bits6 where q = p+1. As derived in ,6 this guarantees that
y = dK satisfies ||y − 1||∞ < 2−p. Since the scaling factor K is an approximation of 1/d with p bits of relative
accuracy, we represent K1 and K2 with p + 1 bits of precision after rounding.

For the parameter values shown in Table 1, we obtain table sizes in Table 2. Note that over-redundant digit
set reduces the table size. A direct table lookup approach, except for r = 2 and r = 4 with a = 4, is not
attractive. To reduce the table size at expense of additional computation, one may consider various interpolation



techniques. Alternatively, a possible solution to this problem is, as suggested in,6 to generalize the bipartite
table method of 2, 13 to functions of two variables. In this approach, instead of a single table with 2q− 1 address
bits, we use three tables, each of them with 4q/3 address bits. Consequently, in all cases listed in Table 2, lookup
tables do not require more than 1K words except for r = 16 with a = 15. We do not consider further these
techniques and details of their implementation in this paper.

r a p 2p + 1 Size Size
(single) (bipartite)

2 1 4 9 29 × 10 (27 × 10)× 3
2 3 7 27 × 8 (26 × 8)× 3

4 2 6 13 213 × 14 (210 × 14)× 3
3 5 11 211 × 12 (28 × 12)× 3
4 4 9 29 × 10 (27 × 10)× 3

8 7 6 13 213 × 14 (210 × 14)× 3
8 5 11 211 × 12 (28 × 12)× 3

16 15 7 15 215 × 16 (211 × 16)× 3
16 6 13 213 × 14 (210 × 14)× 3

Table 2. Examples of table sizes for single and bipartite table lookup.

4. DESIGN DESCRIPTION

In the following sections we discuss the design of the complex divider and its main modules.

4.1. General organization

The overall scheme is shown in Figure 1. It consists of a table-lookup module TBL-K producing the real (K1)
and imaginary (K2) parts of the complex scaling factor K, two shared modules for performing the scaling
multiplications and for performing real/imaginary recurrences including quotient-digit selection, and two mod-
ules for converting the redundant quotient representation to the conventional form combined with rounding
(ROFC/RND, IOFC/RND).

4.2. Scaling factor module

As discussed above, the scaling factor is produced by a table-lookup (direct or bipartite) and, if necessary,
combined with a suitable interpolation scheme. We do not discuss design of this module since we assume the use
of a table-lookup. Based on work in,12 we estimate that the complex scale factor K = kR + iKI, with 2p + 1
input bits and 2 × (p + 1) output bits, is obtained in time shown in Table 3. The access time is expressed in
τ ’s where τ corresponds to the delay of a complex gate such as full adder. The area is expressed in α’s where α
corresponds to the area of a complex gate.12

4.3. Scaling/Recurrence modules

Figure 2 shows the modules for performing scaling of the operands and for the the residual recurrence evaluation.
There are two modules, one for the real part and another for the imaginary part computations. During the
operands scaling, the modules in Figure 2 first compute in one cycle the carry-save form of the real (yRc, yRs)
and imaginary (yIc, yIs) parts of the scaled divisor y. These redundant forms are converted to yR and yI
using a 2-cycle CPA. During the second cycle the dividend is scaled. The produced carry-save forms of the
scaled dividend are used to initialize the residual registers in the real and imaginary recurrences. The multiple
generators (M-GEN) are implemented as rectangular multipliers without final carry-propagate addition. The
short operand corresponds to a radix r digit (recoded into radix-4 signed digit form) of the scaling factor K1
(K2) or the quotient digit qRj+1 (qIj+1).



ROFC/RND

TBL-K

dIdR

zIzR

yR yI

IOFC/RND

qR qI

qRj+1
qIj+1

Scaling multiplications (SMR; SMI) 
Real/Imaginary Recurrences 

(RRec, IRec)

K1 K2

(Scale Factor Module)

Figure 1. Overall scheme for complex division.

Address Delay Area
(bits) τ α

6 2.5 40/Kbit
7 3 35/Kbit
8 3.5 35/Kbit
9 4 35/Kbit

10− 11 4.5 35/Kbit
12− 13 5 30/Kbit
14− 15 6 25/Kbit

Table 3. Lookup tables: Access time and area.
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****

yI REG

yI

Figure 2. Modules for performing scaling and recurrence (real and imaginary parts).

During the execution of the recurrence, the M-GEN modules use one radix r = 2k quotient-digit per iteration.
This digit is recoded into k′ radix-4 signed-digits where k′ is roughly k/2 depending on k and the redundacy
in the digit sets. Therefore, the M-GEN modules provide a reduction of k′ operands. We assume that a [k′:2]
adder is used since producing a non-redundant multiple would increase the cycle time more than having an extra
operand accommodated in the recurrence redundant adder. During the scaling, the real and imaginary factors
K1 and K2 are recoded into p′ minimally recoded radix-4 signed signed digits where p′ is roughly p/2 as stated
above for k′. Since p′ > k′, the number of operands forming a product during scaling is larger than in the
recurrence computation. In order to limit the number of additional cycles in the prescaling multiplication, one
possibility is to apply extra operands via multiplexed wR (wI) inputs (not shown). The recurrence adder, as
indicated in the figure, is a [6:2] adder which can be decomposed into [3:2] adders followed by a [4:2] with a delay
of τ + 1.5τ = 2.5τ .

We now estimate the cycle time in the scaling/recurrence module:

tcycle = tSel + t4:1mux + t[k′:2] + t[6:2] + treg (19)

where
tSel ≈ 2τ - the delay of the selection function based on rounding
t4:1mux = 1.5τ - the delay of 4-to-1 multiplexer including the buffering of control
tk′:2 = 1τ - the delay [k′:2] adder for k′ = 3; 1.5τ for k′ = 4; 2.5τ for k′ = 5, 6, etc.
t[6:2] = 2.5τ - the delay of [6:2] adder
treg = 1τ - the delay of a register

For example, for r = 16 and a = 15, tcycle ≈ 8τ .

4.4. On-the-fly conversion and rounding module
The redundant quotient digits (real and imaginary) are converted using on-the-fly conversion to produce a
quotient in the conventional form. As discussed in,7 the rounding can be incorporated into the conversion.



The conversion causes no additional delay during iterations. The rounding, however, requires obtaining one
additional quotient digit and a determination of the sign of the last residual. The CPAs used in scaling of the
operands produce the sign of the last residuals. We estimate that this can be accomplished in two cycles.

5. EVALUATION AND COMPARISON

We now estimate latency of the complex division implementation for a particular radix and compare it with an
implementation based on the Smith’s formula.

For r = 16 and n = 54-bit result, the latency of the proposed scheme can be estimated as

TCDIV = tprescal + titer + tterminate

= [(1 + 2 + 2) + (d54/4e+ 1) + 2]tcycle = 22× 8τ = 176τ
(20)

A radix-16 division on real operands with two overlapped radix-4 stages7 has a cycle time tcycle−conv ≈ 6.5τ
and a total time of

TRDIV = (14 + 1 + 2)× 6.5τ ≈ 111τ (21)

Therefore, TCDIV /TRDIV ≈ 1.6

To get a rough comparison of the latency of the proposed scheme with a conventional complex division,
we consider the complex division operation defined by (2) which uses 6 real divisions and 6 real multiplication
operations in the floating-point format. There is also a comparison of absolute values. Assuming two floating-
point units and a radix-16 digit-recurrence implementation of 54-bit division with the latency TRDIV , a 4-cycle
multiply, and 2 cycles for absolute value comparison, the estimated latency of this implementation, is

TS−CDIV = 3TRDIV + 6× tcycle−conv ≈ 372τ (22)

We ignored exponent processing and rounding delays. We conclude that the proposed scheme is at least two
times faster than a hypothetical implementation based on formula (2).

The complex division in11 uses a radix-2 on-line algorithm. It implements the selection function using selection
constants and consequently, unlike the proposed algorithm which uses rounding, it is restricted to small radices.
In the case of radix 2, the critical path in the recurrence and its cost are similar in both schemes.

Unlike a conventional implementation, the method with prescaling requires a table lookup as discussed earlier
and two complex (rectangular) multiplications to perform scaling of the operands. As described above, these
can be merged with the recurrence implementation. The need for a table lookup is the main cost disadvantage
of the proposed method. To reduce the overall cost, instead of having two residual recurrence modules, a single
two-stage pipelined module can be used at an expense of increasing the iteration time.

Summary

We have discussed implementation of a digit-recurrence algorithm with prescaling of operands for complex
division. The method are suitable for higher radix. The prescaling is more complicated than in the real case and
the table size is the limiting factor for the choice of radix. The proposed algorithm is estimated to be at least
twice as fast as a direct implementation of the formula used in software routines for complex division. Moreover,
the method always allows easy faithful rounding while correct rounding can be performed at a reasonable cost.
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