
A Hardware-Oriented Method for Evaluating Complex Polynomials

Miloš D. Ercegovac
Computer Science Department

University of California at Los Angeles
Los Angeles, CA 90024, USA

milos@cs.ucla.edu

Jean-Michel Muller
CNRS-Laboratoire LIP, projet Arénaire

Ecole Normale Supérieure de Lyon
69364 Lyon Cedex 07, FRANCE
Jean-Michel.Muller@ens-lyon.fr

Abstract

A hardware-oriented method for evaluating complex
polynomials by solving a system of corresponding linear
equations is proposed. It is based on the E-method [2, 3],
defined over reals, which uses efficient digit-serial solution
of diagonally dominant systems of linear equations on a
simple and highly regular hardware. Since the evaluation
of polynomials can be achieved by solving the correspond-
ing linear systems, the E-method is an attractive general
approach for polynomial evaluation. We show a transform
of the E-method to the complex domain, describe the com-
plex polynomial evaluation algorithm, and discuss a corre-
sponding design and implementation. We give estimates of
the latency and the area.

1 Introduction

In this paper we describe a new method for evaluation
of complex polynomials, suitable for hardware implemen-
tation. It has a latency of m cycles for m-bit precision and
a repetitive implementation which corresponds roughly to
n + 1 serial-parallel multipliers for polynomials of degree
n. The coefficients and argument are fixed-point complex
numbers. The proposed method is a generalization of a
polynomial evaluation method over reals introduced as the
E-method [2, 3], and recently overviewed in [7]. This paper
is based on the report [8] where the complex E-method is
introduced and discussed in more general terms.

The E-method is a two-phase approach: a polynomial
is mapped a digit-iterative method for solving systems of
linear equations, the E-method [2, 3, 7], to allow the use
of the complex number system. The proposed approach is
suitable for hardware implementation. The main character-
istics of the method are: (i) m-digit solution is computed
in about m steps, each step consisting of a sum of number-
by-digit products, (ii) the cycle time depends on the num-
ber of nonzero coefficients, (iii) the cycle time does not de-

pend on the precision m (if redundant additions are used),
(iv) for a system of order n, the shortest latency requires
n elementary units for the real part, and n units for the
imaginary part, and (v) the elementary units are intercon-
nected with digit-wide links. The approach is particularly
efficient when the coefficient matrix is sparse. This hap-
pens when the E-method is used to evaluate polynomials
(one off-diagonal element) and rational functions (two off-
diagonal elements). Other examples are a tridiagonal sys-
tem (two off-diagonal elements), powers of the argument
(one off-diagonal element), and special expressions.

We first introduce the transform which allows the E-
method to be used in the complex field C. Then we show
how to use the complex E-method (CE-method) in evaluat-
ing complex polynomials as a particularly interesting case.
Evaluation of consecutive powers of a complex argument
is a special case of polynomial evaluation and can be per-
formed on the same hardware.

Complex polynomials appear in many areas such as dig-
ital signal and image processing, control systems, and ap-
plied mathematics, in general. A Horner type method for
evaluating complex polynomials is proposed in [1] at the
algorithm level, implicitly assuming a software implemen-
tation. The method uses O(n) multiplications and O(n)
additions for a complex polynomial of degree n. If these
multiplications and additions are performed in a sequential
order, the latency of the method is about n×TMULT−ADD

which is significantly slower than our method. If a paral-
lel algorithm for polynomial evaluation is used, the total
time is about log n × TMULT−ADD which is still slower
than our method. The evaluation of complex polynomials
on equispaced arguments [10], error analysis [11], and a
complexity analysis [12] are examples of research involv-
ing complex polynomials.

In the next section we describe the transformation which
maps computation from the complex to the real domain. In
Section 3 we show the complex E-method for polynomials.
In Section 4 iterations and convergence conditions are con-
sidered. Implementation aspects are discussed in Section

5.

2 Complex-Real (CR) Transforms

Complex numbers can be represented by 2 × 2 skew-
symmetric matrices

x + iy ↔
(

x −y
y x

)
(1)

This isomorphism holds for complex addition and multipli-
cation which are used in the proposed method :

(a + ib) + (c + id) ↔
(

a −b
b a

)
+

(
c −d
d c

)
=

(
a + c −b− d
b + d a + c

)
↔ (a + c) + i(b + d) (2)

(a + ib)× (c + id) ↔
(

a −b
b a

)
×

(
c −d
d c

)
=

(
ac− bd −(ad + bc)
ad + bc ac− bd

)
↔ (ac− bd) + i(bc + ad) (3)

Consequently, an m×n matrix of complex numbers can be
represented as a 2m×2n matrix of real numbers. For n×n
complex matrices, considered in this paper, the transform
from the complex domain to the real domain is defined next.

Definition 1 The CR-transform of the n-dimensional
complex linear system

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n

...
...

... · · ·
...

an,1 an,2 an,3 · · · an,n

×

z1

z2

z3

...
zn

 =

t1
t2
t3
...

tn

(4)

is the 2n-dimensional real linear system

ar
1,1 −ai

1,1 ar
1,2 −ai

1,2 · · · ar
1,n −ai

1,n

ai
1,1 ar

1,1 ai
1,2 ar

1,2 · · · ai
1,n ar

1,n

ar
2,1 −ai

2,1 ar
2,2 −ai

2,2 · · · ar
2,n −ai

2,n

ai
2,1 ar

2,1 ai
2,2 ar

2,2 · · · ai
2,n ar

2,n

ar
3,1 −ai

3,1 ar
3,2 −ai

3,2 · · · ar
3,n −ai

3,n

ai
3,1 ar

3,1 ai
3,2 ar

3,2 · · · ai
3,n ar

3,n

...
...

...
... · · ·

...

ar
n,1 −ai

n,1 ar
n,2 −ai

n,2 · · · ar
n,n −ai

n,n

ai
n,1 ar

n,1 ai
n,2 ar

n,2 · · · ai
n,n ar

n,n

×

zr
1

zi
1

zr
2

zi
2

zr
3

zi
3

...

zr
n

zi
n

=

tr1
ti1
tr2
ti2
tr3
ti3
...

trn

tin

(5)

where aj,k = ar
j,k + iai

j,k, zj = zr
j + izi

j and tj = trj + itij .
These two linear systems are equivalent.

In other words, the real linear system (5) is obtained from
the complex linear system (4) by replacing each element
x+ ix by the 2×2 matrix defined in (1). In the next section
we consider a hardware-oriented method for solving such a
system.

3 Complex E-method: An Overview

The E-method [2, 3], provides an iterative approach
of solving diagonally dominant real linear systems. The
method has characteristics desirable for efficient hardware
implementation: the basic operators are digit-vector multi-
plexers, redundant adders of [p : 2] type, with p ∈ {3, 4, 6}
for radix-2, and registers. The overall structure consists of n
elementary units, interconnected digit-serially. The method
computes one digit of each component of the solution per
iteration in the MSDF (Most Significant Digit First) man-
ner which allows digit-serial communication between the
modules which operate concurrently. The time to obtain the
solution to m digits of precision is about m cycles (itera-
tions). The amount of hardware required is roughly related
to the number of nonzero terms of the matrix of the sys-
tem, which makes the E-method very efficient in hardware
resources when the matrix of the system is sparse. Typical
applications of the E-method are evaluation of polynomial
and rational functions, since these correspond to sparse lin-
ear systems. The solution of the linear system

1 −x 0 0 0 · · · 0

0 1 −x 0 0 · · · 0

...
...

...
...

... · · ·
...

0 0 · · · 0 0 1 −x

0 0 0 · · · 0 0 1

×

y0

y1

...

yn−1

yn

=

p0

p1

...

pn−1

pn

is

p0 + p1x + p2x
2 + · · ·+ pnxn

p1 + p2x + · · ·+ pnxn−1

...

pn−1 + pnx

pn

that is, the first component of the solution is

p0 + p1x + p2x
2 + · · ·+ pnxn

Now, let us turn to the evaluation of complex polynomi-
als of a complex argument. We wish to evaluate

p(z) = p0 + p1z + p2z
2 + . . . + pnzn

where the pj’s and z are complex numbers. As in the real
case, the desired value p(z) is clearly equal to the first com-
ponent of the solution of the linear system

1 −z 0 0 0 . . . 0

0 1 −z 0 0 . . . 0

0 0 1 −z 0 . . . 0

...
...

...
...

...
...

...

0 0 0 0 . . . 0 1

×

y0

y1

y2

y3

y4

...
yn

=

p0

p1

p2

p3

p4

...
pn

(6)

The E-method cannot directly solve the linear system
(6), but now if we define real numbers x and y as x+iy = z,
and pr

j and pi
j as pj = pr

j + ipi
j , then we can apply the CR-

transform to (6), and get the linear system with the coeffi-
cient matrix

E =

1 0 −x y 0 0 0 0 · · · 0

0 1 −y −x 0 0 0 0 · · · 0

0 0 1 0 −x y 0 0 · · · 0

0 0 0 1 −y −x 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 1 0 −x y

0 0 · · · 0 0 0 0 1 −y −x

0 0 · · · 0 0 0 0 0 1 0

0 0 · · · 0 0 0 0 0 0 1

The first two components of the solution s of the linear

system

E ×

sr
0

s i
0

sr
1

s i
1

...

sr
n−1

s i
n−1

sr
n

s i
n

=

pr
0

pi
0

pr
1

pi
1

...

pr
n−1

pi
n−1

pr
n

pi
n

(7)

are equal to the real and imaginary parts of

p0 + p1z + p2z
2 + · · · + pnzn.

For instance, in the case n = 3, we get the solutions as
shown in Figure 1. The linear system (7) is easily solved
by the E-method, provided that it is diagonally dominant.
The iterations and convergence conditions are discussed in
the next section. Note that the E-method does not evalu-
ate directly the expressions given for the solution s0. These
would require at least 16+16 full-precision multiplications
which, assuming enough multipliers are available, would
take at least 3 consecutive multiply times. Moreover, the
reduction of product terms would require a [10:2] reduc-
tion. Of course, all the interconnections are of full pre-
cision. Instead, as explained later, the complex E-method
computes s0 on 14 serial-parallel (left-to-right) multipliers,
including the additions, in about one serial-parallel multi-
plication time. In this approach, the interconnections are
digit-serial.

s =

−3 xy2pr
3 + x3pr

3 − 3 yx2pi
3 + x2pr

2 − 2 xypi
2 + xpr

1 + y3pi
3 − y2pr

2 − ypi
1 + pr

0

−y3pr
3 + 3 yx2pr

3 − 3 y2xpi
3 + 2 yxpr

2 − y2pi
2 + ypr

1 + x3pi
3 + x2pi

2 + xpi
1 + pi

0

−y2pr
3 + x2pr

3 − 2 yxpi
3 + xpr

2 − ypi
2 + pr

1

x2pi
3 + 2 xypr

3 − y2pi
3 + ypr

2 + xpi
2 + pi

1

xpr
3 − ypi

3 + pr
2

ypr
3 + xpi

3 + pi
2

pr
3

pi
3

Figure 1. Solutions to system (7)

4 Iteration, and convergence conditions

To make the presentation simpler, we will focus on radix-
2 iterations only. Adaptation to higher radices is rather
straightforward. The radix-2 E-method consists in solving
the n-dimensional linear system

Ax = P

by using the following basic recursion on residuals:

w(j) = 2×
[
w(j−1) −Ad(j−1)

]
(8)

with w(0) = [p0, p1, . . . , pn]t, and d(j) = [d0, d1, . . . , dn]t

where the digits d
(j)
k are in {−1, 0, 1}. Define the number

D
(j)
k = d

(0)
k .d

(1)
k d

(2)
k . . . d

(j)
k (the d

(j)
k are the digits of a

radix-2 signed-digit representation of D
(j)
k). By induction,

we easily get,

w(j) = 2j
[
w(0) −AD(j−1)

]
. (9)

Using (9), one can show that if the residuals |w(j)
k | are

bounded, then for all k, D
(j)
k goes to yk as j goes to in-

finity.
The problem at step j is to find a selection function that
gives a value of the digits d

(j)
k from the residuals w

(j)
k such

that the values w
(j+1)
k will remain bounded. In [3], the fol-

lowing selection function (a form of rounding) is proposed

s(x) =

{
sign x× b|x + 1/2|c , if |x| ≤ 1
sign x× b|x|c , otherwise,

(10)

and applied to the following cases:

1. d
(j)
k = s(w(j)

k), i.e., the selection uses a non-redundant
w

(j)
k ;

2. d
(j)
k = s(ŵ(j)

k), where ŵ
(j)
k is an approximation to

w
(j)
k (in practice, ŵ

(j)
k is deduced from a few digits

of w
(j)
k by the means of a rounding or a truncation)

Let us now consider in more detail complex polynomial
evaluation. We wish to evaluate a degree-n polynomial

pnzn + pn−1z
n−1 + · · · + p0

at the complex point z = x + iy, with pk = pr
k + ipi

k. The
matrix of the CR-transform, obtained in Section 3 is

A =

1 0 −x y 0 0 0 0 · · · 0

0 1 −y −x 0 0 0 0 · · · 0

0 0 1 0 −x y 0 0 · · · 0

0 0 0 1 −y −x 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 0 0 1 0 −x y

0 · · · 0 0 0 0 0 1 −y −x

0 · · · 0 0 0 0 0 0 1 0

0 · · · 0 0 0 0 0 0 0 1

Let us slightly modify the notations w and d of iteration

(8), to adapt them to the complex case. The residual vector
w(j) will be denoted

w(j) = [w(j)
0,r, w

(j)
0,i , w

(j)
1,r, w

(j)
1,i , · · · , w

(j)
n,r, w

(j)
n,i],

and its initial value will be given by
w

(0)
k,r = pr

k

w
(0)
k,i = pi

k

The digit-vector d(j) will be denoted

d(j) = [d(j)
0,r, d

(j)
0,i , d

(j)
1,r, d

(j)
1,i , · · · , d

(j)
n,r, d

(j)
n,i].

Therefore, iteration (8) becomes

• for k = 0, . . . , n− 1,

w

(j)
k,r = 2

[
w

(j−1)
k,r − d

(j−1)
k,r + xd

(j−1)
k+1,r − yd

(j−1)
k+1,i

]
w

(j)
k,i = 2

[
w

(j−1)
k,i − d

(j−1)
k,i + yd

(j−1)
k+1,r + xd

(j−1)
k+1,i

]
(11)

• for k = n,
w

(j)
n,r = 2

[
w

(j−1)
n,r − d

(j−1)
n,r

]
w

(j)
n,i = 2

[
w

(j−1)
n,i − d

(j−1)
n,i

]
Now, let us examine the convergence conditions. The

iterations converge to the desired result if vector w(j) is
bounded. Define constants ξ, α and ∆ (with 0 ≤ ∆ < 1)
such that

1. |x|+ |y| ≤ α;

2. for any k between 0 and n,
|pr

k| ≤ ξ

|pi
k| ≤ ξ

|w(j)
k,r − ŵ

(j)
k,r| ≤ ∆

2

|w(j)
k,i − ŵ

(j)
k,i | ≤ ∆

2

Since |d(j−1)
k,r −ŵ

(j−1)
k,r | ≤ 1/2 and |d(j−1)

k,i −ŵ
(j−1)
k,i | ≤ 1/2,

from (11) we find

|w(j)
k,r| ≤ 2

(
1
2

+
∆
2

+ α

)
= 1 + ∆ + 2α. (12)

The same bound holds for |w(j)
k,i |. For this bound to be feasi-

ble, we must assure that a suitable choice of d
(j)
k,r and d

(j)
k,r in

{−1, 0, 1} is possible. This requires that |w(j)
k,r| and |w(j)

k,i |
should be less than 3/2. This immediately gives the follow-
ing condition

∆ + 2α ≤ 1
2
. (13)

Now, let us turn to the initial values. Since |w(0)
k,r| and |w(0)

k,i |
must also be less than 3/2, we get

ξ ≤ 3
2
. (14)

Consider the following example: we wish to evaluate

p(z) = (1 + i) z3 − (0.5 + 1.25 i) z2 + z + 1.

at point

z =
1

100
+

i

10
.

We assume that ∆ = 0 (that is, we use non-redundant resid-
uals). We get:

• Initialization:

w(0) = [pr
0, p

i
0, p

r
1, p

i
1, p

r
2, p

i
3, p

r
4, p

i
4]

t

= [1, 0, 1, 0,−0.5,−1.25, 1, 1]t

• Step 1: from w(0) and the selection function, we get

s(0) = [1, 0, 1, 0, 0,−1, 1, 1]t,

which gives

w(1) = [0.02, 0.2, 0.2,−0.02,−1.18,−0.28, 0, 0]t.

• Step 2: from w(1) and the selection function, we get

s(1) = [0, 0, 0, 0,−1, 0, 0, 0]t,

which gives

w(2) = [0.04, 0.4, 0.38,−0.24,−0.36,−0.56, 0, 0]t.

• After 20 iterations, the number

d
(0)
0,r.d

(1)
0,rd

(2)
0,r · · · d

(20)
0,r + i× d

(0)
0,i .d

(1)
0,i d

(2)
0,i · · · d

(20)
0,i

is equal to

533789
524288

+
57727
524288

i ≈ 1.018121719 + 0.110105514 i

whereas the exact value of p(z) is

p(z) = 1.018121 + 0.110106 i

Exactly as in the real case, even if polynomial p and point
z do not satisfy the convergence constraints, one can eas-
ily “transform” them using mere shifts, so that p(z) can be
computed using the E-method. Once ∆ is chosen, and α is
defined as 1

4 −∆/2, this is done as follows:

1. Find the smallest integer k such that |<(z/2k)| +
|=(z/2k)| should be less than α;

2. Now, p(z) = π(t), where the degree-m coefficient of
polynomial π is 2mkpm. If at least one of the coeffi-
cients of π has the absolute value of its real or imag-
inary part greater than ξ = 3/2, then divide π by 2`,
where ` is the smallest integer such that ρ = π/2` has
the absolute value of the real and imaginary parts of its
coefficients less than ξ;

3. What we actually compute using the E-method is
ρ(z/2k). This result will then be multiplied by 2` (a
simple left-shift) to get p(z).

4.1 Implementation of the Proposed
Method

In this section we discuss implementation of the com-
plex E-method for polynomials. The main difference from
implementation of real domain E-method is that the number
of non-zero off-diagonal elements doubles: for the polyno-
mial case to two. This has two consequences. First, the
bounds on the elements are smaller by a factor of two, and
second, the cycle time is increased as explained later in this
section. The corresponding implementations considered for
the real domain E-method are in [2, 3, 7].

A general scheme for evaluation of complex polynomials
is shown in Figure 2 for n = 3 and the corresponding ele-
mentary unit (PEU) is illustrated in Figure 3. A bit-parallel
bus transmits x and y values in a broadcast mode, while
the real and imaginary coefficients pr and pi are loaded in
separate cycles. Note that the initialization cycles could be
shorter than the iteration cycles.

A block diagram of an Elementary Unit for polynomial
evaluation (PEU) is shown in Figure 3.

The modules in Figure 3 are:

• Registers (4)

• Multiple generators MG (2), producing {−1, 0, 1}×x
and {−1, 0, 1} × y, with buffers

• Multiplexer MUX for initializing the residual

• A [4:2] adder

• Output digit selection SEL (a table or a gate network)

The digit-serial outputs of PEU0 can be converted into
digit-parallel form using on-the-fly converters OFC [7].
The cycle time, in terms of a full adder (complex gate) delay
t, is estimated as

TPEU = tBUFF + tMG + tSEL + t[4:2] + tREG

≈ (0.4 + 0.3 + 1 + 1.3 + 0.9)t = 3.9t (15)

The cost, again in terms of area of a full adder AFA, is
estimated as

APEU (m) = ASEL + 2ABUFF + 2AMG

+ AMUX + A[4:2] + 4AREG + 2AOFC

≈ [5 + 2× 0.4 + (m + 2)(3× 0.45
+ 2.3 + 4× 0.6 + 2× 2.1)]AFA

≈ 16 + 10mAFA (16)

The cost is measured as area occupied by modules us-
ing the area of a full-adder AFA) as the unit. The area of
primitive modules is given in Table 1.

PEU0i

PEU1r

PEU1i

PEU2r

PEU2i

PEU0r

PEU3r

PEU3i

s r
0

s r
1

s i
0

s r
3

s r
2

s i
3

s i
2

s i
1

x, y, p r
, p

i

bus

OFCr

OFCr

digit-serial

digit-parallel

Figure 2. Overall scheme for evaluating com-
plex polynomial of degree n = 3.

s r
0

s r
2 s i

2

REG

MG

REG

MG

MUX

REG

MUX

REG

[4:2] ADDER

SEL

x y p r
0 0

ws wc

ws wc

Figure 3. Block diagram of Elementary Unit
for polynomials (PEU0.)

Table 1. Area of primitive modules (in AFA

units).

Module[1bit] Area[AFA]

Register AREG = 0.6

Buffer ABUFF = 0.4

MUX AMUX = 0.45

MG AMG = 0.45

[4 : 2] adder A[4:2] = 2.3

SEL ASEL = 5

On− the− fly converter AOFC = 2AMUX + 2AREG = 2.1

4.2 Possible applications

In [1], Benmahammed recalls that in control system the-
ory, the frequency response of a linear continuous time in-
variant system is obtained by substituting s = iω, in the
system transfer function H(s) = q(s)/p(s), where q and
p are one-variable polynomials. Evaluating such polynomi-
als would be easily done using our method. Moreover, we
could easily take into account the fact that s has no real part:
Eq. 11 would be simplified, since variable x of that equation
would disappear.

In a previous paper [4] we present a digit-recurrence al-
gorithm for performing complex divisions. The algorithm
requires a prescaling step: we must get an approximation
to the reciprocal of the divisor. In that paper, this is done
using a table that can be very large. Instead of that, we can
approximate the reciprocal of 1 + z (with, say, |z| ≤ 1/2,
reduction to this rather large domain is easily done) by the
truncated series

1− z + z2 − z3 + · · · + (−1)nzn

Using n terms, we have an error bounded by 2n. More-
over, a brief examination of [4] and this paper shows that
much hardware can be common to both methods.

4.3 Summary

In this paper we have presented a method for evaluating
complex polynomials by solving diagonally-dominant lin-
ear systems in complex domain by a digit-recurrence algo-
rithm. This is a generalization of the real-domain E-method.
The latency is roughly m cycles for m bits of precision and
independent of the order of the system. This does not take
into account potentially needed scaling steps. The cycle
time is independent of m. We discussed the transform from
real to complex numbers, the iteration and convergence con-
ditions. Implementation is given at a high level with es-
timates of the cost and latency. A detailed design and its
hardware implementation with FPGAs are considered.

With the exception of complex addition and multiplica-
tion, complex operations are typically not implemented in
hardware. Recently, hardware-oriented methods for com-
plex division and square root have been introduced [4, 6].
The method proposed in this report extends complex arith-
metic to complex polynomials and complex powers. In a
similar manner, the real E-method can be adapted to evalu-
ation of complex rational functions.

References

[1] K. Benmahammed, Evaluation of Complex Polyno-
mials in One and Two Variables. Multidimensional
Systems and Signal Processing, 5, 245-261, 1994.

[2] M.D. Ercegovac. A general method for evaluation of
functions and computation in a digital computer. PhD
thesis, Dept. of Computer Science, University of Illi-
nois, Urbana-Champaign, 1975.

[3] M.D. Ercegovac. A general hardware-oriented method
for evaluation of functions and computations in a dig-
ital computer. IEEE Trans. Comp., C-26(7):667–680,
1977.

[4] M.D. Ercegovac and J.-M. Muller. Complex Division
with Prescaling of Operands. IEEE International Con-
ference on Application-Specific Systems, Architectures
and Processors, pp. 293-303, 2003.

[5] M.D. Ercegovac and J.-M. Muller, Design of a com-
plex divider. Proc. SPIE on Advanced Signal Process-
ing Algorithms, Architectures, and Implementations
XII, pp. 51-59, 2004.

[6] M.D. Ercegovac and J.-M. Muller. Complex Square
Root with Operand Prescaling. IEEE International
Conference on Application-Specific Systems, Architec-
tures and Processors, pp. 293-303, 2004.

[7] M.D. Ercegovac and T. Lang. Digital Arithmetic, Mor-
gan Kaufmann Publishers - an Imprint of Elsewier Sci-
ence, San Francisco, 2004.

[8] M.D. Ercegovac and J.-M. Muller, Solving Systems
of Linear Equations in Complex Domain : Complex
E-Method. LIP Report No. 2007-2, École Normale
Supérieure de Lyon, France.

[9] N. Brisebarre and J.-M. Muller. Functions approx-
imable by E-fractions. 38th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, Cali-
fornia, Nov. 2004.

[10] A.H. Nutall, Efficient Evaluation of Polynomials and
Exponentials of Polynomials for Equispaced Argu-
ments, IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-35, pp. 1486-1487, 1987.

[11] F. W. J. Olver, Error Bounds for Polynomial Evalu-
ation and Complex Arithmetic, IMA Journal of Nu-
merical Analysis 6, 373-379, 1986.

[12] J.H. Reif, Approximate Complex Polynomial Evalua-
tion in Near Constant Work Per Point, STOC 97, pp.
30-39, 1997.

