Exact computations with approximate arithmetic

> Jean-Michel Muller
> CNRS - Laboratoire LIP
> (CNRS-INRIA-Université de Lyon) october 2007
http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic?

- used everywhere in scientific calculation;

■ $x=m_{x} \times \beta^{e_{x}}$;
■ "fuzzy" approach: computed value of $x+y=(x+y)(1+\epsilon)$.

Floating-Point Arithmetic?

- used everywhere in scientific calculation;

■ $x=m_{x} \times \beta^{e_{x}}$;

- "fuzzy" approach: computed value of $x+y=(x+y)(1+\epsilon)$.

Better approach ?

Needs ? A few figures. . .

■ span:
Estimated diameter of observable universe
Planck's length

Needs ? A few figures. . .

■ span:

$$
\frac{\text { Estimated diameter of observable universe }}{\text { Planck's length }} \approx 10^{62}
$$

■ accuracy: some predictions of general relativity or quantum mechanics verified within relative accuracy 10^{-14}

Needs ? A few figures...

- span:

$$
\frac{\text { Estimated diameter of observable universe }}{\text { Planck's length }} \approx 10^{62}
$$

- accuracy: some predictions of general relativity or quantum mechanics verified within relative accuracy 10^{-14}
- intermediate calculations: quad precision and smart tricks required for very-long term stability of the Solar system (J. Laskar, Paris Observatory).

Good news: we seem to be safe for the next 40 million years;

We can do a very poor job. . .

- Pentium 1 division bug: 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;

We can do a very poor job. . .

- Pentium 1 division bug: 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;

■ On some Cray computers, it was possible to get an overflow when multiplying by 1 ;

We can do a very poor job. . .

- Pentium 1 division bug: 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;

■ On some Cray computers, it was possible to get an overflow when multiplying by 1 ;
■ Maple version 7.0, enter $\frac{5001!}{5000!}$ and you get 1 instead of 5001;

We can do a very poor job. . .

- Pentium 1 division bug: 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;

- On some Cray computers, it was possible to get an overflow when multiplying by 1 ;
■ Maple version 7.0, enter $\frac{5001!}{5000!}$ and you get 1 instead of 5001;
■ Version 6.0 was even worse. Enter 214748364810, you get 10. Note that $2147483648=2^{31}$.

We can do a very poor job. . .

- Pentium 1 division bug: 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;

- On some Cray computers, it was possible to get an overflow when multiplying by 1 ;
■ Maple version 7.0, enter $\frac{5001!}{5000!}$ and you get 1 instead of 5001;
■ Version 6.0 was even worse. Enter 214748364810, you get 10 . Note that $2147483648=2^{31}$.
■ Excel'2007, compute $65535-2^{-37}$, you get 100000;

Floating-Point System

Parameters:

$$
\begin{cases}\text { base } & \beta \geq 2 \\ \text { precision } & p \geq 1 \\ \text { extremal exponents } & E_{\min }, E_{\max }\end{cases}
$$

A finite FP number x is represented by 2 integers:
■ integral significand: $M,|M| \leq \beta^{p}-1$;
■ exponent $e, E_{\min } \leq e \leq E_{\max }$.
such that

$$
x=M \times \beta^{e+1-p}
$$

Real significand, or significand of x the number

$$
m=M \times \beta^{1-p}
$$

so that $x=m \times \beta^{e}$.

Normal representation

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which $1 \leq m<\beta$. It is the one for which the exponent is minimum.

Normal representation

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which $1 \leq m<\beta$. It is the one for which the exponent is minimum.

Base 2, the leftmost bit of the significand of a normal number is a " 1 " \rightarrow no need to store it (implicit 1 convention).

Normal representation

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which $1 \leq m<\beta$. It is the one for which the exponent is minimum.

Base 2, the leftmost bit of the significand of a normal number is a " 1 " \rightarrow no need to store it (implicit 1 convention).
A subnormal number has the form

$$
M \times \beta^{E_{\min }+1-p}
$$

with $|M| \leq \beta^{p-1}-1$. Such a number has no normal representation. Corresponds to $\pm 0 . x x x x x x x x \times \beta^{E_{\text {min }}}$.

IEEE-754 Standard for FP Arithmetic (1985)

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats;
- specification of operations and conversions;

■ exception handling (max $+1,1 / 0, \sqrt{-2}, 0 / 0$, etc.);

- under revision.

IEEE-754 Standard for FP Arithmetic (1985)

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats;
- specification of operations and conversions;

■ exception handling (max+1, $1 / 0, \sqrt{-2}, 0 / 0$, etc.);

- under revision.

Correct rounding

Definition 1 (Correct rounding)

The user defines an active rounding mode among:

- round to the nearest (default) in case of a tie, value whose integral significand is even;
- round towards $+\infty$.
- round towards $-\infty$.
- round towards zero.

An operation whose entries are FP numbers must return what we would get by infinitely precise operation followed by rounding.

Correct rounding

IEEE-754 (1985): Correct rounding for,,$+- \times, \div, \sqrt{ }$ and some conversions. Advantages:

- if the result of an operation is exactly representable, we get it;
- if we just use the 4 arith. operations and $\sqrt{ }$, deterministic arithmetic: one can elaborate algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- playing with rounding towards $+\infty$ and $-\infty \rightarrow$ certain lower and upper bounds: interval arithmetic.

FP arithmetic becomes a mathematical structure in itself, that can be studied.

Error of FP addition (Møller, Knuth, Dekker)

First result: representability. $\mathrm{RN}(x)$ is x rounded to the nearest.

Lemma 2

Let a and b be two FP numbers. Let

$$
s=R N(a+b)
$$

and

$$
r=(a+b)-s
$$

if no overflow when computing s, then r is a FP number.

Error of FP addition (Møller, Knuth, Dekker)

Proof: Assume $|a| \geq|b|$,

$1 s$ is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a is. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

Error of FP addition (Møller, Knuth, Dekker)

Proof: Assume $|a| \geq|b|$,

$1 s$ is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a is. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

2 denote $a=M_{a} \times \beta^{e_{a}-p+1}$ and $b=M_{b} \times \beta^{e_{b}-p+1}$, with $\left|M_{a}\right|,\left|M_{b}\right| \leq \beta^{p}-1$, and $e_{a} \geq e_{b}$.
$a+b$ is multiple of $\beta^{e_{b}-p+1} \Rightarrow s$ and r are multiple of $\beta^{e_{b}-p+1}$ too $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

$$
r=R \times \beta^{e_{b}-p+1}
$$

but, $|r| \leq|b| \Rightarrow|R| \leq\left|M_{b}\right| \leq \beta^{p}-1 \Rightarrow r$ is a FP number.

Get r : the fast2sum algorithm (Dekker)

Theorem 3 (Fast2Sum (Dekker))

$\beta \leq 3$, subnormal numbers available. Let a and b be FP numbers, with exponents s.t. $e_{a} \geq e_{b}$ (if $|a| \geq|b|$, will be satisfied).
Following algorithm: s and r such that
■ $s+r=a+b$ exactly;
■ s is "the" FP number that is closest to $a+b$.

Algorithm 1 (FastTwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& z \leftarrow R N(s-a) \\
& r \leftarrow R N(b-z)
\end{aligned}
$$

C Program 1

$$
\begin{aligned}
& \mathrm{s}=\mathrm{a}+\mathrm{b} \\
& \mathrm{z}=\mathrm{s}-\mathrm{a} \\
& \mathrm{r}=\mathrm{b}-\mathrm{z}
\end{aligned}
$$

Proof: Show that $s-a$ and $b-z$ are exactly representable.

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;

The TwoSum Algorithm (Møller-Knuth)

■ no need to compare a and b;

- 6 operations instead of 3 yet very cheap in front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

The TwoSum Algorithm (Møller-Knuth)

■ no need to compare a and b;

- 6 operations instead of 3 yet very cheap in front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

Knuth: $\forall \beta$, if no underflow nor overflow occurs then $a+b=s+r$, and s is nearest $a+b$.

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet very cheap in front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

Knuth: $\forall \beta$, if no underflow nor overflow occurs then $a+b=s+r$, and s is nearest $a+b$.

Boldo et al: (formal proof) in radix 2 , underflow does not hinder the result (overflow does).

Formal proofs (in Coq) of many useful such algorithms:
http://lipforge.ens-lyon.fr/www/pff/Fast2Sum.html.

How about products?

■ FMA: fused multiply-add, computes RN $(a b+c)$. RS6000, Itanium and PowerPC. Will be in IEEE 754-R;

- if a and b are FP numbers, then $r=a b-\mathrm{RN}(a b)$ is a FP number;
- obtained by Algorithm TwoMultFMA $\left\{\begin{aligned} p & =\operatorname{RN}(a b) \\ r & =\operatorname{RN}(a b-p)\end{aligned}\right.$ \rightarrow two operations only. $p+r=a b$.
■ without a fma, Dekker algorithm: 17 operations $(7 \times, 10 \pm)$.

Itanium 2

PowerPC 5

Compensated summation methods (Kahan, Priest, Rump...)

■ $S+\left(r_{1}+r_{2}+\cdots+r_{n-1}\right)=a_{1}+a_{2}+\cdots+a_{n-1}$ exactly;
■ 1st solution: compute $S+\left(r_{1}+r_{2}+\cdots+r_{n-1}\right)$ as usual. If all a_{i} s have same sign, in double precision $(\beta=2, p=53)$ and RN , one can add $\sqrt{2} \times 2^{26}$ values and get error \leq weight of last bit;

- 2nd solution: use again the same trick for adding the r_{i} 's

Evaluating powers

Algorithm 3 (DbIMult $\left(a_{h}, a_{\ell}, b_{h}, b_{\ell}\right)$)

Computes approx. to

$$
\begin{aligned}
\left(a_{h}+a_{\ell}\right) & \left(b_{h}+b_{\ell}\right) \\
t & :=R N\left(a_{\ell} b_{h}\right) ; \\
s & :=R N\left(a_{h} b_{\ell}+t\right) \\
\left(x^{\prime}, u\right) & :=\operatorname{TwoMultFMA}\left(a_{h}, b_{h}\right) ; \\
\left(x^{\prime \prime}, v\right) & :=\operatorname{Fast2Sum}\left(x^{\prime}, s\right) ; \\
y^{\prime} & :=\operatorname{RN}(u+v) ; \\
(x, y) & :=\operatorname{Fast2Sum}\left(x^{\prime \prime}, y^{\prime}\right)
\end{aligned}
$$

Not an exact product!

Algorithm 4 (LogPower $(x, n), n \geq 1$)

$$
\begin{aligned}
& i:=n ; \\
& (h, \ell):=(1,0) ; \\
& (u, v):=(x, 0) \\
& \text { while } i>1 \text { do } \\
& \quad \text { if }(i \bmod 2)=1 \text { then } \\
& \quad(h, \ell):=\text { Db/Mult }(h, \ell, u, v) \text {; } \\
& \text { end; } \\
& \quad(u, v):=\text { DbIMult }(u, v, u, v) \text {; } \\
& \quad i:=\lfloor i / 2\rfloor \\
& \text { end do; } \\
& \text { return } D b / M u l t(h, \ell, u, v) \text {; }
\end{aligned}
$$

Evaluating powers

If algorithm LogPower is run in double-extended precision ($\beta=2, p=64$), and $3 \leq n \leq 284$, then by rounding the final value to the nearest double-precision number, we get a correctly rounded result.

- rather error-prone error analysis;
- special algorithm for computing hardest-to-round cases;

For $3 \leq n \leq 284$, the hardest-to-round case for x^{n} is for $n=51$. It is
$x=1.0100010111101011011011101010011111100101000111011101$

$$
\begin{aligned}
& x^{51}=\underbrace{1.1011001110100100011100100001100100000101101011101110}_{53} 1 \\
& \underbrace{000}_{59} 100 \cdots \times 2^{17} \\
& \underbrace{17}_{5 \text { zeros }}
\end{aligned}
$$

Error term of a FMA

■ Joint work with Sylvie Boldo (2005);
■ $\beta=2, p \geq 3$, fma, no underflow nor overflow;

- a, x, y : FP numbers;
- a fma computes $r_{1}=\mathrm{RN}(a x+y)$;
- Two questions:
- how many FP numbers are necessary for representing $r_{1}-(a x+y)$?
- can these numbers be easily computed?

Error term of a FMA

- Joint work with Sylvie Boldo (2005);

■ $\beta=2, p \geq 3$, fma, no underflow nor overflow;

- a, x, y : FP numbers;

■ a fma computes $r_{1}=\mathrm{RN}(a x+y)$;

- Two questions:
- how many FP numbers are necessary for representing $r_{1}-(a x+y)$?
- can these numbers be easily computed?
- Answers:

Error term of a FMA

- Joint work with Sylvie Boldo (2005);

■ $\beta=2, p \geq 3$, fma, no underflow nor overflow;

- a, x, y : FP numbers;

■ a fma computes $r_{1}=\mathrm{RN}(a x+y)$;

- Two questions:
- how many FP numbers are necessary for representing $r_{1}-(a x+y)$?
- can these numbers be easily computed?
- Answers:
- two numbers;

Error term of a FMA

- Joint work with Sylvie Boldo (2005);

■ $\beta=2, p \geq 3$, fma, no underflow nor overflow;

- a, x, y : FP numbers;

■ a fma computes $r_{1}=\mathrm{RN}(a x+y)$;

- Two questions:
- how many FP numbers are necessary for representing $r_{1}-(a x+y)$?
- can these numbers be easily computed?
- Answers:
- two numbers;
- you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2 additions, 1 FastTwoSum);

Error term of a FMA

- Joint work with Sylvie Boldo (2005);

■ $\beta=2, p \geq 3$, fma, no underflow nor overflow;

- a, x, y : FP numbers;

■ a fma computes $r_{1}=\mathrm{RN}(a x+y)$;

- Two questions:
- how many FP numbers are necessary for representing $r_{1}-(a x+y)$?
- can these numbers be easily computed?
- Answers:
- two numbers;
- you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2 additions, 1 FastTwoSum);
- I did not trust our proof before Sylvie wrote it in Coq.

Humans don't need computers to do silly things

- The Mars Climate Orbiter probe crashed on Mars in 1999;

Humans don't need computers to do silly things

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;

Humans don't need computers to do silly things

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;
- the other team assumed it was the foot.

Multiplication by "infinitely precise" constants

- Joint work with Nicolas Brisebarre;
- We want $\mathrm{RN}(C x)$, where x is a FP number, and C a real constant (i.e., known at compile-time).
■ Typical values of $C: \pi, 1 / \pi, \ln (2), \ln (10), e, 1 / k!, B_{k} / k!$, $1 / 10^{k}, \cos (k \pi / N)$ and $\sin (k \pi / N), \ldots$
- another frequent case: $C=\frac{1}{\text { FP number }}$ (division by a constant);

The naive method

- replace C by $C_{h}=\mathrm{RN}(C)$;
- compute $\mathrm{RN}\left(C_{h} x\right)$ (instruction $\mathrm{y}=\mathrm{Ch} * \mathrm{x}$).

p	Prop. of correctly- rounded results
5	0.93750
6	0.78125
7	0.59375
\ldots	\cdots
16	0.86765
17	0.73558
\cdots	\cdots
24	0.66805

Proportion of FP numbers x for which $R N\left(C_{h} x\right)=R N(C x)$ for $C=\pi$ and various p.

The algorithm

- Cx with correct rounding (assuming rounding to nearest even);
- C is not a FP number;

■ A correctly rounded fma instruction is available. Operands stored in a binary FP format of precision p;

- We assume that the two following FP numbers are pre-computed:

$$
\left\{\begin{array}{l}
C_{h}=\operatorname{RN}(C), \\
C_{\ell}=\operatorname{RN}\left(C-C_{h}\right)
\end{array}\right.
$$

The algorithm

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right) .
\end{array}\right.
$$

Returned result: u_{2}.

The algorithm

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right)
\end{array}\right.
$$

Returned result: u_{2}.

■ Warning! There exist C and x s.t. $u_{2} \neq \mathrm{RN}(C x)$ - easy to build;

The algorithm

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right) .
\end{array}\right.
$$

Returned result: u_{2}.

■ Warning! There exist C and x s.t. $u_{2} \neq \mathrm{RN}(C x)$ - easy to build;
■ Without l.o.g., we assume that $1<x<2$ and $1<C<2$, that C is not exactly representable, and that $C-C_{h}$ is not a power of 2 ;

The algorithm

Algorithm 5

From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right) .
\end{array}\right.
$$

Returned result: u_{2}.

Two methods for checking if $\forall x, u_{2}=\mathrm{RN}(C x)$.

- Method 1: simple but does not always give a complete answer;

■ Method 2: gives all "bad cases", or certify that there are none, i.e. that the algorithm always returns $\mathrm{RN}(C x)$.

Analyzing the algorithm

Bound on maximum possible distance between u_{2} and $C x$:

Property 1

For all FP number x, we have

$$
\left|u_{2}-C x\right|<\frac{1}{2} u l p\left(u_{2}\right)+2 u l p\left(C_{\ell}\right)
$$

$u \operatorname{lp}(t)$ (unit in the last place) $=$ distance between consecutive FP numbers around t. Correct rounding \leftrightarrow error $\leq \frac{1}{2}$ ulp.

$$
\operatorname{ulp}\left(t_{0} \cdot t_{1} t_{2} \cdots t_{p-1} \times 2^{e_{t}}\right)=2^{e_{t}-p}
$$

Analyzing the algorithm

Reminder: $\left|u_{2}-C x\right|<\frac{1}{2}$ ulp $\left(u_{2}\right)+\eta$ with $\eta=2$ ulp $\left(C_{\ell}\right)$.
FP numbers

If $C x$ is here, then $\operatorname{RN}(C x)=u_{2}$

Can Cx be here?

Analyzing the algorithm

- We know that $C x$ is within $1 / 2$ ulp $\left(u_{2}\right)+2 u l p\left(C_{\ell}\right)$ from the FP number u_{2}.

Analyzing the algorithm

- We know that $C x$ is within $1 / 2$ ulp $\left(u_{2}\right)+2 u l p\left(C_{\ell}\right)$ from the FP number u_{2}.
- If we prove that $C x$ cannot be at a distance $\leq \eta=2$ ulp $\left(C_{\ell}\right)$ from the middle of two consecutive FP numbers, then u_{2} will be the FP number that is closest to $C x$.

A reminder on continued fractions

We will use the following well-known results:

Theorem 4

Let $\left(p_{j} / q_{j}\right)_{j \geq 1}$ be the convergents of β. For any (p, q), with
$0 \leq q<q_{n+1}$, we have

$$
|p-\beta q| \geq\left|p_{n}-\beta q_{n}\right|
$$

Theorem 5

Let p, q be nonzero integers, with $\operatorname{gcd}(p, q)=1$. If

$$
\left|\frac{p}{q}-\beta\right|<\frac{1}{2 q^{2}}
$$

then p / q is a convergent of β.

Method 1: use of Theorem 4

■ Remark: Cx can be in $[1,2)$ or $[2,4) \rightarrow$ two (very similar) cases;

- define $x_{\text {cut }}=2 / C$. Let $X=2^{p-1} x$ and $X_{\text {cut }}=\left\lfloor 2^{p-1} x_{\text {cut }}\right\rfloor$.
- we detail the case $x<x_{\text {cut }}$ below.

Middle of two consecutive FP numbers around $C x: \frac{2 A+1}{2^{p}}$ where $A \in \mathbb{Z}, 2^{p-1} \leq A \leq 2^{p}-1 \rightarrow$ we try to know if there can be such an A such that

$$
\left|C x-\frac{2 A+1}{2^{p}}\right|<\eta .
$$

This is equivalent to

$$
|2 C X-(2 A+1)|<2^{p} \eta .
$$

Method 1: use of Theorem 4 (cont)

We want to know if there exists X between 2^{p-1} and $X_{\text {cut }}$ and A between 2^{p-1} and $2^{p}-1$ such that

$$
|2 C X-(2 A+1)|<2^{p} \eta
$$

- $\left(p_{i} / q_{i}\right)_{i \geq 1}$: convergents of $2 C$;

■ k : smallest integer such that $q_{k+1}>X_{\text {cut }}$,
\square define $\delta=\left|p_{k}-2 C q_{k}\right|$.
Theorem $4 \Rightarrow \forall B, X \in \mathbb{Z}$, with $0<X \leq X_{\text {cut }}<q_{k+1}$, $|2 C X-B| \geq \delta$.

Method 1: use of Theorem 4 (cont)

Therefore
1 If $\delta \geq 2^{p} \eta$ then $\left|C x-A / 2^{p}\right|<\eta$ is impossible \Rightarrow the algorithm returns $\mathrm{RN}(C x)$ for all $x<x_{\text {cut }}$;
2 if $\delta<2^{p} \eta$, we try the algorithm with $x=q_{k} 2^{-p+1} \rightarrow$ either we get a counter-example, or we cannot conclude

Case $x>x_{\text {cut }}$: similar (convergents of C instead of those of $2 C$)

Example: $C=\pi$, double precision $(p=53)$

```
> method1(Pi/2,53);
Ch = 884279719003555/562949953421312
Cl = 4967757600021511/81129638414606681695789005144064
xcut = 1.2732395447351626862, Xcut = 5734161139222658
eta = .8069505497e-32
pk/qk = 6134899525417045/1952799169684491
delta = .9495905771e-16
OK for X < 5734161139222658
etaprime = .1532072145e-31
pkprime/qkprime = 12055686754159438/7674888557167847
deltaprime = .6943873667e-16
OK for 5734161139222658 <= X < 9007199254740992
```

\Rightarrow We always get a correctly rounded result for $C=2^{k} \pi$ and $p=53$, with $C_{h}=2^{k-48} \times 884279719003555$ and
$C_{\ell}=2^{k-105} \times 4967757600021511$.

Consequence 1

Correctly rounded multiplication by π : in double precision one multiplication and one fma.

Method 2

- Again, two cases. Here: $x>x_{\text {cut }}$ (case $x<x_{\text {cut }}=2 / C$ similar);

Method 2

- Again, two cases. Here: $x>x_{\text {cut }}$ (case $x<x_{\text {cut }}=2 / C$ similar);
- We recall the notations: $C_{h}=\mathrm{RN}(C), C_{\ell}=\mathrm{RN}\left(C-C_{h}\right)$,

$$
\left\{\begin{array}{l}
u_{1}=\operatorname{RN}\left(C_{\ell} x\right) \\
u_{2}=\operatorname{RN}\left(C_{h} x+u_{1}\right)
\end{array}\right.
$$

- Again, $X_{\text {cut }}=2^{p-1} x_{\text {cut }}$;

Method 2

- Again, two cases. Here: $x>x_{\text {cut }}$ (case $x<x_{\text {cut }}=2 / C$ similar);
- We recall the notations: $C_{h}=\mathrm{RN}(C), C_{\ell}=\mathrm{RN}\left(C-C_{h}\right)$,

$$
\left\{\begin{array}{l}
u_{1}=\operatorname{RN}\left(C_{\ell} x\right) \\
u_{2}=\operatorname{RN}\left(C_{h} x+u_{1}\right) .
\end{array}\right.
$$

- Again, $X_{\text {cut }}=2^{p-1} x_{\text {cut }}$;

■ We want to determine integers $X, X_{\text {cut }} \leq X \leq 2^{p}-1$ s.t. $\exists A \in \mathbb{Z}, 2^{p-1} \leq A \leq 2^{p}-1$ with

$$
\left|C \frac{X}{2^{p-1}}-\frac{2 A+1}{2^{p-1}}\right| \leq 2 \operatorname{ulp}\left(C_{\ell}\right)
$$

Method 2

- Again, two cases. Here: $x>x_{\text {cut }}$ (case $x<x_{\text {cut }}=2 / C$ similar);
- We recall the notations: $C_{h}=\mathrm{RN}(C), C_{\ell}=\mathrm{RN}\left(C-C_{h}\right)$,

$$
\left\{\begin{array}{l}
u_{1}=\operatorname{RN}\left(C_{\ell} x\right) \\
u_{2}=\operatorname{RN}\left(C_{h} x+u_{1}\right) .
\end{array}\right.
$$

- Again, $X_{\text {cut }}=2^{p-1} x_{\text {cut }}$;

■ We want to determine integers $X, X_{\text {cut }} \leq X \leq 2^{p}-1$ s.t. $\exists A \in \mathbb{Z}, 2^{p-1} \leq A \leq 2^{p}-1$ with

$$
\left|C \frac{X}{2^{p-1}}-\frac{2 A+1}{2^{p-1}}\right| \leq 2 \operatorname{ulp}\left(C_{\ell}\right)
$$

- Once we know the X candidate, we compute u_{2} and $\mathrm{RN}\left(C_{x}\right)$ to check if they coincide or not.

Method 2

■ We are looking for $x=X / 2^{p-1}, X_{\text {cut }} \leq X \leq 2^{p}-1$ s.t. $\exists A$ with

$$
\begin{equation*}
\left|C \frac{X}{2^{p-1}}-\frac{2 A+1}{2^{p-1}}\right| \leq 2 \operatorname{ulp}\left(C_{\ell}\right) \tag{1}
\end{equation*}
$$

Method 2

■ We are looking for $x=X / 2^{p-1}, X_{\text {cut }} \leq X \leq 2^{p}-1$ s.t. $\exists A$ with

$$
\begin{equation*}
\left|C \frac{X}{2^{p-1}}-\frac{2 A+1}{2^{p-1}}\right| \leq 2 \operatorname{ulp}\left(C_{\ell}\right) \tag{1}
\end{equation*}
$$

- We know that ulp $\left(C_{\ell}\right) \leq 2^{-2 p}$;

Method 2

■ We are looking for $x=X / 2^{p-1}, X_{\text {cut }} \leq X \leq 2^{p}-1$ s.t. $\exists A$ with

$$
\begin{equation*}
\left|C \frac{X}{2^{p-1}}-\frac{2 A+1}{2^{p-1}}\right| \leq 2 \operatorname{ulp}\left(C_{\ell}\right) \tag{1}
\end{equation*}
$$

- We know that ulp $\left(C_{\ell}\right) \leq 2^{-2 p}$;
- Two cases: ulp $\left(C_{\ell}\right) \leq 2^{-2 p-1}$ and $u l p\left(C_{\ell}\right)=2^{-2 p}$.

Method 2

First, we assume ulp $\left(C_{\ell}\right) \leq 2^{-2 p-1}$.
In that case, the integers X that satisfy (1) satisfy

$$
\left|2 C-\frac{2 A+1}{X}\right|<\frac{1}{2 X^{2}}:
$$

- $(2 A+1) / X$ is a convergent of $2 C$ from Theorem 5 .

Method 2

First, we assume ulp $\left(C_{\ell}\right) \leq 2^{-2 p-1}$.
In that case, the integers X that satisfy (1) satisfy

$$
\left|2 C-\frac{2 A+1}{X}\right|<\frac{1}{2 X^{2}}:
$$

- $(2 A+1) / X$ is a convergent of $2 C$ from Theorem 5 .
- It suffices then to check all the convergents of $2 C$ of denominator less than or equal to $2^{p}-1$.

Method 2

Now, assume ulp $\left(C_{\ell}\right)=2^{-2 p}$.

- We are led to the following problem: determine the $X, X_{\text {cut }} \leq X \leq 2^{p}-1$ s.t.

$$
\left\{X\left(C_{h}+C_{\ell}\right)+\frac{1}{2^{p+1}}\right\} \leq \frac{1}{2^{p}}
$$

where $\{y\}$ is the fractional part of $y:\{y\}=y-\lfloor y\rfloor$.

- Algorithm (see later) to determine the integers $X, X_{\text {cut }} \leq X \leq 2^{p}-1$ solution of this inequality;
- check the algorithm (i.e., compute u_{2} and compare with RN $(C x)$) with these values of X.

An example: multiplication by $1 / \pi$ in double precision

Consider the case $C=4 / \pi$ and $p=53$
■ Method 1 gives a (family of) counterexample(s): $x=6081371451248382 \times 2^{ \pm k}$.
■ Method 2 certifies that $x=6081371451248382 \times 2^{ \pm k}$ are the only FP values for which our algorithm fails.

Implementation

■ Maple programs that implement Methods 1 and 2;

- These programs (along with explanations) can be downloaded from
http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html

Some results

C	p	Method 1	Method 2
π	8	Does not work for 226	AW unless $X=$ 226
π	24	unable	AW
π	53	AW	AW
π	64	unable	AW
π	113	AW	AW

Table: The results given for constant C hold for all values $2^{ \pm j} C$. "AW" means "always works" and "unable" means "the method is unable to conclude".

Some results

C	p	Method 1	Method 2
$1 / \pi$	24	unable	AW
$1 / \pi$	53	Does not work for 6081371451248382	AW unless $X=$ 6081371451248382
$1 / \pi$	64	AW	AW
$1 / \pi$	113	unable	AW
$\ln 2$	24	AW	AW
$\ln 2$	53	AW	AW
$\ln 2$	64	AW	AW
$\ln 2$	113	AW	AW

Table: The results given for constant C hold for all values $2^{ \pm j} C$.

Conclusion on multiplication by a constant

The two methods make it possible to check whether correctly rounded multiplication by an "infinite precision" constant C is feasible at a low cost (one multiplication and one fma).

- method 1 does not always allow one to conclude, but is quite simple: use it at compile time?
- method 2 always gives the counter-examples or certifies that the algorithm always works.

The IEEE-754 Std is under revision

- near the end of the process (hopefully);
- main ideas remain the same;
- fma, base 10, some considerations on the elementary functions (sin, cos, exp, log, etc.) and their correct rounding;
■ watch http://754r.ucbtest.org/

The Table Maker's Dilemma

The Table Maker's Dilemma

HANDBOOK OF
MATHEMATICAL FUNCTIONS
with Formulas, Graphs, and Mathematical Tables
Edifed by Milton Abramowitz and Irene λ _ Stegun

The Table Maker's Dilemma

Consider the double precision FP number $(\beta=2, p=53)$

$$
x=\frac{8520761231538509}{2^{62}}
$$

We have
$2^{53+x}=9018742077413030.999999999999999998805240837303 \cdots$

The Table Maker's Dilemma

Consider the double precision FP number $(\beta=2, p=53)$

$$
x=\frac{8520761231538509}{2^{62}}
$$

We have
$2^{53+x}=9018742077413030.999999999999999998805240837303 \cdots$
So what?

The Table Maker's Dilemma

Consider the double precision FP number $(\beta=2, p=53)$

$$
x=\frac{8520761231538509}{2^{62}}
$$

We have

$$
2^{53+x}=9018742077413030.999999999999999998805240837303 \ldots
$$

So what ?
Hardest-to-round case for function 2^{x} and double precision FP numbers.
Joint work with Vincent Lefèvre.

The Hall of Shame (Ng)

System	$\sin \left(10^{22}\right)$
exact result	$-0.8522008497671888017727 \cdots$
HP 48 GX	-0.852200849762
HP 700	0.0
HP 375, 425t (4.3 BSD)	$-0.65365288 \cdots$
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	$-0.852200849 \cdots$
DECstation 3100	NaN
Casio fx-8100, fx180p, fx 6910 G	Error
TI 89	Trig. arg. too large

No standard for the elementary functions.

Correct rounding of the elementary functions

- base 2, precision p;
- FP number x and integer m (with $m>p$) \rightarrow one can compute an approximation y to $f(x)$ whose error on the significand is $\leq 2^{-m}$.
- can be done with a possible wider format, or using algorithms such as TwoSum, TwoMultFMA, Dekker product, etc.
- getting a correct rounding of $f(x)$ from y : not possible if y is too close to a breakpoint: a point where the rounding function changes.

Correct rounding of the elementary functions

- RN mode,

$$
\overbrace{\underbrace{1 . x x x x x \cdots x x x}_{p \text { bits }} 1000000 \cdots 000000}^{m}{ }_{x x x \cdots}^{m i t s}
$$

or

- other modes,

or

Finding m beyond which there is no problem ?

■ function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,

Finding m beyond which there is no problem ?

- function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
■ Lindemann's theorem ($z \neq 0$ algebraic $\Rightarrow e^{z}$ transcendental) \rightarrow except for straightforward cases $\left(e^{0}, \ln (1), \sin (0), \ldots\right)$, if x is a FP number, there exists an m, say m_{x}, s.t. rounding the m_{x}-bit approximation \Leftrightarrow rounding $f(x)$;

Finding m beyond which there is no problem ?

- function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
■ Lindemann's theorem ($z \neq 0$ algebraic $\Rightarrow e^{z}$ transcendental) \rightarrow except for straightforward cases $\left(e^{0}, \ln (1), \sin (0), \ldots\right)$, if x is a FP number, there exists an m, say m_{x}, s.t. rounding the m_{x}-bit approximation \Leftrightarrow rounding $f(x)$;
■ finite number of FP numbers $\rightarrow \exists m_{\max }=\max _{x}\left(m_{x}\right)$ s.t. $\forall x$, rounding the $m_{\text {max }}$-bit approximation to $f(x)$ is equivalent to rounding $f(x)$;

Finding m beyond which there is no problem ?

- function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
■ Lindemann's theorem ($z \neq 0$ algebraic $\Rightarrow e^{z}$ transcendental) \rightarrow except for straightforward cases $\left(e^{0}, \ln (1), \sin (0), \ldots\right)$, if x is a FP number, there exists an m, say m_{x}, s.t. rounding the m_{x}-bit approximation \Leftrightarrow rounding $f(x)$;
■ finite number of FP numbers $\rightarrow \exists m_{\max }=\max _{x}\left(m_{x}\right)$ s.t. $\forall x$, rounding the $m_{\max }$-bit approximation to $f(x)$ is equivalent to rounding $f(x)$;
- this reasoning does not give any hint on the order of magnitude of $m_{\max }$. Could be huge.

A bound derived from a result due to Baker (1975)

■ $\alpha=i / j, \beta=r / s$, with $i, j, r, s<2^{p}$;

- $C=16^{200}$;

$$
|\alpha-\log (\beta)|>\left(p 2^{p}\right)^{-C p \log p}
$$

Application: To evaluate In et exp in double precision $(p=53)$ with correct rounding, it suffices to compute an approximation accurate to around

A bound derived from a result due to Baker (1975)

■ $\alpha=i / j, \beta=r / s$, with $i, j, r, s<2^{p}$;

- $C=16^{200}$;

$$
|\alpha-\log (\beta)|>\left(p 2^{p}\right)^{-C p \log p}
$$

Application: To evaluate In et exp in double precision $(p=53)$ with correct rounding, it suffices to compute an approximation accurate to around

$$
10^{244} \text { bits }
$$

A bound derived from a result due to Baker (1975)

■ $\alpha=i / j, \beta=r / s$, with $i, j, r, s<2^{p}$;

- $C=16^{200}$;

$$
|\alpha-\log (\beta)|>\left(p 2^{p}\right)^{-C p \log p}
$$

Application: To evaluate In et exp in double precision $(p=53)$ with correct rounding, it suffices to compute an approximation accurate to around

$$
10^{244} \text { bits }
$$

Fortunately, in practice, much less (≈ 100).

Some insight, but no proof. . .

- the infinitely precise significand y of $f(x)$ has the form:
kbits
$y=y_{0} . y_{1} y_{2} \cdots y_{p-1} \overbrace{01111111 \cdots 11}$ xxxxx \cdots
with $k \geq 1$.
kbits
$y=y_{0} . y_{1} y_{2} \cdots y_{p-1} \overbrace{10000000 \cdots 00} x x x x x \cdots$
- Assuming that after the $p^{\text {th }}$ position the " 1 " and " 0 " are equally likely, the "probability" of having $k \geq k_{0}$ is $2^{1-k_{0}}$;
■ if we consider N input FP numbers, around $N \times 2^{1-k_{0}}$ values for which $k \geq k_{0}$;
\rightarrow no longer happens as soon as k_{0} is significantly larger than $\log _{2}(N)$ (for one given value of the exponent, as soon as $k_{0} \gg p$).

Worst cases for double precision

■ Lefèvre's method: split the domain \rightarrow piecewise linear approximation to the functions for a pre-filtering, so that there remain only a few cases to be checked with big precision;

- pre-filtering: variant of the Euclidean algorithm;

■ double precision: why?

- by far the most used;
- computing all sines of the 2^{32} single-precision numbers: a few hours only;
- precisions higher than double seem out of reach (maybe double extended in a few years, thanks to Moore's law).
■ algorithm of better complexity, based on LLL: Stehlé, Lefèvre, Zimmermann. Similar in practice.

Worst cases for double precision

- grid: FP numbers and "breakpoints";
- scaling \rightarrow integers;
- is the line very close to a point of the grid?
- it is very likely that the answer is "no".
tiny $a n-b \bmod 1$

an $\bmod 1$

- infinitely many times: two lengths;
$\square h_{i+1}=\max \left(h_{i}-\ell_{i}, \ell_{i}\right), \ell_{i+1}=\min \left(h_{i}-\ell_{i}, \ell_{i}\right) \rightarrow G C D$.

Smallest distance between an mod 1 and $b, n<T$?

- don't build all the points: just count them (to stop as soon as more than T);
- just build the two points that surround b, and update the distance to the left one;

Complexity ?

- $N=2^{p}$ points;
- scaling $P(t)=N f(t / N) \rightarrow$ integers;
- T points in each subinterval;
- accuracy of the filtering:

$$
|P(t) \quad \bmod 1|<\frac{1}{M},
$$

- if $f(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots$,

$$
\left|a_{2} \frac{T^{2}}{N}\right|<\frac{1}{M}
$$

■ we expect T / M cases in each subinterval \rightarrow we assume $T \ll M$;

- gives $T \ll N^{1 / 3}$;
- we have to consider $N / T \approx N^{2 / 3}$ subintervals.

Table: Worst cases for exponentials of double precision FP numbers.

Interval	worst case (binary)
$\left[-\infty,-2^{-30}\right]$	$\begin{aligned} & \exp \left(-1.1110110100110001100011101111101101100010011111101010 \times 2^{-27}\right) \\ & =1.111111111111111111111111100 \cdots 0111000100 \quad 1 \quad 1^{59} 0001 \ldots \times 2^{-1} \end{aligned}$
$\left[-2^{-30}, 0\right)$	$\exp \left(-1.0001 \times 2^{-51}\right)$ $=1.11111111111111 \cdots 1111111111111100 \quad 0 \quad 0^{100} 1010 \ldots \times 2^{-1}$
$\left(0,+2^{-30}\right]$	$\exp \left(1.11 \times 2^{-53}\right)$ $=$ $1.000 \quad 1 \quad 1^{104} 0101 \ldots$
$\left[2^{-30},+\infty\right]$	$\left.\begin{array}{rl} & \exp \left(1.0111111111111110011111111111111011100000000000100100 \times 2^{-32}\right) \\ = & 1.000000000000000000000000000000010111111111111101000 \\ & \exp (1.1000000000000001011111111111111011011111111111011100\end{array} 0^{57} 1101 \ldots 2^{-32}\right)$

Table: Worst cases for logarithms of double precision FP numbers.

Interval	worst case (binary)
$\left[2^{-1074}, 1\right)$	$\log \left(1.1110101001110001110110000101110011101110000000100000 \times 2^{-509}\right)$ $=$ $-101100000.00101001011010100110011010110100001011111111 \quad 1 \quad 1^{60} 0000 \ldots$
	$\begin{aligned} & \log \left(1.1001010001110110111000110000010011001101011111000111 \times 2^{-384}\right) \\ = & -100001001.10110110000011001010111101000111101100110101 \quad 1 \quad 0^{60} 1010 \ldots \end{aligned}$
	$\begin{aligned} & \log \left(1.0010011011101001110001001101001100100111100101100000 \times 2^{-232}\right) \\ = & -10100000.101010110010110000100101111001101000010000100 \quad 0 \quad 0^{60} 1001 \ldots \end{aligned}$
	$\begin{aligned} & \log \left(1.0110000100111001010101011101110010000000001011111000 \times 2^{-35}\right) \\ = & -10111.111100000010111110011011101011110110000000110101 \quad 0 \quad 1^{60} 0011 \ldots \end{aligned}$
$\left(1,2^{\mathbf{1 0 2 4}}\right]$	$\begin{aligned} & \log \left(1.0110001010101000100001100001001101100010100110110110 \times 2^{678}\right) \\ = & 111010110.01000111100111101011101001111100100101110001 \quad 0 \quad 0^{64} 1110 \ldots \end{aligned}$

Conclusion

- $N=2^{p} \mathrm{FP}$ values $\rightarrow O\left(N^{2 / 3}\right)$ sub-intervals;

■ work by Stehlé, Lefèvre, Zimmermann and Hanrot using lattice reduction: better complexity $O\left(N^{3 / 5+\epsilon}\right)$, but a big hidden constant.

- correct rounding of the most usual functions is feasible at reasonable cost;
- recommended in the current draft of the IEEE 754 revision;
- CRLIBM library available at
https://lipforge.ens-lyon.fr/projects/crlibm/ (within 10\% from LIBM)

Thank you!

