Exact computations with approximate arithmetic

Jean-Michel Muller CNRS - Laboratoire LIP (CNRS-INRIA-Université de Lyon) october 2007

http://perso.ens-lyon.fr/jean-michel.muller/

used everywhere in scientific calculation;

•
$$x = m_x \times \beta^{e_x};$$

• "fuzzy" approach: computed value of $x + y = (x + y)(1 + \epsilon)$.

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

used everywhere in scientific calculation;

•
$$x = m_x \times \beta^{e_x};$$

• "fuzzy" approach: computed value of $x + y = (x + y)(1 + \epsilon)$. Better approach ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Needs ? A few figures...

span:

$\frac{\text{Estimated diameter of observable universe}}{\text{Planck's length}} \approx 10^{62}$

Needs ? A few figures...

span:

$\frac{\text{Estimated diameter of observable universe}}{\text{Planck's length}} \approx 10^{62}$

 accuracy: some predictions of general relativity or quantum mechanics verified within relative accuracy 10⁻¹⁴

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

span:

$\frac{\text{Estimated diameter of observable universe}}{\text{Planck's length}} \approx 10^{62}$

- accuracy: some predictions of general relativity or quantum mechanics verified within relative accuracy 10⁻¹⁴
- intermediate calculations: quad precision and smart tricks required for very-long term stability of the Solar system (J. Laskar, Paris Observatory).
 Good news: we seem to be safe for the next 40 million years;

 Pentium 1 division bug: 8391667/12582905 gave 0.666869 ···· instead of 0.666910 ···;

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の < 0

 Pentium 1 division bug: 8391667/12582905 gave 0.666869 ···· instead of 0.666910 ···;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

 On some Cray computers, it was possible to get an overflow when multiplying by 1;

 Pentium 1 division bug: 8391667/12582905 gave 0.666869 ···· instead of 0.666910 ···;

- On some Cray computers, it was possible to get an overflow when multiplying by 1;
- Maple version 7.0, enter $\frac{5001!}{5000!}$ and you get 1 instead of 5001;

 Pentium 1 division bug: 8391667/12582905 gave 0.666869 · · · instead of 0.666910 · · · ;

(ロ) (部) (E) (E) E のQC

- On some Cray computers, it was possible to get an overflow when multiplying by 1;
- Maple version 7.0, enter $\frac{5001!}{5000!}$ and you get 1 instead of 5001;
- Version 6.0 was even worse. Enter 214748364810, you get 10.
 Note that 2147483648 = 2³¹.

 Pentium 1 division bug: 8391667/12582905 gave 0.666869 · · · instead of 0.666910 · · · ;

- On some Cray computers, it was possible to get an overflow when multiplying by 1;
- Maple version 7.0, enter $\frac{5001!}{5000!}$ and you get 1 instead of 5001;
- Version 6.0 was even worse. Enter 214748364810, you get 10.
 Note that 2147483648 = 2³¹.
- Excel'2007, compute 65535 2⁻³⁷, you get 100000;

Floating-Point System

Parameters:

 $\left\{ egin{array}{ll} {
m base} & eta \geq 2 \ {
m precision} & p \geq 1 \ {
m extremal exponents} & E_{\min}, E_{\max} \end{array}
ight.$

A finite FP number x is represented by 2 integers:

• integral significand: M, $|M| \leq \beta^p - 1$;

• exponent
$$e, E_{\min} \le e \le E_{\max}$$

such that

$$x = M \times \beta^{e+1-p}$$

Real significand, or significand of x the number

$$m=M\times\beta^{1-p},$$

so that $x = m \times \beta^e$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which $1 \le m < \beta$. It is the one for which the exponent is minimum.

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which $1 \le m < \beta$. It is the one for which the exponent is minimum.

Base 2, the leftmost bit of the significand of a normal number is a "1" \rightarrow no need to store it (implicit 1 convention).

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which $1 \le m < \beta$. It is the one for which the exponent is minimum.

Base 2, the leftmost bit of the significand of a normal number is a "1" \rightarrow no need to store it (implicit 1 convention). A subnormal number has the form

$$M imes \beta^{E_{\min}+1-p}$$
.

with $|M| \leq \beta^{p-1} - 1$. Such a number has no normal representation. Corresponds to $\pm 0.xxxxxx \times \beta^{E_{\min}}$.

IEEE-754 Standard for FP Arithmetic (1985)

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats;
- specification of operations and conversions;
- exception handling (max+1, 1/0, $\sqrt{-2}$, 0/0, etc.);
- under revision.

IEEE-754 Standard for FP Arithmetic (1985)

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats;
- specification of operations and conversions;
- exception handling (max+1, 1/0, $\sqrt{-2}$, 0/0, etc.);
- under revision.

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

Definition 1 (Correct rounding)

The user defines an active rounding mode among:

- round to the nearest (default) in case of a tie, value whose integral significand is even;
- round towards $+\infty$.
- round towards $-\infty$.
- round towards zero.

An operation whose entries are FP numbers must return what we would get by infinitely precise operation followed by rounding.

IEEE-754 (1985): Correct rounding for +, -, \times , \div , \checkmark and some conversions. Advantages:

- if the result of an operation is exactly representable, we get it;
- if we just use the 4 arith. operations and √, deterministic arithmetic: one can elaborate algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- playing with rounding towards $+\infty$ and $-\infty \rightarrow$ certain lower and upper bounds: interval arithmetic.

FP arithmetic becomes a mathematical structure in itself, that can be studied.

First result: representability. RN(x) is x rounded to the nearest.

Lemma 2

Let a and b be two FP numbers. Let

s = RN(a+b)

and

$$r=(a+b)-s.$$

if no overflow when computing s, then r is a FP number.

Proof: Assume $|a| \ge |b|$,

1 s is "the" FP number nearest $a + b \rightarrow$ it is closest to a + bthan a is. Hence $|(a + b) - s| \le |(a + b) - a|$, therefore

 $|r| \leq |b|.$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の � ♡

Proof: Assume $|a| \ge |b|$,

1 *s* is "the" FP number nearest $a + b \rightarrow$ it is closest to a + b than *a* is. Hence $|(a + b) - s| \le |(a + b) - a|$, therefore

 $|r|\leq |b|.$

2 denote $a = M_a \times \beta^{e_a - p + 1}$ and $b = M_b \times \beta^{e_b - p + 1}$, with $|M_a|, |M_b| \le \beta^p - 1$, and $e_a \ge e_b$. a + b is multiple of $\beta^{e_b - p + 1} \Rightarrow s$ and r are multiple of $\beta^{e_b - p + 1}$ too $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

$$r = R \times \beta^{e_b - p + 1}$$

but, $|r| \le |b| \Rightarrow |R| \le |M_b| \le \beta^p - 1 \Rightarrow r$ is a FP number.

Theorem 3 (Fast2Sum (Dekker))

 $\beta \leq 3$, subnormal numbers available. Let a and b be FP numbers, with exponents s.t. $e_a \geq e_b$ (if $|a| \geq |b|$, will be satisfied). Following algorithm: s and r such that

- s + r = a + b exactly;
- s is "the" FP number that is closest to a + b.

Algorithm 1 (FastTwoSum)	C Program 1
$s \leftarrow RN(a+b)$	s = a+b;
$z \leftarrow RN(s-a)$	z = s-a;
$r \leftarrow RN(b-z)$	r = b-z;

Proof: Show that s - a and b - z are exactly representable.

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

no need to compare a and b;

- no need to compare a and b;
- 6 operations instead of 3 yet very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

Algorithm 2 (TwoSum) $s \leftarrow RN(a+b)$ $a' \leftarrow RN(s-b)$

$$b' \leftarrow RN(s - a')$$

$$\delta_a \leftarrow RN(a - a')$$

$$\delta_b \leftarrow RN(b - b')$$

$$r \leftarrow RN(\delta_a + \delta_b)$$

- no need to compare a and b;
- 6 operations instead of 3 yet very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

Δ	gorit	hm 2	(TwoSum)
	igonti	IIIII <i>2</i>	(IwoSum)

$$s \leftarrow RN(a+b)$$

$$a' \leftarrow RN(s-b)$$

$$b' \leftarrow RN(s-a')$$

$$\delta_a \leftarrow RN(a-a')$$

$$\delta_b \leftarrow RN(b-b')$$

$$r \leftarrow RN(\delta_a + \delta_b)$$

Knuth: $\forall \beta$, if no underflow nor overflow occurs then a + b = s + r, and s is nearest a + b.

- no need to compare a and b;
- 6 operations instead of 3 yet very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

A	gorit	hm 2	(TwoSum))

$$s \leftarrow RN(a+b)$$

$$a' \leftarrow RN(s-b)$$

$$b' \leftarrow RN(s-a')$$

$$\delta_a \leftarrow RN(a-a')$$

$$\delta_b \leftarrow RN(b-b')$$

$$r \leftarrow RN(\delta_a + \delta_b)$$

Knuth: $\forall \beta$, if no underflow nor overflow occurs then a + b = s + r, and s is nearest a + b.

Boldo et al: (formal proof) in radix 2, underflow does not hinder the result (overflow does).

Formal proofs (in Coq) of many useful such algorithms: http://lipforge.ens-lyon.fr/www/pff/Fast2Sum.html.

How about products ?

- FMA: fused multiply-add, computes RN (ab + c). RS6000, Itanium and PowerPC. Will be in IEEE 754-R;
- if a and b are FP numbers, then r = ab RN (ab) is a FP number;
- obtained by Algorithm TwoMultFMA $\begin{cases} p = RN(ab) \\ r = RN(ab-p) \\ \end{pmatrix}$ $\rightarrow \text{two operations only. } p + r = ab.$
- without a fma, Dekker algorithm: 17 operations (7 \times , 10 \pm).

Itanium 2

PowerPC 5

Compensated summation methods (Kahan, Priest, Rump...)

- $S + (r_1 + r_2 + \cdots + r_{n-1}) = a_1 + a_2 + \cdots + a_{n-1}$ exactly;
- 1st solution: compute $S + (r_1 + r_2 + \cdots + r_{n-1})$ as usual. If all a_i s have same sign, in double precision ($\beta = 2, p = 53$) and RN, one can add $\sqrt{2} \times 2^{26}$ values and get error \leq weight of last bit;
- 2nd solution: use again the same trick for adding the r_i 's

Evaluating powers

Algorithm 3 (DblMult $(a_h, a_\ell, b_h, b_\ell)$)

Computes approx. to $(a_h + a_\ell)(b_h + b_\ell)$.

Not an exact product!

Algorithm 4 (LogPower(x, n), $n \ge 1$)

$$\begin{split} i &:= n; \\ (h, \ell) &:= (1, 0); \\ (u, v) &:= (x, 0); \\ \text{while } i > 1 \text{ do} \\ \text{ if } (i \text{ mod } 2) &= 1 \text{ then} \\ (h, \ell) &:= DblMult(h, \ell, u, v); \\ \text{ end;} \\ (u, v) &:= DblMult(u, v, u, v); \\ i &:= \lfloor i/2 \rfloor; \\ \text{ end do;} \\ \text{ return } DblMult(h, \ell, u, v); \end{split}$$

If algorithm LogPower is run in double-extended precision $(\beta = 2, p = 64)$, and $3 \le n \le 284$, then by rounding the final value to the nearest double-precision number, we get a correctly rounded result.

- rather error-prone error analysis;
- special algorithm for computing hardest-to-round cases;

For $3 \le n \le 284$, the hardest-to-round case for x^n is for n = 51. It is

x = 1.010001011110101101101101001111110010100011101101

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Joint work with Sylvie Boldo (2005);
- $\beta = 2$, $p \ge 3$, fma, no underflow nor overflow;
- a, x, y: FP numbers;
- a fma computes $r_1 = RN(ax + y)$;
- Two questions:
 - how many FP numbers are necessary for representing $r_1 (ax + y)$?
 - can these numbers be easily computed?

- Joint work with Sylvie Boldo (2005);
- $\beta = 2$, $p \ge 3$, fma, no underflow nor overflow;
- *a*, *x*, *y*: FP numbers;
- a fma computes $r_1 = RN(ax + y)$;
- Two questions:
 - how many FP numbers are necessary for representing $r_1 (ax + y)$?

can these numbers be easily computed?

Answers:

- Joint work with Sylvie Boldo (2005);
- $\beta = 2$, $p \ge 3$, fma, no underflow nor overflow;
- *a*, *x*, *y*: FP numbers;
- a fma computes $r_1 = RN(ax + y)$;
- Two questions:
 - how many FP numbers are necessary for representing $r_1 (ax + y)$?

can these numbers be easily computed?

Answers:

two numbers;

- Joint work with Sylvie Boldo (2005);
- $\beta = 2$, $p \ge 3$, fma, no underflow nor overflow;
- *a*, *x*, *y*: FP numbers;
- a fma computes $r_1 = RN(ax + y)$;
- Two questions:
 - how many FP numbers are necessary for representing $r_1 (ax + y)$?
 - can these numbers be easily computed?
- Answers:
 - two numbers;
 - you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2 additions, 1 FastTwoSum);

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Joint work with Sylvie Boldo (2005);
- $\beta = 2$, $p \ge 3$, fma, no underflow nor overflow;
- *a*, *x*, *y*: FP numbers;
- a fma computes $r_1 = RN(ax + y)$;
- Two questions:
 - how many FP numbers are necessary for representing $r_1 (ax + y)$?
 - can these numbers be easily computed?
- Answers:
 - two numbers;
 - you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2 additions, 1 FastTwoSum);
 - I did not trust our proof before Sylvie wrote it in Coq.

Humans don't need computers to do silly things

 The Mars Climate Orbiter probe crashed on Mars in 1999;

イロト イヨト イヨト イヨト

- 3

Humans don't need computers to do silly things

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;

Humans don't need computers to do silly things

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;
- the other team assumed it was the foot.

イロト イヨト イヨト イヨト

Multiplication by "infinitely precise" constants

- Joint work with Nicolas Brisebarre;
- We want RN (Cx), where x is a FP number, and C a real constant (i.e., known at compile-time).
- Typical values of C: π , $1/\pi$, ln(2), ln(10), e, 1/k!, $B_k/k!$, $1/10^k$, $\cos(k\pi/N)$ and $\sin(k\pi/N)$, ...
- another frequent case: $C = \frac{1}{\text{FP number}}$ (division by a constant);

◆□ → <□ → < Ξ → < Ξ → < Ξ → のへの</p>

The naive method

• replace C by
$$C_h = RN(C)$$
;

• compute $RN(C_hx)$ (instruction y = Ch * x).

p	Prop. of correctly- rounded results	
5	0.93750	
6	0.78125	
7	0.59375	
• • •	•••	
16	0.86765	
17	0.73558	
24	0.66805	

Proportion of FP numbers x for which $RN(C_hx) = RN(Cx)$ for $C = \pi$ and various p.

- Cx with correct rounding (assuming rounding to nearest even);
- C is not a FP number;
- A correctly rounded fma instruction is available. Operands stored in a binary FP format of precision p;
- We assume that the two following FP numbers are pre-computed:

$$\begin{cases} C_h = \operatorname{RN}(C), \\ C_\ell = \operatorname{RN}(C - C_h), \end{cases}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● のへの

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result: u₂.

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result: u₂.

• Warning! There exist C and x s.t. $u_2 \neq \text{RN}(Cx)$ – easy to build;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Algorithm 5 (Multiplication by \overline{C} with a product and an fma)

From x, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result: u₂.

- Warning! There exist C and x s.t. $u_2 \neq \text{RN}(Cx)$ easy to build;
- Without l.o.g., we assume that 1 < x < 2 and 1 < C < 2, that C is not exactly representable, and that C − C_h is not a power of 2;

Algorithm 5

From x, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result: u₂.

Two methods for checking if $\forall x, u_2 = RN(Cx)$.

- Method 1: simple but does not always give a complete answer;
- Method 2: gives all "bad cases", or certify that there are none, i.e. that the algorithm always returns RN (*Cx*).

Bound on maximum possible distance between u_2 and Cx:

Property 1

For all FP number x, we have

$$|u_2 - Cx| < \frac{1}{2} ulp(u_2) + 2 ulp(C_\ell).$$

ulp(t) (unit in the last place) = distance between consecutive FP numbers around t. Correct rounding \leftrightarrow error $\leq \frac{1}{2}$ ulp.

$$\mathsf{ulp}\;(t_0.t_1t_2\cdots t_{p-1}\times 2^{e_t})=2^{e_t-p}$$

-26.

Analyzing the algorithm

Reminder: $|u_2 - Cx| < \frac{1}{2} \operatorname{ulp}(u_2) + \eta$ with $\eta = 2 \operatorname{ulp}(C_{\ell})$.

• We know that C_x is within $1/2 \operatorname{ulp}(u_2) + 2 \operatorname{ulp}(C_\ell)$ from the FP number u_2 .

- We know that C_x is within $1/2 \operatorname{ulp}(u_2) + 2 \operatorname{ulp}(C_\ell)$ from the FP number u_2 .
- If we prove that Cx cannot be at a distance $\leq \eta = 2 \operatorname{ulp}(C_{\ell})$ from the middle of two consecutive FP numbers, then u_2 will be the FP number that is closest to Cx.

A reminder on continued fractions

We will use the following well-known results:

Theorem 4

Let $(p_j/q_j)_{j\geq 1}$ be the convergents of β . For any (p,q), with $0 \leq q < q_{n+1}$, we have

$$|p-\beta q|\geq |p_n-\beta q_n|.$$

Theorem 5

Let p, q be nonzero integers, with gcd(p, q) = 1. If

$$\left|\frac{p}{q} - \beta\right| < \frac{1}{2q^2}$$

then p/q is a convergent of β .

Method 1: use of Theorem 4

■ Remark: Cx can be in [1,2) or [2,4) → two (very similar) cases;

• define
$$x_{\text{cut}} = 2/C$$
. Let $X = 2^{p-1}x$ and $X_{\text{cut}} = \lfloor 2^{p-1}x_{\text{cut}} \rfloor$.

• we detail the case $x < x_{cut}$ below.

Middle of two consecutive FP numbers around Cx: $\frac{2A+1}{2^p}$ where $A \in \mathbb{Z}$, $2^{p-1} \le A \le 2^p - 1 \rightarrow$ we try to know if there can be such an A such that

$$\left|Cx-\frac{2A+1}{2^{p}}\right|<\eta.$$

This is equivalent to

$$|2CX - (2A + 1)| < 2^{p}\eta.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● のへの

We want to know if there exists X between 2^{p-1} and X_{cut} and A between 2^{p-1} and $2^p - 1$ such that

$$|2CX - (2A + 1)| < 2^{p}\eta.$$

• $(p_i/q_i)_{i\geq 1}$: convergents of 2C; • k: smallest integer such that $q_{k+1} > X_{cut}$, • define $\delta = |p_k - 2Cq_k|$. Theorem $4 \Rightarrow \forall B, X \in \mathbb{Z}$, with $0 < X \le X_{cut} < q_{k+1}$, $|2CX - B| \ge \delta$.

・ロト ・回ト ・ヨト ・ヨー ・ シヘマ

Therefore

- If $\delta \ge 2^{p}\eta$ then $|Cx A/2^{p}| < \eta$ is impossible \Rightarrow the algorithm returns RN (*Cx*) for all $x < x_{cut}$;
- 2 if $\delta < 2^p \eta$, we try the algorithm with $x = q_k 2^{-p+1} \rightarrow$ either we get a counter-example, or we cannot conclude

Case $x > x_{cut}$: similar (convergents of C instead of those of 2C)

Example: $C = \pi$, double precision (p = 53)

> method1(Pi/2,53); Ch = 884279719003555/562949953421312 Cl = 4967757600021511/81129638414606681695789005144064 xcut = 1.2732395447351626862, Xcut = 5734161139222658 eta = .8069505497e-32 pk/qk = 6134899525417045/1952799169684491 delta = .9495905771e-16 OK for X < 5734161139222658 etaprime = .1532072145e-31 pkprime/qkprime = 12055686754159438/7674888557167847 deltaprime = .6943873667e-16 OK for DX for 1234161139222658 < x < 9007199254740992</pre>

⇒ We always get a correctly rounded result for $C = 2^k \pi$ and p = 53, with $C_h = 2^{k-48} \times 884279719003555$ and $C_\ell = 2^{k-105} \times 4967757600021511$.

Consequence 1

Correctly rounded multiplication by π : in double precision one multiplication and one fma.

Again, two cases. Here: x > x_{cut} (case x < x_{cut} = 2/C similar);

- Again, two cases. Here: x > x_{cut} (case x < x_{cut} = 2/C similar);
- We recall the notations: $C_h = \text{RN}(C), C_{\ell} = \text{RN}(C C_h),$

$$\begin{cases} u_1 = \mathsf{RN}(C_{\ell}x), \\ u_2 = \mathsf{RN}(C_hx + u_1). \end{cases}$$

• Again,
$$X_{\text{cut}} = 2^{p-1} x_{\text{cut}};$$

- Again, two cases. Here: x > x_{cut} (case x < x_{cut} = 2/C similar);
- We recall the notations: $C_h = \text{RN}(C), C_{\ell} = \text{RN}(C C_h),$

$$\begin{cases} u_1 = \mathsf{RN}(C_{\ell}x), \\ u_2 = \mathsf{RN}(C_hx + u_1) \end{cases}$$

- Again, $X_{\text{cut}} = 2^{p-1} x_{\text{cut}}$;
- We want to determine integers X, $X_{\text{cut}} \leq X \leq 2^p 1$ s.t. $\exists A \in \mathbb{Z}, 2^{p-1} \leq A \leq 2^p - 1$ with

$$\left|C\frac{X}{2^{p-1}}-\frac{2A+1}{2^{p-1}}\right|\leq 2\operatorname{ulp}(C_{\ell}).$$

- Again, two cases. Here: x > x_{cut} (case x < x_{cut} = 2/C similar);
- We recall the notations: $C_h = \text{RN}(C), C_{\ell} = \text{RN}(C C_h),$

$$\begin{cases} u_1 = \mathsf{RN}(C_{\ell}x), \\ u_2 = \mathsf{RN}(C_hx + u_1) \end{cases}$$

- Again, $X_{\text{cut}} = 2^{p-1} x_{\text{cut}};$
- We want to determine integers X, $X_{\text{cut}} \leq X \leq 2^p 1$ s.t. $\exists A \in \mathbb{Z}, 2^{p-1} \leq A \leq 2^p - 1$ with

$$\left| C \frac{X}{2^{p-1}} - \frac{2A+1}{2^{p-1}} \right| \le 2 \operatorname{ulp}(C_{\ell}).$$

Once we know the X candidate, we compute u₂ and RN (Cx) to check if they coincide or not.

• We are looking for $x = X/2^{p-1}$, $X_{cut} \le X \le 2^p - 1$ s.t. $\exists A$ with

$$\left| C \frac{X}{2^{p-1}} - \frac{2A+1}{2^{p-1}} \right| \le 2 \operatorname{ulp}(C_{\ell}).$$
 (1)

• We are looking for $x = X/2^{p-1}$, $X_{cut} \le X \le 2^p - 1$ s.t. $\exists A$ with

$$\left|C\frac{X}{2^{p-1}} - \frac{2A+1}{2^{p-1}}\right| \le 2 \operatorname{ulp}(C_{\ell}).$$
 (1)

• We know that $ulp(C_{\ell}) \leq 2^{-2p}$;

• We are looking for $x = X/2^{p-1}$, $X_{cut} \le X \le 2^p - 1$ s.t. $\exists A$ with

$$\left|C\frac{X}{2^{p-1}} - \frac{2A+1}{2^{p-1}}\right| \le 2 \operatorname{ulp}(C_{\ell}).$$
 (1)

(ロ) (四) (主) (主) (主) のへで

-35-

• We know that $ulp(C_{\ell}) \leq 2^{-2p}$;

• Two cases: $ulp(C_{\ell}) \leq 2^{-2p-1}$ and $ulp(C_{\ell}) = 2^{-2p}$.

First, we assume $ulp(C_{\ell}) \leq 2^{-2p-1}$.

In that case, the integers X that satisfy (1) satisfy

$$\left|2C-\frac{2A+1}{X}\right|<\frac{1}{2X^2}:$$

• (2A+1)/X is a convergent of 2C from Theorem 5.

First, we assume $ulp(C_{\ell}) \leq 2^{-2p-1}$.

In that case, the integers X that satisfy (1) satisfy

$$\left|2C-\frac{2A+1}{X}\right|<\frac{1}{2X^2}:$$

- (2A+1)/X is a convergent of 2C from Theorem 5.
- It suffices then to check all the convergents of 2C of denominator less than or equal to 2^p 1.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 のへで

Now, assume ulp $(C_{\ell}) = 2^{-2p}$.

■ We are led to the following problem: determine the X, X_{cut} ≤ X ≤ 2^p − 1 s.t.

$$\left\{X(C_h+C_\ell)+rac{1}{2^{p+1}}
ight\}\leq rac{1}{2^p},$$

where $\{y\}$ is the fractional part of y: $\{y\} = y - \lfloor y \rfloor$.

- Algorithm (see later) to determine the integers $X, X_{cut} \le X \le 2^p 1$ solution of this inequality;
- check the algorithm (i.e., compute u₂ and compare with RN (Cx)) with these values of X.

Consider the case $C = 4/\pi$ and p = 53

- Method 1 gives a (family of) counterexample(s): $x = 6081371451248382 \times 2^{\pm k}$.
- Method 2 certifies that x = 6081371451248382 × 2^{±k} are the only FP values for which our algorithm fails.

- Maple programs that implement Methods 1 and 2;
- These programs (along with explanations) can be downloaded from

http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html

Some results

С	р	Method 1	Method 2
π	8	Does not	AW
		work for	unless $X =$
		226	226
π	24	unable	AW
π	53	AW	AW
π	64	unable	AW
π	113	AW	AW

Table: The results given for constant C hold for all values $2^{\pm j}C$. "AW" means "always works" and "unable" means "the method is unable to conclude".

Some results

С	p	Method 1	Method 2
$1/\pi$	24	unable	AW
		Does not	AW
$1/\pi$	53	work for	unless $X =$
		6081371451248382	6081371451248382
$1/\pi$	64	AW	AW
$1/\pi$	113	unable	AW
ln 2	24	AW	AW
In 2	53	AW	AW
ln 2	64	AW	AW
ln 2	113	AW	AW

Table: The results given for constant C hold for all values $2^{\pm j}C$.

The two methods make it possible to check whether correctly rounded multiplication by an "infinite precision" constant C is feasible at a low cost (one multiplication and one fma).

- method 1 does not always allow one to conclude, but is quite simple: use it at compile time?
- method 2 always gives the counter-examples or certifies that the algorithm always works.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ ・ りへぐ

- near the end of the process (hopefully);
- main ideas remain the same;
- fma, base 10, some considerations on the elementary functions (sin, cos, exp, log, etc.) and their correct rounding;
- watch http://754r.ucbtest.org/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

The Table Maker's Dilemma

The Table Maker's Dilemma

HANDBOOK OF MATHEMATICAL FUNCTIONS with Formulas, Graphs, and Mathematical Tables

Edited by Milton Abramowitz and Irene A. Stegun

Consider the double precision FP number ($\beta = 2, p = 53$)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

 $2^{53+x} = 9018742077413030.999999999999999999998805240837303\cdots$

Consider the double precision FP number ($\beta = 2, p = 53$)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

 $2^{53+x} = 9018742077413030.999999999999999999998805240837303\cdots$

So what ?

Consider the double precision FP number ($\beta = 2, p = 53$)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

 $2^{53+x} = 9018742077413030.9999999999999999998805240837303\cdots$

So what ?

Hardest-to-round case for function 2^{\times} and double precision FP numbers.

Joint work with Vincent Lefèvre.

The Hall of Shame (Ng)

System	$\sin\left(10^{22}\right)$
exact result	$-0.8522008497671888017727\cdots$
HP 48 GX	-0.852200849762
HP 700	0.0
HP 375, 425t (4.3 BSD)	$-0.65365288\cdots$
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	-0.852200849 · · ·
DECstation 3100	NaN
Casio fx-8100, fx180p, fx 6910 G	Error
TI 89	Trig. arg. too large

No standard for the elementary functions.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

- base 2, precision p;
- FP number x and integer m (with m > p) → one can compute an approximation y to f(x) whose error on the significand is ≤ 2^{-m}.
- can be done with a possible wider format, or using algorithms such as TwoSum, TwoMultFMA, Dekker product, etc.
- getting a correct rounding of f(x) from y: not possible if y is too close to a breakpoint: a point where the rounding function changes.

◆□ → ◆□ → ◆三 → ◆三 → ○ ●

Correct rounding of the elementary functions

Finding m beyond which there is no problem ?

function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,

Finding m beyond which there is no problem ?

- function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
- Lindemann's theorem (z ≠ 0 algebraic ⇒ e^z transcendental)
 → except for straightforward cases (e⁰, ln(1), sin(0), ...), if x is a FP number, there exists an m, say m_x, s.t. rounding the m_x-bit approximation ⇔ rounding f(x);

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
- Lindemann's theorem ($z \neq 0$ algebraic $\Rightarrow e^z$ transcendental) \rightarrow except for straightforward cases (e^0 , $\ln(1)$, $\sin(0)$, ...), if x is a FP number, there exists an m, say m_x , s.t. rounding the m_x -bit approximation \Leftrightarrow rounding f(x);
- finite number of FP numbers $\rightarrow \exists m_{\max} = \max_x(m_x)$ s.t. $\forall x$, rounding the m_{\max} -bit approximation to f(x) is equivalent to rounding f(x);

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ 目 のへの

- function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
- Lindemann's theorem (z ≠ 0 algebraic ⇒ e^z transcendental)
 → except for straightforward cases (e⁰, ln(1), sin(0), ...), if x is a FP number, there exists an m, say m_x, s.t. rounding the m_x-bit approximation ⇔ rounding f(x);
- finite number of FP numbers $\rightarrow \exists m_{\max} = \max_x(m_x)$ s.t. $\forall x$, rounding the m_{\max} -bit approximation to f(x) is equivalent to rounding f(x);
- this reasoning does not give any hint on the order of magnitude of m_{max}. Could be huge.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ 目 のへの

A bound derived from a result due to Baker (1975)

•
$$\alpha = i/j, \ \beta = r/s, \text{ with } i, j, r, s < 2^p;$$

• $C = 16^{200};$
 $|\alpha - \log(\beta)| > (p2^p)^{-Cp \log p}$

Application: To evaluate ln et exp in double precision (p = 53) with correct rounding, it suffices to compute an approximation accurate to around

(ロ) (四) (主) (主) (主) のへで

A bound derived from a result due to Baker (1975)

•
$$\alpha = i/j, \ \beta = r/s, \text{ with } i, j, r, s < 2^p;$$

• $C = 16^{200};$
 $|\alpha - \log(\beta)| > (p2^p)^{-Cp \log p}$

Application: To evaluate ln et exp in double precision (p = 53) with correct rounding, it suffices to compute an approximation accurate to around

10²⁴⁴ bits

(ロ) (四) (主) (主) (主) のへで

•
$$\alpha = i/j, \ \beta = r/s, \text{ with } i, j, r, s < 2^{p};$$

• $C = 16^{200};$
 $|\alpha - \log(\beta)| > (p2^{p})^{-Cp \log p}$

Application: To evaluate ln et exp in double precision (p = 53) with correct rounding, it suffices to compute an approximation accurate to around

10²⁴⁴ bits

Fortunately, in practice, much less (≈ 100).

・ロト・(四)・(日)・(日)・(日)・(日)

Some insight, but no proof...

- if we consider N input FP numbers, around N × 2^{1−k₀} values for which k ≥ k₀;
- \rightarrow no longer happens as soon as k_0 is significantly larger than $\log_2(N)$ (for one given value of the exponent, as soon as $k_0 \gg p$).

Worst cases for double precision

- Lefèvre's method: split the domain → piecewise linear approximation to the functions for a pre-filtering, so that there remain only a few cases to be checked with big precision;
- pre-filtering: variant of the Euclidean algorithm;
- double precision: why ?
 - by far the most used;
 - computing all sines of the 2³² single-precision numbers: a few hours only;
 - precisions higher than double seem out of reach (maybe double extended in a few years, thanks to Moore's law).
- algorithm of better complexity, based on LLL: Stehlé, Lefèvre, Zimmermann. Similar in practice.

Worst cases for double precision

- grid: FP numbers and "breakpoints";
- scaling → integers;
- is the line very close to a point of the grid?
- it is very likely that the answer is "no".

2⇒ 2

tiny $an - b \mod 1$

イロト イヨト イヨト イ

an mod 1

Smallest distance between an mod 1 and b, n < T ?

- don't build all the points: just count them (to stop as soon as more than T);
- just build the two points that surround b, and update the distance to the left one;

イロト イポト イヨト イヨト

Complexity ?

- $N = 2^p$ points;
- scaling $P(t) = Nf(t/N) \rightarrow$ integers;
- T points in each subinterval;
- accuracy of the filtering:

$$|P(t) \mod 1| < \frac{1}{M},$$

if $f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots,$
 $\left| a_2 \frac{T^2}{N} \right| < \frac{1}{M},$

- we expect T/M cases in each subinterval \rightarrow we assume $T \ll M$;
- gives $T \ll N^{1/3}$;
- we have to consider $N/T \approx N^{2/3}$ subintervals.

Table: Worst cases for exponentials of double precision FP numbers.

Interval	worst case (binary)
$[-\infty, -2^{-30}]$	$\exp(-1.11101101001100011000111011111011010010$
	$= 1.1111111111111111111111100 \cdots 0111000100 1 1^{59}0001 \ldots \times 2^{-1}$
$[-2^{-30}, 0)$	$\exp(-1.000000000000000000000000000000000000$
	$= 1.1111111111111111111111111111111100 0 0^{100}1010 \times 2^{-1}$
(0, +2 ⁻³⁰]	$\exp(1.11111111111111111111111111111111111$
	= 1.000000000000000000000000000000000000
[2 ⁻³⁰ , +∞]	exp(1.011111111111111001111111111111111000000
	= 1.000000000000000000000000000000000000
	exp(1.100000000000000101111111111111111111
	= 1.000000000000000000000000000000000000
	exp(1.10011110100111001011101111111010110000010000
	= 1.000000000000000000000000000000000000
	exp(110.000011110101001011110011011110101110111001111
	= 110101100.010100001011010000010011100100

Table: Worst cases for logarithms of double precision FP numbers.

Interval	worst case (binary)
[2 ⁻¹⁰⁷⁴ , 1)	$\log(1.111010100111000111011000010111001110$
[2 , 1)	= -101100000.0010100101101001100110101000010111111
	$\log(1.1001010001110110110001100000100110011$
	= -100001001.1011011000001100101011110100011110110
	$\log(1.00100110111010011100010011010011001001$
	= -10100000.1010101010101000010010111100110100001000100 0
	$\log(1.011000010011100101010101110111001000000$
	= -10111.1111000000101111100110111010111101000000
(1,2 ¹⁰²⁴]	$\log(1.01100010101010001000011000010011011000101$
	= 111010110.01000111100111101011101001111100100

Conclusion

- $N = 2^p$ FP values $\rightarrow O(N^{2/3})$ sub-intervals;
- work by Stehlé, Lefèvre, Zimmermann and Hanrot using lattice reduction: better complexity O(N^{3/5+ϵ}), but a big hidden constant.
- correct rounding of the most usual functions is feasible at reasonable cost;
- recommended in the current draft of the IEEE 754 revision;
- CRLIBM library available at https://lipforge.ens-lyon.fr/projects/crlibm/ (within 10% from LIBM)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● のへで

Thank you!

・ロト ・四ト ・ヨト ・ヨー うへぐ