
Modulo M multiplication-addition:
algorithms and FPGA implementation

J.-L. Beuchat and J.-M. Muller

Variants of a modular multiplication algorithm originally due to Koç

and Hung, that are especially suited for FPGA implementation, and

that allow to compute (XYþW) modulo M, where there is no need to

know M at design-time, are presented. Some results obtained on a

Xilinx Virtex-E FPGA are shown.

Introduction: Modular multiplication is a key step in many crypto-

graphic applications. It is also important for efficiently implementing

residue number system (RNS) arithmetic. Various solutions have

been suggested for implementing modular multiplication hXY iM¼XY

mod M, where M is an n-bit number, among them being use of

Montgomery’s multiplication algorithm [1], or interleaving the multi-

plication with the residual computation. This Letter is devoted to the

second class of methods. More precisely, we are interested in multi-

plication algorithms that derive from Horner’s algorithm:

hXY iM ¼ hð� � � ððxr�1Y Þ � 2 þ xr�2Y Þ � 2 þ � � �Þ � 2 þ x0Y iM

where r is the number of digits of X. These algorithms (in radix 2) use a

recurrence of the form:

Q½r � i� ¼ h2Q½r � i� 1� þ xr�iY iM ð1Þ

where Q[r]¼ 0. Such recurrences can easily be modified to allow the

computation of hXYþWiM. From (1), we get:

Q½r � i� ¼ h2Q½r � iþ 1� þ xr�iY þ wr�iiM ð2Þ

If we add some ‘redundancy’ to the representation of the residue

classes modulo M (i.e. if Q[r� i] belongs to a set of more than M

elements), then determining which small multiple of M must be added to

or subtracted from 2Q[r� i� 1]þ xr�iY to keep a bounded value only

requires examining a few most significant bits of 2Q[r� i� 1]þ xr�iY.

Depending on the target technology, the Q[j]’s can be represented in

redundant (e.g. carry-save) form (typically, for an ASIC implement-

ation), or in conventional non-redundant binary form for an FPGA

implementation. Different variants have been suggested:

(i) Koç and Hung [2] implement (1) in radix 2 with carry-save adders.

They perform up to three subtractions at each step to keep the Q[j]’s

bounded. The operands are in non-redundant form, and the product is

obtained in redundant form. To perform modular exponentiation with

their method, one needs to insert conversions that make a pipeline

implementation inefficient.

(ii) Takagi and Yajima [3] suggest a radix-2 and a radix-4 implement-

ation of the recurrence. The Q[j]’s are represented in a redundant

signed digit system.

(iii) Jeong and Burleson [4] suggest two radix-2 carry-save implement-

ations of a recurrence, later on improved by Kim and Sobelman [5].

We start from a non-redundant version of Kim and Sobelman’s

recurrence. We deal with FPGA implementation of modular multiply

and accumulate operations. FPGAs are arrays of logic cells (CLBs). Our

main target is the Xilinx Virtex-E family of FPGAs. On such circuits,

very efficient ripple carry adders (RCAs) are available, so that using

redundant addition is no longer interesting. The proof of the theorems,

along with a more detailed presentation of our results, can be found in [6].

Radix-2 modular multiplication-addition: Based on Kim and

Sobelman’s work [5], the first modulo M multiplication-addition

algorithm studied in this Letter consists in computing:

T ½r � i� ¼ 2P½r � iþ 1� þ xr�iY þ wr�i

P½r � i� ¼ hT ½r � i�i2n þ jðT ½r � i�div 2nÞ

�
ð3Þ

for i¼ 1 to r, with P[r]¼ 0 and j(k)¼h2n � kiM. If M is known at

design time, the function j can be stored in a small table, the size of

which depends only on the maximal value of T[r� i]div 2n. Since

0� hT[r� i]i2n� 2n� 1 and 0�j(T[r� i]div 2n)�M� 1, we deduce

that P[r� i] is an (nþ 1)-bit number, the range of which is:

0 � P½r � i� � 2n þM � 2 � 2nþ1 � 3

Assume now that 0� Y�M� 1. Substituting P[r� iþ 1]¼

2nþ1
� 3, wr�i¼ 1 and M¼ 2n� 1 into (3) yields an upper bound of

2nþ2
þ 2n� 6 for T[r� i]. Thus T[r� i]div 2n is a 3-bit number less

than or equal to 4, and each bit of j(T[r� i]div 2n) can be computed by

means of a 3-input table. An in-depth study of the recurrence defined by

(3) allows to further reduce the size of the table. Theorem 1 states that

T[r� i] is an (nþ 2)-bit number and describes how to compute

hXYþWiM from P[0].

Theorem 1: Assume that X2N, Y2 {0, . . . , M� 1} and W2N. Then,

the maxima of T[r� i] and P[r� i] are, respectively, defined by

Tmax ¼ 2nþ2
� 3�hni2 and Pmax ¼ (2nþ2

þ 2n� 5� 2 � hni2)=3. Tmax

and Pmax are reached at M¼ [2nþ1=3]þ 1. Furthermore, the algorithm

returns an (nþ 1)-bit number P[0]¼hXYþWiMþ lM, where l satisfies:

0 � l �
2 if 2n�1 þ 1 � M � 2n�1 þ 2n�2 � 1

1 if 2n�1 þ 2n�2 � M � 2n � 1

�

Fig. 1 describes a possible implementation of an iteration stage on a

Virtex-E FPGA. In this example, the operator performs the multi-

plication-addition modulo M1 or M2. A Select signal allows to chose

among these two moduli known at design time. A first RCA carries out

the sum of (2P[r� iþ 1]þwr�i) and xr�iY. Each bit of j is then

computed by means of a 3-input table addressed by the most two

significant bits of T[r� i] and the Select signal. These tables are

embedded in the look-up tables (LUTs) of the second RCA which

adds hT[r� i]i2n and j(T[r� i]div 2n). This iteration stage fits into a

single CLB column, which includes two separate carry chains and

involves only local routing.

Fig. 1 Implementation of iteration stage on Virtex-E FPGA

This first algorithm has a drawback in the sense that P[0] is not a

valid input (Pmax >M� 1). The right-to-left and left-to-right modular

exponentiation algorithms require for instance the computation of

hP[0]2
iM, and a modulo M correction is needed between two consecu-

tive steps. We therefore define a modified iteration:

T 0½r � i� ¼ 2P0½r � iþ 1� þ xr�iY þ wr�i

P0½r � i� ¼ hT 0½r � i�i2n�1 þ cðT 0½r � i�div 2n�1Þ

�
ð4Þ

where P 0[r]¼ 0 and c(k)¼h2n�1
� kiM. Theorem 2 guarantees that

P 0[0] is a valid input and that modular exponentiation does not require

intermediate modulo M corrections.

Theorem 2: Assume that X and W belong to N and that Y is an (nþ 1)-

bit integer satisfying:

0 � Y � Ymax < ð2nþ2 þ 11 � 4 � hni2Þ=3

The maximal values of T 0[r� i] and P 0[r� i] are, respectively, defined

by Tmax
0

¼ 2nþ2
� 1 and Pmax

0
¼ (2nþ2

� 7þ 2 � hni2)=3. Tmax
0 and

ELECTRONICS LETTERS 27th May 2004 Vol. 40 No. 11

Pmax
0 are reached at M¼b(2nþ1

þ 2n�1)=3cþ 1. Furthermore, P 0[0] is

either hXYþWiM or hXYþWiMþM.

We deduce from Theorem 2 that the computation of each bit of c
requires the most three significant bits of T 0[r� i]. If the operator

handles a single modulus known at design time, it is again possible to

implement an iteration stage in a single CLB column on a Virtex-E

device.

Until now, we have assumed that M was a constant and that the

values of j or c were pre-computed and included in the VHDL or

Verilog code. It is however possible to build the table on-the-fly by

means of a subtracter and an adder, and to store the values of j or c in,

respectively, three or six registers.

Theorem 3: Define a(M)¼ 2M� 2n. The functions j and c can be

computed recursively on N* as follows:

jðkÞ ¼
jðk � 1Þ � aðM Þ if jðk � 1Þ � aðM Þ � 0

jðk � 1Þ � aðM Þ þM otherwise

�

and

cðkÞ ¼
cðk � 2Þ � aðM Þ if cðk � 2Þ � aðM Þ � 0

cðk � 2Þ � aðM Þ þM otherwise

�

with j(0)¼c(0)¼ 0 and c(�1)¼M� 2n�1.

Consider the first algorithm described in this Letter and assume that

j(1) is determined in a preprocessing step; j(2) and P[r� 1] are then

computed in parallel. Since 0� Y <M, we deduce from (3) that

0� T[r� 1]�M and the first iteration only involves j(0)¼ 0. It is

obvious that T[r� 1]div 2n¼ 0 and 0�P[r� 1]�M. Consequently,

0� T[r� 2]� 3M� 2nþ1
þ 2n� 3 and the second iteration requires

j(0), j(1) and j(2) which are already stored in the table. The

evaluation of j(3) is again performed in parallel. A similar scheme can

be applied to the second algorithm where c(2) and c(3) are computed

from c(0)¼ 0 and c(1)¼ 2n�1 in a preprocessing step. Then, two values

are computed at each step.

Implementation results and conclusions: A modulo M multiplication-

addition operator consists for instance of a single iteration stage, an

(nþ 1)-bit register to store P[r� i] and a small control unit respon-

sible for the initialisation (P[r]¼ 0). Table 1 summarises some place

and route results. Experiment 1 involves an iteration stage which

performs a modulo M addition according to (2). At the price of a

larger area, we shorten the critical path by computing j on-the-fly and

implementing the algorithm defined by (3) (experiment 2). When the

modulus is a constant, we take advantage of the architecture illu-

strated by Fig. 1 and reduce both area and delay (experiment 3).

Table 1: Area and delay of some modulo M multiplication-addition
operators on XCV300E-7 FPGA (each CLB contains two
slices)

n¼ 8 n¼ 16 n¼ 24 n¼ 32

1
Area [slices] 23 39 56 73

Delay [ns] 16 20 23 24

2
Area [slices] 40 72 105 139

Delay [ns] 12 15 16 16

3
Area [slices] 12 20 30 38

Delay [ns] 10 12 14 16

Our results show that fast modular multiplication can be achieved on

an FPGA, and that the modulus can be an input to the operator: there is

no need to know it at design time.

IEE 2004 17 February 2004

Electronics Letters online no: 20040463

doi: 10.1049/el:20040463

J.-L. Beuchat and J.-M. Muller (Laboratoire de l’Informatique du

Parallélisme, Ecole Normale Supérieure de Lyon, 46, Allée d’Italie,

F-69364 Lyon Cedex 07, France)

E-mail: jean-luc.beuchat@ens-lyon.fr

References

1 Montgomery, P.: ‘Modular multiplication without trial division’, Math.
Comput., 1985, 44, (170), pp. 519–521

2 Koç, C.K., and Hung, C.Y.: ‘Carry-save adders for computing the product
AB modulo N’, Electron. Lett., 1990, 26, (13), pp. 899–900

3 Takagi, N., and Yajima, S.: ‘Modular multiplication hardware algorithms
with a redundant representation and their application to RSA
cryptosystem’, IEEE Trans. Comput., 1992, 41, (7), pp. 887–891

4 Jeong, Y.-J., and Burleson, W.P.: ‘VLSI array algorithms and
architectures for RSA modular multiplication’, IEEE Trans. Very Large
Scale Integr. Syst., 1997, 5, (2), pp. 211–217

5 Kim, S., and Sobelman, G.E.: ‘Digit-serial modular multiplication using
skew-tolerant domino CMOS’. Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing, 2001, (IEEE Computer Society, Arlington, VA,
USA), Vol. 2, pp. 1173–1176

6 Beuchat, J.-L., and Muller, J.-M.: ‘Opérateurs itératifs de multiplication-
addition modulaire pour FPGA’, Tech. 2003–40, Laboratoire de
l’Informatique du Parallélisme, August 2003. Available at http:==
www.ens-lyon.fr=LIP=Pub=Rapports=RR=RR2003=RR2003-40.ps.gz

ELECTRONICS LETTERS 27th May 2004 Vol. 40 No. 11

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

