
Floating-Point Arithmetic and Beyond

ENS Lyon – Nov. 2020

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic

by far the most frequent solution for manipulating real
numbers in computers;

comes from the “scientific notation” used for 3 centuries by the
scientific community;

roughly speaking:
x = ±mx × βex ,

where
β is the base or radix (in general 2 or 10 but more exotic
things have existed)
mx ∈ {0} ∪ [1, β) is the significand (often called mantissa);
ex ∈ Z is the exponent,

. . . but much more will be said later on.

2

Floating-Point Arithmetic

Sometimes a bad reputation. . . for bad reasons:

intrinsically approximate. . .
but most physical data is approximate;
but most numerical problems we deal with have no closed-form
solution;
and in a subtle way (correct rounding), FP arithmetic is exact.

part of the literature comes from times when it was poorly
specified;

too often, viewed as a set of dirty tricks for geeks:. . . but
there are such tricks (see next slide).

3

A very odd trick

0

S E F

0

+ 00011111101110110100111011001100 (« magic constant »

532369100 in decimal)

1-bit right shift

No operation, just consider it is an integer

No operation, just consider it is a FP number

Integer addition

Positive « normal » FP number x

 y ≈ x

A similar trick first appears in

The game Quake III Arena

4

We wish to show that

it is a well specified arithmetic, on which one can build
trustable calculations;

one can formally prove useful properties and build efficient
algorithms on FP arithmetic;

one can prove useful mathematical properties using FP
arithmetic.

5

Desirable properties of an arithmetic system

Speed: tomorrow’s weather must be computed in less than 24
hours;

Accuracy;

Range: represent big and tiny numbers as well;

“Size”: silicon area for hardware, memory consumption;

Power consumption;

Portability: the programs we write on a given system must run
on different systems without requiring huge modifications;

Easiness of implementation and use: If a given arithmetic is
too arcane, nobody will use it.

6

Weird behaviours

1994, Pentium 1 division bug:
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

1996, maiden flight . . . and flop of the Ariane 5 European
rocket: arithmetic overflow

November 1998, USS Yorktown warship, somebody
erroneously entered a “zero” on a keyboard → division by 0 →
series of errors → the propulsion system stopped.

7

Weird behaviours

Maple version 6.0 (2000). Enter 214748364810, you get 10.
Note that 2147483648 = 231;
Excel’2007 (first releases), compute 65535− 2−37, you get
100000;
if you have a Casio FX 83-GT Plus or a FX-92 pocket
calculator, compute 116/13, you will get

156158413
3600

π

You want more ?

8

Other strange things

Setun Computer, Moscow University, 1958. 50 copies;
Base 3 and digits −1, 0 and 1. Numbers represented using 18
“trits”;
idea: base β, n digits → “Cost”: β × n;
minimize β × n with βn ≥ M: as soon as

M ≥ e
5

(2/ ln(2))−(3/ ln(3)) ≈ 1.09× 1014

the optimal β is 3
9

Early representation of the integers

“one, two, three, many”. . .
“unary” representations

systems that make it possible to represent the integers, but are
not convenient for computing. Egyptian example:

10

Egyptian example

number 1234567:

needs infinitely many symbols (one for each power of 10);

solution: the position of a symbol in the representation of a
number indicates of which power of the base it is a multiple.

→ positional number systems

11

Positional number systems

Base 60: Babylon (≈ 4000 years ago)

1+ 24
60 + 51

602 + 10
603 = 1.41421296 · · ·√

2 = 1.41421356 · · ·

Base 20: Mayas;
Base 10: India;
Computer science: base 2 ou 10.

Our positional system makes human computing easy. Is it well
adapted to automated computing? 12

Positional number systems

Base (or radix) β ≥ 2, n digits taken in the digit set
D = {a, a+ 1, a+ 2, . . . , b}, with a ≤ 0 and b > 0. The digit chain

mn−1mn−2 · · ·m1m0

represents the integer

mn−1β
n−1 +mn−2β

n−2 + · · ·+m1β +m0 =
n−1∑
i=0

miβ
i .

Theorem 1

if b− a+ 1 ≥ β then all integers between a · β
n−1
β−1 and b · β

n−1
β−1

can be represented (i.e., by allowing unbounded n, all integers
if a < 0, and all positive integers if a = 0);

if b − a+ 1 = β the representation is unique;

if b − a+ 1 > β some numbers have several representations:
the system is redundant. 13

Positional number systems

14

Positional number systems

15

Positional number systems: particular cases

a = 0 and b = β − 1: conventional base-β representation;
a = 0 and b = β: carry-save representations;
a = −r and b = +r , with r ≥ bβ/2c: signed-digit
representations.

The redundant representations (e.g., carry-save, or signed-digit with
2r + 1 > β) allow for very fast, parallel additions.

Cauchy (1840): base 10, D =

J−5,+5K. Goal: limit carry prop-
agations in multiplications.

Avizienis (1961): parallel addition
algorithm for redundant signed-digit
systems. 16

Exercise

All this is easily generalizable to fractional representations:

xnxn−1xn−2 . . . x0.x−1x−2 . . . x−m =
n∑

i=−m
xiβ

i .

Consider the system β = 3 and digit-set {−1, 0, 1} and the
“truncation at position m” function:

xn . . . x0.x−1x−2 . . . x−mx−m−1x−m−2 . . .→ xn . . . x0.x−1x−2 . . . x−m

show that in this system, truncating at position m is equivalent to
rounding to (the ? a ? discuss) nearest multiple of 3−m. A number
system with that property is called an RN-code.

17

Just a glance on algorithms used in circuits: binary (nonre-
dundant) addition (Base 2, digits 0 and 1)

Elementary addition cell: 3 entries x , y and c , and two outputs s
and c ′, equal to 0 or 1, that satisfy

2c ′ + s = x + y + c .

(here “+” is the addition, not the boolean “or”).

FA

y

c’

s

c

x

FA means “Full Adder Cell”.

The pair (c ′, s) is the binary representation of x + y + c .
Easily implemented with a few logic gates. 18

Just a glance on algorithms used in circuits: binary addition

Input: (xn−1xn−2 · · · x0) and (yn−1yn−2 · · · y0) represented in
binary.
output: (sn−1sn−2 · · · s0) in binary too.
c0 and cn: carry-in and carry-out.

s0s1

c0 = 0

y1x1 y0

sn−1cn

xn−1 yn−1 x0

The Carry-Ripple adder.

Intrinsically sequential algorithm. The delay grows linearly with
the number of digits;
can be improved: we give a simple example now. 19

Conditional sum addition

Many algorithms/architectures for fast addition: we just give a
simple one for illustration;
more efficient algorithms in Knowles’ paper A family of adders.

1001011001011011110001011110001101010010110100101

0110100100111001101001011110010101001011110110110+

Addition of two 2n-bit numbers.
20

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

Each 2n-bit operand split into two n-bit operands.

21

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

1001011001011011110001011

011010010011100110100101

22

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

1001011001011011110001011

011010010011100110100101

+

+

+

0

1

23

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

1001011001011011110001011

011010010011100110100101

+

+

+

0

1

1xxxxxxxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyy

zzzzzzzzzzzzzzzzzzzzzzzzz

24

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

1001011001011011110001011

011010010011100110100101

+

+

+

0

1

1xxxxxxxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyy

zzzzzzzzzzzzzzzzzzzzzzzzz

25

When done recursively. . .

Tn delay of n-bit addition,

Tn = Tn/2 + C ;

recursive implementation: log2(n) steps;

can we do better?

26

Winograd’s theorem

r -circuit, made of r -elements. An r -element is a “logic gate” with
at most r binary inputs, 1 binary output. It generates its output in
a delay τ that does not depend on the inputs or the computed
function.

A boolean function f : {0, 1}m → {0, 1} depends on all its entries if
∀i ∈ J1, nK there exists (x1, x2, . . . xm) s.t.

f (x1, . . . , xi−1, xi , xi+1, . . . , xm) 6= f (x1, . . . , xi−1, xi , xi+1, . . . , xm).

where xi = 1− xi .
27

Winograd’s theorem

Theorem 2
If f : {0, 1}m → {0, 1} depends on all its entries then an r -circuit
requires a delay ≥ dlogr (m)e · τ to compute it.

Remark: Addition depends on all its entries.

28

Sketch of the proof

Time 0: output of the result. It necessarily comes from an
r -element.Circuit

29

Sketch of the proof

Time −τ : at most r terms can have an influence on the final resultCircuit

30

Sketch of the proof

Time −2τ , at most r2 terms can have an influence on the final
result Circuit

31

Sketch of the proof

Time −3τ , at most r3 terms can have an influence on the final
result Circuit

32

Sketch of the proof

Time −kτ , at most rk terms can have an influence on the
final result. We need rk ≥ m.

→ time ≥ dlogr (m)e · τ.

Addition: the 2n bits that represent the inputs of the addition
of two n-bit numbers can influence the leftmost digit of the
result

→ the delay is therefore at least t = kτ , where rk ≥ 2n,

gives
t ≥ τ × logr (2n).

33

Faster than logarithmic-time addition ?

At least one of the conditions of Winograd’s theorem must be
unsatisfied:

Computation with r-elements: allow logic gates with
unbounded number of inputs → carry-lookahead adder.
Unrealistic for large n;

at least one digit of the result does not depend on all the
entries: use a redundant number system.

34

Carry-save arithmetic

base β and digit-set {0, 1, . . . , β};
redundant: the number β can be written 10 or 0β;

widely used in base 2 where each digit di ∈ {0, 1, 2} is
represented by two bits d (1)

i , d
(2)
i ∈ {0, 1} s.t. di = d

(1)
i + d

(2)
i .

Major interest: very fast addition

CarrySave + ConventionalBinary → CarrySave.

(used for instance for building multipliers)

35

Carry-save addition

a = an−1an−2 . . . a0 =
∑n−1

i=0 ai in carry-save arithmetic
(ai = a

(1)
i + a

(2)
i ∈ {0, 1, 2});

b = bn−1bn−2 . . . b0 =
∑n−1

i=0 bi in conventional binary
(bi ∈ {0, 1})

We have
a
(1)
i + a

(2)
i + bi ∈ {0, 1, 2, 3}

→ it can be written 2s(2)i+1 + s
(1)
i with s

(2)
i+1, s

(1)
i = 0 or 1.

→ with the convention s
(1)
n = s

(2)
0 = 0, and denoting

si = s
(2)
i + s

(1)
i , the carry-save number

snsn−1 . . . s0 =
n∑

i=0

(s
(2)
i + s

(1)
i) · 2i =

n−1∑
i=0

(2s(2)i+1 + s
(1)
i) · 2i

represents a+ b. 36

Carry-save addition

The sequential, “ripple-carry” adder, and the carry-save adder:

FA FA FA FA

a3 b3 a2 b2 a1 b1 a0 b0

0

s3 s2 s1 s0

FA FA FA FA

b3 b2 b1 b0a(2)3 a(1)3 a(2)2 a(1)2 a(2)1 a(1)1 a(2)0 a(1)0

00

s(1)3 s(2)3 s(1)2 s(2)2 s(1)1 s(2)1 s(1)0 s(2)0s(1)4 s(2)4

→ delay of an n-bit CS addition = delay of a 1-bit sequential
addition! 37

Carry-save addition

conversion carry save → conventional representation: a
conventional addition;

→ interesting only if the amount of calculation done in carry-save
arithmetic is big in front of an addition;

typical example: multiplication

38

Exercise

how would you add two carry-save numbers ?

Using carry-save arithmetic and the associativity of addition,
show that we can multiply two n-bit numbers in time
proportional to log(n).

39

	Floating-Point Arithmetic

