Floating-Point Arithmetic and Beyon

ENS Lyon — Nov. 2020

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-1lyon.fr/jean-michel.muller/

http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic

@ by far the most frequent solution for manipulating real
numbers in computers;
@ comes from the “scientific notation” used for 3 centuries by the
scientific community;
@ roughly speaking:
x =+m, x %,
where

e [is the base or radix (in general 2 or 10 but more exotic

things have existed)
o my € {0} U[L,p) is the significand (often called mantissa);

e e, € Z is the exponent,

... but much more will be said later on.

Floating-Point Arithmetic

Sometimes a bad reputation. . . for bad reasons:

@ intrinsically approximate. . .

e but most physical data is approximate;
e but most numerical problems we deal with have no closed-form

solution;
e and in a subtle way (correct rounding), FP arithmetic is exact.

@ part of the literature comes from times when it was poorly
specified,;

@ too often, viewed as a set of dirty tricks for geeks:. .. but
there are such tricks (see next slide).

A very odd trick

Positive « normal » FP number x

\ 1-bit right shift A similar trick first appears in
The game Quake Il Arena
* No operation, just consider it is an integer Dreamca5t~ @

@ ARG [AaREN A

|

(« magic constant »

+ 00011111101110110100111011001100 532369100 in decimal)

Integer addition

/ No operation, just consider it is a FP number

Vx

I4—

Q

v

We wish to show that

@ it is a well specified arithmetic, on which one can build
trustable calculations:

@ one can formally prove useful properties and build efficient
algorithms on FP arithmetic;

@ one can prove useful mathematical properties using FP

arithmetic.

Desirable properties of an arithmetic system

@ Speed: tomorrow's weather must be computed in less than 24
hours;

@ Accuracy;

@ Range: represent big and tiny numbers as well;

@ 'Size'": silicon area for hardware, memory consumption;
@ Power consumption;

@ Portability: the programs we write on a given system must run
on different systems without requiring huge modifications;

e Easiness of implementation and use: If a given arithmetic is

too arcane, nobody will use it.

Weird behaviours

N |
s

@ 1994, Pentium 1 division bug:
8391667,/12582905 gave 0.666869 - - -
instead of 0.666910- - -;

@ 1996, maiden flight ...and flop of the Ariane 5 European
rocket: arithmetic overflow

@ November 1998, USS Yorktown warship, somebody
erroneously entered a “zero” on a keyboard — division by 0 —

series of errors — the propulsion system stopped.

Weird behaviours

@ Maple version 6.0 (2000). Enter 214748364810, you get 10.
Note that 2147483648 = 23!;
@ Excel'2007 (first releases), compute 65535 — 2737, you get
100000;
@ if you have a Casio FX 83-GT Plus or a FX-92 pocket
calculator, compute 11°/13, you will get
156158413
3600

You want more 7
X-YL

Other strange things

@ Setun Computer, Moscow University, 1958. 50 copies;

@ Base 3 and digits —1, 0 and 1. Numbers represented using 18
“trits”;

@ idea: base 3, n digits — “Cost™: 8 x n;

@ minimize 8 x n with 8" > M: as soon as

5

M > e@/mEN-G/E) ~ 1.09 x 10

the optimal 3 is 3

Early representation of the integers

@ “one, two, three, many". ..

@ “unary” representations

10

g « 11 ¢ a

1 000 000 100 000 10 000 1000 100 10 1

@ number 1234567:
& 3T NS AAA Y

@ needs infinitely many symbols (one for each power of 10);

@ solution: the position of a symbol in the representation of a
number indicates of which power of the base it is a multiple.

— positional number systems

11

Positional number systems

(= 4000 years ago)

14+ 24 4 %4_% = 1.41421296---
Vo = 1.41421356---

@ Base 20: Mayas;
@ Base 10: India;
@ Computer science: base 2 ou 10.

Our positional system makes easy. Is it well
adapted to computing? 12

Positional number systems

Base (or radix) 8 > 2, n digits taken in the digit set
D={a,a+1,a+2,...,b}, witha<0and b>0. The digit chain

Mp_1Mp_2---M1Mg

represents the integer

Mo 1Bt my 2Bt mBtmo =) mif.
i=0

Theorem 1

Br=1

@ ifb—a+ 1> [then all integers between a - 5 and b- ’8"

can be represented (i.e., by allowing unbounded n, all /ntegers
if a < 0, and all positive integers if a=0);

@ if b— a-+ 1= [3 the representation is unique;

@ ifb—a+ 1> /3 some numbers have several representations:

the system is redundant. 13

Positional number systems

o x - 62 T,
&MQ: MM&'X ,,\.%“f""”‘

l»uctoﬂ- o o .
s a= A Buiuad (T.o= Tob7)
o onauns gtxak
meL._ tji": F 2@@

. S V) W AT S A
ijl{;)\:[:w;ujj = /fi’“‘" L‘B}j

5= [0 /"*Liﬂwuuggrkﬁ T P"'
=)=(a L f_?'
/Q.Aa.[zhtl,dlaL—‘Lﬁm"l :

e
— I,,_,,:lLPﬂ-/ﬂLTD

14

Positional number systems

Wa,,n.w:!t» A\/uw: om“L\on:” Luj&-&«.

csmza..j)f:; TJ)ZL s
a n j—ﬁm j—x_:/l
_ﬁ_f-)y Theq . A
i | oo —] —+ — [
[R— <T> km/
S
W . ro
or

Py a - Fm" " Z}l/{
ng- R = hp *";r "(L‘:)/‘"“ £
= —F ¢ (b- e:}

O\’ a.>f’l‘é>n- JZJLM/ /’ ez
,%XD_ lhu’bo\rm.lfa&/&ﬁﬂl

_JW e ek g

15

Positional number systems: particular cases

@ a=0and b= — 1: conventional base-3 representation;

@ a=0 and b= f3: carry-save representations;

@ a= —rand b= +r, with r > |5/2]: signed-digit
representations.

The redundant representations (e.g., carry-save, or signed-digit with
2r +1 > @) allow for very fast, parallel additions.

llel additi
Cauchy (1840): base 10, D =) paraet y |.|o.n
[-5,45]. Goal: limit algorithm for redundant signed-digit
-5, . Goal: limit carry prop-

systems.

agations in multiplications. 16

Exercise

All this is easily generalizable to fractional representations:

n

i
XnXn—1Xn—2 + « + X0-X—1X—2 . . . X = E xiB3'.

i=—m

Consider the system 8 = 3 and digit-set {—1,0,1} and the
“truncation at position m" function:

Xp oo e XQ-X—1X2 oo . XemXem—1X—m—2 ... 7> Xp...X0-X-1X_2...Xm

show that in this system, truncating at position m is equivalent to
rounding to (the 7 a 7 discuss) nearest multiple of 3=™. A number
system with that property is called an RN-code.

17

Just a glance on algorithms used in circuits: binary (nonre-

dundant) addition (Base 2, digits 0 and 1)

Elementary addition cell: 3 entries x, y and ¢, and two outputs s
and ¢/, equal to 0 or 1, that satisfy

2 +s=x+y+ec.

(here “+" is the addition, not the boolean “or”).

Xy

v v

C<4{ FA |[e—C

t

FA means “Full Adder Cell”.

The pair (¢/,s) is the binary representation of x +y + c.

Easily implemented with a few logic gates. 18

Just a glance on algorithms used in circuits: binary addition

@ Input: (Xp—1Xp—2---xp) and (Vn—1Yn—2 -+ Yo) represented in
binary.

@ output: (Sp,—1Sp—2+--So) in binary too.

@ ¢y and ¢,: carry-in and carry-out.

Xn—1 Yn—-1 X1 N X0 Yo

The Carry-Ripple adder.

o Intrinsically sequential algorithm. The delay grows linearly with
the number of digits;

@ can be improved: we give a simple example now. 19

Conditional sum addition

e Many algorithms/architectures for fast addition: we just give a
simple one for illustration;

@ more efficient algorithms in Knowles' paper A family of adders.

1001011001011011110001011110001101010010110100101

+ 0110100100111001101001011110010101001011110110110

Addition of two 2n-bit numbers.

20

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

Each 2n-bit operand split into two n-bit operands.

21

Conditional sum addition

1001011001011011110001011 110001101010010110100101

011010010011100110100101 1110010101001011110110110

!

1001011001011011110001011

011010010011100110100101

22

Conditional sum addition

0
1001011001011011110001011 110001101010010110100101
+011010010011100110100101 +1110010101001011110110110

1
1001011001011011110001011

+ 011010010011100110100101

23

Conditional sum addition

0
1001011001011011110001011 110001101010010110100101
+011010010011100110100101 +1110010101001011110110110
YYYYYYYYYYYYYYYYYYYYYYYYY TXXXXXXXKKXXKXXXXXKKXXKXXXXX

1
1001011001011011110001011

+ 011010010011100110100101

24

Conditional sum addition

0
1001011001011011110001011 110001101010010110100101
+011010010011100110100101 +1110010101001011110110110
YYYYYYYYYYYYYYYYYYYYYYYYY TXXXXXXXKKXXKXXXXXKKXXKXXXXX

1
1001011001011011110001011

+ 011010010011100110100101

25

When done recursively. . .

e T, delay of n-bit addition,
Th = n/2 + C;

@ recursive implementation: log,(n) steps;

@ can we do better?

26

Winograd’s theorem

r-circuit, made of r-elements. An r-element is a “logic gate” with
at most r binary inputs, 1 binary output. It generates its output in
a delay 7 that does not depend on the inputs or the computed

function.
e T

Vb

toe T4 T

A boolean function f : {0,1}™ — {0,1} depends on all its entries if
Vi € [1, n] there exists (x1,x2,...Xm) s.t.

f(X17 °coo 7XI'717XI'7XI'+17 © 0o 7Xm) 7é f(X]_, © 0o 7XI'7177/7 XI'+17 ©0oo0 7XITI)'

where X; = 1 — x;.
27

Winograd’s theorem

Theorem 2

If f:{0,1}" — {0,1} depends on all its entries then an r-circuit
requires a delay > [log,(m)] - T to compute it.

Remark: Addition depends on all its entries.

FZ
444114 «4)_10000 0
DOBDODO-- 01100

e KX K<k < 2= O11p -~ 0
j AJJ&:(--—i
% %x-:o

28

Sketch of the proof

Time 0: output of the result. It necessarily comes from an
r-element.

29

Sketch of the proof

Time —7: at most r terms can have an influence on the final result

30

Sketch of the proof

Time —27, at most r? terms can have an influence on the final
result

31

Sketch of the proof

Time —37, at most r3 terms can have an influence on the final
result

32

Sketch of the proof

@ Time —k7, at most r¥ terms can have an influence on the
final result. We need rk > m.

— time > [log,(m)] - T.

@ Addition: the 2n bits that represent the inputs of the addition
of two n-bit numbers can influence the leftmost digit of the
result

— the delay is therefore at least t = k7, where rk > 2n,
@ gives

t > 71 x log,(2n).

33

Faster than logarithmic-time addition ?

At least one of the conditions of Winograd's theorem must be
unsatisfied:

o Computation-with—+elements: allow logic gates with

unbounded number of inputs — carry-lookahead adder.
Unrealistic for large n;

P, G, P, G, P, G

entries: use a redundant number system.

34

Carry-save arithmetic

@ base [and digit-set {0,1,...,5};
@ redundant: the number 3 can be written 10 or 08;

@ widely used in base 2 where each digit d; € {0,1,2} is
represented by two bits dl.(l), d,.(z) € {0,1} sit. d; = d/-(l) + d,-(2>_

Major interest: very fast addition
CarrySave + ConventionalBinary — CarrySave.

(used for instance for building multipliers)

35

Carry-save addition

@ a=a, 1ap.2...30 = Z, _g a; in carry-save arithmetic
(a,-:a”+a € {0,1,2});

@ b=b, 1bypo...by = Z,-:O b; in conventional binary
(bi € {0,1})

We have
a,(-l) 4 3,(_2) + b; € {0,1,2,3}

— it can be written 25,-(?1 + 5,-(1) with 5,(+)17 :() —0Qorl.

— with the convention s,(,l) = 5(()) — 0, and denoting

s; = 5:'(2) + sl.(l), the carry-save number
n n—1

SnSn—1...50 = Z(Si(z) + Si(l)) Lol — 2(25(+)1 + S()) .0

i=0 i=0
36
represents a + b.

Carry-save addition

The sequential, “ripple-carry” adder, and the carry-save adder:

az by a b, a; b, ag b,
FA + FA < FA < A |e— O
53 5 Sy So
(2) u(])h; a® ﬂzm/’z afz)af” b, a(()l) a(ﬂl)bo

; H j 1 j Iy j g j
FA FA FA 0
S T S T

— delay of an n-bit CS addition = delay of a 1-bit sequential

i
addition! -

Carry-save addition

@ conversion carry save — conventional representation: a
conventional addition;
— interesting only if the amount of calculation done in carry-save
arithmetic is big in front of an addition;

@ typical example: multiplication

AsBgA BoAjBg A Bg A BgA By

38

Exercise

@ how would you add two carry-save numbers 7

@ Using carry-save arithmetic and the associativity of addition,
show that we can multiply two n-bit numbers in time
proportional to log(n).

39

	Floating-Point Arithmetic

