Floating-Point Arithmetic and Beyond

ENS Lyon - Nov. 2020

Jean-Michel Muller

CNRS - Laboratoire LIP
http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic

- by far the most frequent solution for manipulating real numbers in computers;
- comes from the "scientific notation" used for 3 centuries by the scientific community;
- roughly speaking:

$$
x= \pm m_{x} \times \beta^{e_{x}}
$$

where

- β is the base or radix (in general 2 or 10 but more exotic things have existed)
- $m_{x} \in\{0\} \cup[1, \beta)$ is the significand (often called mantissa);
- $e_{x} \in \mathbb{Z}$ is the exponent,
... but much more will be said later on.

Floating-Point Arithmetic

Sometimes a bad reputation... for bad reasons:

- intrinsically approximate...
- but most physical data is approximate;
- but most numerical problems we deal with have no closed-form solution;
- and in a subtle way (correct rounding), FP arithmetic is exact.
- part of the literature comes from times when it was poorly specified;
- too often, viewed as a set of dirty tricks for geeks:... but there are such tricks (see next slide).

A very odd trick

A similar trick first appears in
The game Quake III Arena

We wish to show that

- it is a well specified arithmetic, on which one can build trustable calculations;
- one can formally prove useful properties and build efficient algorithms on FP arithmetic;
- one can prove useful mathematical properties using FP arithmetic.

Desirable properties of an arithmetic system

- Speed: tomorrow's weather must be computed in less than 24 hours;
- Accuracy;
- Range: represent big and tiny numbers as well;
- "Size": silicon area for hardware, memory consumption;
- Power consumption;
- Portability: the programs we write on a given system must run on different systems without requiring huge modifications;
- Easiness of implementation and use: If a given arithmetic is too arcane, nobody will use it.

Weird behaviours

- 1994, Pentium 1 division bug: 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;
- 1996, maiden flight . . . and flop of the Ariane 5 European rocket: arithmetic overflow

- November 1998, USS Yorktown warship, somebody erroneously entered a "zero" on a keyboard \rightarrow division by $0 \rightarrow$ series of errors \rightarrow the propulsion system stopped.

Weird behaviours

- Maple version 6.0 (2000). Enter 214748364810 , you get 10 . Note that $2147483648=2^{31}$;
- Excel'2007 (first releases), compute $65535-2^{-37}$, you get 100000;
- if you have a Casio FX 83-GT Plus or a FX-92 pocket calculator, compute $11^{6} / 13$, you will get 156158413 3600π

Other strange things

- Setun Computer, Moscow University, 1958. 50 copies;
- Base 3 and digits $-1,0$ and 1 . Numbers represented using 18 "trits";
- idea: base β, n digits \rightarrow "Cost": $\beta \times n$;
- minimize $\beta \times n$ with $\beta^{n} \geq M$: as soon as

$$
M \geq e^{\frac{5}{(2 / \ln (2))-(3 / \ln (3))}} \approx 1.09 \times 10^{14}
$$

the optimal β is 3

Early representation of the integers

- "one, two, three, many". . .
- "unary" representations

- systems that make it possible to represent the integers, but are not convenient for computing. Egyptian example:

Egyptian example

y

1000000

100000
$\underset{~}{\downarrow}$

10000

100
\cap

10

1

- number 1234567:

- needs infinitely many symbols (one for each power of 10);
- solution: the position of a symbol in the representation of a number indicates of which power of the base it is a multiple.
\rightarrow positional number systems

Positional number systems

Base 60: Babylon (≈ 4000 years ago)

$$
\begin{aligned}
1+\frac{24}{60}+\frac{51}{60^{2}}+\frac{10}{60^{3}} & =1.41421296 \cdots \\
\sqrt{2} & =1.41421356 \cdots
\end{aligned}
$$

- Base 20: Mayas;
- Base 10: India;
- Computer science: base 2 ou 10 .

Our positional system makes human computing easy. Is it well adapted to automated computing?

Positional number systems

Base (or radix) $\beta \geq 2, n$ digits taken in the digit set
$\mathcal{D}=\{a, a+1, a+2, \ldots, b\}$, with $a \leq 0$ and $b>0$. The digit chain

$$
m_{n-1} m_{n-2} \cdots m_{1} m_{0}
$$

represents the integer

$$
m_{n-1} \beta^{n-1}+m_{n-2} \beta^{n-2}+\cdots+m_{1} \beta+m_{0}=\sum_{i=0}^{n-1} m_{i} \beta^{i} .
$$

Theorem 1

- if $b-a+1 \geq \beta$ then all integers between $a \cdot \frac{\beta^{n}-1}{\beta-1}$ and $b \cdot \frac{\beta^{n}-1}{\beta-1}$ can be represented (i.e., by allowing unbounded n, all integers if $a<0$, and all positive integers if $a=0$);
- if $b-a+1=\beta$ the representation is unique;
- if $b-a+1>\beta$ some numbers have several representations: the system is redundant.

Define $I_{n}=\left[a \cdot \frac{\beta^{a}-1}{\beta-1}, b \cdot \frac{\beta^{n}-1}{\beta-1} \rrbracket\right.$.
cool: all elements of I_{n} are reprosatable.
Proof Inshection on n.

- $n=1$ stroightfoucond $\left(I_{n}=\Gamma a, b D\right)$
- assure the property holds for x.

Consider $J_{k}^{n}=k \cdot \beta^{n}+\frac{T}{n}$ for $k \in \Phi$
$J_{k}^{a}=\{$ numbers representable with k as eftronot oligit $\}$
We need to show: $\bigcup_{k \in D} J_{k}^{n}=I_{n+1}$.

$$
\begin{aligned}
J_{k}^{n} & =\mathbb{L} l_{k}^{n}, r_{k}^{n} J_{\text {with }}\left\{\begin{array}{l}
l_{k}^{n}=k \beta^{n}+a \cdot \frac{\beta^{n}-1}{\beta-1} \\
n_{k}^{n}=k \beta^{n}+b \cdot \frac{\beta^{n}-1}{\beta-1}
\end{array}\right. \\
& \rightarrow \frac{l_{a}^{n}}{}=a \cdot \frac{\beta^{n+1}-1}{\beta-1} \text { and } a \tilde{b}=b \cdot \frac{\beta^{n+1}-1}{\beta-1}
\end{aligned}
$$

We need to shaw: no" holes" between consecutive Jess.

No

$$
\begin{aligned}
n_{k}^{n}-l_{k+1}^{n} & =k \cdot \beta^{a}+b \frac{\beta^{n}-1}{\beta-1}-(k+1) \beta^{n}-a \frac{\beta^{n}-1}{\beta-1} \\
& =-\beta^{n}+(b-a) \frac{\beta^{n}-1}{\beta-1}
\end{aligned}
$$

(1) $b-a \geqslant \beta-1 \Rightarrow \Omega_{k}^{n}-l_{k+1}^{n} \geqslant-1 \quad 0 \alpha$
(2) if $b-a=\beta-1$ the set do not overt? \rightarrow unique choice of the $x^{\text {th }}$ digit

Positional number systems: particular cases

- $a=0$ and $b=\beta-1$: conventional base- β representation;
- $a=0$ and $b=\beta$: carry-save representations;
- $a=-r$ and $b=+r$, with $r \geq\lfloor\beta / 2\rfloor$: signed-digit representations.

The redundant representations (e.g., carry-save, or signed-digit with $2 r+1>\beta$) allow for very fast, parallel additions.

Cauchy (1840): base $10, \mathcal{D}=$ $\llbracket-5,+5 \rrbracket$. Goal: limit carry propagations in multiplications.

Avizienis (1961): parallel addition algorithm for redundant signed-digit systems.

Exercise

All this is easily generalizable to fractional representations:

$$
x_{n} x_{n-1} x_{n-2} \ldots x_{0} \cdot x_{-1} x_{-2} \ldots x_{-m}=\sum_{i=-m}^{n} x_{i} \beta^{i}
$$

Consider the system $\beta=3$ and digit-set $\{-1,0,1\}$ and the "truncation at position m " function:
$x_{n} \ldots x_{0} \cdot X_{-1} X_{-2} \ldots x_{-m} X_{-m-1} X_{-m-2} \ldots \rightarrow x_{n} \ldots x_{0} \cdot X_{-1} X_{-2} \ldots X_{-m}$
show that in this system, truncating at position m is equivalent to rounding to (the ? a ? discuss) nearest multiple of 3^{-m}. A number system with that property is called an RN-code.

Just a glance on algorithms used in circuits: binary (nonredundant) addition (Base 2, digits 0 and 1)

Elementary addition cell: 3 entries x, y and c, and two outputs s and c^{\prime}, equal to 0 or 1 , that satisfy

$$
2 c^{\prime}+s=x+y+c
$$

(here " + " is the addition, not the boolean "or").

FA means "Full Adder Cell".
The pair $\left(c^{\prime}, s\right)$ is the binary representation of $x+y+c$.
Easily implemented with a few logic gates.

Just a glance on algorithms used in circuits: binary addition

- Input: $\left(x_{n-1} x_{n-2} \cdots x_{0}\right)$ and $\left(y_{n-1} y_{n-2} \cdots y_{0}\right)$ represented in binary.
- output: $\left(s_{n-1} s_{n-2} \cdots s_{0}\right)$ in binary too.
- c_{0} and c_{n} : carry-in and carry-out.

The Carry-Ripple adder.

- Intrinsically sequential algorithm. The delay grows linearly with the number of digits;
- can be improved: we give a simple example now.

Conditional sum addition

- Many algorithms/architectures for fast addition: we just give a simple one for illustration;
- more efficient algorithms in Knowles' paper A family of adders.

1001011001011011110001011110001101010010110100101
$+0110100100111001101001011110010101001011110110110$

Addition of two $2 n$-bit numbers.

Conditional sum addition

1001011001011011110001011
011010010011100110100101

110001101010010110100101
1110010101001011110110110

Each $2 n$-bit operand split into two n-bit operands.

Conditional sum addition

$\begin{array}{cl}1001011001011011110001011 & 110001101010010110100101 \\ 011010010011100110100101 & 1110010101001011110110110 \\ 1001011001011011110001011 & \\ 011010010011100110100101 & \end{array}$

Conditional sum addition

1001011001011011110001011
+ 011010010011100110100101
110001101010010110100101
+ 1110010101001011110110110
1001011001011011110001011
$+011010010011100110100101$

Conditional sum addition

1001011001011011110001011
+ 011010010011100110100101 yyyyyyyyyyyyyyyyyyyyyyyy
$+011010010011100110100101$
ZZZZZZZZZZZZZZZZZZZZZZZZZ

110001101010010110100101

+ 1110010101001011110110110
1xxxxxxxxxxxxxxxxxxxxxxxxxxx

Conditional sum addition

1001011001011011110001011	110001101010010110100101
+011010010011100110100101 yyyyyyyyyyyyyyyyyyyyyyyy	+1110010101001011110110110
	1xxxxxxxxxxxxxxxxxxxxxxxxx

1001011001011011110001011

+ 011010010011100110100101
ZZZZZZZZZZZZZZZZZZZZZZZZZ

When done recursively. . .

- T_{n} delay of n-bit addition,

$$
T_{n}=T_{n / 2}+C
$$

- recursive implementation: $\log _{2}(n)$ steps;
- can we do better?

Winograd's theorem

r-circuit, made of r-elements. An r-element is a "logic gate" with at most r binary inputs, 1 binary output. It generates its output in a delay τ that does not depend on the inputs or the computed function.

A boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ depends on all its entries if $\forall i \in \llbracket 1, n \rrbracket$ there exists $\left(x_{1}, x_{2}, \ldots x_{m}\right)$ s.t.

$$
f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{m}\right) \neq f\left(x_{1}, \ldots, x_{i-1}, \overline{x_{i}}, x_{i+1}, \ldots, x_{m}\right)
$$

where $\overline{x_{i}}=1-x_{i}$.

Winograd's theorem

Theorem 2
If $f:\{0,1\}^{m} \rightarrow\{0,1\}$ depends on all its entries then an r-circuit requires a delay $\geq\left\lceil\log _{r}(m)\right\rceil \cdot \tau$ to compute it.

Remark: Addition depends on all its entries.

$$
\begin{aligned}
& \sqrt{10}^{i} \\
& 111111 \cdots 1 / 10000 \cdots 0 \\
& 000000 \ldots 010110 \cdots 0 \\
& \begin{array}{l}
\square \times x \times x \times x \times \times 0110 \cdots 0 \\
\longrightarrow\left\{\begin{array}{l}
1 \text { if } x_{i}=1 \\
0 \text { if } x_{i}=0
\end{array}\right.
\end{array}
\end{aligned}
$$

Sketch of the proof

Time 0: output of the result. It necessarily comes from an r-element.

Sketch of the proof

Time $-\tau$: at most r terms can have an influence on the final result

Sketch of the proof

Time -2τ, at most r^{2} terms can have an influence on the final result

Sketch of the proof

Time -3τ, at most r^{3} terms can have an influence on the final result

Sketch of the proof

- Time $-k \tau$, at most r^{k} terms can have an influence on the final result. We need $r^{k} \geq m$.

$$
\rightarrow \text { time } \geq\left\lceil\log _{r}(m)\right\rceil \cdot \tau
$$

- Addition: the $2 n$ bits that represent the inputs of the addition of two n-bit numbers can influence the leftmost digit of the result
\rightarrow the delay is therefore at least $t=k \tau$, where $r^{k} \geq 2 n$,
- gives

$$
t \geq \tau \times \log _{r}(2 n)
$$

Faster than logarithmic-time addition ?

At least one of the conditions of Winograd's theorem must be unsatisfied:

- Computation with relements: allow logic gates with unbounded number of inputs \rightarrow carry-lookahead adder. Unrealistic for large n;

- at least one digit of the result does not depend on all the entries: use a redundant number system.

Carry-save arithmetic

- base β and digit-set $\{0,1, \ldots, \beta\}$;
- redundant: the number β can be written 10 or 0β;
- widely used in base 2 where each digit $d_{i} \in\{0,1,2\}$ is represented by two bits $d_{i}^{(1)}, d_{i}^{(2)} \in\{0,1\}$ s.t. $d_{i}=d_{i}^{(1)}+d_{i}^{(2)}$.

Major interest: very fast addition

CarrySave + ConventionalBinary \rightarrow CarrySave.

(used for instance for building multipliers)

Carry-save addition

- $a=a_{n-1} a_{n-2} \ldots a_{0}=\sum_{i=0}^{n-1} a_{i}$ in carry-save arithmetic $\left(a_{i}=a_{i}^{(1)}+a_{i}^{(2)} \in\{0,1,2\}\right)$;
- $b=b_{n-1} b_{n-2} \ldots b_{0}=\sum_{i=0}^{n-1} b_{i}$ in conventional binary $\left(b_{i} \in\{0,1\}\right)$

We have

$$
a_{i}^{(1)}+a_{i}^{(2)}+b_{i} \in\{0,1,2,3\}
$$

\rightarrow it can be written $2 s_{i+1}^{(2)}+s_{i}^{(1)}$ with $s_{i+1}^{(2)}, s_{i}^{(1)}=0$ or 1 .
\rightarrow with the convention $s_{n}^{(1)}=s_{0}^{(2)}=0$, and denoting $s_{i}=s_{i}^{(2)}+s_{i}^{(1)}$, the carry-save number

$$
s_{n} s_{n-1} \ldots s_{0}=\sum_{i=0}^{n}\left(s_{i}^{(2)}+s_{i}^{(1)}\right) \cdot 2^{i}=\sum_{i=0}^{n-1}\left(2 s_{i+1}^{(2)}+s_{i}^{(1)}\right) \cdot 2^{i}
$$

represents $a+b$.

Carry-save addition

The sequential, "ripple-carry" adder, and the carry-save adder:

\rightarrow delay of an n-bit CS addition $=$ delay of a 1-bit sequential addition!

Carry-save addition

- conversion carry save \rightarrow conventional representation: a conventional addition;
\rightarrow interesting only if the amount of calculation done in carry-save arithmetic is big in front of an addition;
- typical example: multiplication

Exercise

- how would you add two carry-save numbers ?
- Using carry-save arithmetic and the associativity of addition, show that we can multiply two n-bit numbers in time proportional to $\log (n)$.

