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Base  Floating-Point System

Parameters:
radix (or base) S >2 (in practice =2 or 10)
precision p>1

extremal exponents €., €max  (in practice e, = 1 — e..)

A Floating-Point number (FPN) x is represented by 2 integers:

@ integral significand: M, |[M| < P — 1,
@ exponent e, €nin < € < Enax-
such that
x=M.peti=p

with e smallest under these constraints (necessary for unicity:
1200 x 1072 = 12 x 10°).

= |M| > P71, unless e = e



Base  Floating-Point System

e Fractional significand of x (sometimes called mantissa): the
number m = M - 1P, so that x = m - €.

@ normal number: of absolute value > 3®min. The absolute value
of its integral significand is > $P~!. Example with 3 = 10,
emin = —99 and p = 4:

4235 x 10°73 = 4.235 x 10°,

@ subnormal number: of absolute value < Bémin. The absolute
value of its integral significand is < 3P~1. Example with
8 =10, €nn = —99 and p = 4:

3 x 1079973 = 0.003 x 107%°.

Subnormal numbers represented with worse accuracy: graceful

underflow.



Base  Floating-Point System

In practice: normality/subnormality is encoded in the exponent
field.

Radix 2: the leftmost bit of the significand is always:

@ a ‘1" for a normal number,

@ a “0" for a subnormal number.

— no need to store it (implicit 1 convention).



Exercise:

@ what is the largest representable number Q7

o let x € [BX, Bkt1), with k > e,;,. Assume x is a FPN. The
number x* (FP successor of x) is the smallest FPN > x.
What is the value of x™ — x?

@ in the binary32 format, 8 = 2, €..x = 127, and p = 24. What
is the representation of 17 What is the smallest positive FP
number?



Subnormal numbers difficult to implement efficiently, but. ..
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If a and b are FPN, a # b equivalent to “computed a — b # 0.



Theorem 1 (Hauser)

If the absolute value of the sum/difference of two floating-point
numbers is < Bemintl then it is a floating-point number (i.e., it is
exactly representable in FP arithmetic).
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Before 1985: a total mess. ..

Machine Underflow A Overflow A
DEC PDP-11. VAX, 2-18 =29 x 10~ 2127 = 1.7 x 10°8
F and D formats

DEC PDP-10; 218 e 1.5 ¢ 10~ 2127 & 1.7 x 1078
Honeywell 600, 6000:
Univac 110x single:

IBM 709X, 704X
Burroughs 6X00 single 80 2 88w 10797 87 = 4.3 x 1058
H-P 3000 27256 = 8.6 x 10~ 2208110 i 0™

IBM 360, 37(
DG Eclipse

Amdahll; 167 = 5.4 x 10~ 16% = 7.2 x 107

Most handheld 10-% 10100
caleulators

CDC 6X00, TX00, Cyber 27976 2 1.5 x 1029 21070 =3 1.3 x 10522

DEC VAX G format: 271020 = 5.6 x 107309 21023 22 9 x 10307
UNIVAC, 110X double

Source: Kahan, Why do we need a Floating-Point Standard, 1981.



Before 1985: a total mess. ..

@ on some Cray supercomputers, overflow in multiplication was
computed just from the exponent of the entries, in parallel
with the actual computation of the product;

— 1 * x could overflow:;
e still on the Crays, only 12 bits of x were examined to detect a
division by 0 when computing y/x
— if (x = 0) then z := 17.0 else z := y/x
could lead to a “zero divide" error message. . .
but since the multipler too examined only 12 bits to decide if
an operand is zero,

if (1.0 *x x = 0) then z := 17.0 else z := y/x

was just fine.

Writing reliable and portable numerical software was a challenge!



IEEE-754 Standard for FP Arithmetic (1985, 2008, 2019)

@ put an end to a mess (no portability, variable quality);

@ leader: W. Kahan (father of the arithmetic of the HP35 and
the Intel 8087);

e formats (in radices 2 and 10);
@ specification of operations and conversions;
@ exception handling (max+1, 1/0, /-2, 0/0, etc.);

@ successive versions of the standard: 2008, 2019, more to come.
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IEEE-754 Standard for FP Arithmetic (1985, 2008, 2019)

Name binaryl6 | binary32 | binary64 | binary128

(basic) (basic) (basic)

Former name N/A single | double N/A
precision | precision

p 11 24 53 113

€max +15 +127 +1023 | +16383

min —14 —126 —1022 —16382

Table 1: Main parameters of the binary interchange formats of size up
to 128 bits specified by the 754-2019 Std. In some articles and software
libraries, 128-bit formats were sometimes called “quad precision”.
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IEEE-754 Standard for FP Arithmetic (1985, 2008, 2019)

Name || decimal32 | decimal64 | decimall128
(basic) (basic)

p 7 16 34
€max 496 +384 +6144
Emin —95 —383 —6143

Table 2: Main parameters of the decimal interchange formats of size up
to 128 bits specified by the 754-2019 Std.
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Standardizing has some interest. ..

@ The Mars Climate Orbiter probe
crashed on Mars in 1999;

@ one of the software teams
assumed the unit of length was

the meter;

@ the other team assumed it was
the foot.
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@ in general, the sum, product, quotient. .. of two FP numbers is
not a FP number — it must be rounded:

o first systems: the only information was that the computed
result was ‘“close to" the exact result;

@ now: a rounding function is defined, and the computed result
is obtained by applying that function to the exact result

— notion of correct rounding:

e easy to guarantee for +, —, +, X, \/;
e very difficult for sin, exp, I, etc.
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Rounding function

Denote F the set of FP numbers in a given system (3, Emin'Emax)-
A function r : R — F is a rounding function if:

o Vx e F,r(x) =x;
® x1 < x2 = r(x1) < r(x).

Here are some usual rounding functions:

@ round toward —oco: RD (x) is the largest FP number < x;
@ round toward +o0o0: RU (x) is the smallest FP number > x;
RD(x) if x>0,
RU(x) if x<O0;

@ round to nearest: RN (x) = FPN closest to x. If x halfway

e round toward zero: RZ(x) = {

between two consecutive FPNs, a tie-breaking rule is needed.
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Classical tie-breaking rules for RN (round to nearest)

When x is exactly halfway between 2 consecutive FP numbers:

@ ties-to-even: choose the one whose integral significand is even

(default);
@ ties-to-away: choose the one with largest magnitude;

@ ties-to-zero: choose the one with smallest magnitude.

These 3 rules are easy to implement in hardware, and with them we
have

@ RN (—x) = —RN(x),
@ RN (2kx) = 2KRN(x) (x and 2¥x in normal range), and
o x multiple of 2K = RN (x) is multiple of 2.
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The standard rounding functions

[ ]
Y

B RNeven(y) RNaway(y)

Here we assume that the real numbers x and y are positive.
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Correct rounding

e |EEE 754 specifies the rounding functions RD, RU, RZ, and
RN with ties-to-even and ties-to-away (ties-to-zero allowed for
some special, not-yet-implemented operations);

@ the user can choose the rounding function (not always simple);

o the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact

operation followed by rounding.

o correctly rounded +, —, x, <, /- are required;
@ correctly rounded sin, cos, exp, In, etc. are only recommended
(not mandatory).

— in practice, when the operation ¢ = a + b appears in a

program, we obtain ¢ = RN (a + b).
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Correct rounding

IEEE-754 (since 1985): Correct rounding for +, —, x, =+, v and
some conversions. Advantages:

e if the result of an operation is exactly representable, we get it;

o if we just use the 4 arith. operations and ,/, deterministic
arithmetic: one can elaborate algorithms and proofs that use
the specifications;

@ accuracy and portability are improved;

@ playing with rounding towards 400 and —oc — guaranteed
lower and upper bounds: interval arithmetic.

FP arithmetic becomes a structure in itself, that can be studied.
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Just for the fun: what does this program?

o is any of RD, RU, RZ, or RN.

A<+ 1.0

B+ 1.0

while o(o(A+1.0) — A) = 1.0 do
A+ o(2 x A)

end while

while o(o(A+ B) — A) # B do
B + o(B +1.0)

end while

return B

20



It computes

A+ 1.0 . . i

B+« 1.0 Consider the first while If)op. ‘

while o(o(A +1.0) — A) = 1.0 do @ Induction — if 2/ < BP — 1, then A; = 2' exactly.
A+ o(2 x A) Gives A; +1 < BP — o(A; +1.0) = A; + 1.

Endiwbilc @ Hence, o(o(A; +1.0) — A;) = o((A; + 1) — A;) = 1.

while o(o(A+ B) — A) # B do
B <+ o(B + 1.0)

end while

return B

Therefore while 2' < P — 1, we stay in the 1st loop.

@ Consider the smallest j s.t. 2 > BP. We have
Aj =0(2Aj_1) = o(2 x 227 1) = o(2/). Since B > 2,
we conclude
BP < Aj < ﬁp+1‘

@ Hence, the FP successor of A; is Aj + 8 — o(A; + 1.0)
Assume radix 3, precision p. Define is either A; or A; + 3 therefore o(o(A; +1.0) — A;) is 0
or B: in any case it is # 1.0 — we exit the loop.

th

A; = value of A after /"’ execution of

. . At the end of the 1st while loop, A satisfies 8P < A 3p+1
the first while loop.
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It computes

A<+ 1.0

B (_ 1.0 Consider the 2nd while loop

while o(0(A+1.0) — A) = 1.0 do
A+ o(2 x A) @ We have seen that the FP successor of A is A+ §.

end while @ Hence, while B < 8, o(A + B) is either A or

while o(o(A+ B) — A) # B do A+ B — o(o(A+ B) — A) is 0 or 3: in any case, we do
B < o(B + 1.0) not exit the loop.

end while @ A B— A+ B)is A+ B |

return B s soon as B = 3, o(A+ B) is A+ B exactly, so

o(o(A+ B) — A) =B.

We exit the 2nd loop as soon as B
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Some useful notions

B* = ufp (x)

@ this figure: We assume that x is in the normal range: °min < x < Q;

@ distance between consecutive FPNs of absolute value < Bémin: [3emin—P+1,
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ulp (“unit in the last place”) and ufp (“unit in the first place”)

Definition 2 (ulp function)
If |x| € [8¢, B*1), then ulp (x) = gmax{e,emin}—p+1

It is the distance between consecutive FP numbers in the
neighborhood of x.

Properties:
o |[x — RN (x)| < Julp(x);
@ |[x — RU(x)|, [x — RD(x)|, and |[x — RZ (x)| are < 1ulp(x);
@ if x is a FP number then it is an integer multiple of ulp (x).
Function ulp is frequently used for expressing errors.
Definition 3 (ufp function)
If |x| € [8¢, B*1), then ufp(x) = °.
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Relative error due to rounding

The most frequent measure of error in numerical computing is
relative error. If X approximates an exact value x, it is defined as:

° |’A<X;X’ifx;é0;
0 0if R=x=0;

@ +ooif x=0and X #0.

In practice, when the relative error is > 1 this means we have lost
all information on x (we even do not know its sign).
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Relative error due to rounding

e if x is in the normal range (i.e., Bmin < |x| < Q), then

x = RN ()| < 2 ulp (x) = 58 )=+,

therefore,

[x = RN (x)| < u-[x], (1)
with u = %ﬁ_pﬂ (base 2, u=27P). Hence the relative error
[x = RN (x|
[x]

(for x #0) is < wu.
@ u, called rounding unit is frequently used for expressing errors.

e Exercise (for next time): show that in (1), u can be replaced
by

u
14+u”
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Relative error due to rounding

@ similarly, for x in the normal range, |x — o(x)|, where
o€ {RU,RD, RZ}, is < gP+L;

@ if |x| is below Bemin (subnormal range), we only have
1
[x = RN (x)] < 5P ™,

(i.e., the relative error can be much larger than u).
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Consequence: the “standard model”

@ correctly rounded operation T € {+, —, x, +};

@ a, b FP numbers;

e if aTb is in the normal range, then the computed result
7 = RN (aTbh) and the exact result r = aT b satisfy

F=r-(14e),
with |e1| < u;
@ very similarly, we have
. r
F= ,
1+e

with ‘62‘ <u.

Hauser's theorem = if T € {+, —} these relations hold even in the

subnormal range.
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The FMA (Fused Multiply-Add) instruction

@ added in 2008 to the standard, now implemented in all
commercially-significant processors;

@ computes o(ab + c), where o is the chosen rounding function;

o allows faster (and frequently more accurate) complex
multiplication, division, evaluation of polynomials or
dot-products;

e facilitates the implementation of correctly-rounded division and
square-root using slightly modified Newton-Raphson iterations.
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