2nd Lecture: Basic properties of Floating-Point Arithmetic

Jean-Michel Muller
CNRS - Laboratoire LIP
http://perso.ens-lyon.fr/jean-michel.muller/

Base β Floating-Point System

Parameters:

$$
\begin{cases}\text { radix }(\text { or base }) & \beta \geq 2 \quad \text { (in practice } \beta=2 \text { or } 10) \\ \text { precision } & p \geq 1 \\ \text { extremal exponents } & e_{\min }, e_{\max } \quad\left(\text { in practice } e_{\min }=1-e_{\max }\right)\end{cases}
$$

A Floating-Point number (FPN) x is represented by 2 integers:

- integral significand: $M,|M| \leq \beta^{p}-1$;
- exponent $e, e_{\text {min }} \leq e \leq e_{\text {max }}$.
such that

$$
x=M \cdot \beta^{e+1-p}
$$

with e smallest under these constraints (necessary for unicity: $1200 \times 10^{-2}=12 \times 10^{0}$).

$$
\Rightarrow|M| \geq \beta^{p-1}, \text { unless } e=e_{\min } .
$$

Base β Floating-Point System

- Fractional significand of x (sometimes called mantissa): the number $m=M \cdot \beta^{1-p}$, so that $x=m \cdot \beta^{e}$.
- normal number: of absolute value $\geq \beta^{e_{\text {min }}}$. The absolute value of its integral significand is $\geq \beta^{p-1}$. Example with $\beta=10$, $e_{\text {min }}=-99$ and $p=4$:

$$
4235 \times 10^{0-3}=4.235 \times 10^{0} .
$$

- subnormal number: of absolute value $<\beta^{e_{\text {min }}}$. The absolute value of its integral significand is $<\beta^{p-1}$. Example with $\beta=10, e_{\text {min }}=-99$ and $p=4$:

$$
3 \times 10^{-99-3}=0.003 \times 10^{-99}
$$

Subnormal numbers represented with worse accuracy: graceful underflow.

Base β Floating-Point System

In practice: normality/subnormality is encoded in the exponent field.

Radix 2: the leftmost bit of the significand is always:

- a "1" for a normal number,
- a "0" for a subnormal number.
\rightarrow no need to store it (implicit 1 convention).

Exercise:

- what is the largest representable number Ω ?
- let $x \in\left[\beta^{k}, \beta^{k+1}\right)$, with $k \geq e_{\text {min }}$. Assume x is a FPN. The number x^{+}(FP successor of x) is the smallest FPN $>x$. What is the value of $x^{+}-x$?
- in the binary 32 format, $\beta=2, e_{\max }=127$, and $p=24$. What is the representation of 1 ? What is the smallest positive FP number?

Subnormal numbers difficult to implement efficiently, but. . .

If a and b are FPN, $a \neq b$ equivalent to "computed $a-b \neq 0$ ".

Theorem 1 (Mauser)
If the absolute value of the sum/difference of two floating-point numbers is $\leq \beta^{e_{\text {min }}+1}$ then it is a floating-point number (ie., it is exactly representable in FP arithmetic).

$$
\left.\begin{array}{l}
a=\Pi_{a} \cdot \beta_{a}^{e_{a}-p+1} \\
b=\Pi_{b} \cdot \beta^{e b-p+1} \\
e_{a}, e_{b} z e_{\text {min }}
\end{array}\right\} \Rightarrow \begin{aligned}
& a \text { and } s \text { are } \\
& \text { multiple of } \\
& \beta_{\text {min }-p+1}^{e_{\text {min }}-p+1}
\end{aligned} \quad \Rightarrow \begin{aligned}
& a+b \text { is } \\
& \begin{array}{l}
\text { until of } \\
\beta_{\text {min }}-\beta^{2}+1
\end{array}
\end{aligned}
$$

$$
|a+b|=k \cdot \beta^{e_{\min }-p+1}
$$

It is $\leqslant \beta^{e_{\text {min }}+1} \Rightarrow K \leqslant \beta^{p}$
(1) $K \leq \beta^{p}-1 \Rightarrow$ Interval significant k \& exponent
(2) $k=\beta^{p} \Rightarrow|a+b|=\beta^{e^{-n+1}}$ which is

Before 1985: a total mess. . .

Machine	Underflow λ	Overflow Λ
DEC PDP-11, VAX, F and D formats	$2^{-128} \approx 2.9 \times 10^{-39}$	$2^{1} 27 \approx 1.7 \times 10^{3} 8$
DEC PDP-10; Honeywell 600, 6000; Univac 110x single; IBM 709X, 704X	$2^{-129} \approx 1.5 \times 10^{-39}$	$2^{1} 27 \approx 1.7 \times 10^{3} 8$
Burroughs 6X00 single	$8^{-51} \approx 8.8 \times 10^{-47}$	$8^{76} \approx 4.3 \times 10^{68}$
H-P 3000	$2^{-256} \approx 8.6 \times 10^{-78}$	$2^{256} \approx 1.2 \times 10^{77}$
IBM 360, 370; Amdahl1; DG Eclipse M/600; ...	$16^{-65} \approx 5.4 \times 10^{-79}$	$16^{63} \approx 7.2 \times 10^{75}$
Most handheld calculators	10^{-99}	10^{100}
CDC 6X00, 7X00, Cyber	$2^{-976} \approx 1.5 \times 10^{-294}$	$2^{1070} \approx 1.3 \times 10^{322}$
DEC VAX G format; UNIVAC, 110X double	$2^{-1024} \approx 5.6 \times 10^{-309}$	$2^{1023} \approx 9 \times 10^{307}$

Source: Kahan, Why do we need a Floating-Point Standard, 1981.

Before 1985: a total mess. . .

- on some Cray supercomputers, overflow in multiplication was computed just from the exponent of the entries, in parallel with the actual computation of the product;
$\rightarrow 1 * \mathrm{x}$ could overflow;
- still on the Crays, only 12 bits of x were examined to detect a division by 0 when computing y / x
\rightarrow if ($\mathrm{x}=0$) then $\mathrm{z}:=17.0$ else $\mathrm{z}:=\mathrm{y} / \mathrm{x}$ could lead to a "zero divide" error message. . . but since the multipler too examined only 12 bits to decide if an operand is zero,
if ($1.0 * x=0$) then $z:=17.0$ else $z:=y / x$ was just fine.

Writing reliable and portable numerical software was a challenge!

IEEE-754 Standard for FP Arithmetic $(1985,2008,2019)$

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats (in radices 2 and 10);
- specification of operations and conversions;
- exception handling (max $+1,1 / 0, \sqrt{-2}, 0 / 0$, etc.);
- successive versions of the standard: 2008, 2019, more to come.

IEEE-754 Standard for FP Arithmetic $(1985,2008,2019)$

Name	binary16	binary32 (basic)	binary64 (basic)	binary128 (basic)
Former name	N / A	single precision	double precision	N / A
p	11	24	53	113
$e_{\max }$	+15	+127	+1023	+16383
$e_{\min }$	-14	-126	-1022	-16382

Table 1: Main parameters of the binary interchange formats of size up to 128 bits specified by the 754-2019 Std. In some articles and software libraries, 128-bit formats were sometimes called "quad precision".

IEEE-754 Standard for FP Arithmetic $(1985,2008,2019)$

Name	decimal32	decimal64 (basic)	decimal128 (basic)
p	7	16	34
$e_{\max }$	+96	+384	+6144
$e_{\min }$	-95	-383	-6143

Table 2: Main parameters of the decimal interchange formats of size up to 128 bits specified by the 754-2019 Std.

Standardizing has some interest. . .

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;
- the other team assumed it was the foot.

Roundings

- in general, the sum, product, quotient... of two FP numbers is not a FP number \rightarrow it must be rounded;
- first systems: the only information was that the computed result was "close to" the exact result;
- now: a rounding function is defined, and the computed result is obtained by applying that function to the exact result
\rightarrow notion of correct rounding:
- easy to guarantee for,$+-\div, \times, \sqrt{ }$;
- very difficult for sin, exp, Г, etc.

Rounding function

Denote \mathbb{F} the set of FP numbers in a given system $\left(\beta, p, e_{\min }, e_{\max }\right)$. A function $r: \mathbb{R} \rightarrow \mathbb{F}$ is a rounding function if:

- $\forall x \in \mathbb{F}, r(x)=x$;
- $x_{1} \leq x_{2} \Rightarrow r\left(x_{1}\right) \leq r\left(x_{2}\right)$.

Here are some usual rounding functions:

- round toward $-\infty$: $\mathrm{RD}(x)$ is the largest FP number $\leq x$;
- round toward $+\infty$: $\mathrm{RU}(x)$ is the smallest FP number $\geq x$;
- round toward zero: $\mathrm{RZ}(x)=\left\{\begin{array}{lll}\mathrm{RD}(x) & \text { if } & x \geq 0, \\ \mathrm{RU}(x) & \text { if } & x<0 ;\end{array}\right.$
- round to nearest: $\mathrm{RN}(x)=$ FPN closest to x. If x halfway between two consecutive FPNs, a tie-breaking rule is needed.

Classical tie-breaking rules for RN (round to nearest)

When x is exactly halfway between 2 consecutive FP numbers:

- ties-to-even: choose the one whose integral significand is even (default);
- ties-to-away: choose the one with largest magnitude;
- ties-to-zero: choose the one with smallest magnitude.

These 3 rules are easy to implement in hardware, and with them we have

- $\mathrm{RN}(-x)=-\mathrm{RN}(x)$,
- $\mathrm{RN}\left(2^{k} x\right)=2^{k} \mathrm{RN}(x)$ (x and $2^{k} x$ in normal range), and
- x multiple of $2^{k} \Rightarrow \mathrm{RN}(x)$ is multiple of 2^{k}.

The standard rounding functions

Here we assume that the real numbers x and y are positive.

Correct rounding

- IEEE 754 specifies the rounding functions RD, RU, RZ, and RN with ties-to-even and ties-to-away (ties-to-zero allowed for some special, not-yet-implemented operations);
- the user can choose the rounding function (not always simple);
- the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation followed by rounding.

- correctly rounded,,$+- \times, \div \sqrt{ }$. are required;
- correctly rounded sin, cos, exp, In, etc. are only recommended (not mandatory).
\rightarrow in practice, when the operation $\mathrm{c}=\mathrm{a}+\mathrm{b}$ appears in a program, we obtain $c=\operatorname{RN}(a+b)$.

Correct rounding

IEEE-754 (since 1985): Correct rounding for,,$+- \times, \div, \sqrt{ }$ and some conversions. Advantages:

- if the result of an operation is exactly representable, we get it;
- if we just use the 4 arith. operations and $\sqrt{ }$, deterministic arithmetic: one can elaborate algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- playing with rounding towards $+\infty$ and $-\infty \rightarrow$ guaranteed lower and upper bounds: interval arithmetic.

FP arithmetic becomes a structure in itself, that can be studied.

Just for the fun: what does this program?

o is any of RD, RU, RZ, or RN.

```
A\leftarrow1.0
B\leftarrow1.0
while }\circ(\circ(A+1.0)-A)=1.0 d
    A\leftarrowo(2\timesA)
end while
while }\circ(\circ(A+B)-A)\not=B\mathrm{ do
    B\leftarrow\circ(B+1.0)
end while
return B
```


It computes β

```
\(A \leftarrow 1.0\)
\(B \leftarrow 1.0\)
while \(\circ(\circ(A+1.0)-A)=1.0\) do
    \(A \leftarrow \circ(2 \times A)\)
end while
while \(\circ(\circ(A+B)-A) \neq B\) do
    \(B \leftarrow \circ(B+1.0)\)
end while
return \(B\)
```

Assume radix β, precision p. Define $A_{i}=$ value of A after $i^{\text {th }}$ execution of the first while loop.

Consider the first while loop:

- Induction \rightarrow if $2^{i} \leq \beta^{p}-1$, then $A_{i}=2^{i}$ exactly. Gives $A_{i}+1 \leq \beta^{p} \rightarrow \circ\left(A_{i}+1.0\right)=A_{i}+1$.
- Hence, $\circ\left(\circ\left(A_{i}+1.0\right)-A_{i}\right)=\circ\left(\left(A_{i}+1\right)-A_{i}\right)=1$. Therefore while $2^{i} \leq \beta^{p}-1$, we stay in the 1st loop.
- Consider the smallest j s.t. $2^{j} \geq \beta^{p}$. We have $A_{j}=\circ\left(2 A_{j-1}\right)=\circ\left(2 \times 2^{j-1}\right)=\circ\left(2^{j}\right)$. Since $\beta \geq 2$, we conclude

$$
\beta^{p} \leq A_{j}<\beta^{p+1}
$$

- Hence, the FP successor of A_{j} is $A_{j}+\beta \rightarrow \circ\left(A_{j}+1.0\right)$ is either A_{j} or $A_{j}+\beta$ therefore $\circ\left(\circ\left(A_{j}+1.0\right)-A_{j}\right)$ is 0 or β : in any case it is $\neq 1.0 \rightarrow$ we exit the loop.

It computes β

```
\(A \leftarrow 1.0\)
\(B \leftarrow 1.0\)
while \(\circ(\circ(A+1.0)-A)=1.0\) do
    \(A \leftarrow \circ(2 \times A)\)
end while
while \(\circ(\circ(A+B)-A) \neq B\) do
    \(B \leftarrow \circ(B+1.0)\)
end while
return \(B\)
```


Consider the 2nd while loop.

- We have seen that the FP successor of A is $A+\beta$.
- Hence, while $B<\beta$, $\circ(A+B)$ is either A or $A+\beta \rightarrow \circ(\circ(A+B)-A)$ is 0 or β : in any case, we do not exit the loop.
- As soon as $B=\beta, \circ(A+B)$ is $A+B$ exactly, so $\circ(\circ(A+B)-A)=B$.

We exit the 2 nd loop as soon as $B=\beta$

Some useful notions

- this figure: We assume that x is in the normal range: $\beta^{e^{m} \text { min }} \leq x \leq \Omega$;
- distance between consecutive FPNs of absolute value $<\beta^{e_{\text {min }}}$: $\beta^{e_{\text {min }}-p+1}$.

ulp ("unit in the last place") and ufp ("unit in the first place")

Definition 2 (ulp function)
If $|x| \in\left[\beta^{e}, \beta^{e+1}\right)$, then $\operatorname{ulp}(x)=\beta^{\max \left\{e, e_{\text {min }}\right\}-p+1}$.
It is the distance between consecutive FP numbers in the neighborhood of x.

Properties:

- $|x-\mathrm{RN}(x)| \leq \frac{1}{2} \mathrm{ulp}(x)$;
- $|x-\mathrm{RU}(x)|,|x-\mathrm{RD}(x)|$, and $|x-\mathrm{RZ}(x)|$ are $<1 \mathrm{ulp}(x)$;
- if x is a FP number then it is an integer multiple of ulp (x).

Function ulp is frequently used for expressing errors.
Definition 3 (ufp function)
If $|x| \in\left[\beta^{e}, \beta^{e+1}\right)$, then $\operatorname{ufp}(x)=\beta^{e}$.

Relative error due to rounding

The most frequent measure of error in numerical computing is relative error. If \hat{x} approximates an exact value x, it is defined as:

- $\left|\frac{\hat{x}-x}{x}\right|$ if $x \neq 0$;
- 0 if $\hat{x}=x=0$;
- $+\infty$ if $x=0$ and $\hat{x} \neq 0$.

In practice, when the relative error is ≥ 1 this means we have lost all information on x (we even do not know its sign).

Relative error due to rounding

- if x is in the normal range (i.e., $\beta^{e_{\text {min }}} \leq|x| \leq \Omega$), then

$$
|x-\mathrm{RN}(x)| \leq \frac{1}{2} \mathrm{ulp}(x)=\frac{1}{2} \beta^{\left\lfloor\log _{\beta}|x|\right\rfloor-p+1}
$$

therefore,

$$
\begin{equation*}
|x-\mathrm{RN}(x)| \leq u \cdot|x|, \tag{1}
\end{equation*}
$$

with $u=\frac{1}{2} \beta^{-p+1}$ (base $2, u=2^{-p}$). Hence the relative error

$$
\frac{|x-\mathrm{RN}(x)|}{|x|}
$$

$($ for $x \neq 0)$ is $\leq u$.

- u, called rounding unit is frequently used for expressing errors.
- Exercise (for next time): show that in (1), u can be replaced by $\frac{u}{1+u}$.

Relative error due to rounding

- similarly, for x in the normal range, $|x-\circ(x)|$, where $o \in\{\operatorname{RU}, \mathrm{RD}, \mathrm{RZ}\}$, is $\leq \beta^{-p+1}$;
- if $|x|$ is below $\beta^{e_{\text {min }}}$ (subnormal range), we only have

$$
|x-\mathrm{RN}(x)| \leq \frac{1}{2} \beta^{e_{\min }-p+1}
$$

(i.e., the relative error can be much larger than u).

Consequence: the "standard model"

- correctly rounded operation $T \in\{+,-, \times, \div\}$;
- a, b FP numbers;
- if $a \top b$ is in the normal range, then the computed result $\hat{r}=\mathrm{RN}(a \top b)$ and the exact result $r=a \top b$ satisfy

$$
\hat{r}=r \cdot\left(1+\epsilon_{1}\right),
$$

with $\left|\epsilon_{1}\right| \leq u$;

- very similarly, we have

$$
\hat{r}=\frac{r}{1+\epsilon_{2}},
$$

with $\left|\epsilon_{2}\right| \leq u$.
Hauser's theorem \Rightarrow if $T \in\{+,-\}$ these relations hold even in the subnormal range.

The FMA (Fused Multiply-Add) instruction

- added in 2008 to the standard, now implemented in all commercially-significant processors;
- computes $\circ(a b+c)$, where \circ is the chosen rounding function;
- allows faster (and frequently more accurate) complex multiplication, division, evaluation of polynomials or dot-products;
- facilitates the implementation of correctly-rounded division and square-root using slightly modified Newton-Raphson iterations.

