2nd Lecture: Basic properties of Floating-Point Arithmetic

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

Base β Floating-Point System

Parameters:

 $\left\{ \begin{array}{ll} \mbox{radix (or base)} & \beta \geq 2 \mbox{ (in practice } \beta = 2 \mbox{ or } 10) \\ \mbox{precision} & p \geq 1 \\ \mbox{extremal exponents} & e_{\min}, e_{\max} \mbox{ (in practice } e_{\min} = 1 - e_{\max}) \end{array} \right.$

A Floating-Point number (FPN) x is represented by 2 integers:

- integral significand: M, $|M| \le \beta^p 1$;
- exponent e, $e_{\min} \leq e \leq e_{\max}$.

such that

$$x = M \cdot \beta^{e+1-p}$$

with *e* smallest under these constraints (necessary for unicity: $1200 \times 10^{-2} = 12 \times 10^{0}$). $\Rightarrow |M| > \beta^{p-1}$, unless $e = e_{\min}$.

Base β Floating-Point System

- Fractional significand of x (sometimes called mantissa): the number m = M · β^{1−p}, so that x = m · β^e.
- normal number: of absolute value ≥ β^{emin}. The absolute value of its integral significand is ≥ β^{p-1}. Example with β = 10, e_{min} = -99 and p = 4:

$$4235 \times 10^{0-3} = 4.235 \times 10^{0}.$$

• subnormal number: of absolute value $< \beta^{e_{\min}}$. The absolute value of its integral significand is $< \beta^{p-1}$. Example with $\beta = 10$, $e_{\min} = -99$ and p = 4: $3 \times 10^{-99-3} = 0.003 \times 10^{-99}$.

Subnormal numbers represented with worse accuracy: graceful underflow.

In practice: normality/subnormality is encoded in the exponent field.

Radix 2: the leftmost bit of the significand is always:

- a "1" for a normal number,
- a "0" for a subnormal number.
- \rightarrow no need to store it (implicit 1 convention).

Exercise:

- what is the largest representable number Ω ?
- let x ∈ [β^k, β^{k+1}), with k ≥ e_{min}. Assume x is a FPN. The number x⁺ (FP successor of x) is the smallest FPN > x. What is the value of x⁺ − x?
- in the binary32 format, $\beta = 2$, $e_{max} = 127$, and p = 24. What is the representation of 1? What is the smallest positive FP number?

Subnormal numbers difficult to implement efficiently, but...

If a and b are FPN, $a \neq b$ equivalent to "computed $a - b \neq 0$ ".

Theorem 1 (Hauser)

If the absolute value of the sum/difference of two floating-point numbers is $\leq \beta^{e_{min}+1}$ then it is a floating-point number (i.e., it is exactly representable in FP arithmetic).

Before 1985: a total mess...

Machine	Underflow λ	Overflow Λ	
DEC PDP-11, VAX, F and D formats	$2^{-128}\approx 2.9\times 10^{-39}$	$2^127\approx 1.7\times 10^38$	
DEC PDP-10; Honeywell 600, 6000; Univac 110x single; IBM 709X, 704X	$2^{-129}\approx 1.5\times 10^{-39}$	$2^127\approx 1.7\times 10^38$	
Burroughs 6X00 single	$8^{-51}\approx 8.8\times 10^{-47}$	$8^{76}\approx 4.3\times 10^{68}$	
H-P 3000	$2^{-256}\approx 8.6\times 10^{-78}$	$2^{256} \approx 1.2 \times 10^{77}$	
IBM 360, 370; Amdahl1; DG Eclipse M/600;	$16^{-65}\approx 5.4\times 10^{-79}$	$16^{63}\approx 7.2\times 10^{75}$	
Most handheld calculators	10^{-99}	10^{100}	
CDC 6X00, 7X00, Cyber	$2^{-976}\approx 1.5\times 10^{-294}$	$2^{1070}\approx 1.3\times 10^{322}$	
DEC VAX G format; UNIVAC, 110X double	$2^{-1024}\approx 5.6\times 10^{-309}$	$2^{1023} \approx 9 \times 10^{307}$	

Source: Kahan, Why do we need a Floating-Point Standard, 1981.

Before 1985: a total mess...

- on some Cray supercomputers, overflow in multiplication was computed just from the exponent of the entries, in parallel with the actual computation of the product;
- \rightarrow 1 * x could overflow;
 - still on the Crays, only 12 bits of x were examined to detect a division by 0 when computing y/x
- \rightarrow if (x = 0) then z := 17.0 else z := y/x

could lead to a "zero divide" error message... but since the multipler too examined only 12 bits to decide if an operand is zero,

if (1.0 * x = 0) then z := 17.0 else z := y/x

was just fine.

Writing reliable and portable numerical software was a challenge!

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats (in radices 2 and 10);
- specification of operations and conversions;
- exception handling (max+1, 1/0, $\sqrt{-2}$, 0/0, etc.);
- successive versions of the standard: 2008, 2019, more to come.

Name	binary16	binary32	binary64	binary128
		(basic)	(basic)	(basic)
Former name	N/A	single	double	N/A
		precision	precision	
р	11	24	53	113
e _{max}	+15	+127	+1023	+16383
e _{min}	-14	-126	-1022	-16382

Table 1: Main parameters of the binary interchange formats of size up to 128 bits specified by the 754-2019 Std. In some articles and software libraries, 128-bit formats were sometimes called "quad precision".

Name	decimal32	decimal64	decimal128
		(basic)	(basic)
р	7	16	34
e _{max}	+96	+384	+6144
e _{min}	-95	-383	-6143

Table 2: Main parameters of the decimal interchange formats of size upto 128 bits specified by the 754-2019 Std.

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;
- the other team assumed it was the foot.

- in general, the sum, product, quotient... of two FP numbers is not a FP number → it must be rounded;
- first systems: the only information was that the computed result was "close to" the exact result;
- now: a rounding function is defined, and the computed result is obtained by applying that function to the exact result
 - \rightarrow notion of correct rounding:
 - easy to guarantee for +, -, \div , \times , $\sqrt{}$;
 - very difficult for sin, exp, Γ , etc.

Rounding function

Denote \mathbb{F} the set of FP numbers in a given system $(\beta, p, e_{\min}, e_{\max})$. A function $r : \mathbb{R} \to \mathbb{F}$ is a rounding function if:

- $\forall x \in \mathbb{F}, r(x) = x;$
- $x_1 \leq x_2 \Rightarrow r(x_1) \leq r(x_2).$

Here are some usual rounding functions:

- round toward $-\infty$: RD(x) is the largest FP number $\leq x$;
- round toward $+\infty$: RU(x) is the smallest FP number $\geq x$;
- round toward zero: $\mathsf{RZ}(x) = \begin{cases} \mathsf{RD}(x) & \text{if } x \ge 0, \\ \mathsf{RU}(x) & \text{if } x < 0; \end{cases}$
- round to nearest: RN (x) = FPN closest to x. If x halfway between two consecutive FPNs, a tie-breaking rule is needed.

Classical tie-breaking rules for RN (round to nearest)

When x is exactly halfway between 2 consecutive FP numbers:

- ties-to-even: choose the one whose integral significand is even (default);
- ties-to-away: choose the one with largest magnitude;
- ties-to-zero: choose the one with smallest magnitude.

These 3 rules are easy to implement in hardware, and with them we have

- RN(-x) = -RN(x),
- $RN(2^kx) = 2^k RN(x)$ (x and 2^kx in normal range), and
- x multiple of $2^k \Rightarrow RN(x)$ is multiple of 2^k .

The standard rounding functions

Here we assume that the real numbers x and y are positive.

Correct rounding

- IEEE 754 specifies the rounding functions RD, RU, RZ, and RN with ties-to-even and ties-to-away (ties-to-zero allowed for some special, not-yet-implemented operations);
- the user can choose the rounding function (not always simple);
- the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation followed by rounding.

- correctly rounded +, -, \times , \div , $\sqrt{.}$ are required;
- correctly rounded sin, cos, exp, ln, etc. are only recommended (not mandatory).

 \rightarrow in practice, when the operation c = a + b appears in a program, we obtain c = RN(a + b).

IEEE-754 (since 1985): Correct rounding for +, -, ×, ÷, \checkmark and some conversions. Advantages:

- if the result of an operation is exactly representable, we get it;
- if we just use the 4 arith. operations and √, deterministic arithmetic: one can elaborate algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- playing with rounding towards +∞ and -∞ → guaranteed lower and upper bounds: interval arithmetic.

FP arithmetic becomes a structure in itself, that can be studied.

```
\circ is any of RD, RU, RZ, or RN.
```

```
A \leftarrow 1.0
B \leftarrow 1.0
while \circ(\circ(A + 1.0) - A) = 1.0 do
   A \leftarrow \circ (2 \times A)
end while
while \circ(\circ(A+B)-A) \neq B do
   B \leftarrow \circ (B + 1.0)
end while
return B
```

 $\begin{array}{l} A\leftarrow 1.0\\ B\leftarrow 1.0\\ \text{while }\circ(\circ(A+1.0)-A)=1.0 \ \text{ do}\\ A\leftarrow \circ(2\times A)\\ \text{ end while}\\ \text{while }\circ(\circ(A+B)-A)\neq B \ \text{ do}\\ B\leftarrow \circ(B+1.0)\\ \text{ end while}\\ \text{return } B \end{array}$

Assume radix β , precision p. Define

 A_i = value of A after i^{th} execution of

the first while loop.

Consider the first while loop:

- Induction \rightarrow if $2^i \leq \beta^p 1$, then $A_i = 2^i$ exactly. Gives $A_i + 1 \leq \beta^p \rightarrow \circ(A_i + 1.0) = A_i + 1$.
- Hence, $\circ(\circ(A_i + 1.0) A_i) = \circ((A_i + 1) A_i) = 1$. Therefore while $2^i \leq \beta^p - 1$, we stay in the 1st loop.
- Consider the smallest j s.t. $2^j \ge \beta^p$. We have $A_j = \circ(2A_{j-1}) = \circ(2 \times 2^{j-1}) = \circ(2^j)$. Since $\beta \ge 2$, we conclude

$$\beta^{p} \leq A_{j} < \beta^{p+1}.$$

• Hence, the FP successor of A_j is $A_j + \beta \rightarrow \circ(A_j + 1.0)$ is either A_j or $A_j + \beta$ therefore $\circ(\circ(A_j + 1.0) - A_j)$ is 0 or β : in any case it is $\neq 1.0 \rightarrow$ we exit the loop.

At the end of the 1st while loop, A satisfies $\beta^p \leq A < \beta^{p+1}$.

 $\begin{array}{l} A\leftarrow 1.0\\ B\leftarrow 1.0\\ \text{while }\circ(\circ(A+1.0)-A)=1.0 \ \text{ do }\\ A\leftarrow \circ(2\times A)\\ \text{ end while } \\ \text{while }\circ(\circ(A+B)-A)\neq B \ \text{ do }\\ B\leftarrow \circ(B+1.0)\\ \text{ end while }\\ \text{return } B \end{array}$

Consider the 2nd while loop.

- We have seen that the FP successor of A is $A + \beta$.
- Hence, while $B < \beta$, $\circ(A + B)$ is either A or $A + \beta \rightarrow \circ(\circ(A + B) A)$ is 0 or β : in any case, we do not exit the loop.
- As soon as $B = \beta$, $\circ(A + B)$ is A + B exactly, so $\circ(\circ(A + B) A) = B$.

We exit the 2nd loop as soon as $B = \beta$

Some useful notions

- this figure: We assume that x is in the normal range: $\beta^{e_{\min}} \leq x \leq \Omega$;
- distance between consecutive FPNs of absolute value $< \beta^{e_{\min}} : \beta^{e_{\min}-p+1}$.

ulp ("unit in the last place") and ufp ("unit in the first place")

Definition 2 (ulp function)

If $|x| \in [\beta^e, \beta^{e+1})$, then $ulp(x) = \beta^{\max\{e, e_{\min}\}-p+1}$.

It is the distance between consecutive FP numbers in the neighborhood of x.

Properties:

•
$$|x - RN(x)| \le \frac{1}{2} ulp(x);$$

- |x RU(x)|, |x RD(x)|, and |x RZ(x)| are < 1 ulp(x);
- if x is a FP number then it is an integer multiple of ulp(x).

Function ulp is frequently used for expressing errors.

Definition 3 (ufp function)

If $|x| \in [\beta^e, \beta^{e+1})$, then ufp $(x) = \beta^e$.

The most frequent measure of error in numerical computing is relative error. If \hat{x} approximates an exact value x, it is defined as:

•
$$\left|\frac{\hat{x}-x}{x}\right|$$
 if $x \neq 0$;

• 0 if
$$\hat{x} = x = 0$$
;

•
$$+\infty$$
 if $x = 0$ and $\hat{x} \neq 0$.

In practice, when the relative error is ≥ 1 this means we have lost all information on x (we even do not know its sign).

Relative error due to rounding

• if x is in the normal range (i.e., $\beta^{e_{\min}} \leq |x| \leq \Omega$), then $|x - RN(x)| \leq \frac{1}{2} \operatorname{ulp}(x) = \frac{1}{2} \beta^{\lfloor \log_{\beta} |x| \rfloor - p + 1},$

therefore,

$$|x - \mathsf{RN}(x)| \le u \cdot |x|, \tag{1}$$

with $u = \frac{1}{2}\beta^{-p+1}$ (base 2, $u = 2^{-p}$). Hence the relative error $\frac{|x - RN(x)|}{|x|}$

(for $x \neq 0$) is $\leq u$.

- *u*, called rounding unit is frequently used for expressing errors.
- Exercise (for next time): show that in (1), u can be replaced by $\frac{u}{1+u}$.

- similarly, for x in the normal range, $|x \circ(x)|$, where $\circ \in \{ \text{RU}, \text{RD}, \text{RZ} \}$, is $\leq \beta^{-p+1}$;
- if |x| is below $\beta^{e_{\min}}$ (subnormal range), we only have

$$|x - \mathsf{RN}(x)| \leq \frac{1}{2} \beta^{\mathsf{e}_{\min}-p+1},$$

(i.e., the relative error can be much larger than u).

Consequence: the "standard model"

- correctly rounded operation $\top \in \{+, -, \times, \div\}$;
- a, b FP numbers;
- if $a \top b$ is in the normal range, then the computed result $\hat{r} = \text{RN}(a \top b)$ and the exact result $r = a \top b$ satisfy

$$\hat{r}=r\cdot(1+\epsilon_1),$$

with $|\epsilon_1| \leq u$;

• very similarly, we have

$$\hat{r} = \frac{r}{1+\epsilon_2},$$

with $|\epsilon_2| \leq u$.

Hauser's theorem \Rightarrow if $\top \in \{+,-\}$ these relations hold even in the subnormal range.

The FMA (Fused Multiply-Add) instruction

- added in 2008 to the standard, now implemented in all commercially-significant processors;
- computes $\circ(ab + c)$, where \circ is the chosen rounding function;
- allows faster (and frequently more accurate) complex multiplication, division, evaluation of polynomials or dot-products;
- facilitates the implementation of correctly-rounded division and square-root using slightly modified Newton-Raphson iterations.