
3nd Lecture: Some Algorithms and
Properties in Floating-Point Arithmetic

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

Summary of the previous episodes

radix-β, precision-p FP number:

M × βe−p+1,

with emin ≤ e ≤ emax.
round to nearest: RN (x) = FPN closest to x . If x halfway
between two consecutive FPNs, a tie-breaking rule is needed
(default: ties-to-even);
RN (−x) = −RN (x); RN (2kx) = 2k RN (x) (unless
subnormal or overflow); x multiple of 2k ⇒ RN (x) multiple of
2k ;
if x is in the normal range (i.e., βemin ≤ |x | ≤ Ω), then

|x − RN (x)| ≤ u · |x |,

with u = 1
2β
−p+1 (base 2, u = 2−p).

2

Internal binary representation of IEEE 754 formats (base 2)

1 bit

WE bits p − 1 bits

FES

MSB LSB

if E = 2WE − 1 (i.e., E is a string of ones) and F 6= 0, then a NaN is
represented;

if E = 2WE − 1 and F = 0, then (−1)S × (+∞) is represented;

if 1 ≤ E ≤ 2WE − 2, then the (normal) floating-point number being
represented is

(−1)S × 2E−b ×
(
1+ F · 21−p) ,

where the bias b is defined as b = emax = 2WE−1 − 1;

if E = 0 and F 6= 0, then the (subnormal) number being represented is

(−1)S × 2emin ×
(
0+ F · 21−p) ;

if E = 0 and F = 0, then the number being represented is the signed zero
(−1)S × (+0). 3

Internal binary representation of IEEE 754 formats (base 2)

format binary16 binary32 binary64 binary128
former name N/A single double N/A

precision precision

storage width 16 32 64 128
p − 1, trailing
significand width

10 23 52 112

WE , exponent width 5 8 11 15

b = emax 15 127 1023 16383
emin −14 −126 −1022 −16382

4

Example: Binary encoding of a normal number

Consider the binary32 number x whose binary encoding is

0 01101011 01010101010101010101010

sign exponent trailing significand

the bit sign of x is a zero → x ≥ 0;
biased exponent 011010112 = 10710 /∈ {000000002

111111112} → x is a normal number. Since the bias in
binary32 is 127, the actual exponent of x is 107− 127 = −20;
by placing the hidden bit (a 1, since x is not subnormal) at the
left of the trailing significand, we get the significand of x :

1.010101010101010101010102 =
5592405

222 ;

hence, x is equal to
5592405

222 × 2−20 =
5592405

242 ≈ 1.2715657× 10−6

5

Exercise

Consider, still in binary32 floating-point arithmetic, the 32-bit chain:

1 00000000 01100000000000000000000

sign exponent trailing significand

Which FP number does it represent ?

6

Exception handling: the show must go on. . .

when an exception occurs: the computation must continue
(default behaviour);
two infinities and two zeros, with intuitive rules:
1/(+0) = +∞, 5 + (−∞) = −∞. . . ;
and yet, something a little odd:

√
−0 = −0;

Not a Number (NaN): result of
√
−5, (±0)/(±0),

(±∞)/(±∞), (±0)× (±∞), NaN +3, etc.

f (x) = 3 +
1
x5

will give the very accurate answer 3 for huge x , even if x5 overflows.

One should be cautious: behavior of
x2

√
x3 + 1

for large x . 7

Just for the fun: quick and dirty square root

game quake III, 1999;

(very) low precision, very fast, software;

use the fact that the exponent field of x encodes blog2 |x |c.
Binary32 (a.k.a. single precision) representation of normal x :

31 30 23 22 0

Sx Ex Fx

1-bit sign Sx , 8-bit biased exponent Ex , 23-bit fraction Fx s.t.

x = (−1)Sx · 2Ex−127 ·
(
1 + 2−23 · Fx

)
.

the same bit-chain, if interpreted as 2’s complement integer,
represents the number

Ix = (1− 2Sx) · 231 +
(
223 · Ex + Fx

)
.

8

Just for the fun: quick and dirty square root

In the following:

Ix is the integer whose binary representation is the same as
that of x , i.e.,

Ix = (1− 2Sx) · 231 +
(
223 · Ex + Fx

)
.

Beware, need to be cautious when we talk of equality: if y is the
FP number equal to J, and Ix = J, x is not equal to y : we have

mathematical equality of the integer J and the real y , and

equality of the binary representations of J and x .

9

Just for the fun: quick and dirty square root

Remember:
x = (−1)Sx · 2Ex−127 ·

(
1+ 2−23 · Fx

)
= (−1)Sx · 2ex · (1+ fx).

31 30 23 22 0

Sx Ex Fx

If ex = Ex − 127 is even (i.e., Ex is odd), we use:√
(1 + fx) · 2ex ≈

(
1 +

fx
2

)
· 2ex/2, (1)

if ex is odd (i.e., Ex is even), we use:√
(1 + fx) · 2ex =

√
4 + εx · 2

ex−1
2

≈
(
2 + εx

4

)
· 2

ex−1
2

=
(3

2 + fx
2

)
· 2

ex−1
2 ,

(2)

(Taylor series for
√
4 + εx at εx = 0, with εx = 2fx − 2)

10

Just for the fun: quick and dirty square root

x = (−1)Sx · 2Ex−127 ·
(
1+ 2−23 · Fx

)
= (−1)Sx · 2ex · (1+ fx).

31 30 23 22 0

Sx Ex Fx

Ex odd →
(
1 + fx

2

)
· 2

ex
2 ,

(1 + Fy · 2−23) · 2Ey−127 ≈ (1 + Fx · 2−24) · 2
Ex−127

2

⇒ Ey = Ex+127
2 and Fy = bFx

2 c

Ex even →
(3

2 + fx
2

)
· 2

ex−1
2 .

(1 + Fy · 2−23) · 2Ey−127 ≈ (3
2 + Fx · 2−24) · 2

Ex−128
2

⇒ Ey = Ex+127
2 − 1

2 and Fy = 222 + bFx
2 c

In both cases:

Iy =

⌊
Ix
2

⌋
+ 127 · 222

11

Just for the fun: quick and dirty square root

Figure 1: Plot of (approx−
√
x)/
√
x .

fast but rough approximation;
always ≥

√
x → replace 127 · 222 by a smaller value?

12

Just for the fun: quick and dirty square root

Figure 2: Plot of (approx−
√
x)/
√
x with 127 · 222 replaced by 532369100.

13

Just for the fun: quick and dirty square root

0

S E F

0

+ 00011111101110110100111011001100 (« magic constant »

532369100 in decimal)

1-bit right shift

No operation, just consider it is an integer

No operation, just consider it is a FP number

Integer addition

Positive « normal » FP number x

 y ≈ x

A similar trick first appears in

The game Quake III Arena

14

A useful property: Sterbenz Lemma

Lemma 1 (Sterbenz)

Let a and b be positive FP numbers. If

a

2
≤ b ≤ 2a

then a− b is a FP number (→ computed exactly, whatever the
rounding function).

Beware: the “2”s in the formula are not the radix. In radix 10, 17 or
42, the same property holds, still with a

2 ≤ b ≤ 2a.

15

A useful property: Sterbenz Lemma

16

The error of (RN) FP addition is a FPN

Lemma 2
Let a and b be two FP numbers. Let

s = RN (a + b) and r = (a + b)− s.

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions 6= RN .

Example: radix-2, precision-p, rounding function RD , a = 1, b = −2−3p, give

s = RD (a+ b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1− 2−p,

and
(a+ b)− s = 1.1111111111 · · · 11︸ ︷︷ ︸

2p

×2−p−1,

which is not a precision-p FPN (would require precision 2p).

17

The error of (RN) FP addition is a FPN

Prof vivront lors of garrottez , assume la / 7lb /
① s à

" the " FPN néant axb → it is closed to ad thon a à

→ Is - la +b) l e la - Ca + b) I

there Irl e Ibl

④ dente a = Da . plan
"

; b = pg.pe
b- port

with trial
, Inbf ff11 and ea > eb .

ado multiple of p
" - N'
⇒ s and r multiple of petit

" Là

⇒ J RE Z s -

t
- r = R . p

es - pal

But Irl e M ⇒ IN EMI sp
'
-1

→ ris a FPN !

18

Get r : the fast2sum algorithm (Dekker)

Theorem 3 (Fast2Sum (Dekker))

(only radix 2). Let a and b be FP numbers, s.t. |a| ≥ |b|.
Following algorithm: s and r such that

s + r = a + b exactly;

s is “the” FP number that is closest to a + b;

incidentally (will serve later on) z = s − a exactly.

Algorithm 1 (FastTwoSum)

s ← RN (a + b)

z ← RN (s − a)

r ← RN (b − z)

C Program 1
s = a+b;
z = s-a;
r = b-z;

Important remark: Proving the behavior of such algorithms requires
use of the correct rounding property.

19

Proof

s = RN (a + b)

z = RN (s − a)

t = RN (b − z)

if a and b have same sign, then |a| ≤ |a + b| ≤ |2a| hence (2a
is a FP number, rounding is increasing) |a| ≤ |s| ≤ |2a| →
(Sterbenz) z = s − a. Since r = (a + b)− s is a FPN and
b − z = r , we find RN (b − z) = r .
if a and b have opposite signs then

1. either |b| ≥ 1
2 |a|, which implies (Sterbenz) a + b is a FPN,

thus s = a + b, z = b and t = 0;
2. or |b| < 1

2 |a|, which implies |a + b| > 1
2 |a|, hence s ≥ 1

2 |a| (
1
2a

is a FPN, rounding is increasing), thus (Sterbenz)
z = RN (s − a) = s − a = b − r . Since r = (a + b)− s is a
FPN and b − z = r ,we get RN (b − z) = r .

(alternative: proof in the more general case)

20

The TwoSum Algorithm (Moller-Knuth)

no need to compare a and b;
6 operations instead of 3 yet, on many architectures, very
cheap in front of wrong branch prediction penalty when
comparing a and b;
works in all bases.

Algorithm 2
(TwoSum)

s ← RN (a + b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

r ← RN (δa + δb)

Knuth: if no underflow nor overflow
occurs then a + b = s + r , and s is
nearest a + b.

Boldo et al: formal proof + underflow
does not hinder the result (overflow
does).

TwoSum is optimal, in a way we will
explain.

21

The TwoSum Algorithm: proof in the case β = 2, p ≥ 3.

1: s ← RN (a+ b)

2: a′ ← RN (s − b)

3: b′ ← RN (s − a′)

4: δa ← RN (a− a′)

5: δb ← RN (b − b′)

6: r ← RN (δa + δb)

Pwofassunuiybas.ee/OiflHzlaItherlois G)
,
G) and Lcd constitue

Fast Sunda
,a)
→ a

'
= s - b (corresponds to the

"

z
"

of fast25mm)

sa = a +b-s

Fantasme
,
a

'
= s - b ⇒ s - ce

'
= b ⇒ b)

= b

⇒ sb = o

Hara
,
Sar Sb = Sa = a + b- s

and since a + b- s is a FPN
,
r = RN Batsb) = Sat Sls

22

The TwoSum Algorithm (Moller-Knuth)

s ← RN (a+ b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

r ← RN (δa + δb)

② If Iblc la I and Is I s Ib I
then a and b have opposite signes
[othnaàe we could have I ad f >, 14 and thaufre
14 > Kalash) I > Ira (b) l = lbl)

also
,
Hal HEI

Lothermie we could
have I a + b Is IE 1 , so that

Is I = IRN Cath l > IRN (E) t - IE Is b)
tofu , Sterling lemme applis to line at of the
algorithme
→ s = oral

,
so that at = a

,
b
'
= b
,Sa- Sb = o , r = o .

23

The TwoSum Algorithm (Moller-Knuth)

s ← RN (a+ b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

r ← RN (δa + δb)

③ If I Halal and lslzlbl
We Love s = @ +b) (1+4) with fed en

a
'
= Es -b) tirer) with Kd çu

(with a = a- p)
Hera a

'
= (at a Ep + BE,) (tt Ea)

144cal ⇒ a ç + bç courbe aiken za Ez with IÇI en

→ à = La + La Ç) (e rç) = acte)with # Iç 3- +2mL
pas ⇒ ne f- ⇒ tqt c f , hna tête la

'

Khal and
or and a' have the same signe
→ From Strang Lemmon , a _ a

' is a FPN

→ trance sa = a - a
'

24

The TwoSum Algorithm (Moller-Knuth)

s ← RN (a+ b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

r ← RN (δa + δb)

Follow
up of Case Ibklal and Is 1714
• we have show that sa = a -a

'

• tires Cd
, G) ds) of the algorithme constitue

Foshan (s
,
- b)

→ b
'
= s -o

'
and Sb = a' - (s - b)

⇒ sa + Sb = Lords) - s
and since @b) - s is a FPN :

RN (dotsb) = Sont § = at I - s
@⇒

25

TwoSum is “optimal”

Assume an algorithm satisfies:

it is without tests or min/max instructions;

it only uses rounded to nearest additions/subtractions: at step
i we compute RN (u + v) or RN (u − v) where u and v are
input variables or previously computed variables.

If that algorithm algorithm always computes the same results as
2Sum, then it uses at least 6 additions/subtractions (i.e., as much
as 2Sum).

proof: most inelegant proof award;
480756 algorithms with 5 operations (after suppressing the
most obvious symmetries);
each of them tried with 2 well-chosen pairs of input values.

26

Example of application: computing x1 + x2 + x3 + · · ·+ xn

Naive algorithm:

s ← x1

for i = 2 to n do
s ← RN (s + xi)

end for
return s

easy to show: |s −
∑

xi | ≤ γn−1
∑
|xi |, with

γn =
nu

1− nu
.

much more tricky: replace γn−1 by (n − 1) · u.

27

Example of application: computing x1 + x2 + x3 + · · ·+ xn

Pichat, Ogita, Rump, and Oishi’s algorithm:

Algorithm 3
s ← x1

e ← 0
for i = 2 to n do

(s, ei)← 2Sum(s, xi)

e ← RN (e + ei)

end for
return RN (s + e)

28

Example of application: computing x1 + x2 + x3 + · · ·+ xn

Theorem 4 (Ogita, Rump and Oishi)

Applying the algorithm of P.,O., R., and O. to xi , 1 ≤ i ≤ n, and if
nu < 1, then, even in case of underflow (but without overflow), the
final result σ satisfies∣∣∣∣∣σ −

n∑
i=1

xi

∣∣∣∣∣ ≤ u

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣+ γ2
n−1

n∑
i=1

|xi |.

29

What about products ?

Theorem 5
Let a and b be FPNs:

a = Ma · βea−p+1, and b = Mb · βeb−p+1, with

|Ma|, |Mb| ≤ βp − 1 and emin ≤ ea, eb.

if ea + eb ≥ emin + p − 1 then for any rounding function
◦ ∈ {RU,RD,RZ ,RN}, the number r = ab − ◦(ab) is a FPN.

p

βemin−p+1

30

What about products ?

Exercise: prove the theorem.

31

What about products ?

We use the fused multiply-add (fma) instruction. It computes
RN (ab + c). First ppeared in IBM RS6000, Intel/HP Itanium,
PowerPC. . . Specified since 2008.

We have seen: if a and b are FP numbers, then (under
condition ea + ep ≥ emin + p − 1), r = ab − RN (ab) is a FP
number;

obtained with algorithm TwoMultFMA

{
p = RN (ab)

r = RN (ab − p)

→ 2 operations only. p + r = ab.

without fma, Dekker’s algorithm: 17 operations (7 ×, 10 ±).
(only historical interest now)

32

Just an example: ad − bc with fused multiply-add

Kahan’s algorithm for x = ad − bc :

ŵ ← RN (bc)

e ← RN (ŵ − bc)

f̂ ← RN (ad − ŵ)

x̂ ← RN (f̂ + e)

Return x̂

We assume radix 2.

using std model (2002):

|x̂ − x | ≤ J|x |

with J = 2u + u2 + (u + u2)u |bc||x | → high
accuracy as long as u|bc| 6� |x |
using properties of RN (2011):

|x̂ − x | ≤ 2u|x |

“asymptotically optimal” error bound.

→ complex ×, ÷.

33

Newton-Raphson iteration for 1/b

xn+1 = xn −
f (xn)

f ′(xn)
,

with f (x) = 1
x − b. Gives

xn+1 = 2xn − bx2
n = xn(2− bxn).

Gives ∣∣xn+1 − 1
b

∣∣ =
∣∣2xn − bx2

n − 1
b

∣∣
= b ·

∣∣2bxn − x2
n − 1

b2

∣∣
= b ·

(
xn − 1

b

)2
.

But this is with exact arithmetic. What happens if we use FP
arithmetic?

34

Reciprocation using Newton-Raphson iteration and an FMA

Division algorithm used on the Intel/HP Itanium. Precision p, radix
2. To simplify, we only compute 1/b. We assume 1 ≤ b < 2
(significands of normal FP numbers).

Newton-Raphson iteration to compute 1/b:

yn+1 = yn(2− byn)

we lookup y0 ≈ 1/b in a table addressed by the first (typically
from 6 to 10) bits of b;
the NR iteration is decomposed into 2 FMA instructions:{

en = RN (1− byn)

yn+1 = RN (yn + enyn)

Notice that en+1 ≈ e2
n .

35

Property 1
If ∣∣∣∣1b − yn

∣∣∣∣ < α2−k ,

where 1/2 < α ≤ 1 and k ≥ 1, then∣∣∣∣1b − yn+1

∣∣∣∣ < b

(
1
b
− yn

)2

+ 2−k−p + 2−p−1

< 2−2k+1α2 + 2−k−p + 2−p−1

⇒ it seems that we can get arbitrarily closer to error 2−p−1 (i.e.,
1/2 ulp (1/b)), without being able to show a bound below
1/2 ulp (1/b).

36

Example: binary64 format of the IEEE-754 standard

Assume p = 53 and |y0 − 1
b | < 2−8 (small table), we find

|y1 − 1/b| < 0.501× 2−14

|y2 − 1/b| < 0.51× 2−28

|y3 − 1/b| < 0.57× 2−53 = 0.57 ulp (1/b)

Going further ?

Property 2

When yn approximates 1/b within error < 1 ulp (1/b) = 2−p, then,
since b is multiple of 2−p+1 and yn is multiple of 2−p, 1− byn is
multiple of 2−2p+1.
But |1− byn| < 2−p+1 → 1− byn is a FP number → exactly
computed by one FMA.

⇒
∣∣∣∣1b − yn+1

∣∣∣∣ < b

(
1
b
− yn

)2

+ 2−p−1.
37

∣∣∣∣yn − 1
b

∣∣∣∣ < α2−p ⇒
∣∣∣∣yn+1 −

1
b

∣∣∣∣ < bα22−2p + 2−p−1

(assuming α < 1)

yn+1

1/b can be here

1/b must be here to be at
distance > 1

2 ulp from yn+1

1 ulp = 2−p

38

What can be deduced ?

to be at distance > 1/2 ulp from yn+1, 1/b must be within
bα22−2p < b2−2p from the midpoint of two consecutive FP
numbers;

implies that distance between yn and 1/b has the form
2−p−1 + ε, with |ε| < b2−2p;

implies α < 1
2 + b2−p hence∣∣∣∣yn+1 −

1
b

∣∣∣∣ < (1
2

+ b2−p
)2

b2−2p + 2−p−1

so, to be at distance > 1/2 ulp from yn+1, 1/b must be within(1
2 + b2−p

)2
b2−2p from the midpoint of two consecutive FP

numbers.

39

b is a FP number between 1 et 2 ⇒ b = B/2p−1 where
B ∈ N, 2p−1 < B ≤ 2p − 1;

the midpoint of two consecutive FP numbers in the
neighborhood of 1/b has the form g = (2G + 1)/2p+1 where
G ∈ N, 2p−1 ≤ G < 2p − 1;

we deduce ∣∣∣∣g − 1
b

∣∣∣∣ =

∣∣∣∣2BG + B − 22p

B.2p+1

∣∣∣∣
the distance between 1/b and the midpoint of two consecutive
FP numbers is a multiple of 1/(B.2p+1) = 2−2p/b. It is 6= 0

40

Distance between 1
b
and g , when

∣∣ 1
b
− yn+1

∣∣ > 1
2 ulp

(
1
b

)
has the form k2−2p/b, k ∈ Z, k 6= 0;

we must have

|k | · 2−2p

b
<

(
1
2

+ b2−p
)2

b2−2p

therefore

|k | <
(
1
2

+ b2−p
)2

b2

since b < 2, as soon as p ≥ 4, the only solution is |k | = 1;

moreover, for |k | = 1, elementary manipulation shows that the
only possible solution is

b = 2− 2−p+1.

41

How do we procede?

we want
B = 2p − 1,

2p−1 ≤ G ≤ 2p − 1
B(2G + 1) = 22p ± 1

Only one solution: B = 2p − 1 and G = 2p−1: comes from
22p − 1 = (2p − 1)(2p + 1);

except for that B (thus for the corresponding value
b = B/2p−1 of b), we are certain that yn+1 = RN (1/b);

for B = 2p − 1: we try the algorithm with the two values of yn
within one ulp from 1/b (i.e. 1/2 and 1/2 + 2−p). In practice,
it works (otherwise: do dirty things).

42

Application: double precision (p = 53)

We start from y0 such that |y0 − 1
b | < 2−8. We compute:

e0 = RN (1− by0)

y1 = RN (y0 + e0y0)

e1 = RN (1− by1)

y2 = RN (y1 + e1y1)

e2 = RN (1− by1)

y3 = RN (y2 + e2y2) error ≤ 0.57 ulps
e3 = RN (1− by2)

y4 = RN (y3 + e3y3) 1/b rounded to nearest

43

In practice: two iterations

Markstein iterations{
en = RN (1− byn)

yn+1 = RN (yn + enyn)

More accurate (“self correcting”), se-

quential

Goldschmidt iterations{
en+1 = RN (e2

n)

yn+1 = RN (yn + enyn)

Less accurate, faster (parallel)

In practice: we start with Goldschmidt iterations, and switch to
Markstein iterations for the final steps.

44

