3nd Lecture: Some Algorithms and
Properties in Floating-Point Arithmetic

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-1lyon.fr/jean-michel.muller/

http://perso.ens-lyon.fr/jean-michel.muller/

Summary of the previous episodes

o radix-{3, precision-p FP number:

M x ﬁefpﬂ,
Wlth €min S € S Emax-

@ round to nearest: RN (x) = FPN closest to x. If x halfway
between two consecutive FPNs, a tie-breaking rule is needed
(default: ties-to-even);

@ RN (—x) = —RN(x); RN (2¥x) = 2K RN (x) (unless
subnormal or overflow); x multiple of 2 = RN (x) multiple of
2k.

@ if x is in the normal range (i.e., gmin < |x| < Q), then

|x — RN (x)| < u-|x],

with u = 337PT1 (base 2, u = 27P).

Internal binary representation of IEEE 754 formats (base 2)

MSB LSB
S E F
1 bit

WE bits p — 1 bits

@ ifE=2" _1 (i.e., E is a string of ones) and F # 0, then a Nal is
represented;
@ if E=2"E —1and F =0, then (—1)° x (+00) is represented;
@ if 1 < E < 2"e — 2, then the (normal) floating-point number being
represented is
(—1)° x2F7 P x (14 F-2'7P),
where the bias b is defined as b = emax = 2V~ — 1;

@ if E=0and F # 0, then the (subnormal) number being represented is
(71)5 X 2Cmin X (O + F - 21 P) :

@ if E=0and F =0, then the number being represented is the signed zero
(—1)° x (40). 3

Internal binary representation of IEEE 754 formats (base 2)

format binaryl6 | binary32 | binary64 | binary128
former name N/A single double N/A
precision | precision

storage width 16 32 64 128
p — 1, trailing

e) 10 23 52 112
significand width

WE, exponent width 5 8 11 15
b = enax 15 127 1023 16383
Emin —14 —126 —1022 —16382

Example: Binary encoding of a normal number

Consider the binary32 number x whose binary encoding is

sign exponent trailing significand

‘ O‘ 01101011 ‘ 01010101010101010101010 ‘

@ the bit sign of x is a zero — x > 0;

@ biased exponent 01101011, = 10719 ¢ {000000002
111111115} — x is a normal number. Since the bias in
binary32 is 127, the actual exponent of x is 107 — 127 = —20;

@ by placing the hidden bit (a 1, since x is not subnormal) at the
left of the trailing significand, we get the significand of x:

5502405

1.01010101010101010101010 = —;

@ hence, x is equal to

5592405 20 _ 5592405

¥ —a 12715657 x 10°°

Exercise

Consider, still in binary32 floating-point arithmetic, the 32-bit chain:

sign exponent trailing significand

1| 00000000{ 01100000000000000000000

Which FP number does it represent 7

Exception handling: the show must go on. ..

@ when an exception occurs: the computation must continue
(default behaviour);

@ two infinities and two zeros, with intuitive rules:
1/(4+0) = +o0, 5+ (—00) = —oo0.. .;

@ and yet, something a little odd: /=0 = —0;

@ Not a Number (NaN): result of v/=5, (40)/(=0),
(£00)/(£00), (£0) x (£oo), NaN +3, etc.

1

will give the very accurate answer 3 for huge x, even if x> overflows.
One should be cautious: behavior of
X2
x3+1
for large x.

Just for the fun: quick and dirty square root

@ game quake I, 1999;

@ (very) low precision, very fast, software;

@ use the fact that the exponent field of x encodes |log, |x|].

@ Binary32 (a.k.a. single precision) representation of normal x:
s| E A |

31 30 23 22 0

e 1-bit sign S, 8-bit biased exponent E,, 23-bit fraction F; s.t.
x=(-1)>-25"1 (14272 F).

e the same bit-chain, if interpreted as 2's complement integer,
represents the number

he=(1-25)-2+ (22 E +F,).

Just for the fun: quick and dirty square root

In the following:

@ /. is the integer whose binary representation is the same as
that of x, i.e.,

le=(1-25)-22"+ (22 Ec+ F) .

Beware, need to be cautious when we talk of equality: if y is the
FP number equal to J, and I, = J, x is not equal to y: we have

e mathematical equality of the integer J and the real y, and

@ equality of the binary representations of J and x.

Just for the fun: quick and dirty square root

Remember:

= (_1)SX .2EX7127 . (1 +2—23 . Fx) _ (_l)Sx .08, (1 + fx)

&] z |
31 30 23 22

0
e If e, = E, — 127 is even (i.e., Ey is odd), we use:

iz~ (145) 20 1)

e if e, is odd (i.e., Ex is even), we use:

(I+F)- 20 = VEteg-22
~ (2+g)2" 2
G+%)-277,

(Taylor series for /4 + €4 at €x = 0, with e, = 2f, — 2)

10

Just for the fun: quick and dirty square root

= (71)Sx . 2Ex7127 . (1 + 2723 . Fx) _ (71)S>< e (1 n f;()

s &] Fy l
31 30 23 22 5

o £ odd - (14 5) 2%,

(1+Fy.2—23) 26127 1 (14 F, . 2-24). LBt
= E, = &2 and F, = | & |
® E, even — (% 4T %) .2"“21_
(1+F, -27%). 2Ey*127 ~ (Bt F 2% Eei2s

= E, = EX+127 Land F, =224 L%J
In both cases:

I
ly = {J + 127 - 2?2
4 ’ 11

Just for the fun: quick and dirty square root

1 2 3 P
Figure 1: Plot of (approx — v/x)/+/x.

@ fast but rough approximation;
@ always > /x — replace 127 - 222 by a smaller value?

Just for the fun: quick and dirty square root

0.03+

0.02-

Figure 2: Plot of (approx — /x)/+/x with 127 - 2°% replaced by 532369100.

13

Just for the fun: quick and dirty square root

Positive « normal » FP number x

\ 1-bit right shift

* No operation, just consider it is an integer

|

(« magic constant »

+ 00011111101110110100111011001100 532369100 in decimal)

Integer addition

/ No operation, just consider it is a FP number

Vx

I4—

Q

v

A similar trick first appears in
The game Quake Il Arena

Dreamcast. ©

@ ARG [AaREN A

14

A useful property: Sterbenz Lemma

Lemma 1 (Sterbenz)

Let a and b be positive FP numbers. If

<b<2a

Nl L

then a — b is a FP number (— computed exactly, whatever the

rounding function).

Beware: the “2"s in the formula are not the radix. In radix 10, 17 or
42, the same property holds, still with 3 < b < 2a.

15

A useful property: Sterbenz Lemma

We Low_ Z < 5420.

v{w <a.<LL
Lﬂiwa_ualbryo“&q—AémeQM&

%WQOS/MWW col
CmA-aTMCa.‘» "“AL""—M«Q‘LVQLU@

2 o) - el ~ P+
w\uﬁ{ Q,\JMI)ALF(M‘)UM)’%L
UGJLL n;</3
o b Sl g (L),
a-b= K JFCL)
=> osv——L <\>
Hao K & MLV L £-1
—alh o PP (k|4 -1 16

a3b
> g2b

The error of (RN) FP addition is a FPN

Lemma 2
Let a and b be two FP numbers. Let

s= RN(a+b) and r=(a+ b)—s.
If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions £ RN .
Example: radix-2, precision-p, rounding function RD, a=1, b= =P give
s=RD(a+b)=0111111---11=1-2"7,
iy ——
P

and
(a+b) —s=11111111111---11 x2 P~
2p
which is not a precision-p FPN (would require precision 2p).

17

The error of (RN) FP addition is a FPN

ﬁ o UHe PPN oo ;:ﬁ:w% e
= |a- 2 ¢ | a- lash))
foulon 2] <Y pEmS
@ m e DA,FQQ_P“ /_ L: DL,(%e -P+
om0 € p 1 md ey 5l
o i B A ﬁ”’”;s Aan M&tfw /aQ"‘P*'Z;y
ENEENN I Ey AR AR (k(s“’“"”
B ol < b = o] <y €'
-~ @ &F/N -

18

Get r: the fast2sum algorithm (Dekker)

Theorem 3 (Fast2Sum (Dekker))

(only radix 2). Let a and b be FP numbers, s.t. |a| > |b|.
Following algorithm: s and r such that

@ s+ r=a+ b exactly;
@ s is “the” FP number that is closest to a + b;

e incidentally (will serve later on) z = s — a exactly.

Algorithm 1 (FastTwoSum) C Program 1
s< RN(a+b) s = atb;
z+ RN(s—a) z = s-a;
r< RN(b-z) r = b-z;

Important remark: Proving the behavior of such algorithms requires

use of the correct rounding property.
19

@ if a and b have same sign, then |a| < |a+ b| < |2a| hence (2a

is a FP number, rounding is increasing) |a| < |s| < |2a| —
(Sterbenz) z = s — a. Since r = (a+ b) — s is a FPN and
b—z=r, wefind RN(b—2z)=r.
@ if a and b have opposite signs then
1. either |b| > 1|a|, which implies (Sterbenz) a+ b is a FPN,
thuss=a+ b, z=>band t =0;
2. or |b| < 3|a|, which implies |a+ b| > 1|a|, hence s > 13| (3a
is a FPN, rounding is increasing), thus (Sterbenz)
z=RN(s—a)=s—a=b—r.Sincer=(a+b)—sisa
FPN and b—z = r,we get RN(b—2z) =r. 20

The TwoSum Algorithm (Moller-Knuth)

@ no need to compare a and b;

@ 6 operations instead of 3 yet, on many architectures, very
cheap in front of wrong branch prediction penalty when
comparing a and b;

@ works in all bases.

Knuth: if no underflow nor overflow

Algorithm 2 occurs then a+ b = s+ r, and s is
(TwoSum) nearest a + b.
s« RN(a+b)
o « RN(s— b) Boldo et al: formal proof + underflow
B« RN(s—) does not hinder the result (overflow
da < RN(a—4a) S0z

TwoSum is optimal, in a way we will

explain.
P 21

The TwoSum Algorithm: proof in the case 5 =2, p > 3.

? 244 y [7M¢ 2

@ 3 20| e b (1),) b (4) bl

1: s+ RN(a+b) ?MLZS“.L(\>/9_)

2: 2« RN(s— b) s b KMFWLL;L"S“
3: b’ < RN(s—a') 4 Fok2Ser)

4: §,+ RN(a—2) €, = a+boa

5: 65 < RN (b—b) Collomon o'z 5L ,3_@/:[):5\3;&
6: r < RN (8, + dp) /

= QL:D
Wote | S,4SKL =5, = a+b_4g

ad boa acbosa s TN, 20N (3,+3L) = S .81

22

The TwoSum Algorithm (Moller-Knuth)

‘r& H< [o (3] < <|b|
\fwn_ eL\,J L\/wu*/a 9rr4rwt—&-?m
M&wxmﬂ llll, ol) > 1L em»]‘“'w»%w
e > R | =[ew b)) =141
a s — b o~
b« RN(S—QI) Afi%/\ ‘71) L,m/e, |¢+L|>[, Aa—LLﬂ»)/
5« RN(a—a) (is v el e |1+
55 RN (b—b') = a2 ()] =[5>+)
- _
’ ar) Sy Lo Lo lie () 4.
S

r+ RN (3, + 65)

|
S A= aLé»L//lo*M alfﬂ/LfL/-L‘SL:“/ 2=0-

23

The TwoSum Algorithm (Moller-Knuth)

@ =p 16l <[a] = [s] 31
WE_[/VDL/:&, X:&+L)C4*£1) w;}ﬁ{%{s gy
o= [A J;) [/u-EL) wHo [SL] &
{uc«j“« o = Z-F)
H"'\,Q, ﬂ—) = [0»4 a£4+ b£1)[4*£1/)
S <fa] = 02 ebE, el b 2ag, wibi(gs
b RN(b—b) = T larinSieg)= m@;i)wiﬁ’»\%)s e
P RN, +8) PP e p (R ch e 3] el o] o
o euusl a! LM J—l/\L Ao-ms- Au.brf\.
== St_LM.bM /a_a.) s a FPN
< (/LM.C» Sﬂ_ = ﬁ-"’—/

s <+ RN (a+ b)
a’ < RN(s—b)
b+ RN (s—2a")

24

The TwoSum Algorithm (Moller-Knuth)

llon oo Guae [bl<la| od 42 b
.wawewu gaf @/"L/
s+ RN(a+b) o b (1), (3)/(5) fﬁﬂm QQZWJ/L‘ wtLh

a' < RN(s— b) Cob2Sn (s,)
b’ + RN(s — a') .

|) ’
3, + RN (a—2a) — by’ ad SL):’ al_ /A-L)

dp < RN (b—b") = § "SB = ()4
r < RN ((Sa“‘ab) ond s (a;‘vg_/l 3 Fpl/

(lf\{ (Sa_aﬂg‘;) = S&vS\J = &L-J»&—A D

25

TwoSum is “optimal”

Assume an algorithm satisfies:

@ it is without tests or min/max instructions;

@ it only uses rounded to nearest additions/subtractions: at step
i we compute RN (v + v) or RN (v — v) where u and v are
input variables or previously computed variables.

If that algorithm algorithm always computes the same results as
2Sum, then it uses at least 6 additions/subtractions (i.e., as much
as 25um).

@ proof: most inelegant proof award;
e 480756 algorithms with 5 operations (after suppressing the
most obvious symmetries);
e each of them tried with 2 well-chosen pairs of input values.

26

Example of application: computing x; + x> + x3 + - - -

Naive algorithm:

S < X1

for i=2to ndo
s < RN (s + x)

end for

return s

@ easy to show: |s — > x| < ~v,.1) |x/, with

nu

%Zl—nu'

e much more tricky: replace vy,-1 by (n—1) - v.

27

Example of application: computing x; + x> + x3 + - - -

Pichat, Ogita, Rump, and Oishi's algorithm:

Algorithm 3
S < X1

e« 0
for i =2 to n do
(s, &) « 2Sum(s, x;)
e+ RN(e+e)
end for
return RN (s + e)

28

Example of application: computing x; + x> + x3 + -+ - + X,

Theorem 4 (Ogita, Rump and Qishi)

Applying the algorithm of P.,O., R., and O. to x;, 1 < i < n, and if
nu < 1, then, even in case of underflow (but without overflow), the
final result o satisfies

n
o — g 54
S

<u

n
D%
i=1

n
+ 71 Z |xi-
i=1

29

What about products ?

Theorem 5
Let a and b be FPNs:

a=M, 8% Pt and b= M, 5% P with

IMa], [Mp| < BP —1 and e, < e, ep.

if e, + ey > €,., + p — 1 then for any rounding function
o€ {RU,RD,RZ,RN}, the number r = ab — o(ab) is a FPN.

vt 1

30

What about products 7

Exercise: prove the theorem.

31

What about products ?

@ We use the fused multiply-add (fma) instruction. It computes
RN (ab + ¢). First ppeared in IBM RS6000, Intel/HP Itanium,

PowerPC. . . Specified since 2008.

@ We have seen: if a and b are FP numbers, then (under
condition e, + e, > € +p—1), r =ab— RN(ab) isa FP
number;

@ obtained with algorithm TwoMultFMA { ’r’ - EEEZ’;)_)

— 2 operations only. p+ r = ab.

@ without fma, Dekker's algorithm: 17 operations (7 x, 10 £).

(only historical interest now)

32

Just an example: ad — bc with fused multiply-add

Kahan's algorithm for x = ad — bc:

24 i) @ using std model (2002):

e < RN (w — bc)

f « RN (ad — W) 1% — x| < J|x|

£+ RN(f +e)

Return £ with J = 2u+ v? + (u + u%u% — high

accuracy as long as u|bc| % |x]|

@ using properties of RN (2011):

We assume radix 2.
|X — x| < 2u|x|

“asymptotically optimal” error bound.

@ — complex x, +.

33

Newton-Raphson iteration for 1/b

f(xn)
Xl =X T,

with f(x) = 2 — b. Gives

Xpt1 = 2Xp — b><,27 = xp(2 — bxp).

Gives
=3 = |- bd -1
= b-‘2bx,,—x§—%
— b (=B

But this is with exact arithmetic. What happens if we use FP
arithmetic?

34

Reciprocation using Newton-Raphson iteration and an FMA

Division algorithm used on the Intel/HP Itanium. Precision p, radix
2. To simplify, we only compute 1/b. We assume 1 < b < 2

(significands of normal FP numbers).
e Newton-Raphson iteration to compute 1/b:

Ynt+1 = yn(2 - b}’n)

@ we lookup yp ~ 1/b in a table addressed by the first (typically
from 6 to 10) bits of b;
@ the NR iteration is decomposed into 2 FMA instructions:

en = RN(1— by
Yn+1 = RN (YH s en)/n)

. —~ 2
Notice that e,+1 ~ e;.

35

Property 1
If

1 -
‘b)/n < a2 ka

where 1/2 < o <1 and k > 1, then

1

< 272kHlg2 4 p=k=p 4 o—P-1

1 2
< b (- yn> +27k=p 4 2=p-1

= it seems that we can get arbitrarily closer to error 2P~ 1 (i.e.,

1/2ulp (1/b)), without being able to show a bound below
1/2ulp (1/b).

36

Example: binary64 format of the IEEE-754 standard

Assume p = 53 and |yo — %| < 278 (small table), we find

o |y1 —1/b] <0501 x 2714

@ |yo—1/b| < 0.51 x 2728

@ |y3 —1/b| < 0.57 x 27%3 = 0.57 ulp (1/b)
Going further ?
Property 2
When y, approximates 1/b within error < 1 ulp(1/b) = 27P, then,
since b is multiple of 27P*Y and y, is multiple of 2P, 1 — by, is
multiple of 272P+1,
But |1 — byp| < 27P*! — 1 — by, is a FP number — exactly
computed by one FMA.

1 2
<b (— yn) +27P71,
b 37

IS
b Yn+1

1
yn_b‘ <a2_p:>

1

(assuming @ < 1)
‘ 1/b can be here

1/b must be here to be at

distance > 2 ulp from y,41

38

What can be deduced ?

@ to be at distance > 1/2 ulp from y,11, 1/b must be within
ba?272P < b272P from the midpoint of two consecutive FP
numbers;

@ implies that distance between y,, and 1/b has the form
27P~1 4 ¢, with |e| < b272P;

@ implies o < % -+ b27P hence

1 1 -pP ’ —2p —p-1
}/n+1—E < §—|—b2 b2 +2

@ so, to be at distance > 1/2 ulp from y,41, 1/b must be within
(3 + b2*”)2 b272P from the midpoint of two consecutive FP
numbers.

39

@ bis a FP number between 1 et 2 = b = B/2P~1 where
BeN, 2"t < B<2P — 1,

@ the midpoint of two consecutive FP numbers in the
neighborhood of 1/b has the form g = (2G + 1)/2P*! where
GeN, 271 <G<2P—1,

@ we deduce
2BG + B — 2%

b B.2pt1

@ the distance between 1/b and the midpoint of two consecutive
FP numbers is a multiple of 1/(B.2PT1) =272P/b. It is #0

1
g—— =

40

1

Distance between 1 and g, when |; — y,.1| > 2 ulp ()

@ has the form k2*2p/b, keZ, k#0;

@ we must have

k|-272p /1 2
Hb < (2 - b2—P> b2—2P

therefore
1 2
k| < (2 + b2P> b?
@ since b < 2, as soon as p > 4, the only solution is |k| = 1;

@ moreover, for |k| =1, elementary manipulation shows that the

only possible solution is
b=2-—2"PF,

41

How do we procede?

@ we want
B=2°r_1,
r-l<G<or—1
B(2G +1)=2%+1
Only one solution: B =2P —1 and G = 2P~1: comes from
22P — 1= (2P — 1)(2P + 1);
@ except for that B (thus for the corresponding value
b = B/2P~1 of b), we are certain that y,,1 = RN (1/b);

o for B = 2P — 1: we try the algorithm with the two values of y,
within one ulp from 1/b (i.e. 1/2 and 1/2 + 27P). In practice,
it works (otherwise: do dirty things).

42

Application: double precision (p = 53)

We start from ypo such that |yp — %\ < 278 We compute:

€ = RN (]. — byo)

yi = RN(yo+ eoyo)

er = RN(1-by)

y> = RN(y1+e)

e = RN(1-by)

y3 = RN (y2 + e2xyn) error < 0.57 ulps

es = RN(1-by)

ya = RN(y3+ e3y3) 1/b rounded to nearest

43

In practice: two iterations

Markstein iterations o _
Goldschmidt iterations

en = RN(1 - by,
{y - RNEy +Zi) il = RN(er)
r non Yor1 = RN (yn+ enyn)

More accurate (“self correcting”), se-
] Less accurate, faster (parallel)
quential

In practice: we start with Goldschmidt iterations, and switch to
Markstein iterations for the final steps.

44

