3nd Lecture: Some Algorithms and Properties in Floating-Point Arithmetic

Jean-Michel Muller
CNRS - Laboratoire LIP

Summary of the previous episodes

- radix- β, precision- p FP number:

$$
M \times \beta^{e-p+1}
$$

with $e_{\text {min }} \leq e \leq e_{\text {max }}$.

- round to nearest: $\mathrm{RN}(x)=\mathrm{FPN}$ closest to x. If x halfway between two consecutive FPNs, a tie-breaking rule is needed (default: ties-to-even);
- $\mathrm{RN}(-x)=-\mathrm{RN}(x) ; \mathrm{RN}\left(2^{k} x\right)=2^{k} \mathrm{RN}(x)$ (unless subnormal or overflow); x multiple of $2^{k} \Rightarrow \mathrm{RN}(x)$ multiple of 2^{k};
- if x is in the normal range (i.e., $\beta^{e_{\text {min }}} \leq|x| \leq \Omega$), then

$$
|x-\mathrm{RN}(x)| \leq u \cdot|x|,
$$

with $u=\frac{1}{2} \beta^{-p+1}\left(\right.$ base 2, $\left.u=2^{-p}\right)$.

Internal binary representation of IEEE 754 formats (base 2)

MSB

S	E	F
1 bit		

- if $E=2^{W_{E}}-1$ (i.e., E is a string of ones) and $F \neq 0$, then a NaN is represented;
- if $E=2^{W_{E}}-1$ and $F=0$, then $(-1)^{S} \times(+\infty)$ is represented;
- if $1 \leq E \leq 2^{W_{E}}-2$, then the (normal) floating-point number being represented is

$$
(-1)^{S} \times 2^{E-b} \times\left(1+F \cdot 2^{1-p}\right)
$$

where the bias b is defined as $b=e_{\max }=2^{W_{E}-1}-1$;

- if $E=0$ and $F \neq 0$, then the (subnormal) number being represented is

$$
(-1)^{S} \times 2^{e_{\min }} \times\left(0+F \cdot 2^{1-p}\right) ;
$$

- if $E=0$ and $F=0$, then the number being represented is the signed zero $(-1)^{S} \times(+0)$.

Internal binary representation of IEEE 754 formats (base 2)

format	binary16	binary32	binary64	binary128
former name	N/A	single precision	double precision	N/A
storage width	16	32	64	128
$p-1$, trailing significand width	10	23	52	112
W_{E}, exponent width	5	8	11	15
$b=e_{\max }$	15	127	1023	16383
$e_{\min }$	-14	-126	-1022	-16382

Example: Binary encoding of a normal number

Consider the binary32 number x whose binary encoding is

sign exponent trailing significand \quad| 0 | 01101011 | 01010101010101010101010 |
| ---: | ---: | :--- |

- the bit sign of x is a zero $\rightarrow x \geq 0$;
- biased exponent $01101011_{2}=107_{10} \notin\left\{00000000_{2}\right.$ $\left.11111111_{2}\right\} \rightarrow x$ is a normal number. Since the bias in binary32 is 127 , the actual exponent of x is $107-127=-20$;
- by placing the hidden bit (a 1 , since x is not subnormal) at the left of the trailing significand, we get the significand of x :

$$
1.01010101010101010101010_{2}=\frac{5592405}{2^{22}}
$$

- hence, x is equal to

$$
\frac{5592405}{2^{22}} \times 2^{-20}=\frac{5592405}{2^{42}} \approx 1.2715657 \times 10^{-6}
$$

Exercise

Consider, still in binary32 floating-point arithmetic, the 32-bit chain:

1	00000000	01100000000000000000000

Which FP number does it represent ?

Exception handling: the show must go on. . .

- when an exception occurs: the computation must continue (default behaviour);
- two infinities and two zeros, with intuitive rules:

$$
1 /(+0)=+\infty, 5+(-\infty)=-\infty \ldots ;
$$

- and yet, something a little odd: $\sqrt{-0}=-0$;
- Not a Number (NaN): result of $\sqrt{-5},(\pm 0) /(\pm 0)$, $(\pm \infty) /(\pm \infty),(\pm 0) \times(\pm \infty), \mathrm{NaN}+3$, etc.

$$
f(x)=3+\frac{1}{x^{5}}
$$

will give the very accurate answer 3 for huge x, even if x^{5} overflows.
One should be cautious: behavior of

$$
\frac{x^{2}}{\sqrt{x^{3}+1}}
$$

for large x.

Just for the fun: quick and dirty square root

- game quake III, 1999;
- (very) low precision, very fast, software;
- use the fact that the exponent field of x encodes $\left\lfloor\log _{2}|x|\right\rfloor$.
- Binary 32 (a.k.a. single precision) representation of normal x :

S_{x}		E_{x}		F_{x}	
31	30		23	22	

- 1-bit sign S_{x}, 8-bit biased exponent E_{x}, 23-bit fraction F_{x} s.t.

$$
x=(-1)^{S_{x}} \cdot 2^{E_{x}-127} \cdot\left(1+2^{-23} \cdot F_{x}\right) .
$$

- the same bit-chain, if interpreted as 2's complement integer, represents the number

$$
I_{x}=\left(1-2 S_{x}\right) \cdot 2^{31}+\left(2^{23} \cdot E_{x}+F_{x}\right) .
$$

Just for the fun: quick and dirty square root

In the following:

- I_{x} is the integer whose binary representation is the same as that of x, i.e.,

$$
I_{x}=\left(1-2 S_{x}\right) \cdot 2^{31}+\left(2^{23} \cdot E_{x}+F_{x}\right) .
$$

Beware, need to be cautious when we talk of equality: if y is the FP number equal to J, and $I_{x}=J, x$ is not equal to y : we have

- mathematical equality of the integer J and the real y, and
- equality of the binary representations of J and x.

Just for the fun: quick and dirty square root

Remember:

$$
\begin{gathered}
x=(-1)^{S_{x}} \cdot 2^{E_{x}-127} \cdot\left(1+2^{-23} \cdot F_{x}\right)=(-1)^{S_{x}} \cdot 2^{e_{x}} \cdot\left(1+f_{x}\right) . \\
\begin{array}{|l|l|l|l|l|}
\hline S_{x} & E_{x} & F_{x} & 0 \\
\begin{array}{llll}
31 & 30 & 23 & 22
\end{array}
\end{array}
\end{gathered}
$$

- If $e_{x}=E_{X}-127$ is even (i.e., E_{x} is odd), we use:

$$
\begin{equation*}
\sqrt{\left(1+f_{x}\right) \cdot 2^{e_{x}}} \approx\left(1+\frac{f_{x}}{2}\right) \cdot 2^{e_{x} / 2} \tag{1}
\end{equation*}
$$

- if e_{x} is odd (i.e., E_{X} is even), we use:

$$
\begin{align*}
\sqrt{\left(1+f_{x}\right) \cdot 2^{e_{x}}} & =\sqrt{4+\epsilon_{x}} \cdot 2^{\frac{e_{x}-1}{2}} \\
& \approx\left(2+\frac{\epsilon_{x}}{4}\right) \cdot 2^{\frac{e_{x}-1}{2}} \tag{2}\\
& =\left(\frac{3}{2}+\frac{f_{x}}{2}\right) \cdot 2^{\frac{e_{x}-1}{2}}
\end{align*}
$$

(Taylor series for $\sqrt{4+\epsilon_{X}}$ at $\epsilon_{X}=0$, with $\epsilon_{X}=2 f_{x}-2$)

Just for the fun: quick and dirty square root

$$
\begin{gathered}
x=(-1)^{S_{x}} \cdot 2^{E_{x}-127} \cdot\left(1+2^{-23} \cdot F_{x}\right)=(-1)^{S_{x}} \cdot 2^{e_{x}} \cdot\left(1+f_{x}\right) \\
\begin{array}{|l|l|l|l|l|}
\hline S_{x} & E_{x} & F_{x} \\
\hline 31 & 30 & 23 & 22 & 0
\end{array}
\end{gathered}
$$

- E_{x} odd $\rightarrow\left(1+\frac{f_{x}}{2}\right) \cdot 2^{\frac{e_{x}}{2}}$,

$$
\begin{gathered}
\left(1+F_{y} \cdot 2^{-23}\right) \cdot 2^{E_{y}-127} \approx\left(1+F_{x} \cdot 2^{-24}\right) \cdot 2^{\frac{E_{x}-127}{2}} \\
\Rightarrow E_{y}=\frac{E_{x}+127}{2} \text { and } F_{y}=\left\lfloor\frac{F_{x}}{2}\right\rfloor
\end{gathered}
$$

- E_{x} even $\rightarrow\left(\frac{3}{2}+\frac{f_{x}}{2}\right) \cdot 2^{\frac{e_{x}-1}{2}}$.

$$
\begin{aligned}
& \left(1+F_{y} \cdot 2^{-23}\right) \cdot 2^{E_{y}-127} \approx\left(\frac{3}{2}+F_{x} \cdot 2^{-24}\right) \cdot 2^{\frac{E_{x}-128}{2}} \\
& \quad \Rightarrow E_{y}=\frac{E_{x}+127}{2}-\frac{1}{2} \text { and } F_{y}=2^{22}+\left\lfloor\frac{F_{x}}{2}\right\rfloor
\end{aligned}
$$

In both cases:

$$
I_{y}=\left\lfloor\frac{I_{x}}{2}\right\rfloor+127 \cdot 2^{22}
$$

Just for the fun: quick and dirty square root

Figure 1: Plot of $($ approx $-\sqrt{x}) / \sqrt{x}$.

- fast but rough approximation;
- always $\geq \sqrt{x} \rightarrow$ replace $127 \cdot 2^{22}$ by a smaller value?

Just for the fun: quick and dirty square root

Figure 2: Plot of $($ approx $-\sqrt{x}) / \sqrt{x}$ with $127 \cdot 2^{22}$ replaced by 532369100 .

Just for the fun: quick and dirty square root

A similar trick first appears in
The game Quake III Arena

A useful property: Sterbenz Lemma

Lemma 1 (Sterbenz)

Let a and b be positive FP numbers. If

$$
\frac{a}{2} \leq b \leq 2 a
$$

then $a-b$ is a FP number $(\rightarrow$ computed exactly, whatever the rounding function).

Beware: the " 2 "s in the formula are not the radix. In radix 10, 17 or 42 , the same property holds, still with $\frac{a}{2} \leq b \leq 2 a$.

A useful property: Sterbenz Lemma

We have $\frac{a}{2} \leqslant b \leq 2 a$.
this implies $\frac{b}{2} \leqslant a \leqslant 2 b$
$\rightarrow a$ and b ploy a symmetrical nob
\rightarrow without l.o.g., We can assume $a \geqslant b$
Consequence: a and b are multiple of

$$
u l_{p}(b)=\beta^{e b-p+1}
$$

where ab is the FP exponent of b.
furthermore: $b=M b \cdot u \operatorname{lp}(b)$
with $\Pi_{b} \leqslant \beta^{p}-1$.
$a-b$ is a multiple of $\operatorname{ulp}_{p}(b)$, ie

$$
\begin{aligned}
& a-b=K \cdot u_{l}(b) \\
& \left\{\begin{array}{l}
a \geqslant b \\
a \leqslant 2 b
\end{array} \Rightarrow 0 \leqslant a-b \leqslant b\right. \\
& \text { Hence } K \leq M b \leq \beta^{p}-1 \\
& \rightarrow a-b=k \cdot \beta^{2 b-p+1} \text { with }|K| \leq \beta^{D}-1
\end{aligned}
$$

The error of (RN) FP addition is a FPN

Lemma 2

Let a and b be two FP numbers. Let

$$
s=R N(a+b) \text { and } r=(a+b)-s
$$

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions $\neq \mathrm{RN}$.
Example: radix-2, precision-p, rounding function RD, $a=1, b=-2^{-3 p}$, give

$$
s=\operatorname{RD}(a+b)=0 \cdot \underbrace{111111 \cdots 11}_{p}=1-2^{-p},
$$

and

$$
(a+b)-s=\underbrace{1.1111111111 \cdots 11}_{2 p} \times 2^{-p-1}
$$

which is not a precision- p FPN (would require precision $2 p$).

The error of (RN) FP addition is a FPN

Proof Without loss of generabity, assueme $|a| \geqslant|b|$
(1) s is "the "PPN neovert $a+b \rightarrow$ it is closert to $x+b$ than a is

$$
\rightarrow|s-(a+b)| \leqslant|a-(a+b)|
$$

therefre $|\Omega| \leqslant|b|$
(2) denvte $a=\cap_{a} \cdot \beta^{e_{a}-p+1} ; b=\cap_{b} \cdot \beta^{e b-p+1}$ with $\left|\Gamma_{a}\right|,\left|n_{b}\right| \leqslant \beta^{p}-1$ and $e_{a} \geqslant e b$.
$a+b$ muttiple of $\beta^{e b-p+1} \Rightarrow s$ and Ω mattiph of $\beta^{e b-p+1}$ las

$$
\Rightarrow \exists R \in \mathbb{Z} \text { s.t. } n=R \cdot \beta^{e_{s}-p^{\prime}+1}
$$

But $|n| \leqslant|b| \Rightarrow|R| \leqslant|\cap \zeta| \leqslant \beta^{\rho}-1$ $\rightarrow \Omega$ is a FPN!

Get r : the fast2sum algorithm (Dekker)

Theorem 3 (Fast2Sum (Dekker))
(only radix 2). Let a and b be FP numbers, s.t. $|a| \geq|b|$.
Following algorithm: s and r such that

- $s+r=a+b$ exactly;
- s is "the" FP number that is closest to $a+b$;
- incidentally (will serve later on) $z=s-a$ exactly.

Algorithm 1 (FastTwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& z \leftarrow R N(s-a) \\
& r \leftarrow R N(b-z)
\end{aligned}
$$

C Program 1

$$
\begin{aligned}
& \mathrm{s}=\mathrm{a}+\mathrm{b} \\
& \mathrm{z}=\mathrm{s}-\mathrm{a} ; \\
& \mathrm{r}=\mathrm{b}-\mathrm{z}
\end{aligned}
$$

Important remark: Proving the behavior of such algorithms requires use of the correct rounding property.

Proof

$$
\begin{aligned}
& s=\mathrm{RN}(a+b) \\
& z=\mathrm{RN}(s-a) \\
& t=\mathrm{RN}(b-z)
\end{aligned}
$$

- if a and b have same sign, then $|a| \leq|a+b| \leq|2 a|$ hence (2a is a FP number, rounding is increasing) $|a| \leq|s| \leq|2 a| \rightarrow$ (Sterbenz) $z=s-a$. Since $r=(a+b)-s$ is a FPN and $b-z=r$, we find $\operatorname{RN}(b-z)=r$.
- if a and b have opposite signs then

1. either $|b| \geq \frac{1}{2}|a|$, which implies (Sterbenz) $a+b$ is a FPN, thus $s=a+b, z=b$ and $t=0$;
2. or $|b|<\frac{1}{2}|a|$, which implies $|a+b|>\frac{1}{2}|a|$, hence $s \geq \frac{1}{2}|a|\left(\frac{1}{2} a\right.$ is a FPN, rounding is increasing), thus (Sterbenz)
$z=\operatorname{RN}(s-a)=s-a=b-r$. Since $r=(a+b)-s$ is a FPN and $b-z=r$, we get $\operatorname{RN}(b-z)=r$.

The TwoSum Algorithm (Moller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b;
- works in all bases.

Algorithm 2
(TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

Knuth: if no underflow nor overflow occurs then $a+b=s+r$, and s is nearest $a+b$.

Boldo et al: formal proof + underflow does not hinder the result (overflow does).

TwoSum is optimal, in a way we will explain.

The TwoSum Algorithm: proof in the case $\beta=2, p \geq 3$.

Proof assuming base 2
(1) if $|b| \geqslant|a|$ than line $(1),(2)$ and (4) constitute Fast 2 Sun (b, a)
$s \leftarrow \operatorname{RN}(a+b)$
2: $a^{\prime} \leftarrow \operatorname{RN}(s-b)$
3: $b^{\prime} \leftarrow \operatorname{RN}\left(s-a^{\prime}\right)$
4: $\delta_{a} \leftarrow \operatorname{RN}\left(a-a^{\prime}\right)$
5: $\delta_{b} \leftarrow \operatorname{RN}\left(b-b^{\prime}\right)$
6: $r \leftarrow \operatorname{RN}\left(\delta_{a}+\delta_{b}\right)$

The TwoSum Algorithm (Moller-Knuth)
(2) If $|b|<|a|$ and $|s|<|b|$ then a and b have opposite signs
$s \leftarrow \operatorname{RN}(a+b)$
$a^{\prime} \leftarrow \operatorname{RN}(s-b)$
$b^{\prime} \leftarrow \operatorname{RN}\left(s-a^{\prime}\right)$
$\delta_{a} \leftarrow \operatorname{RN}\left(a-a^{\prime}\right)$
$\delta_{b} \leftarrow \operatorname{RN}\left(b-b^{\prime}\right)$
$r \leftarrow \operatorname{RN}\left(\delta_{a}+\delta_{b}\right)$

Cothrocise we could have $|a+b| \geqslant|b|$ and therefre

$$
|\Delta| \geqslant|\operatorname{RN}(a+b)| \geqslant|\operatorname{RN}(b)|=|b|)
$$

Aloo, $|b| \geqslant\left|\frac{a}{2}\right|$
Cotheraise ve xould hove $|a+b|>\left|\frac{a}{2}\right|$, sethat

$$
\left.|s|=|R N(a+L)| \geqslant\left|R N\left(\frac{a}{2}\right)\right|=\left|\frac{a}{2}\right|>b\right)
$$

Therfore, stebbenz lemmo aphis to line (1) of the algaritm
$\rightarrow s=a+b$, so that $a^{\prime}=a, b^{\prime}=b, S_{a}=S_{b}=0, r=0$.

The TwoSum Algorithm (Moller-Knuth)
$s \leftarrow \operatorname{RN}(a+b)$
$a^{\prime} \leftarrow \operatorname{RN}(s-b)$
$b^{\prime} \leftarrow \operatorname{RN}\left(s-a^{\prime}\right)$
$\delta_{a} \leftarrow \operatorname{RN}\left(a-a^{\prime}\right)$
$\delta_{b} \leftarrow \operatorname{RN}\left(b-b^{\prime}\right)$
$r \leftarrow \operatorname{RN}\left(\delta_{a}+\delta_{b}\right)$

$$
\begin{aligned}
& \text { (3) If }|b|<|a| \text { and }|s| \geqslant|b| \\
& \text { We have } s=(a+b)\left(1+\varepsilon_{1}\right) \text { with }\left|\varepsilon_{1}\right| \leqslant \mu \\
& a^{\prime}=(s-b)\left(1+\varepsilon_{2}\right) \text { with }\left(\varepsilon_{2} \mid \leqslant \mu\right. \\
& \quad\left(\text { with } \mu=2^{-p}\right) \\
& \text { Hence } a^{\prime}= \\
& \left(a+a \varepsilon_{1}+b \varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)
\end{aligned}
$$

$|b|<|a| \Rightarrow a \varepsilon_{1}+b \varepsilon_{1}$ canbe witter $2 a \varepsilon_{3}$ with $\left|\varepsilon_{3}\right| \leqslant \mu$

$$
\rightarrow a^{\prime}=\left(a+2 a \varepsilon_{3}\right)\left(1+\varepsilon_{2}\right)=a\left(1+\varepsilon_{4}\right) w z^{2} h\left|\varepsilon_{4}\right| \leqslant 3 u+2 a^{2}
$$

$p \geqslant 3 \Rightarrow u \leqslant \frac{1}{3} \Rightarrow\left|\varepsilon_{4}\right|<\frac{1}{2}$, hance $\left|\frac{a}{2}\right| \leqslant\left|a^{\prime}\right| \leqslant|2 a|$ and a and a^{\prime} have the some sign
\rightarrow From stabexz lemnos, $a-a$ is a FPN
a hence $\delta_{a}=a-a^{\prime}$

The TwoSum Algorithm (Moller-Knuth)
follow up of case $|b|<|a|$ and $|\Delta| \geqslant B \mid$

- We have shown that $\delta_{a}=a-a^{\prime}$

$$
\begin{aligned}
& s \leftarrow \operatorname{RN}(a+b) \\
& a^{\prime} \leftarrow \operatorname{RN}(s-b) \\
& b^{\prime} \leftarrow \operatorname{RN}\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow \operatorname{RN}\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow \operatorname{RN}\left(b-b^{\prime}\right) \\
& r \leftarrow \operatorname{RN}\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

- lines $(2),(3),(5)$ of the algorithm constitute

$$
\begin{aligned}
\text { Fost2Sun } & (s,-b) \\
& \rightarrow b^{\prime}=s-a a^{\prime} \text { and } \delta_{b}=a^{\prime}-(s-b) \\
\Rightarrow & \delta_{a}+\delta_{b}=(a+b)-s
\end{aligned}
$$

and since $(a+b)-\Delta$ is a FPN:

$$
R N\left(\delta_{a}+\delta_{b}\right)=\delta_{a}+\delta_{b}=a+b-s
$$

QED

TwoSum is "optimal"

Assume an algorithm satisfies:

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions: at step i we compute RN $(u+v)$ or $\mathrm{RN}(u-v)$ where u and v are input variables or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

- proof: most inelegant proof award;
- 480756 algorithms with 5 operations (after suppressing the most obvious symmetries);
- each of them tried with 2 well-chosen pairs of input values.

Example of application: computing $x_{1}+x_{2}+x_{3}+\cdots+x_{n}$

Naive algorithm:

$s \leftarrow x_{1}$
for $i=2$ to n do

$$
s \leftarrow \operatorname{RN}\left(s+x_{i}\right)
$$

end for
return s

- easy to show: $\left|s-\sum x_{i}\right| \leq \gamma_{n-1} \sum\left|x_{i}\right|$, with

$$
\gamma_{n}=\frac{n \mathbf{u}}{1-n \mathbf{u}}
$$

- much more tricky: replace γ_{n-1} by $(n-1) \cdot u$.

Example of application: computing $x_{1}+x_{2}+x_{3}+\cdots+x_{n}$

Pichat, Ogita, Rump, and Oishi's algorithm:

Algorithm 3

$$
\begin{aligned}
& s \leftarrow x_{1} \\
& e \leftarrow 0 \\
& \text { for } i=2 \text { to } n \text { do } \\
& \qquad\left(s, e_{i}\right) \leftarrow 2 \operatorname{Sum}\left(s, x_{i}\right) \\
& \quad e \leftarrow R N\left(e+e_{i}\right) \\
& \text { end for } \\
& \text { return } R N(s+e)
\end{aligned}
$$

Example of application: computing $x_{1}+x_{2}+x_{3}+\cdots+x_{n}$

Theorem 4 (Ogita, Rump and Oishi)
Applying the algorithm of P.,O., R., and O. to $x_{i}, 1 \leq i \leq n$, and if $n \mathbf{u}<1$, then, even in case of underflow (but without overflow), the final result σ satisfies

$$
\left|\sigma-\sum_{i=1}^{n} x_{i}\right| \leq \mathbf{u}\left|\sum_{i=1}^{n} x_{i}\right|+\gamma_{n-1}^{2} \sum_{i=1}^{n}\left|x_{i}\right|
$$

What about products ?

Theorem 5

Let a and b be FPNs:

$$
\begin{gathered}
a=M_{a} \cdot \beta^{e_{a}-p+1}, \quad \text { and } \quad b=M_{b} \cdot \beta^{e_{b}-p+1}, \quad \text { with } \\
\left|M_{a}\right|,\left|M_{b}\right| \leq \beta^{p}-1 \quad \text { and } \quad e_{\min } \leq e_{a}, e_{b} .
\end{gathered}
$$

if $e_{a}+e_{b} \geq e_{\text {min }}+p-1$ then for any rounding function
$\circ \in\{R U, R D, R Z, R N\}$, the number $r=a b-\circ(a b)$ is a FPN.

What about products ?

Exercise: prove the theorem.

What about products ?

- We use the fused multiply-add (fma) instruction. It computes RN $(a b+c)$. First ppeared in IBM RS6000, Intel/HP Itanium, PowerPC. . . Specified since 2008.
- We have seen: if a and b are FP numbers, then (under condition $\left.e_{a}+e_{p} \geq e_{\min }+p-1\right), r=a b-\mathrm{RN}(a b)$ is a FP number;
- obtained with algorithm TwoMultFMA $\begin{cases}p=\operatorname{RN}(a b) \\ r & =\mathrm{RN}(a b-p)\end{cases}$ $\rightarrow 2$ operations only. $p+r=a b$.
- without fma, Dekker's algorithm: 17 operations $(7 \times, 10 \pm)$. (only historical interest now)

Just an example: ad - bc with fused multiply-add

Kahan's algorithm for $x=a d-b c$:

$$
\begin{array}{lc}
\hat{w} \leftarrow \mathrm{RN}(b c) & \text { • using std model (2002): } \\
e \leftarrow \mathrm{RN}(\hat{w}-b c) & |\hat{x}-x| \leq J|x| \\
\hat{f} \leftarrow \mathrm{RN}(a d-\hat{w}) & \\
\hat{x} \leftarrow \mathrm{RN}(\hat{f}+e) & \begin{array}{l}
\text { with } J=2 u+u^{2}+\left(u+u^{2}\right) u \frac{|b c|}{|x|} \rightarrow \text { high } \\
\text { Return } \hat{x} \\
\\
\\
\\
\\
\\
\\
\end{array} \text { accuracy as long as } u|b c| \ngtr|x|
\end{array}
$$

We assume radix 2 .

$$
|\hat{x}-x| \leq 2 u|x|
$$

"asymptotically optimal" error bound.

- \rightarrow complex \times, \div.

Newton-Raphson iteration for $1 / b$

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with $f(x)=\frac{1}{x}-b$. Gives

$$
x_{n+1}=2 x_{n}-b x_{n}^{2}=x_{n}\left(2-b x_{n}\right)
$$

Gives

$$
\begin{aligned}
\left|x_{n+1}-\frac{1}{b}\right| & =\left|2 x_{n}-b x_{n}^{2}-\frac{1}{b}\right| \\
& =b \cdot\left|2 b x_{n}-x_{n}^{2}-\frac{1}{b^{2}}\right| \\
& =b \cdot\left(x_{n}-\frac{1}{b}\right)^{2} .
\end{aligned}
$$

But this is with exact arithmetic. What happens if we use FP arithmetic?

Reciprocation using Newton-Raphson iteration and an FMA

Division algorithm used on the Intel/HP Itanium. Precision p, radix
2. To simplify, we only compute $1 / b$. We assume $1 \leq b<2$ (significands of normal FP numbers).

- Newton-Raphson iteration to compute $1 / b$:

$$
y_{n+1}=y_{n}\left(2-b y_{n}\right)
$$

- we lookup $y_{0} \approx 1 / b$ in a table addressed by the first (typically from 6 to 10) bits of b;
- the NR iteration is decomposed into 2 FMA instructions:

$$
\begin{cases}e_{n} & =\mathrm{RN}\left(1-b y_{n}\right) \\ y_{n+1} & =\mathrm{RN}\left(y_{n}+e_{n} y_{n}\right)\end{cases}
$$

Notice that $e_{n+1} \approx e_{n}^{2}$.

Property 1

If

$$
\left|\frac{1}{b}-y_{n}\right|<\alpha 2^{-k}
$$

where $1 / 2<\alpha \leq 1$ and $k \geq 1$, then

$$
\begin{aligned}
\left|\frac{1}{b}-y_{n+1}\right| & <b\left(\frac{1}{b}-y_{n}\right)^{2}+2^{-k-p}+2^{-p-1} \\
& <2^{-2 k+1} \alpha^{2}+2^{-k-p}+2^{-p-1}
\end{aligned}
$$

\Rightarrow it seems that we can get arbitrarily closer to error 2^{-p-1} (i.e., $1 / 2 \mathrm{ulp}(1 / b))$, without being able to show a bound below $1 / 2$ ulp (1/b).

Example: binary64 format of the IEEE-754 standard

Assume $p=53$ and $\left|y_{0}-\frac{1}{b}\right|<2^{-8}$ (small table), we find

- $\left|y_{1}-1 / b\right|<0.501 \times 2^{-14}$
- $\left|y_{2}-1 / b\right|<0.51 \times 2^{-28}$
- $\left|y_{3}-1 / b\right|<0.57 \times 2^{-53}=0.57$ ulp $(1 / b)$

Going further ?

Property 2

When y_{n} approximates $1 / b$ within error $<1 u l p(1 / b)=2^{-p}$, then, since b is multiple of 2^{-p+1} and y_{n} is multiple of $2^{-p}, 1-b y_{n}$ is multiple of $2^{-2 p+1}$.
But $\left|1-b y_{n}\right|<2^{-p+1} \rightarrow 1-b y_{n}$ is a FP number \rightarrow exactly computed by one FMA.

$$
\Rightarrow\left|\frac{1}{b}-y_{n+1}\right|<b\left(\frac{1}{b}-y_{n}\right)^{2}+2^{-p-1}
$$

$$
\left|y_{n}-\frac{1}{b}\right|<\alpha 2^{-p} \Rightarrow\left|y_{n+1}-\frac{1}{b}\right|<b \alpha^{2} 2^{-2 p}+2^{-p-1}
$$

(assuming $\alpha<1$)

What can be deduced?

- to be at distance $>1 / 2$ ulp from $y_{n+1}, 1 / b$ must be within $b \alpha^{2} 2^{-2 p}<b 2^{-2 p}$ from the midpoint of two consecutive FP numbers;
- implies that distance between y_{n} and $1 / b$ has the form $2^{-p-1}+\epsilon$, with $|\epsilon|<b 2^{-2 p}$;
- implies $\alpha<\frac{1}{2}+b 2^{-p}$ hence

$$
\left|y_{n+1}-\frac{1}{b}\right|<\left(\frac{1}{2}+b 2^{-p}\right)^{2} b 2^{-2 p}+2^{-p-1}
$$

- so, to be at distance $>1 / 2$ ulp from $y_{n+1}, 1 / b$ must be within $\left(\frac{1}{2}+b 2^{-p}\right)^{2} b 2^{-2 p}$ from the midpoint of two consecutive FP numbers.
- b is a FP number between 1 et $2 \Rightarrow b=B / 2^{p-1}$ where $B \in \mathbb{N}, 2^{p-1}<B \leq 2^{p}-1 ;$
- the midpoint of two consecutive FP numbers in the neighborhood of $1 / b$ has the form $g=(2 G+1) / 2^{p+1}$ where $G \in \mathbb{N}, 2^{p-1} \leq G<2^{p}-1 ;$
- we deduce

$$
\left|g-\frac{1}{b}\right|=\left|\frac{2 B G+B-2^{2 p}}{B \cdot 2^{p+1}}\right|
$$

- the distance between $1 / b$ and the midpoint of two consecutive FP numbers is a multiple of $1 /\left(B \cdot 2^{p+1}\right)=2^{-2 p} / b$. It is $\neq 0$

Distance between $\frac{1}{b}$ and g, when $\left|\frac{1}{b}-y_{n+1}\right|>\frac{1}{2}$ ulp $\left(\frac{1}{b}\right)$

- has the form $k 2^{-2 p} / b, k \in \mathbb{Z}, k \neq 0$;
- we must have

$$
\frac{|k| \cdot 2^{-2 p}}{b}<\left(\frac{1}{2}+b 2^{-p}\right)^{2} b 2^{-2 p}
$$

therefore

$$
|k|<\left(\frac{1}{2}+b 2^{-p}\right)^{2} b^{2}
$$

- since $b<2$, as soon as $p \geq 4$, the only solution is $|k|=1$;
- moreover, for $|k|=1$, elementary manipulation shows that the only possible solution is

$$
b=2-2^{-p+1}
$$

How do we procede?

- we want

$$
\begin{gathered}
B=2^{p}-1, \\
2^{p-1} \leq G \leq 2^{p}-1 \\
B(2 G+1)=2^{2 p} \pm 1
\end{gathered}
$$

Only one solution: $B=2^{p}-1$ and $G=2^{p-1}$: comes from $2^{2 p}-1=\left(2^{p}-1\right)\left(2^{p}+1\right) ;$

- except for that B (thus for the corresponding value $b=B / 2^{p-1}$ of b), we are certain that $y_{n+1}=\operatorname{RN}(1 / b)$;
- for $B=2^{p}-1$: we try the algorithm with the two values of y_{n} within one ulp from $1 / b$ (i.e. $1 / 2$ and $1 / 2+2^{-p}$). In practice, it works (otherwise: do dirty things).

Application: double precision $(p=53)$

We start from y_{0} such that $\left|y_{0}-\frac{1}{b}\right|<2^{-8}$. We compute:

$$
\begin{aligned}
& e_{0}=\mathrm{RN}\left(1-b y_{0}\right) \\
& y_{1}=\mathrm{RN}\left(y_{0}+e_{0} y_{0}\right) \\
& e_{1}=\mathrm{RN}\left(1-b y_{1}\right) \\
& y_{2}=\operatorname{RN}\left(y_{1}+e_{1} y_{1}\right) \\
& e_{2}=\operatorname{RN}\left(1-b y_{1}\right) \\
& y_{3}=\operatorname{RN}\left(y_{2}+e_{2} y_{2}\right) \quad \text { error } \leq 0.57 \text { ulps } \\
& e_{3}=\operatorname{RN}\left(1-b y_{2}\right) \\
& y_{4}=\operatorname{RN}\left(y_{3}+e_{3} y_{3}\right) 1 / b \text { rounded to nearest }
\end{aligned}
$$

In practice: two iterations

Markstein iterations
$\left\{\begin{array}{l}e_{n}=\operatorname{RN}\left(1-b y_{n}\right) \\ y_{n+1}=\operatorname{RN}\left(y_{n}+e_{n} y_{n}\right)\end{array}\right.$
More accurate ("self correcting"), sequential

Goldschmidt iterations

$\left\{\begin{array}{l}e_{n+1}=\operatorname{RN}\left(e_{n}^{2}\right) \\ y_{n+1}=\operatorname{RN}\left(y_{n}+e_{n} y_{n}\right)\end{array}\right.$
Less accurate, faster (parallel)

In practice: we start with Goldschmidt iterations, and switch to Markstein iterations for the final steps.

