Continued Fractions and Double-Word Arithmetic

Jean-Michel Muller

CNRS - Laboratoire LIP
http://perso.ens-lyon.fr/jean-michel.muller/

Continued fractions

- Basic question: how close can a rational number of denominator $\leq q$ be to some real number α ?
- example of application to FP arithmetic: in a given FP system (base β, precision p, extremal exponents $e_{\text {min }}$ and $e_{\text {max }}$), how close can a FP number be to an integer multiple of $\pi / 2$? Would give answers to:
- can the tangent of a FP number overflow?
- can the sine, cosine, tangent of a normal FP number be less than $\beta^{e_{\text {min }}}$?
- range reduction for implementing trigonometric functions: preliminary calculation of $y=x \bmod 2 \pi$ (so that the problem is reduced to approximating the function in $[0,2 \pi)$). With which accuracy must that calculation be done?

What happens if range reduction is overlooked (Ng)

System	$\sin \left(10^{22}\right)$
exact result	$-0.8522008497671888017727 \cdots$
HP 48 GX	-0.852200849762
HP 700	0.0
HP 375, 425t (4.3 BSD)	$-0.65365288 \cdots$
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
Silicon Graphics Indy	$0.87402806 \cdots$
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	$-0.852200849 \cdots$
DECstation 3100	NaN
Casio fx-8100, $\mathrm{fx} 180 \mathrm{p}, \mathrm{fx} 6910 \mathrm{G}$	Error

Until 2008, no standard for the elementary functions.

What happens if range reduction is overlooked (Ng)

System	$\sin \left(10^{22}\right)$
exact result	$-0.8522008497671888017727 \cdots$
HP 48 GX	-0.852200849762
HP 700	0.0
HP 375, 425t (4.3 BSD)	$-0.65365288 \cdots$
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
Silicon Graphics Indy	$0.87402806 \cdots$
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	$-0.852200849 \cdots$
DECstation 3100	NaN
Casio fx-8100, $\mathrm{fx} 180 \mathrm{p}, \mathrm{fx} 6910 \mathrm{G}$	Error

Until 2008, no standard for the elementary functions.

What happens if range reduction is overlooked (Ng)

System	$\sin \left(10^{22}\right)$
exact result	$-0.8522008497671888017727 \cdots$
HP 48 GX	-0.852200849762
HP 700	0.0
HP 375, 425t (4.3 BSD)	$-0.65365288 \cdots$
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
Silicon Graphics Indy	$0.87402806 \cdots$
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	$-0.852200849 \cdots$
DECstation 3100	NaN
Casio fx-8100, $\mathrm{fx} 180 \mathrm{p}, \mathrm{fx} 6910 \mathrm{G}$	Error

Until 2008, no standard for the elementary functions.

What happens if range reduction is overlooked (Ng)

System	$\sin \left(10^{22}\right)$
exact result	$-0.8522008497671888017727 \cdots$
HP 48 GX	-0.852200849762
HP 700	0.0
HP 375, 425t (4.3 BSD)	$-0.65365288 \cdots$
matlab V.4.2 c.1 for Macintosh	0.8740
matlab V.4.2 c.1 for SPARC	-0.8522
Silicon Graphics Indy	$0.87402806 \cdots$
SPARC	-0.85220084976718879
IBM RS/6000 AIX 3005	$-0.852200849 \cdots$
DECstation 3100	NaN
Casio fx-8100, $\mathrm{fx} 180 \mathrm{p}, \mathrm{fx} 6910 \mathrm{G}$	Error

Until 2008, no requirement for the elementary functions.

Continued fractions

- any real number α can be approximated as closely as desired by rationals. . . however, size of these rationals?
- intuitively, a fraction of denominator q can approximate α with accuracy better than $1 /(2 q)$:

- can we do significantly better ? Given α and $q_{\text {max }}$, what is the fraction of denominator $<q_{\text {max }}$ that best approximates α ?

Continued fractions

$$
\begin{gathered}
\alpha=a_{0}+\frac{1}{r_{1}} \\
\text { approximation } \alpha \approx a_{0} \\
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{r_{2}}} \\
\text { approximation } \alpha \approx a_{0}+\frac{1}{a_{1}} \\
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{r_{3}}}} \\
\text { approximation } \alpha \approx a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}}}
\end{gathered}
$$

Continued fractions

The sequence

$$
\left\{\begin{aligned}
r_{0} & =\alpha \\
a_{i} & =\left\lfloor r_{i}\right\rfloor \\
\text { if } r_{i} \neq a_{i} \quad r_{i+1} & =\frac{1}{r_{i}-a_{i}}
\end{aligned}\right.
$$

Gives

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots \cdot+\frac{1}{r_{i}}}}}}
$$

and the rational approximation

$$
\alpha \approx \frac{P_{i}}{Q_{i}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots \cdot+\frac{1}{a_{i}}}}}}
$$

Continued fractions

- P_{i} / Q_{i} is called the $i^{\text {th }}$ convergent of α (french word: réduite);
- the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is called the continued fraction expansion of α. It is finite iff $\alpha \in \mathbb{Q}$;

Exercise: give the continued fraction expansion of $\sqrt{2}$.

- we can choose (up to multiplication of numerator \& denominator by the same factor):

$$
\begin{aligned}
& \begin{aligned}
P_{0}=a_{0} & Q_{0}=1 \\
P_{1} & =a_{1} a_{0}+1 \quad Q_{1}=a_{1}
\end{aligned} \\
& \frac{P_{2}}{Q_{2}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}}}
\end{aligned}
$$

Computation of the convergents

Lemma 1
One can choose (still defined up to multiplication by same factor):

$$
\left\{\begin{align*}
P_{n} & =P_{n-1} a_{n}+P_{n-2} \tag{1}\\
Q_{n} & =Q_{n-1} a_{n}+Q_{n-2}
\end{align*}\right.
$$

Proof:

- true for $n=2$ (previous slide);
- assume true for n. We get P_{n+1} / Q_{n+1} from P_{n} / Q_{n} by replacing a_{n} by $a_{n}+\frac{1}{a_{n+1}}$;
- let us do that replacement in (1), multiplying both terms by a_{n+1} to keep integers.

Computation of the convergents

A miraculous lemma

With the above-defined formulas for P_{n} and Q_{n}.
Lemma 2

$$
\begin{gathered}
P_{n} Q_{n-1}-P_{n-1} Q_{n}=(-1)^{n+1} . \\
P_{n}=P_{n-1} a_{n}+P_{n-2} \longrightarrow P_{n} Q_{n-1}=P_{n-1} Q_{n-1} a_{n}+P_{n-2} Q_{n-1} \\
Q_{n}=Q_{n-1} a_{n}+Q_{n-2} \rightarrow P_{n-1} Q_{n}=P_{n-1} Q_{n-1} a_{n}+P_{n-1} Q_{m-2}
\end{gathered}
$$

Consequence $P_{n} Q_{n-1}-P_{n-1} Q_{n}=-\left[P_{n-1} Q_{n-2}-P_{n-2} Q_{n-1}\right]$
From $P_{0}=a_{0} ; Q_{0}=1 ; P_{1}=a_{1} a_{0}+1 ; Q_{1}=a_{1}$ We deduce $P_{1} Q_{0}-P_{0} Q_{1}=1$
Hance $P_{n} Q_{n-1}-P_{n-1} Q_{n}=(-1)^{n+1}$

Why is the lemma miraculous?

- Bezout Theorem $\rightarrow \operatorname{gcd}\left(P_{n}, Q_{n}\right)=1 \rightarrow$ the formulas give irreducible fractions;
- the lemma can be written (with substitution $n \rightarrow n+1$):

$$
\frac{P_{n+1}}{Q_{n+1}}-\frac{P_{n}}{Q_{n}}=\frac{(-1)^{n}}{Q_{n} Q_{n+1}}
$$

- α deduced from P_{n+1} / Q_{n+1} by replacing a_{n+1} by r_{n+1}
\rightarrow gives

$$
\alpha=\frac{P_{n} r_{n+1}+P_{n-1}}{Q_{n} r_{n+1}+Q_{n-1}} .
$$

Function $x \rightarrow\left(P_{n} x+P_{n-1}\right) /\left(Q_{n} x+Q_{n-1}\right)$ is monotone (derivative $\left.\left(P_{n} Q_{n-1}-Q_{n} P_{n-1}\right) /\left(Q_{n} x+Q_{n-1}\right)^{2}=(-1)^{n+1} /\left(Q_{n} x+Q_{n-1}\right)^{2}\right) \rightarrow \alpha$ is between $\frac{P_{n-1}}{Q_{n-1}}$ and $\frac{P_{n}}{Q_{n}}$.

Hence

$$
\left|\alpha-\frac{P_{n}}{Q_{n}}\right| \leq\left|\frac{P_{n+1}}{Q_{n+1}}-\frac{P_{n}}{Q_{n}}\right|=\frac{1}{Q_{n} Q_{n+1}} \leq \frac{1}{Q_{n}^{2}} .
$$

Consequences

- if for some $n, a_{n}=0$ then $\alpha=\frac{P_{n}}{Q_{n}}$ and the sequence ends;
- otherwise, $\forall n, a_{n} \geq 1$, so that from $Q_{n}=Q_{n-1} a_{n}+Q_{n-2}$ we deduce $Q_{n}>Q_{n-1}$ so that $Q_{n}>2 Q_{n-2}$, hence the bound

$$
\frac{1}{Q_{n} Q_{n+1}}<\frac{1}{2 Q_{n} Q_{n-1}}<\frac{1}{4 Q_{n-1} Q_{n-2}}<\ldots
$$

goes to zero faster than $1 / 2^{n}$.
Theorem 3
$P_{n} / Q_{n} \rightarrow \alpha$. We also have $P_{n} / Q_{n} \leq \alpha$ when n is even, and
$P_{n} / Q_{n} \geq \alpha$ when n is odd,

Consequences

We write:

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

or

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, a_{3}, a_{4}, \cdots\right]
$$

A few examples

$$
\begin{gathered}
\sqrt{2}=[1 ; 2,2,2,2, \ldots] \\
\frac{1+\sqrt{5}}{2}=[1 ; 1,1,1,1, \ldots] \\
\pi=[3 ; 7,15,1,292,1,1,1,2,1,3,1,14, \ldots]
\end{gathered}
$$

which gives the following convergents (\rightarrow very good rational approximations to π):

$$
\begin{gathered}
3 ; \frac{22}{7} ; \frac{333}{106} ; \frac{355}{113} ; \frac{103993}{33102} ; \ldots \\
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12, \ldots]
\end{gathered}
$$

Theorem 4 (Lagrange)
The continued fraction expansion of α is ultimately periodic iff α is a root of a degree-2 polynomial with integer coefficients.

Continued fractions are "best" rational approximations
Theorem 5
Let $\left(P_{n} / Q_{n}\right)$ be the $n^{\text {th }}$ convergent to α. If an irreducible fraction p / q is a better approximation to α than P_{n} / Q_{n} then $q>Q_{n}$.
a) If $\frac{P}{q}$ is between $\frac{P_{n}}{Q_{n}}$ and $\frac{P_{a+1}}{Q_{a+1}}$, then

$$
\begin{aligned}
& \left|\frac{P_{n}}{Q_{m}}-\frac{P}{q}\right|=\frac{N}{Q_{n} q}<\left|\frac{P_{n+1}}{Q_{n+1}}-\frac{P_{n}}{Q_{n}}\right|=\frac{1}{Q_{n} Q_{n+1}} \\
& \rightarrow \frac{N}{q}<\frac{1}{Q_{n+1}} \rightarrow q>Q_{n+1}
\end{aligned}
$$

b) If ρ / ρ is mot $Q_{n+1}^{Q_{n-1}}$ borer $^{P_{m}} Q_{m}$ and $\frac{P_{n+1}}{Q_{m+1}}$
 is at mort half the length of $\left(\frac{P_{n-1}}{Q_{n-1}}, \frac{Q_{n+1}}{Q_{n}}\right)$

Continued fractions are "best" rational approximations

$$
\longrightarrow \frac{p}{q} \text { is in the interval }\left(\frac{P_{m-1}}{Q_{m-1}}, \frac{P_{r}}{Q_{r}}\right)
$$

$$
\rightarrow \text { the cove at aphis with } \frac{P_{n-1}}{Q_{n-1}} \Rightarrow q>Q_{n}
$$

Theorem 6

Let $\left(P_{n} / Q_{n}\right)$ be the convergents to α. For any $(p, q) \in \mathbb{N} \times \mathbb{N}^{*}$ with $q<Q_{n+1}$, we have

$$
|p-\alpha q| \geq\left|P_{n}-\alpha Q_{n}\right| .
$$

Theorem 7
Let $(p, q) \in \mathbb{N} \times \mathbb{N}^{*}$. If $\left|\frac{p}{q}-\alpha\right|<\frac{1}{2 q^{2}}$ then p / q is one of the convergents to α.

How close can a FP number be to a nonzero multiple of an irrational number C ?

- We look for a normal FP number

$$
x=M_{x} \cdot \beta^{e_{x}-p+1}
$$

with $\beta^{p-1} \leq M_{x} \leq \beta^{p}-1$, as close as possible to a multiple of C.

- e_{x} assumed fixed (new analysis for each value of the exponent).

$$
M_{x} \cdot \beta^{e_{x}-p+1}=k_{x} \cdot C+\epsilon_{x}, \text { with } k_{x}=\left\lfloor M_{x} \cdot \beta^{e_{x}-p+1} / C\right\rceil
$$

smallest possible value of $\left|\epsilon_{\chi}\right|$?

- let $\left(P_{i} / Q_{i}\right)$ be the sequence of the convergents to $\beta^{e_{x}-p+1} / C$;
- Integer j : largest such that $Q_{j} \leq \beta^{p}-1$.

How close can a FP number be to a nonzero multiple of an

 irrational number C ?Theorem $6 \Rightarrow$ for any $\left(k_{x}, M_{x}\right)$ with $M_{x} \leq \beta^{p}-1<Q_{j+1}$ we have

$$
\left.\left|k_{x}-\frac{\beta^{e_{x}-p+1}}{C} \cdot M_{x}\right| \geq \left\lvert\, P_{j}-\frac{\beta^{e_{x}-p+1}}{C} \cdot Q_{j}\right.\right]
$$

Gives

$$
\underbrace{\left|k_{x} \cdot C-\beta^{e_{x}-p+1} M_{x}\right|}_{\left|\epsilon_{x}\right|} \geq\left|P_{j} \cdot C-\beta^{e_{x}-p+1} Q_{j}\right|
$$

Solution: for each value of e_{x} between $\left\lceil\log _{\beta}(C)\right\rceil$ and $e_{\text {max }}$, compute the corresponding P_{j} / Q_{j}, the lowest value of $\left|\epsilon_{x}\right|$ for that e_{x} will be attained for $M_{x}=Q_{j}$.

```
worstcaseRR := proc(B,p,emin,emax,C,ndigits)
    local epsilonmin,powerofBoverC,e,a,Plast,r,Qlast, Q,P,NewQ,NewP,epsilon, numbermin,expmin,ell;
    epsilonmin := 12345.0 ; Digits := ndigits;
    powerofBoverC := B^(emin-p)/C;
    for e from emin-p+1 to emax-p+1 do
        powerofBoverC := B*powerofBoverC;
        a := floor(powerofBoverC); Plast := a;
        r := 1/(powerofBoverC-a); a := floor(r);
        Qlast := 1; Q := a;
        P := Plast*a+1;
        while Q < B^p-1 do
            r := 1/(r-a);
            a := floor(r);
            NewQ := Q*a+Qlast;
            NewP := P*a+Plast;
            Qlast := Q;
            Plast := P;
            Q := NewQ;
            P := NewP
        od;
        epsilon :=
            evalf(C*abs(Plast-Qlast*powerofBoverC));
            if epsilon < epsilonmin then
            epsilonmin := epsilon; numbermin := Qlast;
            expmin := e
        fi
    od;
    print('significand',numbermin);
    print('exponent',expmin);
    print('epsilon',epsilonmin);
    ell := evalf(log(epsilonmin)/log(B),10);
    print('numberofdigits',ell)
\begin{tabular}{|c|c|c|c|c||c|}
\hline\(\beta\) & \(p\) & \(C\) & \(e_{\max }\) & Worst Case & \(-\log _{\beta}(\epsilon)\) \\
\hline \hline 2 & 24 & \(\pi / 2\) & 127 & \(16367173 \times 2^{+72}\) & 29.2 \\
\hline 2 & 24 & \(\ln (2)\) & 127 & \(8885060 \times 2^{-11}\) & 31.6 \\
\hline 10 & 10 & \(\pi / 2\) & 99 & \(8248251512 \times 10^{-6}\) & 11.7 \\
\hline 2 & 53 & \(\pi / 2\) & 1023 & \(6381956970095103 \times 2^{+797}\) & 60.9 \\
\hline 2 & 53 & \(\ln (2)\) & 1023 & \(5261692873635770 \times 2^{+499}\) & 66.8 \\
\hline
\end{tabular}

\section*{What can we deduce ?}

In all binary formats of the IEEE 754 standard, a FP number \(x\) of absolute value \(>\pi / 2\) is always far enough from an integer multiple of \(\pi / 2\) to make sure that:
- \(\tan (x), 1 / \tan (x)\) cannot overflow;
- \(\sin (x), \cos (x), \tan (x)\) is always of absolute value \(>2^{e_{\text {min }}}\) ( \(\rightarrow\) never in subnormal domain).

Also gives the precision with which range reduction must be done.

\section*{Other application: multiplication by "infinitely precise" con-} stants
- We want RN ( \(C x)\), where \(x\) is a FP number, and \(C\) a real constant (i.e., known at compile-time);
- Base 2, precision-p FP arithmetic;
- Typical values of \(C: \pi, 1 / \pi, \ln (2), \ln (10), e, 1 / k!, \cos (k \pi / N)\) and \(\sin (k \pi / N), \ldots\)
- another frequent case: \(C=\frac{1}{\text { FP number }}\) (division by a constant);

\section*{The naive method}
- replace \(C\) by \(C_{h}=\operatorname{RN}(C)\);
- compute RN \(\left(C_{h} x\right)\) (instruction \(\mathrm{y}=\mathrm{Ch} * \mathrm{x}\) ).
\begin{tabular}{|r|l|}
\hline\(p\) & \begin{tabular}{l} 
Prop. of correctly- \\
rounded results
\end{tabular} \\
\hline \hline 5 & 0.93750 \\
6 & 0.78125 \\
7 & 0.59375 \\
\(\ldots\) & \(\ldots\) \\
16 & 0.86765 \\
17 & 0.73558 \\
\(\cdots\) & \(\cdots\) \\
24 & 0.66805 \\
\hline
\end{tabular}

Proportion of FP numbers \(x\) for which \(R N\left(C_{h} x\right)=R N(C x)\) for \(C=\pi\) and various \(p\).

\section*{Assumptions}
- \(C\) is not a FP number;
- An fma instruction is available (remember: it computes \(\mathrm{RN}(x y+z)\) );
- no underflows, no overflows;
- We assume that the two following FP numbers are pre-computed:
\[
\left\{\begin{array}{l}
C_{h}=\operatorname{RN}(C), \\
C_{\ell}=\operatorname{RN}\left(C-C_{h}\right),
\end{array}\right.
\]

\section*{The algorithm}

Algorithm 1 (Multiplication by \(C\) with a product and an fma) From \(x\), compute
\[
\left\{\begin{array}{l}
y_{1}=R N\left(C_{\ell} x\right) \\
y_{2}=R N\left(C_{h} x+y_{1}\right) .
\end{array}\right.
\]

Returned result: \(y_{2}\).
- Warning! There exist \(C\) and \(x\) s.t. \(y_{2} \neq \mathrm{RN}(C x)\) - easy to build;
- Without l.o.g., we assume that \(1<x<2\) and \(1<C<2\), that \(C\) is not exactly representable, and that \(C-C_{h}\) is not a power of 2 ;

\section*{The algorithm}

\section*{Algorithm 1}

From x, compute
\[
\left\{\begin{array}{l}
y_{1}=R N\left(C_{\ell} x\right) \\
y_{2}=R N\left(C_{h} x+y_{1}\right) .
\end{array}\right.
\]

Returned result: y2.

Continued Fractions theory gives two methods for checking if \(\forall x, y_{2}=\operatorname{RN}(C x)\).
- the 1st one is simple but does not always give a complete answer;
- the other one gives all "bad cases", or certifies that there are none, i.e. that the algorithm always returns RN ( \(C x)\).

Here we just develop the 1st method.

\section*{Analyzing the algorithm}

Maximum possible distance between \(y_{2}\) and \(C x\) :

\section*{Property 1}

For all FP number \(x\), we have
\[
\left|y_{2}-C_{x}\right|<\frac{1}{2} u l p\left(y_{2}\right)+2 u l p\left(C_{\ell}\right) .
\]

Proof on next slide.

Analyzing the algorithm
\[
\begin{aligned}
& C_{l}=R N\left(C-C_{h}\right) \Rightarrow\left|\left(c-C_{h}\right)-C_{l}\right| \leqslant \frac{1}{2} \operatorname{ulp}\left(C_{l}\right) \\
& \left|C_{l} x\right|<2 \cdot\left|C_{l}\right| \Rightarrow \operatorname{ulp}\left(C_{l} \cdot x\right) \leqslant 2 \mathrm{ulp}\left(C_{l}\right) \\
& \Rightarrow|\underbrace{R N\left(C_{l} \cdot x\right)}_{y_{1}}-C_{l} \cdot x| \leqslant u p_{p}\left(C_{l}\right) \\
& \left|y_{2}-\left(c_{h} x+y_{1}\right)\right| \leqslant \frac{1}{2} u \rho_{\rho}\left(y_{2}\right) \\
& \left|\left(c_{h} x+y_{1}\right)-c_{x}\right|=\mid\left(c_{h} x+y_{1}\right)-\left(c_{h}+c_{l}+\left(c_{l}-c_{h}-c_{l}\right) x \mid\right. \\
& \left.\leqslant \underbrace{\left|y_{1}-c_{l} x\right|}_{\leqslant \operatorname{ulp}\left(c_{l}\right)}+\underbrace{\left|c-c_{l}-c_{l}\right|}_{\leqslant \frac{1}{2} \operatorname{ulp}_{p}\left(c_{l}\right)<2} \right\rvert\, \underbrace{x}
\end{aligned}
\]

\section*{Analyzing the algorithm}

Reminder: \(\left|y_{2}-C x\right|<\frac{1}{2}\) ulp \(\left(y_{2}\right)+\eta\) with \(\eta=2\) ulp \(\left(C_{\ell}\right)\).


If \(C x\) is here, then \(\operatorname{RN}(C x)=y_{2}\)
Can \(C x\) be here?

\section*{Analyzing the algorithm}
- We know that \(C x\) is within \(1 / 2\) ulp \(\left(y_{2}\right)+2\) ulp \(\left(C_{\ell}\right)\) from the FP number \(y_{2}\).
- If we prove that \(C x\) cannot be at a distance \(\leq \eta=2\) ulp \(\left(C_{\ell}\right)\) from the middle of two consecutive FP numbers, then \(y_{2}\) will be the FP number that is closest to \(C x\).

\section*{Analyzing the algorithm}
- Remark: CX can be in \([1,2)\) or \([2,4) \rightarrow\) two (very similar) cases;
- define \(x_{\text {cut }}=2 / C\). Let \(X=2^{p-1} x\) and \(X_{\text {cut }}=\left\lfloor 2^{p-1} x_{\text {cut }}\right\rfloor\).
- we detail the case \(x<x_{\text {cut }}\) below.

Middle of two consecutive FP numbers around \(C_{x}: \frac{2 A+1}{2^{\rho}}\) where \(A \in \mathbb{Z}, 2^{p-1} \leq A \leq 2^{p}-1 \rightarrow\) we try to know if there can be such an \(A\) such that
\[
\left|C x-\frac{2 A+1}{2^{p}}\right|<\eta .
\]

This is equivalent to
\[
|2 C X-(2 A+1)|<2^{p} \eta
\]

\section*{Analyzing the algorithm}

We want to know if there exists \(X\) between \(2^{p-1}\) and \(X_{\text {cut }}\) and \(A\) between \(2^{p-1}\) and \(2^{p}-1\) such that
\[
|2 C X-(2 A+1)|<2^{p} \eta .
\]
- \(\left(p_{i} / q_{i}\right)_{i \geq 1}\) : convergents of \(2 C\);
- \(k\) : smallest integer such that \(q_{k+1}>X_{\text {cut }}\),
- define \(\delta=\left|p_{k}-2 C q_{k}\right|\).

Theorem \(6 \Rightarrow \forall B, X \in \mathbb{Z}\), with \(0<X \leq X_{\text {cut }}<q_{k+1}\), \(|2 C X-B| \geq \delta\).

\section*{Analyzing the algorithm}

Therefore
(1) If \(\delta \geq 2^{p} \eta\) then \(\left|C x-A / 2^{p}\right|<\eta\) is impossible \(\Rightarrow\) the algorithm returns \(\mathrm{RN}(C x)\) for all \(x<x_{\text {cut }}\);
(2) if \(\delta<2^{p} \eta\), we try the algorithm with \(x=q_{k} 2^{-p+1} \rightarrow\) either we get a counter-example, or we cannot conclude

Case \(x>x_{\text {cut }}\) : similar (convergents of \(C\) instead of those of \(2 C\) )

\section*{Example: \(C=\pi\), double precision \((p=53)\)}
```

> method1(Pi/2,53);
Ch = 884279719003555/562949953421312
Cl = 4967757600021511/81129638414606681695789005144064
xcut = 1.2732395447351626862, Xcut = 5734161139222658
eta = .8069505497e-32
pk/qk = 6134899525417045/1952799169684491
delta = .9495905771e-16
OK for X < 5734161139222658
etaprime = .1532072145e-31
pkprime/qkprime = 12055686754159438/7674888557167847
deltaprime = .6943873667e-16
OK for 5734161139222658 <= X < 9007199254740992

```
\(\Rightarrow\) We always get a correctly rounded result for \(C=2^{k} \pi\) and \(p=53\), with \(C_{h}=2^{k-48} \times 884279719003555\) and
\(C_{\ell}=2^{k-105} \times 4967757600021511\).

\section*{Consequence 1}

Correctly rounded multiplication by \(\pi\) : in double precision one multiplication and one fma.

\section*{Double-Word Arithmetic}

\section*{Reminder 1: Fast2Sum}

Theorem 8 (Fast2Sum (Dekker))
(only radix 2). Let \(a\) and \(b\) be FP numbers, s.t. \(|a| \geq|b|\).
Following algorithm: \(s\) and \(r\) such that
- \(s+r=a+b\) exactly;
- \(s\) is "the" FP number that is closest to \(a+b\);

Algorithm 2 (FastTwoSum)
\[
\begin{aligned}
& s \leftarrow R N(a+b) \\
& z \leftarrow R N(s-a) \\
& r \leftarrow R N(b-z)
\end{aligned}
\]

\section*{Reminder 2: TwoSum (Moller-Knuth)}
- no need to compare \(a\) and \(b\);
- works in all bases.

Algorithm 3 (TwoSum)
\[
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
\]

Knuth: if no underflow nor overflow occurs then \(a+b=s+r\), and \(s\) is nearest \(a+b\).

\section*{Reminder 3: TwoMultFMA}
- Fused multiply-add (fma) instruction: computes RN \((a b+c)\).
- If \(a\) and \(b\) are FP numbers and \(e_{a}+e_{p} \geq e_{\text {min }}+p-1\), then
\[
\begin{aligned}
& \qquad\left\{\begin{array}{l}
p=\operatorname{RN}(a b) \\
r=\operatorname{RN}(a b-p)
\end{array}\right. \\
& \text { gives } p+r=a b .
\end{aligned}
\]

\section*{Double-Word arithmetic}
- Fast2Sum, 2Sum and 2MultFMA return their result as the unevaluated sum of two FP numbers.
- idea: manipulate such unevaluated sums to perform more accurate calculations in critical parts of a numerical program.
\(\rightarrow\) "double word" or "double-double" arithmetic. Most recent avatar: Rump and Lange's "pair arithmetic" (2020).

\section*{Definition 9}

A double-word (DW) number \(x\) is the unevaluated sum \(x_{h}+x_{\ell}\) of two floating-point numbers \(x_{h}\) and \(x_{\ell}\) such that
\[
x_{h}=\operatorname{RN}(x)
\]

In the following: base 2, precision p floating-point arithmetic.

\section*{DW+FP}
- Implemented in Bailey's QD library (1999);
- DW number \(x=x_{h}+x_{\ell}\) plus FP number \(y \rightarrow\) DW number \(z\);
- measure of error \(u=2^{-p}\).

\section*{DWPlusFP}

1: \(\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y\right)\)
2: \(v \leftarrow \operatorname{RN}\left(x_{\ell}+s_{\ell}\right)\)
3: \(\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2Sum}\left(s_{h}, v\right)\)
4: return \(\left(z_{h}, z_{\ell}\right)\)


Exercise: what is the relative error in the case \(x_{h}=1\),
\(x_{\ell}=\left(2^{p}-1\right) \cdot 2^{-2 p}, y=-\frac{1}{2} \cdot\left(1-2^{-p}\right) ?\)

\section*{\(D W+F P\)}

\section*{Theorem 10}

The relative error
\[
\left|\frac{\left(z_{h}+z_{\ell}\right)-(x+y)}{x+y}\right|
\]
of Algorithm DWPlusFP is bounded by \(2 \cdot u^{2}\).

The bound cannot be improved (it is asymptotically optimal). See previous exercise.

\section*{DW+DW: "accurate version"}

Sum of two DW numbers. There exist a "quick \& dirty" algorithm, but its relative error is unbounded.

\section*{DWPlusDW}
\[
\begin{aligned}
& \text { 1: }\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y_{h}\right) \\
& \text { 2: }\left(t_{h}, t_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{\ell}, y_{\ell}\right) \\
& \text { 3: } c \leftarrow \operatorname{RN}\left(s_{\ell}+t_{h}\right) \\
& \text { 4: }\left(v_{h}, v_{\ell}\right) \leftarrow \operatorname{Fast2Sum}\left(s_{h}, c\right) \\
& \text { 5: } w \leftarrow \operatorname{RN}\left(t_{\ell}+v_{\ell}\right) \\
& \text { 6: }\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2Sum}\left(v_{h}, w\right) \\
& \text { 7: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
\]


\section*{DW+DW: "accurate version"}

We have (after a very long and tedious proof):
Theorem 11
If \(p \geq 3\), the relative error of Algorithm DWPlusDW is bounded by
\[
\begin{equation*}
\frac{3 u^{2}}{1-4 u}=3 u^{2}+12 u^{3}+48 u^{4}+\cdots, \tag{2}
\end{equation*}
\]

\section*{DW+DW: "accurate version"}

So the theorem gives an error bound \(3 u^{2} /(1-4 u) \simeq 3 u^{2} \ldots\)
That theorem has an interesting history:
- the authors of the paper where the algorithm was published claimed (without proof) an error bound \(2 u^{2}\) (in binary64 arithmetic);
- when trying (without success) to prove that bound, we found an example with error \(\approx 2.25 u^{2}\);
- we finally proved the theorem, and started to write a formal proof in Coq;
- of course, that led to finding a (minor) flaw in our proof. . .

\section*{DW+DW: "accurate version"}
- fortunately the flaw was quickly corrected!
- still, the gap between worst case found \(\left(\approx 2.25 u^{2}\right)\) and the bound \(\left(\approx 3 u^{2}\right)\) was frustrating, so we spent months trying to improve the theorem...
- and of course this could not be done: it was the worst case that needed spending time!
- we finally found that with
\[
\begin{aligned}
& x_{h}=1 \\
& x_{\ell}=u-u^{2} \\
& y_{h}=-\frac{1}{2}+\frac{u}{2} \\
& y_{\ell}=-\frac{u^{2}}{2}+u^{3} .
\end{aligned}
\]
error \(\frac{3 u^{2}-2 u^{3}}{1+3 u-3 u^{2}+2 u^{3}}\) is attained. With \(p=53\) (binary64 arithmetic), gives error \(2.99999999999999877875 \cdots \times u^{2}\).

\section*{DW+DW: "accurate version"}
- We suspect the initial authors hinted their claimed bound by performing zillions of random tests
- in this domain, the worst cases are extremely unlikely: you must build them. Almost impossible to find them by chance.

\(\log _{10}\) of the frequency of cases for which the relative error of DWPlusDW is
\(\geq \lambda u^{2}\) as a function of \(\lambda\).

\section*{DW \(\times\) DW}
- Product \(z=\left(z_{h}, z_{\ell}\right)\) of two DW numbers \(x=\left(x_{h}, x_{\ell}\right)\) and \(y=\left(y_{h}, y_{\ell}\right)\);
- several algorithms \(\rightarrow\) tradeoff speed/accuracy. We just give one of them.

\section*{DWTimesDW}

1: \(\left(c_{h}, c_{\ell 1}\right) \leftarrow 2 \operatorname{Prod}\left(x_{h}, y_{h}\right)\)
2: \(t_{\ell} \leftarrow \mathrm{RN}\left(x_{h} \cdot y_{\ell}\right)\)
3: \(c_{\ell 2} \leftarrow \mathrm{RN}\left(t_{\ell}+x_{\ell} y_{h}\right)\)
4: \(c_{\ell 3} \leftarrow \mathrm{RN}\left(c_{\ell 1}+c_{\ell 2}\right)\)
5: \(\left(z_{h}, z_{\ell}\right) \leftarrow\) Fast2Sum \(\left(c_{h}, c_{\ell 3}\right)\)
6: return \(\left(z_{h}, z_{\ell}\right)\)


\section*{DW \(\times\) DW}

We have
Theorem 12 (Error bound for Algorithm DWTimesDW)
If \(p \geq 5\), the relative error of Algorithm DWTimesDW2 is less than or equal to
\[
\frac{5 u^{2}}{(1+u)^{2}}<5 u^{2}
\]
and that theorem too has an interesting history!
- initial bound \(6 u^{2}\);
- again, we tried formal proof... and it turned out the proof was based on a wrong lemma.

\section*{DW \(\times\) DW}
- after a few nights of very bad sleep, we found a turn-around. . . that also improved the bound!
- no proof of asymptotic optimality, but in binary64 arithmetic, we have examples with error \(>4.98 u^{2}\);
- without the flaw, we would never have found the better bound.

Conclusion: that class of algorithms really needs formal proof. Proofs have too many subcases to be certain you have not forgotten one.```

