
Continued Fractions and Double-Word
Arithmetic

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

Continued fractions

Basic question: how close can a rational number of
denominator ≤ q be to some real number α ?

example of application to FP arithmetic: in a given FP system
(base β, precision p, extremal exponents emin and emax), how
close can a FP number be to an integer multiple of π/2?
Would give answers to:

can the tangent of a FP number overflow?
can the sine, cosine, tangent of a normal FP number be less
than βemin?
range reduction for implementing trigonometric functions:
preliminary calculation of y = x mod 2π (so that the problem
is reduced to approximating the function in [0, 2π)). With
which accuracy must that calculation be done ?

2

What happens if range reduction is overlooked (Ng)

System sin
(
1022)

exact result −0.8522008497671888017727 · · ·
HP 48 GX −0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC −0.8522
Silicon Graphics Indy 0.87402806 · · ·
SPARC −0.85220084976718879
IBM RS/6000 AIX 3005 −0.852200849 · · ·
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G Error

Until 2008, no standard for the elementary functions. 3

What happens if range reduction is overlooked (Ng)

System sin
(
1022)

exact result −0.8522008497671888017727 · · ·
HP 48 GX −0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC −0.8522
Silicon Graphics Indy 0.87402806 · · ·
SPARC −0.85220084976718879
IBM RS/6000 AIX 3005 −0.852200849 · · ·
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G Error

Until 2008, no standard for the elementary functions. 4

What happens if range reduction is overlooked (Ng)

System sin
(
1022)

exact result −0.8522008497671888017727 · · ·
HP 48 GX −0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC −0.8522
Silicon Graphics Indy 0.87402806 · · ·
SPARC −0.85220084976718879
IBM RS/6000 AIX 3005 −0.852200849 · · ·
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G Error

Until 2008, no standard for the elementary functions. 5

What happens if range reduction is overlooked (Ng)

System sin
(
1022)

exact result −0.8522008497671888017727 · · ·
HP 48 GX −0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC −0.8522
Silicon Graphics Indy 0.87402806 · · ·
SPARC −0.85220084976718879
IBM RS/6000 AIX 3005 −0.852200849 · · ·
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G Error

Until 2008, no requirement for the elementary functions. 6

Continued fractions

any real number α can be approximated as closely as desired
by rationals. . . however, size of these rationals?

intuitively, a fraction of denominator q can approximate α with
accuracy better than 1/(2q):

α

p
q

p + 1
q

can we do significantly better ? Given α and qmax, what is the
fraction of denominator < qmax that best approximates α?

7

Continued fractions

a0 = bαc
if a0 6= α r1 = 1

α−a0

a1 = br1c
if a1 6= r1 r2 = 1

r1−a1

a2 = br2c
if a2 6= r2 r3 = 1

r2−a2

α = a0 +
1
r1

approximation α ≈ a0

α = a0 +
1

a1 +
1
r2

approximation α ≈ a0 +
1
a1

α = a0 +
1

a1 +
1

a2+
1
r3

approximation α ≈ a0 +
1

a1+
1
a2

8

Continued fractions

The sequence
r0 = α

ai = bric
if ri 6= ai ri+1 = 1

ri−ai

Gives
α = a0 +

1

a1 +
1

a2 +
1

a3 +
1

. . . +
1
ri

and the rational approximation

α ≈ Pi

Qi
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

. . . +
1
ai 9

Continued fractions

Pi/Qi is called the i th convergent of α (french word: réduite);
the sequence (a0, a1, a2, . . .) is called the continued fraction
expansion of α. It is finite iff α ∈ Q;

Exercise: give the continued fraction expansion of
√
2.

we can choose (up to multiplication of numerator &
denominator by the same factor):

P0 = a0 Q0 = 1
P1 = a1a0 + 1 Q1 = a1

P2
Q2

= a0 +
1

a1+
1
a2

= a0 +
a2

a1a2+1

= a0a1a2+a0+a2
a1a2+1

→ P2 = P1a2 + P0 and Q2 = Q1a2 + Q0.
10

Computation of the convergents

Lemma 1
One can choose (still defined up to multiplication by same factor):{

Pn = Pn−1an + Pn−2

Qn = Qn−1an + Qn−2.
(1)

Proof:

true for n = 2 (previous slide);

assume true for n. We get Pn+1/Qn+1 from Pn/Qn by
replacing an by an +

1
an+1

;

let us do that replacement in (1), multiplying both terms by
an+1 to keep integers.

11

Computation of the convergents

÷: ÷

appeau
ù{Œs⇒Qn -e) × am

these MX
Î pa

+ ,

= [Payant Pn -z) rap t Pn
- y

Qnrr ± [Qui ont Que] ans , + ans
÷

12

A miraculous lemma

With the above-defined formulas for Pn and Qn.

Lemma 2

PnQn−1 − Pn−1Qn = (−1)n+1.

pn = Payant Par
→ PaQnd = Par

- i Qu - corn + Pain
,

on = Qn - r En +Que → % , Qn = Pu - ton - i aut Pa - ,Que

conséquence Panam - Papa
,

= - En -Qu -a- Pn
-z%§

Fromm Po = a. j Qo = l ; pq = 9%+1 ; qe ap
ve deduo Ppao - Po y

= 1

Hare Pa Q»
- pa

. ,
on = C- e)

""

13

Why is the lemma miraculous?

Bezout Theorem → gcd(Pn,Qn) = 1→ the formulas give
irreducible fractions;

the lemma can be written (with substitution n→ n + 1):

Pn+1

Qn+1
− Pn

Qn
=

(−1)n

QnQn+1

α deduced from Pn+1/Qn+1 by replacing an+1 by rn+1

→ gives

α =
Pnrn+1 + Pn−1

Qnrn+1 + Qn−1
.

Function x → (Pnx + Pn−1)/(Qnx + Qn−1) is monotone (derivative
(PnQn−1 − QnPn−1)/(Qnx + Qn−1)

2 = (−1)n+1/(Qnx + Qn−1)
2) → α is

between Pn−1
Qn−1

and Pn
Qn

.

Hence ∣∣∣∣α− Pn

Qn

∣∣∣∣ ≤ ∣∣∣∣Pn+1

Qn+1
− Pn

Qn

∣∣∣∣ = 1
QnQn+1

≤ 1
Q2

n

.

14

Consequences

if for some n, an = 0 then α = Pn
Qn

and the sequence ends;

otherwise, ∀n, an ≥ 1,so that from Qn = Qn−1an + Qn−2 we
deduce Qn > Qn−1 so that Qn > 2Qn−2, hence the bound

1
QnQn+1

<
1

2QnQn−1
<

1
4Qn−1Qn−2

< . . .

goes to zero faster than 1/2n.

Theorem 3
Pn/Qn → α.We also have Pn/Qn ≤ α when n is even, and
Pn/Qn ≥ α when n is odd,

15

Consequences

We write:
α = a0 +

1

a1 +
1

a2 +
1

a3 +
1
. . .

or
α = [a0; a1, a2, a3, a4, · · ·].

16

A few examples

√
2 = [1; 2, 2, 2, 2, . . .]

1+
√
5

2
= [1; 1, 1, 1, 1, . . .]

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .]

which gives the following convergents (→ very good rational
approximations to π):

3;
22
7
;

333
106

;
355
113

;
103993
33102

; . . .

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . .]

Theorem 4 (Lagrange)

The continued fraction expansion of α is ultimately periodic iff α is
a root of a degree-2 polynomial with integer coefficients.

17

Continued fractions are “best” rational approximations

Theorem 5

Let (Pn/Qn) be the nth convergent to α. If an irreducible fraction
p/q is a better approximation to α than Pn/Qn then q > Qn.

a) If Iq is between Png and Penney ,
then

¥ -EtÊ il:÷
.

- ÉTÉ
. .

→ f- < ¥
..

→ q > Qui

b) If pq
is not between ¥4 and Pnd

& t'a-Yang Qnxt

m .
÷

-

.÷¥a± t'±
→ the byte oftheûtrvdl LEE , PIE

..
)LEU àatmrthaefthebmtthot l'¥

.
.

. En)µ
18

Continued fractions are “best” rational approximations

→ Pq is in the àtud l'EI
,

s PE)
→ the case a) applis with k¥1 ⇒ q son

Theorem 6

Let (Pn/Qn) be the convergents to α. For any (p, q) ∈ N× N∗

with q < Qn+1, we have

|p − αq| ≥ |Pn − αQn| .

Theorem 7

Let (p, q) ∈ N× N∗. If
∣∣∣pq − α∣∣∣ < 1

2q2 then p/q is one of the
convergents to α.

19

How close can a FP number be to a nonzero multiple of an
irrational number C?

We look for a normal FP number

x = Mx · βex−p+1,

with βp−1 ≤ Mx ≤ βp − 1, as close as possible to a multiple
of C .

ex assumed fixed (new analysis for each value of the exponent).

Mx · βex−p+1 = kx · C + εx , with kx =
⌊
Mx · βex−p+1/C

⌉
,

smallest possible value of |εx |?
let (Pi/Qi) be the sequence of the convergents to βex−p+1/C ;

Integer j : largest such that Qj ≤ βp − 1.

20

How close can a FP number be to a nonzero multiple of an
irrational number C?

Theorem 6 ⇒ for any (kx ,Mx) with Mx ≤ βp − 1 < Qj+1 we have∣∣∣∣kx − βex−p+1

C
·Mx

∣∣∣∣ ≥ ∣∣∣∣Pj −
βex−p+1

C
· Qj

]
Gives ∣∣kx · C − βex−p+1Mx

∣∣︸ ︷︷ ︸
|εx |

≥
∣∣Pj · C − βex−p+1Qj

∣∣
Solution: for each value of ex between

⌈
logβ(C)

⌉
and emax,

compute the corresponding Pj/Qj , the lowest value of |εx | for that
ex will be attained for Mx = Qj .

21

worstcaseRR := proc(B,p,emin,emax,C,ndigits)
local epsilonmin,powerofBoverC,e,a,Plast,r,Qlast, Q,P,NewQ,NewP,epsilon, numbermin,expmin,ell;

epsilonmin := 12345.0 ; Digits := ndigits;
powerofBoverC := B^(emin-p)/C;
for e from emin-p+1 to emax-p+1 do

powerofBoverC := B*powerofBoverC;
a := floor(powerofBoverC); Plast := a;
r := 1/(powerofBoverC-a); a := floor(r);
Qlast := 1; Q := a;
P := Plast*a+1;
while Q < B^p-1 do

r := 1/(r-a);
a := floor(r);
NewQ := Q*a+Qlast;
NewP := P*a+Plast;
Qlast := Q;
Plast := P;
Q := NewQ;
P := NewP

od;
epsilon :=

evalf(C*abs(Plast-Qlast*powerofBoverC));
if epsilon < epsilonmin then

epsilonmin := epsilon; numbermin := Qlast;
expmin := e

fi
od;
print(’significand’,numbermin);
print(’exponent’,expmin);
print(’epsilon’,epsilonmin);
ell := evalf(log(epsilonmin)/log(B),10);
print(’numberofdigits’,ell)

end

22

β p C emax Worst Case − logβ(ε)

2 24 π/2 127 16367173× 2+72 29.2

2 24 ln(2) 127 8885060× 2−11 31.6

10 10 π/2 99 8248251512× 10−6 11.7

2 53 π/2 1023 6381956970095103× 2+797 60.9

2 53 ln(2) 1023 5261692873635770× 2+499 66.8

23

What can we deduce ?

In all binary formats of the IEEE 754 standard, a FP number x of
absolute value > π/2 is always far enough from an integer multiple
of π/2 to make sure that:

tan(x), 1/ tan(x) cannot overflow;

sin(x), cos(x), tan(x) is always of absolute value > 2emin

(→ never in subnormal domain).

Also gives the precision with which range reduction must be done.

24

Other application: multiplication by “infinitely precise” con-
stants

We want RN (Cx), where x is a FP number, and C a real
constant (i.e., known at compile-time);

Base 2, precision-p FP arithmetic;

Typical values of C : π, 1/π, ln(2), ln(10), e, 1/k!, cos(kπ/N)

and sin(kπ/N), . . .

another frequent case: C = 1
FP number (division by a

constant);

25

The naive method

replace C by Ch = RN (C);
compute RN (Chx) (instruction y = Ch * x).

p
Prop. of correctly-
rounded results

5 0.93750
6 0.78125
7 0.59375
· · · · · ·
16 0.86765
17 0.73558
· · · · · ·
24 0.66805

Proportion of FP numbers x for which RN (Chx) = RN (Cx) for C = π

and various p.
26

Assumptions

C is not a FP number;

An fma instruction is available (remember: it computes
RN (xy + z));

no underflows, no overflows;

We assume that the two following FP numbers are
pre-computed: {

Ch = RN (C),

C` = RN (C − Ch),

27

The algorithm

Algorithm 1 (Multiplication by C with a product and an fma)
From x , compute {

y1 = RN (C`x),

y2 = RN (Chx + y1).

Returned result: y2.

Warning! There exist C and x s.t. y2 6= RN (Cx) – easy to
build;

Without l.o.g., we assume that 1 < x < 2 and 1 < C < 2,
that C is not exactly representable, and that C − Ch is not a
power of 2;

28

The algorithm

Algorithm 1
From x , compute {

y1 = RN (C`x),

y2 = RN (Chx + y1).

Returned result: y2.

Continued Fractions theory gives two methods for checking if
∀x , y2 = RN (Cx).

the 1st one is simple but does not always give a complete
answer;
the other one gives all “bad cases”, or certifies that there are
none, i.e. that the algorithm always returns RN (Cx).

Here we just develop the 1st method. 29

Analyzing the algorithm

Maximum possible distance between y2 and Cx :

Property 1

For all FP number x , we have

|y2 − Cx | < 1
2
ulp (y2) + 2 ulp (C`).

Proof on next slide.

30

Analyzing the algorithm

Ce = RN (e - ch) ⇒ (cc - ch) - ce / ç ! ulp (ce)
Ice xp < 2.1 cet ⇒ ulplce.ae) ç 2 ulp Cce)

⇒ IRN (Ce . x) - ce .ae/sulpCce)
÷

1g ,
- (charge) I E ! mlp (ya)

I@ xty ,) - Ca / = peux + y ,) - (ch + Cette - 4-G)xp
ç 11 - ce xp + le - ch - ce I. x
-
-

E ulpcce) e fdp Cce) J2

31

Analyzing the algorithm

Reminder: |y2 − Cx | < 1
2 ulp (y2) + η with η = 2 ulp (C`).

y2

FP numbers

located

If Cx is here, then RN (Cx) = y2

Can Cx be here?

2η
Domain where
Cx can be

2η
1
2 ulp (y2)

32

Analyzing the algorithm

We know that Cx is within 1/2 ulp (y2) + 2 ulp (C`) from the
FP number y2.

If we prove that Cx cannot be at a distance ≤ η = 2 ulp (C`)
from the middle of two consecutive FP numbers, then y2 will
be the FP number that is closest to Cx .

33

Analyzing the algorithm

Remark: Cx can be in [1, 2) or [2, 4)→ two (very similar)
cases;

define xcut = 2/C . Let X = 2p−1x and Xcut =
⌊
2p−1xcut

⌋
.

we detail the case x < xcut below.

Middle of two consecutive FP numbers around Cx : 2A+1
2p where

A ∈ Z, 2p−1 ≤ A ≤ 2p − 1→ we try to know if there can be such
an A such that ∣∣∣∣Cx − 2A+ 1

2p

∣∣∣∣ < η.

This is equivalent to

|2CX − (2A+ 1)| < 2pη.

34

Analyzing the algorithm

We want to know if there exists X between 2p−1 and Xcut and A

between 2p−1 and 2p − 1 such that

|2CX − (2A+ 1)| < 2pη.

(pi/qi)i≥1: convergents of 2C ;

k : smallest integer such that qk+1 > Xcut,

define δ = |pk − 2Cqk | .

Theorem 6 ⇒ ∀B,X ∈ Z, with 0 < X ≤ Xcut < qk+1,
|2CX − B| ≥ δ.

35

Analyzing the algorithm

Therefore

1 If δ ≥ 2pη then |Cx − A/2p| < η is impossible ⇒ the
algorithm returns RN (Cx) for all x < xcut;

2 if δ < 2pη, we try the algorithm with x = qk2−p+1 → either
we get a counter-example, or we cannot conclude

Case x > xcut: similar (convergents of C instead of those of 2C)

36

Example: C = π, double precision (p = 53)

> method1(Pi/2,53);
Ch = 884279719003555/562949953421312
Cl = 4967757600021511/81129638414606681695789005144064
xcut = 1.2732395447351626862, Xcut = 5734161139222658
eta = .8069505497e-32
pk/qk = 6134899525417045/1952799169684491
delta = .9495905771e-16
OK for X < 5734161139222658
etaprime = .1532072145e-31
pkprime/qkprime = 12055686754159438/7674888557167847
deltaprime = .6943873667e-16
OK for 5734161139222658 <= X < 9007199254740992

⇒ We always get a correctly rounded result for C = 2kπ and p = 53,

with Ch = 2k−48 × 884279719003555 and

C` = 2k−105 × 4967757600021511.

Consequence 1
Correctly rounded multiplication by π: in double precision one
multiplication and one fma.

37

Double-Word Arithmetic

38

Reminder 1: Fast2Sum

Theorem 8 (Fast2Sum (Dekker))

(only radix 2). Let a and b be FP numbers, s.t. |a| ≥ |b|.
Following algorithm: s and r such that

s + r = a+ b exactly;

s is “the” FP number that is closest to a+ b;

Algorithm 2 (FastTwoSum)

s ← RN (a+ b)

z ← RN (s − a)

r ← RN (b − z)

39

Reminder 2: TwoSum (Moller-Knuth)

no need to compare a and b;

works in all bases.

Algorithm 3 (TwoSum)

s ← RN (a+ b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

r ← RN (δa + δb)

Knuth: if no underflow nor overflow occurs then a+ b = s + r , and
s is nearest a+ b.

40

Reminder 3: TwoMultFMA

Fused multiply-add (fma) instruction: computes RN (ab + c).

If a and b are FP numbers and ea + ep ≥ emin + p − 1, then{
p = RN (ab)

r = RN (ab − p)

gives p + r = ab.

41

Double-Word arithmetic

Fast2Sum, 2Sum and 2MultFMA return their result as the
unevaluated sum of two FP numbers.
idea: manipulate such unevaluated sums to perform more
accurate calculations in critical parts of a numerical program.

→ “double word” or “double-double” arithmetic. Most recent
avatar: Rump and Lange’s “pair arithmetic” (2020).

Definition 9

A double-word (DW) number x is the unevaluated sum xh + x` of
two floating-point numbers xh and x` such that

xh = RN (x).

In the following: base 2, precision p floating-point arithmetic.

42

DW+FP

Implemented in Bailey’s QD library (1999);

DW number x = xh + x` plus FP number y → DW number z ;

measure of error u = 2−p.

DWPlusFP

1: (sh, s`)← 2Sum(xh, y)

2: v ← RN (x` + s`)

3: (zh, z`)← Fast2Sum(sh, v)

4: return (zh, z`)

ach I Xl
.
Y

✓ v

25mm

À
sh 1 se

↳ v

¥
TE

✓ v

25mm

t
3h 3e

43

Exercise: what is the relative error in the case xh = 1,
x` = (2p − 1) · 2−2p, y = −1

2 · (1− 2−p) ?

44

DW+FP

Theorem 10

The relative error ∣∣∣∣(zh + z`)− (x + y)

x + y

∣∣∣∣
of Algorithm DWPlusFP is bounded by 2 · u2.

The bound cannot be improved (it is asymptotically optimal). See
previous exercise.

45

DW+DW: “accurate version”

Sum of two DW numbers. There exist a “quick & dirty” algorithm,
but its relative error is unbounded.

DWPlusDW

1: (sh, s`)← 2Sum(xh, yh)

2: (th, t`)← 2Sum(x`, y`)

3: c ← RN (s` + th)

4: (vh, v`)← Fast2Sum(sh, c)

5: w ← RN (t` + v`)

6: (zh, z`)← Fast2Sum(vh,w)

7: return (zh, z`)

ah I Xl 9h I Ye

v
v

s
t

25mm 25mm

v v

sh se th te

> <

±
C

] L

Fast 2am
d

'h I ve

v
v

z ,
Footage#

L

46

DW+DW: “accurate version”

We have (after a very long and tedious proof):

Theorem 11
If p ≥ 3, the relative error of Algorithm DWPlusDW is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · , (2)

47

DW+DW: “accurate version”

So the theorem gives an error bound 3u2/(1− 4u) ' 3u2. . .
That theorem has an interesting history:

the authors of the paper where the algorithm was published
claimed (without proof) an error bound 2u2 (in binary64
arithmetic);

when trying (without success) to prove that bound, we found
an example with error ≈ 2.25u2;

we finally proved the theorem, and started to write a formal
proof in Coq;

of course, that led to finding a (minor) flaw in our proof. . .

48

DW+DW: “accurate version”

fortunately the flaw was quickly corrected!
still, the gap between worst case found (≈ 2.25u2) and the
bound (≈ 3u2) was frustrating, so we spent months trying to
improve the theorem. . .
and of course this could not be done: it was the worst case
that needed spending time!
we finally found that with

xh = 1
x` = u − u2

yh = −1
2 + u

2
y` = −u2

2 + u3.

error 3u2−2u3

1+3u−3u2+2u3 is attained. With p = 53 (binary64
arithmetic), gives error 2.99999999999999877875 · · · × u2.

49

DW+DW: “accurate version”

We suspect the initial authors hinted their claimed bound by
performing zillions of random tests

in this domain, the worst cases are extremely unlikely: you must
build them. Almost impossible to find them by chance.

log10 of the frequency of cases for which the relative error of DWPlusDW is
≥ λu2 as a function of λ. 50

DW × DW

Product z = (zh, z`) of two DW numbers x = (xh, x`) and
y = (yh, y`);
several algorithms → tradeoff speed/accuracy. We just give
one of them.

DWTimesDW

1: (ch, c`1)← 2Prod(xh, yh)
2: t` ← RN (xh · y`)
3: c`2 ← RN (t` + x`yh)

4: c`3 ← RN (c`1 + c`2)

5: (zh, z`)← Fast2Sum(ch, c`3)

6: return (zh, z`)

ah I Xl 9h I be

inv
÷:p ÷
-

vv v

FMA

✓

Clz
✓
<

+

✓

✓
Cls

z <
Festonna

51

DW × DW

We have

Theorem 12 (Error bound for Algorithm DWTimesDW)

If p ≥ 5, the relative error of Algorithm DWTimesDW2 is less than
or equal to

5u2

(1+ u)2
< 5u2.

and that theorem too has an interesting history!

initial bound 6u2;

again, we tried formal proof. . . and it turned out the proof was
based on a wrong lemma.

52

DW × DW

after a few nights of very bad sleep, we found a
turn-around. . . that also improved the bound !

no proof of asymptotic optimality, but in binary64 arithmetic,
we have examples with error > 4.98u2;

without the flaw, we would never have found the better bound.

Conclusion: that class of algorithms really needs formal proof.
Proofs have too many subcases to be certain you have not
forgotten one.

53

