
Improving Goldschmidt Division, Square
Root, and Square Root Reciprocal

Milos D. Ercegovac, Member, IEEE, Laurent Imbert,
David W. Matula, Member,
IEEE Computer Society,

Jean-Michel Muller, Member,
IEEE Computer Society, and

Guoheng Wei

AbstractÐThe aim of this paper is to accelerate division, square root, and square

root reciprocal computations when the Goldschmidt method is used on a pipelined

multiplier. This is done by replacing the last iteration by the addition of a correcting

term that can be looked up during the early iterations. We describe several

variants of the Goldschmidt algorithm, assuming 4-cycle pipelined multiplier, and

discuss obtained number of cycles and error achieved. Extensions to other than

4-cycle multipliers are given. If we call Gm the Goldschmidt algorithm with m

iterations, our variants allow us to reach an accuracy that is between that of G3

and that of G4, with a number of cycle equal to that of G3.

Index TermsÐDivision, square root, square root reciprocal, convergence division,

computer arithmetic, Goldschmidt iteration.

æ

1 INTRODUCTION

ALTHOUGH division is less frequent among the four basic
arithmetic operations, a recent study by Oberman and Flynn [7]
shows that, in a typical numerical program, the time spent
performing divisions is approximately the same as the time spent
performing additions or multiplications. This is due to the fact that,
in most current processors, division is significantly slower than the
other operations. Hence, faster implementations of division are
desirable.

There are two principal classes of division algorithms. The digit-

recurrence methods [4] produce one quotient digit per cycle using

residual recurrence which involves 1) redundant additions,

2) multiplications with a single digit, and 3) a quotient-digit

selection function. The method produces both the quotient, which

can be easily rounded, and the remainder. The iterative, quad-

ratically convergent, methods, such as the Newton-Raphson and

Goldschmidt methods [5], [6], [11] use multiplications and take

advantage of fast multipliers implemented in modern processors.

These methods do not directly produce the remainder and correct

rounding (as required by the IEEE-754 standard [8]) requires extra

quotient digits. According to [7], roughly twice as many digits of

intermediate result are needed as in the final result unless the

iterations are performed using a fused multiply-accumulate

operator [1]. For more details on correct rounding of division

and square-root, see [1], [9], [12], [14].

In this paper, we focus on the latter class of methods. Such
methods have been implemented in various microprocessors such

as the IBM RS/6000 [12] or the more recent AMD K7 processor
[13]. Our goal is to find a way of accelerating the Goldschmidt
iteration (G-iteration in the sequel) when implementing it on a

pipelined computer. We then extend our work to square root and
square root reciprocal calculations.

Our methods require an initial reciprocal table lookup. We will

use the following result:

Theorem 1 (DasSarma and Matula [2]). The maximum relative error

of an optimal reciprocal table with k-bits-in and k� g-bits-out is

bounded above by

2ÿ�k�1� 1� 1

2g�1

� �
:

In the following, we assume that we use an optimal reciprocal
table, with p-bits-in and p� 2-bits-out. Let x be a real number.

Using such a table, addressed by the first p bits of x, one can get an
approximation K to 1=x that satisfies

1ÿ 2ÿpÿ0:83 < Kx < 1� 2ÿpÿ0:83: �1�
Typical currently feasible values for p are around 10.

An alternative is to use bipartite tables (see [3]). In such a case,
K � 1=x is obtained by looking up two tables with p address bits.
One can show

1ÿ 2ÿ
3p
2�1 < Kx < 1� 2ÿ

3p
2�1: �2�

2 DIVISION

2.1 Background and G-Iteration

Assume two n-bit inputs N and D, that satisfy 1 � N;D < 2 (i.e.,
normalized significands of floating-point numbers). We aim at
computing Q � N=D. The Goldschmidt algorithm consists of

finding a sequence K1;K2; K3; . . . such that the product ri �
DK1K2 . . .Ki approaches 1 as i goes to infinity. Hence,

qi � NK1K2 . . .Ki ! Q:

This is done as follows: K1 is obtained by table lookup. After that,
if ri � 1ÿ �, we choose Ki�1 � 1� �, which gives ri�1 � 1ÿ �2. To

be able to discuss possible alternatives, we give in detail the steps
used in computing q4.

1. Step 1. Let D � 1:d1d2 . . . dnÿ1 and define D̂ � 1:d1d2 . . . dp,
where p << n. Typical values are n � 53 and p � 10. From
an optimal reciprocal table with p-bits-in and p� 2-bits-out
that uses D̂ as entry, obtain a p� 2-bit approximation K1 to
1=D. Define � � 1ÿK1D. From (1), j�j < 2ÿpÿ0:83. We
successively compute

. r1 � DK1 � 1ÿ � (this multiplication will be called
mult. 1);

. q1 � NK1 (mult. 2).
2. Step 2. By 2's complementing r1, we get K2 � 1� �. We

then compute

. r2 � r1K2 � 1ÿ �2 (mult. 3);

. q2 � q1K2 (mult. 4).
3. Step 3. By 2's complementing r2, we get K3 � 1� �2. We

then compute

. r3 � r2K3 � 1ÿ �4 (mult. 5);

. q3 � q2K3 (mult. 6).
4. Step 4. By 2's complementing r3, we get K4 � 1� �4. We

then compute q4 � q3K4 (mult. 7). This gives

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000 759

. M.D. Ercegovac is with the Computer Science Department, 3732 Boelter
Hall, University of California at Los Angeles, Los Angeles, CA 90024.
E-mail: milos@cs.ucla.edu.

. L. Imbert is with L.I.M., CMI, UniversiteÂ de Provence, 39 rue Joliot Curie,
13453 Marseille cedex 13, France.
E-mail: Laurent.Imbert@cmi.univ-mrs.fr.

. D.W. Matual and G. Wei are with the Department of Computer Science,
Southern Methodist University, Dallas, TX 75275.
E-mail: {matula, gwei}@seas.smu.edu.

. J.-M. Muller is with CNRS-LIP, Ecole Normale SupeÂrieure de Lyon, 46
alleÂe d'Italie, 69364 Lyon Cedex 07, France. E-mail: jmmuller@ens-lyon.fr.

Manuscript received 1 Sept. 1999; revised 1 Feb. 2000; accepted 10 Mar. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111796.

0018-9340/00/$10.00 ß 2000 IEEE

N

D
� q4

1ÿ �8 : �3�

This process gives an approximation q4 to N=D that satisfies

q4 <
N

D
� q4 1� 2ÿ8pÿ6:64

ÿ �
:

This method has a quadratic convergence: At each step, the
number of significant bits of the approximation to the quotient
roughly doubles.

2.2 Basic Implementation on a Pipelined Multiplier

In this section, we assume that we use a 4-cycle, n� n, pipelined
multiplier. We start counting the cycles when K1 becomes available.
This implementation requires 17 cycles. The scheduling of the
multiplications in the multiplier is shown in Fig. 1. We can use the
ªholesº in the pipeline to interlace independent divisions.

2.3 Variant A

As soon as � becomes available (i.e., in cycle 5), we look up �̂4 in a
table with pÿ 1 address bits, where �̂, with the same sign as �, is
constituted by the bits of j�j of weight 2ÿpÿ1; 2ÿpÿ2; . . . ; 2ÿ2p�1 and a
terminal unit. That is, if j�j � 0:000 . . . 0�p�1�p�2�p�3�p�4 . . . , then
j�̂j � 0:000 . . . 0�p�1�p�2 . . . �2p1. This gives j�ÿ �̂j < 2ÿ2p. Then,

instead of successively computing q3 � q2�1� �2� and

q4 � q3�1� �4� � q2�1� �2 � �4 � �6�, we compute directly from q2

an approximation q04 to q4:

q04 � q2�1� �2 � �̂4�:
We now discuss the error in the result. First, neglecting the term

in �6 leads to an error less than 2ÿ6pÿ4:98. This shows how many bits

of the values �̂4 we need to store. These values are less than

2ÿ4pÿ3:32, hence it suffices to store 2p� 1 bits of each of these values

to get an error similar to the error due to our having neglected �6.

Moreover, from the expansion

�4 � �̂� �r� �4� �̂4 � 4�r�̂
3 � 6�2

r �̂
2 � 4�3r �̂� �4r ; �4�

where �r � �ÿ �̂ (which gives j�rj < 2ÿ2p), we find that the error

committed when replacing �4 by �̂4 is around 4�r�̂
3 � 2ÿ5pÿ0:49. We

save four cycles compared to the direct implementation, but at the

cost of poorer accuracy. This variant is shown in Fig. 2.

2.4 Variant B

To get better accuracy than with variant A, we compute the first

error term in (4), that is, c � 4�r�̂
3. This is done by tabulating �̂3 and

computing a sharper approximation to q4:

q004 � q2�1� �2 � �̂4 � 4�r�̂
3�

� q2�1� �2 � �̂3�4�r � �̂��:
We need one table for �̂3 and one more cycle for the computation of

c � �̂3�4�r � �̂�. The error is about 2ÿ6p�0:95. The corresponding

schedule is shown Fig. 3. On a 4-cycle multiplier, it requires 13

cycles. A better performance can be obtained when performing

two or three consecutive divisions by the same denominator. This

happens, for example, in normalizing 2D (3D) vectors. The

improvement comes from the fact that the ris are the same.

Computing a1=d and a2=d requires 15 cycles, whereas first

computing 1=d and then multiplying this intermediate result by

a1 and a2 would take 20 cycles.
We present a summary of the properties of these variants in

Table 1.

2.5 Implementations on Multipliers with a Different
Number of Cycles

The variants presented so far were illustrated assuming a 4-cycle

pipelined multiplier. They can be used on multipliers with less or

more than four cycles. With a 2-cycle multiplier, the direct iteration

(assuming we still wish to compute q4) is implemented in nine

cycles. Variant A is implemented in seven cycles and variant B is

implemented in eight cycles. On a 3-cycle multiplier, the direct

760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000

Fig. 1. Schedule of the original G-iteration. It requires 17 cycles to get the final

result. It allows interlacing of two independent divisions: It suffices to start
multiplication mult. 1 of the second division at cycle 3, mult. 2 at cycle 4, mult. 3
at cycle 7, mult. 4 at cycle 8, mult. 5 at cycle 11, mult. 6 at cycle 12, and mult. 7
at cycle 16. Two interlaced divisions require 19 cycles.

Fig. 2. Schedule of variant A. Requires 13 cycles, with an accuracy lower than that

of the direct implementation. Two interlaced divisions are performed in 15 cycles.

Fig. 3. Variant B. Mult. c is the computation of �̂3�4�r � �̂�. Mult. 5'' is the final

multiplication. It has one more cycle than Variant A, but the accuracy is much

better. Two interlaced divisions need 17 cycles.

iteration is implemented in 13 cycles, whereas variant A is

implemented in 10 cycles, and variant B in 11 cycles.

2.6 Implementations with More than Four Iterations

The same approach is applicable if we want to perform more

iterations of the Goldschmidt algorithm. Assume that we add one

more step to the algorithm presented in Section 2.1. The final result

q5 is obtained as

q5 � q4 �K5 � q4 1� �8
ÿ �

:

A direct implementation on a 4-cycle pipelined multiplier requires

21 cycles. However, once � is known, we can look up in a table the

value �̂8, where �̂ is the same number as in the previous sections.

That value will be used to directly estimate an approximation to q5

from q3. Hence, we can build several variants of the algorithm, for

instance:

. First variant: We compute

q005 � q3 1� �4 � �̂8 � 8�̂7�r
ÿ �

on a 4-cycle multiplier; this requires 17 cycles and the error

is less than 2ÿ10pÿ0:17.
. Second variant: We compute

q0005 � q3 1� �4 � �̂8 � 8�̂7�r � 28�̂6�2r
ÿ �

on a 4-cycle multiplier; this requires 18 cycles and the error

is less than 2ÿ11p�1:66.

3 SQUARE ROOT AND SQUARE ROOT RECIPROCAL

3.1 Conventional Iteration

In this section, we focus on the computation of 1=
���
x
p

and
���
x
p

for

some real variable x. We start from the generalization of the

Goldschmidt method for square-root and square-root reciprocal

that was introduced in [11]. An alternative would have been to use

Newton-Raphson iteration [10] for
���
x
p

:

ri�1 � 1

2
ri 3ÿ xr2

i

ÿ �
;

that can be conveniently implemented (as suggested by Schulte

and Wires [15]) as:

wi � r2
i

di � 1ÿ wix
ri�1 � ri � ridi=2:

This approach requires three dependent multiplies per iteration,

similar to the Goldschmidt method used here. Assume we wish to

compute
���
x
p

or 1=
���
x
p

for 1 � x < 2. We shall consider the extension

to the binade 2 � x < 4 in Section 3.3. Starting from

x � 1:d1d2 . . . dn, we define

x̂ � 1:d1d2 . . . dp � 2ÿpÿ1;

so then jxÿ x̂j � 2ÿpÿ1, where p << n. From x̂ we look up the

number G equal to 1=
���̂
x
p

rounded to the nearest p� 2-bit number,

in a table with p-bits in and p� 1-bits out.1 We also look up K1 �
G2 in a table with p-bits in and 2p� 3-bits out. It is important that

the relation K1 � G2 be exact. One can show that, as soon as p � 5:

jK1xÿ 1j < 2ÿpÿ0:226: �5�
The conventional method (assuming we perform four iterations)

consists of performing the following calculations itemized by

groups of independent multiplications:

1. First group: We define the variable x1 and a variable r1 by
the independent multiplications

. x1 � x�K1 (called mult. 1 in Fig. 4),

. r1 �
�������
K1

p
if we aim at computing 1=

���
x
p

,
. r1 � x�

�������
K1

p
if we aim at computing

���
x
p

. (mult. 1').

These choices are due to the fact that the next iterations

compute r1=
���������
xK1

p
.

2. Second group: We define �1 � 1ÿ x1 and perform the
independent multiplications:

. �1� �1
2�2 � �1� �1

2 � � �1� �1
2 �;

. r2 � 1� �1
2

ÿ �� r1.

3. Third group: We compute

. x2 � �1� �1
2 �2 � x1

and we define �2 by �2 � 1ÿ x2.
4. Fourth group: We perform the independent multiplica-

tions:

. �1� �2
2�2 � �1� �2

2 � � �1� �2
2 �,

. r3 � 1� �2
2

ÿ �� r2.

5. Fifth group: We compute

. x3 � �1� �2
2 �2 � x2

and we define �3 by �3 � 1ÿ x3.
6. Sixth group: We compute

. r4 � �1� �3
2 � � r3.

The error committed is easily found. Let us define � � �1. From (5),
we have j�j < 2ÿpÿ0:226. From xi�1 � �1� �i

2�2xi � �1� �i � 1
4 �

2
i �xi

and �i�1 � 1ÿ xi�1, we find

�i�1 � 3

4
�2i �

1

4
�3i ; �6�

hence,

�4 � 3

4

� �7

�8 < 2ÿ8pÿ4:713: �7�

Since each time we multiply xi by some factor to get xi�1 we

multiply ri by the square root of the same factor, we deduce

r4 �
������������
x4=x1

p � r1. Hence,

r4 � 1� ������
x1
p r1;

where j�j < 2ÿ8pÿ5:713. This gives the final result:

. If we compute 1=
���
x
p

(that is, we have chosen r1 �
�������
K1

p
),

then

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000 761

TABLE 1
Main Properties of the Proposed Variants

The third column gives the amount of memory required, including the table used
for K1.

1. The ªp� 1º instead of ªp� 2º comes from the fact that the first
fractional bit of G is always 1. Therefore, there is no need to store it.

r4 � 1���
x
p �1� ��; with j�j < 2ÿ8pÿ5:713:

. If we compute
���
x
p

(that is, we have chosen r1 � x
�������
K1

p
)

then

r4 �
���
x
p �1� ��; with j�j < 2ÿ8pÿ5:713:

3.2 Accelerating Square Root (Inverse Square Root)
Method

Now, let us try to accelerate the computation by directly deducing

an approximation to r4 from r2. To do that, we first deduce the

values of the �is as polynomial identities in � using (6). We obtain

�2 � 3
4 �

2 � 1
4 �

3 and

�3 � 27

64
�4 � 9

32
�5 � 39

256
�6 � 27

256
�7

� 9

256
�8 � 1

256
�9:

Using this result, since r4 � �1� �2
2 ��1� �3

2 �r2, we can deduce

r4 � 1� �2
2
� ����

� �
r2; �8�

where

��y� � 27

128
y4 � 9

64
y5 � 159

1024
y6 � 135

1024
y7

� 261

4096
y8 � 1

32
y9 � 27

2048
y10 � 3

1024
y11

� 1

4096
y12:

Therefore, once � is known, we can look up in a table with pÿ 1-

bits-in and 2p� 4-bits-out the value ���̂�, where �̂ is a p-bit number,

constituted by the bits of j�j of weight 2ÿpÿ1; 2ÿpÿ2; . . . ; 2ÿ2p�1, and a

terminal unit. That is, if

j�j � 0:000 . . . 0�p�1�p�2�p�3�p�4 . . . ; j�j < 2ÿp;

then truncating to a midpoint in the 2pth place,

j�̂j � 0:000 . . . 0�p�1�p�2 . . . �2pÿ1 � 2ÿ2p; j�̂j < 2ÿp;

where, with �̂ defined to have the same sign as �,

j�ÿ �̂j � 2ÿ2p:

Then we get the First scheme: We compute

r04 � 1� �2

2
� ���̂�

� �
r2:

The error of this scheme is around �r�
0��� (where �r � �ÿ �̂), which

is less than 2ÿ5pÿ0:923. With a 4-cycle pipelined multiplier, the

procedure can be implemented in 16 cycles. We do not discuss this

implementation in detail since the following second scheme is

more accurate and implementable in the same number of cycles.
Second scheme: We now assume that �0��̂� is tabulated in a

table with pÿ 1-bits-in and p� 4-bits-out and we use the following

approximation to r4:

r004 � 1� �2
2
� ���̂� � �r�0��̂�

� �
r2;

with �r � �ÿ �̂. The error of the second scheme is around
�2r
2 �
00���,

which is less than 2ÿ6pÿ0:112. Fig. 4 depicts the implementation of

the computation of either 1=
���
x
p

or
���
x
p

using a 4-cycle multiplier.

Operations 1, 2, 3, and 4 correspond to the computations of x1, r2,

x2, and r004 . Mult. 1' is performed only for the computation of
���
x
p

.

The number of cycles required for both computations is the same

since the initialization multiplication r1 � x
�������
K1

p
is inserted in the

pipeline when computing the square root function.
We present a summary of the properties of these schemes in

Table 2.

3.3 Expanding Domain

Depending on the exponent of the input value, we need to

compute the square root and/or square root reciprocal of x or

2� x to span the domain �1; 4�. This can be implemented by

optionally inserting a multiplication somewhere in the pipeline. If

we compute 1=
���
x
p

, it suffices to insert an optional multiplication by

1=
���
2
p

from cycle 2 to cycle 5 of Fig. 4 (instead of mult 1'). If we

compute
���
x
p

, since r2 is available at cycle 10, we can perform an

optional multiplication r2 �
���
2
p

from cycle 10 to cycle 13. This

delays the final multiplication and the whole calculation is

performed in 17 cycles instead of 16. Another solution is to store

tables for both
�������
K1

p
and

���������
2K1

p
, but avoiding duplication of storage

is probably desirable in most cases.

4 CONCLUSION

We have presented several variants for implementing division,

square roots, and square root reciprocals on a pipelined multiplier.

The proposed schemes are based on the Goldschmidt iteration and

require fewer cycles than the original scheme. They also exhibit

various trade-offs between computational delay, accuracy, and

table size. More details can be found on a report available through

http://www.ens-lyon.fr/~jmmuller/RR-3753.pdf.

ACKNOWLEDGMENTS

This work has been partially supported by a French CNRS and

MinisteÁre des Affaires eÂtrangeÁres grant PICS-479, Vers des arithmeÂ-

tiques plus souples et plus preÂcises and the US National Science

Foundation Grant Effect of Redundancy in Arithmetic Operations on

Processor Cycle Time, Architecture, and Implementation.

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000

TABLE 2
Main Properties of the Proposed Variants

The third column gives the amount of memory required, including the table used
for K1.

Fig. 4. Implementation of
���
x
p

and 1=
���
x
p

on a 4-cycle pipelined multiplier. Mult. 1' is

performed only for
���
x
p

; c and c0 correspond to the computations of �2 and �r�
0��̂�.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000 763

REFERENCES

[1] M.A. Cornea-Hasegan, R.A. Golliver, and P. Markstein, ªCorrectness
Proofs Outline for Newton-Raphson Based Floating-Point Divide and
Square Root Algorithms,º Proc. 14th IEEE Symp. Computer Arithmetic, I.
Koren and P. Kornerup, eds., pp. 86-105, Apr. 1999.

[2] D. Das Sarma and D.W. Matula, ªMeasuring the Accuracy of ROM
Reciprocal Tables,º IEEE Trans. Computers, vol. 43, no. 8, Aug. 1994.

[3] D. Das Sarma and D.W. Matula, ªFaithful Bipartite ROM Reciprocal
Tables,º Proc. 12th IEEE Symp. Computer Arithmetic, S. Knowles and W.
McAllister, eds., pp. 17-28, July 1995.

[4] M.D. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Boston: Kluwer Academic, 1994.

[5] M.J. Flynn, ªOn Division by Functional Iteration,º IEEE Trans. Computers,
vol. 19, no. 8, pp. 702-706, Aug. 1970. Reprinted in Computer Arithmetic, E.E.
Swartzlander, vol. 1. Los Alamitos, Calif.: IEEE CS Press, 1990.

[6] R.E. Goldschmidt, ªApplications of Division by Convergence,º MSc
dissertation, Massachusetts Inst. of Technology, June 1964.

[7] S. Oberman and M.J. Flynn, ªImplementing Division and Other Floating-
Point Operations: A System Perspective,º Scientific Computing and Validated
Numerics, Alefeld, Fromer, and Lang, eds., pp. 18-24, Akademie Verlag,
1996.

[8] Am. Nat'l Standards Inst. and IEEE, ªIEEE Standard for Binary Floating-
Point Arithmetic,ºANSI/IEEE Standard, Std 754-1985, New York, 1985.

[9] C. Iordache and D.W. Matula, ªOn Infinitely Precise Rounding for Division,
Square Root, Reciprocal and Square Root Reciprocal,º Proc. 14th IEEE Symp.
Computer Arithmetic, I. Koren and P. Kornerup, eds., pp. 233-240, Apr. 1999.

[10] W. Kahan, ªSquare Root without Division,º pdf file accessible electro-
nically, http://www.cs.berkeley.edu/~wkahan/ieee754status/reciprt.pdf,
1999.

[11] C.V. Ramamoorthy, J.R. Goodman, and K.H. Kim, ªSome Properties of
Iterative Square-Rooting Methods Using High-Speed Multiplication,º IEEE
Trans. Computers, vol. 21, pp. 837-847, 1972.

[12] P.W. Markstein, ªComputation of Elementary Functions on the IBM RISC
System/6000 Processor,º IBM J. Research and Development, vol. 34, no. 1, pp.
111-119, Jan. 1990.

[13] S. Oberman, ªFloating Point Division and Square Root Algorithms and
Implementation in the AMD-K7 Microprocessor,º Proc. 14th IEEE Symp.
Computer Arithmetic, I. Koren and P. Kornerup, eds., pp. 106-115, Apr. 1999.

[14] M. Parks, ªNumber-Theoretic Test Generation for Directed Roundings,º
Proc. 14th IEEE Symp. Computer Arithmetic, I. Koren and P. Kornerup, eds.,
pp. 241-248, Apr. 1999.

[15] M.J. Schulte and K.E. Wires, ªHigh-Speed Inverse Square Roots,º Proc. 14th
IEEE Symp. Computer Arithmetic, I. Koren and P. Kornerup, eds., pp. 124-
131, Apr. 1999.

The Montgomery Modular InverseÐRevisited

E. Savas, Student Member, IEEE, and
CË .K. KocË , Senior Member, IEEE

AbstractÐWe modify an algorithm given by Kaliski to compute the Montgomery

inverse of an integer modulo a prime number. We also give a new definition of the

Montgomery inverse, and introduce efficient algorithms for computing the classical

modular inverse, the Kaliski-Montgomery inverse, and the new Montgomery

inverse. The proposed algorithms are suitable for software implementations on

general-purpose microprocessors.

Index TermsÐModular arithmetic, modular inverse, almost inverse, Montgomery

multiplication, cryptography.

æ

1 INTRODUCTION

THE basic arithmetic operations (i.e., addition, multiplication, and
inversion) modulo a prime number p have several applications in
cryptography, for example, the deciphering operation in the RSA
algorithm [9], the Diffie-Hellman key exchange algorithm [1], the
US Government Digital Signature Standard [8], and also, recently,
elliptic curve cryptography [5], [6]. The modular inversion
operation plays an important role in public-key cryptography,
particularly, to accelerate the exponentiation operation using the
so-called addition-subtraction chains [2], [4] and also in computing
point operations on an elliptic curve defined over the finite field
GF �p� [5], [6].

The modular inverse of an integer a 2 �1; pÿ 1� modulo the

prime p is defined as the integer x 2 �1; pÿ 1� such that

ax � 1�mod p�. It is often written as x � aÿ1�mod p�. This is the

classical definition of the modular inverse [4]. In the sequel, we

will use the notation

x :� ModInv�a� � aÿ1�mod p� �1�
to denote the inverse of a modulo p. The definition of the modular

inverse was recently extended by Kaliski to include the so-called

Montgomery inverse [3] based on the Montgomery multiplication

algorithm [7]. In this paper, we introduce a new definition of the

Montgomery inverse, and also give efficient algorithms to compute

the classical modular inverse, the Kaliski-Montgomery inverse,

and the new Montgomery inverse of an integer a modulo the

prime number p.

2 THE MONTGOMERY INVERSE

The Montgomery multiplication [7] of two integers a; b 2 �0; pÿ 1�
is defined as c � ab2ÿn�mod p�, where n � dlog2 pe. We denote this

multiplication operation using the notation

c :� MonPro�a; b� � ab2ÿn�mod p�; �2�
where p is the prime number and n is its bit-length. The

Montgomery inverse of an integer a 2 �1; pÿ 1� is defined by

Kaliski [3] as the integer x � aÿ12n�mod p�. Similarly, we will use

the notation

. The authors are with the Electrical and Computer Engineering Depart-
ment, Oregon State University, Corvallis, OR 97331.
E-mail: {savas, koc}@ece.orst.edu.

Manuscript received 1 Sept. 1999; revised 1 Feb. 2000; accepted 10 Mar. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111797.

0018-9340/00/$10.00 ß 2000 IEEE

x :� MonInv�a� � aÿ12n�mod p� �3�
to denote the Montgomery inversion as defined by Kaliski. The

algorithm introduced in [3] computes the Montgomery inverse of

a. We give this algorithm below. The output of Phase I is the

integer r such that r � aÿ12k�mod p�, where n � k � 2n. This result

is then corrected using Phase II to obtain the Montgomery inverse

x � aÿ12n�mod p�.
Phase I

Input: a 2 �1; pÿ 1� and p

Output: r 2 �1; pÿ 1� and k, where r � aÿ12k�mod p�
and n � k � 2n

1: u :� p, v :� a, r :� 0, and s :� 1

2: k :� 0

3: while (v > 0)

4: if u is even then u :� u=2, s :� 2s

5: else if v is even then v :� v=2, r :� 2r

6: else if u > v then u :� �uÿ v�=2, r :� r� s, s :� 2s

7: else if v � u then v :� �vÿ u�=2, s :� s� r, r :� 2r

8: k :� k� 1

9: if r � p then r :� rÿ p
10: return r :� pÿ r and k

Phase II

Input: r 2 �1; pÿ 1�, p, and k from Phase I

Output: x 2 �1; pÿ 1�, where x � aÿ12n�mod p�
11: for i � 1 to kÿ n do

12: if r is even then r :� r=2
13: else then r :� �r� p�=2

13: return x :� r

3 THE ALMOST MONTGOMERY INVERSE

As shown above, Phase I computes an integer r � aÿ12k�mod p�,
where n � k � 2n. The Montgomery inverse of a is defined as

x � aÿ12n�mod p�, where n � dlog2 pe. We will call the output of

Phase I the almost Montgomery inverse of a, and denote it as

�r; k� :� AlmMonInv�a� � aÿ12k�mod p�; �4�
where n � k � 2n, in the sequel. We note that a similar concept, the

almost inverse of elements in the Galois field GF �2m�, was

introduced in [11] and some implementation issues were

addressed in [10].
Since k is an output of Phase I, we will include it in the

definition of the AlmMonInv function as an output value. We also

propose to make an additional change in the way the almost

Montgomery inverse algorithm is being used. Instead of selecting

the Montgomery radix as R � 2n, where n � dlog2 pe, we will select

it as R � 2m, where m is an integer multiple of the wordsize of the

computer w, i.e., m � iw for some positive integer i. The

Montgomery product algorithm would work with any m as long

as m � n, where n is the bit-length of the prime number p. For

efficiency reasons, we select the smallest i which makes m larger

than n, in other words, iw � m � n, but �iÿ 1�w < n. It turns out

that the almost Montgomery inverse algorithm (Phase I) works for

this case as well. Furthermore, it even works for an input a which

may be larger than p as long as it is less than 2m, as proven below

in Theorem 1. The second issue is the value of k after the almost

Montgomery inverse algorithm terminates. We show in Theorem 2

below that n � k � m� n.

Theorem 1. If p > 2 is a prime and a � 1 (a might be larger than p),
then the intermediate values r, s, and u in the almost Montgomery
inverse algorithm are always in the interval �0; 2pÿ 1�.

Proof. If a < p, then the proof given in [3] is applicable here. If
a > p and a is not an integer multiple of p, then only Step 5 and
Step 7 are executed in the while loop until v becomes smaller
than u. Until then, the variables u, r, and s keep their initial
values. They start changing when v < u and, after this point, the
algorithm proceeds as in the case a < p. Thus, the intermediate
values remain in the interval �0; 2pÿ 1� for a > p as well. tu

Theorem 2. If p > 2 is a prime and a � 1, then the index k produced at
the end of the almost Montgomery inverse algorithm takes a value
between n and m� n, where n � dlog2 pe and m � sw with sw � n
with �sÿ 1�w < n.

Proof. The reduction of uv and u� v at each iteration (at Steps 4-7)
is illustrated in Table 1. Note that these steps are mutually
exclusive, i.e., at an iteration only one of the four cases occurs.
At each iteration, the value uv is at least halved while the value
u� v is at most halved and, furthermore, both u and v are equal
to 1 before the last iteration. Since the initial values of the
product uv and the sum u� v are ap and a� p, respectively, the
index value k (i.e., the number of iterations) satisfies

�a� p�=2 � 2kÿ1 � ap:
Since 2nÿ1 < p < 2n and 0 < a < 2m, we have

2nÿ2 < 2kÿ1 < 2m � 2n;
2nÿ1 � 2kÿ1 � 2m�nÿ1:

Thus, we obtain the result: n � k � m� n. Furthermore, we
note that mÿ n � wÿ 1, where w is the word size of the
machine. This implies that mÿ w� 1 � k � m� n. tu

4 USING THE ALMOST MONTGOMERY INVERSE

The Montgomery inverse algorithm computes x � aÿ12n�mod p�.
The Kaliski algorithm [3] uses the bit-level operations in Phase II in
order to achieve its goal. It uses kÿ n steps in Phase II, where, at
each step, a bit-level right shift operation is performed. Addition-
ally, if r is odd, an addition operation r� p needs to be performed.

As suggested earlier , we will use the definit ion
x � aÿ12m�mod p�. Furthermore, it is possible to eliminate the bit-
level operations completely and use the Montgomery product
algorithm to obtain the same result. In our approach, we replace
these bit-level operations by word-level Montgomery product
operations which are intrinsically faster on microprocessors,
particularly when the wordsize of the computer is large (i.e., 16,
32, or 64).

The new Phase II is based on the precomputed Montgomery
radix R � 2m�mod p�, however, we only need R2�mod p�. This
value can be precomputed and saved and used as necessary.
Another issue is the range of input variables to the AlmMonInv
and MonPro functions. For both of these functions, any input
cannot exceed 2m ÿ 1.

764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000

TABLE 1
Reduction of uv and u� v at Each Iteration

4.1 The Modified Kaliski-Montgomery Inverse

This algorithm computes x � MonInv�a� � aÿ12m�mod p� given the
integer a. Thus, it finds the inverse of the integer a modulo p and
also converts it to the Montgomery domain. The modified Kaliski-
Montgomery inverse algorithm is given below.

Input: a, p, n, and m, where a 2 �1; 2m ÿ 1�.
Output: x � aÿ12m�mod p�, where x 2 �1; pÿ 1�.
1: �r; k� :� AlmMonInv�a� where r � aÿ12k�mod p�

and n � k � m� n.

2: If n � k � m then

2.1: r :� MonPro�r; R2� � �aÿ12k��22m��2ÿm� �
aÿ12m�k�mod p�

2.2: k :� k�m > m

3: r :� MonPro�r; 22mÿk� � aÿ1 � 2k � 22mÿk � 2ÿm �
aÿ12m�mod p�

4: Return x � r, where x � aÿ12m�mod p�
The inputs to the MonPro function in Step 2.1 are r and R2, which
are both in the correct range. The input 22mÿk to MonPro in Step 3
is also in the correct range since k is adjusted to be larger than m in
Step 2.2 when k � m, thus, 0 < 22mÿk < 2m.

4.2 The Classical Modular Inverse

In some cases, we are only interested in computing x �
ModInv�a� � aÿ1�mod p� without converting to the Montgomery
domain. One way to achieve this is to first compute the Kaliski-
Montgomery inverse of a to obtain b � aÿ12m�mod p� and, then,
reconvert the result back to the residue (non-Montgomery) domain
using the Montgomery product as

b :� MonInv�a� � aÿ12m�mod p�;
x :� MonPro�b; 1� � �aÿ12m��1�2ÿm � aÿ1�mod p�:

Another way of computing the classical inverse is by reversing the
order of MonInv and MonPro operations, and using the constant
R2 � 22m�mod p� as follows:

b :� MonPro�a;R2� � �a��22m�2ÿm � a2m�mod p�;
x :� MonInv�b� � �a2m�ÿ12m � aÿ1�mod p�:

However, either one of these approaches requires two or three
Montgomery product operations in addition to the AlmMonInv
function. Instead, we can modify the Kaliski-Montgomery inverse
algorithm so that it directly computes the classical modular inverse
after the AlmMonInv function with one or two Montgomery
product operations.

Input: a, p, n, and m, where a 2 �1; 2m ÿ 1�
Output: x � aÿ1�mod p�, where x 2 �1; pÿ 1�
1: �r; k� :� AlmMonInv�a� where r � aÿ12k�mod p�

and n � k � m� n.

2: If k > m then

2.1: r :� MonPro�r; 1� � �aÿ12k��2ÿm� �
aÿ12kÿm�mod p�

2.2: k :� kÿm < m

3: r :� MonPro�r; 2mÿk� � �aÿ1��2k��2mÿk��2ÿm� �
aÿ1�mod p�

4: Return x � r, where x � aÿ1�mod p�

4.3 The New Montgomery Inverse

We propose the following new definition of the Montgomery
inverse: x � aÿ122m�mod p� given the input a�mod p�. According to
this new definition, we compute the Montgomery inverse of an
integer which is already in the Montgomery domain, producing

the output x which is also in the Montgomery domain. We will

denote the new Montgomery inverse computation by

x :� NewMonInv�a2m� � �a2m�ÿ122m � aÿ12m�mod p�:
The Kaliski-Montgomery inverse of a is defined as

MonInv�a� � aÿ12m�mod p�, which has the following property

MonPro�a;MonInv�a�� � MonPro�a; aÿ12m�
� a�aÿ12m�2ÿm � 1�mod p�:

In other words, according to the Kaliski-Montgomery inverse, the

multiplicative identity is equal to 1, which is an incorrect

assumption if we are operating in the Montgomery domain where

the image of 1 is 2m�mod p�. On the other hand, the new

Montgomery inverse has the following property:

MonPro�a2m;NewMonInv�a2m�� � a2m�aÿ12m�2ÿm
� 2m�mod p�:

This new definition of the inverse is more suitable for computing

expressions using the Montgomery multiplication since it com-

putes the result in the Montgomery domain.
The new Montgomery inverse cannot be directly computed

using the MonInv algorithm by giving the input as a2m�mod p�
since we would obtain

MonInv�a2m� � �a2m�ÿ12m � aÿ1�mod p�:
However, this can be converted back to the Montgomery domain

using a single Montgomery product with R2�mod p�. Thus, we

obtain a method of computing the new Montgomery inverse as

b :� MonInv�a2m� � �a2m�ÿ12m � aÿ1�mod p�;
x :� MonPro�b; R2� � aÿ122m2ÿm � aÿ12m�mod p�:

Similarly, another method to obtain the same result is by reversing

the order of the operations:

b :� MonPro�a2m; 1� � �a2m��1��2ÿm� � a�mod p�;
x :� MonInv�a� � aÿ12m�mod p�:

The new algorithm uses the precomputed value R2�mod p� and it is

more efficient: It uses only two or three Montgomery product

operations after the AlmMonInv function.

Input: a2m�mod p�, p, n, and m

Output: x � aÿ12m�mod p�, where x 2 �1; pÿ 1�
1: �r; k� :� AlmMonInv�a2m� where

r � aÿ12ÿm2k�mod p� and n � k � m� n
2: If n � k � m then

2.1: r :� MonPro�r; R2� � �aÿ12ÿm2k��22m��2ÿm� �
aÿ12k�mod p�

2.2: k :� k�m > m

3: r :� MonPro�r; R2� � �aÿ12ÿm2k��22m��2ÿm� �
aÿ12k�mod p�

4: r :� MonPro�r; 22mÿk� � �aÿ12k��22mÿk��2ÿm� �
aÿ12m�mod p�

5: Return x � r, where x � aÿ12m�mod p�

5 CONCLUSIONS AND APPLICATIONS

We have proposed a new definition of the Montgomery inverse

and have given efficient algorithms to compute the classical

modular inverse, the Kaliski-Montgomery inverse, and the new

Montgomery inverse. The new algorithms are based on the almost

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000 765

Montgomery inverse function and require two or three Montgom-
ery product operations thereafter, instead of using the bit-level
operations as in [3].

We have performed some experiments by implementing all
three inversion algorithms using both classical (shift and add) and
newly proposed Montgomery product-based Phase II steps. These
algorithms were coded using the Microsoft Visual C++ 5.0
development system. The timing results are obtained on a
450-MHz Pentium II processor running the Windows NT 4.0
operating system. In Table 2, we summarize the timing results. The
table contains the old and new Phase II timings (Old PhII and New
PhII) in microseconds for operands of length 160 and 192 bits. The
last two columns (PhII Spd and All Spd) give the speedup in
Phase II only and the overall speedup, which illustrates the
efficiency of the algorithms introduced.

An application of the new Montgomery inverse is found in
computing eP , where e is an integer and P is a point on an elliptic
curve defined over the finite field GF �p�. This computation
requires that we perform elliptic curve point addition P �Q and
doubling P � P � 2P operations, where each point operation
requires a few modular additions and multiplications and a
modular inversion. The inverse operation is used to compute the
variable � :� �y2 ÿ y1��x2 ÿ x1�ÿ1�mod p�, which is required in
computing elliptic curve point addition of P � �x1; y1� and Q �
�x2; y2� in order to obtain P �Q � �x3; y3�. Assuming the input
variables are given in the Montgomery domain, we would like to
obtain the result in the Montgomery domain. If the Kaliski-
Montgomery inverse is used, it will compute the classical inverse,
which is in the residue (non-Montgomery) domain and cannot be
readily used in subsequent operations. We need to perform a
Montgomery product with R2�mod p� in order to convert back to
the Montgomery domain. However, with the help of the new
Montgomery inverse, we can perform the above computation in a
single step. Since these operations are performed for every bit of
the exponent e, the new Montgomery inverse is more efficient and
highly useful in this context.

ACKNOWLEDGMENTS

This work is supported by Secured Information Technology, Inc.

REFERENCES

[1] W. Diffie and M.E. Hellman, ªNew Directions in Cryptography,º IEEE
Trans. Information Theory, vol. 22, no. 11, pp. 644-654, Nov. 1976.

[2] OÈ . Egecioglu and CË .K. KocË, ªExponentiation Using Canonical Recoding,º
Theoretical Computer Science, vol. 129, no. 2, pp. 407-417, 1994.

[3] B.S. Kaliski Jr., ªThe Montgomery Inverse and Its Applications,º IEEE
Trans. Computers, vol. 44, no. 8, pp. 1,064-1,065, Aug. 1995.

[4] D.E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, third ed. Reading, Mass.: Addison-Wesley, 1998.

[5] N. Koblitz, ªElliptic Curve Cryptosystems,º Math. of Computation, vol. 48,
no. 177, pp. 203-209, Jan. 1987.

[6] A.J. Menezes, Elliptic Curve Public Key Cryptosystems. Boston: Kluwer
Academic, 1993.

[7] P.L. Montgomery, ªModular Multiplication without Trial Division,º Math.
of Computation, vol. 44, no. 170, pp. 519-521, Apr. 1985.

[8] Nat'l Inst. for Standards and Technology, Digital Signature Standard (DSS).
Federal Register, 56:169, Aug. 1991.

[9] J.-J. Quisquater and C. Couvreur, ªFast Decipherment Algorithm for RSA
Public-Key Cryptosystem,º Electronics Letters, vol. 18, no. 21, pp. 905-907,
Oct. 1982.

[10] M. Rosing, Implementing Elliptic Curve Cryptography. Greenwich, Conn.:
Manning Publications, 1999.

[11] R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck, ªFast Key
Exchange with Elliptic Curve Systems,º Advances in CryptologyÐCRYPTO
95, D. Coppersmith, ed., pp. 43-56, 1995.

766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000

TABLE 2
Implementation Results

