
Journal of VLSI Signal Processing 33, 31–35, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

On-the-Fly Range Reduction∗

VINCENT LEFÈVRE
INRIA, Projet SPACES, LORIA, Campus Scientifique, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, France

JEAN-MICHEL MULLER
CNRS, Projet CNRS/ENS Lyon/INRIA Arenaire, Laboratoire LIP, Ecole Normale Supérieure de Lyon,

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Received October 30, 2000; Revised July 26, 2001

Abstract. In several cases, the input argument of an elementary function evaluation is given bit-serially, most
significant bit first. We suggest a solution for performing the first step of the evaluation (namely, the range reduction)
on the fly: the computation is overlapped with the reception of the input bits. This algorithm can be used for the
trigonometric functions sin, cos, tan as well as for the exponential function.

Keywords: range reduction, elementary functions, computer arithmetic

1. Introduction

The algorithms used for evaluating the elementary
functions only give a correct result if the argument is
within some bounded interval. To evaluate an elemen-
tary function f (x) (sine, cosine, exponential, . . .) for
any x , one must find some “transformation” that makes
it possible to deduce f (x) from some value g(y), where

– y, called the reduced argument, is deduced from x ;
– y belongs to the convergence domain of the algo-

rithm implemented for the evaluation of g.

With the usual functions, the only cases for which re-
duction is not straightforward are the cases where y is
equal to x −nC , where n is an integer and C a constant
(for instance, for the trigonometric functions, C is a
multiple of π /8).

Example 1 (Computation of the cosine function). As-
sume that we want to evaluate cos(x), and that the
convergence domain of the algorithm used to evaluate

∗This paper is an extended version of a communication to the SPIE’s
45th annual meeting, San Diego, Aug. 2000.

the sine and cosine of the reduced argument contains
[0, +π/4]. We choose C = π/4, and the computation
of cos(x) is decomposed in three steps:

– Compute y and n such that y ∈ [0, +π/4] and y =
x − nπ/4;

– Compute

g(y, n)

=




cos(y) if n mod 8 = 0√
2

2
(cos(y) − sin(y)) if n mod 8 = 1

− sin(y) if n mod 8 = 2

−
√

2

2
(cos(y) + sin(y)) if n mod 8 = 3

− cos(y) if n mod 8 = 4√
2

2
(− cos(y) + sin(y)) if n mod 8 = 5

sin(y) if n mod 8 = 6√
2

2
(cos(y) + sin(y)) if n mod 8 = 7

(1)

– Obtain cos(x) = g(y, n).

32 Lefèvre and Muller

Example 2 (Computation of the exponential function).
Assume that we want to evaluate ex in a radix-2 number
system, and that the convergence domain of the algo-
rithm used to evaluate the exponential of the reduced
argument contains [0, ln(2)]. We can choose C = ln(2),
and the computation of ex is then decomposed in three
steps:

– Compute y ∈ [0, ln(2)] and n such that y = x −
n ln(2);

– Compute g(y) = ey ;
– Compute ex = 2ng(y).

Unless multiple-precision arithmetic is used during
the intermediate calculations, a straightforward com-
putation of y as x − nC is to be avoided, since this
operation will lead to catastrophic cancellations (i.e.,
to very inaccurate estimates of y) when x is large or
close to an integer multiple of C . Many algorithms
have been suggested for performing the range reduc-
tion accurately [1–5].

Now, there are many cases (on special-purpose sys-
tems) where the input argument of a calculation is gen-
erated most significant digit first. This happens, for in-
stance, when this argument is the result of a division or
a square root obtained through a digit-recurrence algo-
rithm [6, 7], the output of an on-line algorithm [8, 9], or
when it is generated by an analog-to-digital converter.

In the rest of this paper, we present an adaptation
of the Modular Range Reduction Algorithm [3, 10]
that accepts such digit serial inputs and performs the
range reduction “on the fly”: most of the computation is
overlapped with the reception of the input bits, and the
reduced argument is produced almost immediately af-
ter reception of the last input bit. On-the-fly arithmetic
algorithms have already been proposed by Ercegovac
and Lang for rounding or converting a number from
redundant to non-redundant representation [11, 12].

2. Notations

In the rest of the paper, x = xh xh−1 · · · x0.x−1x−2 · · · x�

is the input argument, C = 0.C−1C−2 · · · C−p is the
constant of the range reduction (with −p ≤ �), and y =
0.y−1 y−2 · · · y−p is the reduced argument. We assume
1/2 ≤ C < 1 (this assumption is made to simplify the
presentation. Modifying the algorithm for a constant
larger than 1 or less than 1/2 is straightforward). These
values satisfy:

– 0 ≤ y < C ;
– n = (x − y)/C is an integer.

We also define, for each i , mi (also called 2i mod C)
as the unique value between 0 and C such that
(2i − mi)/C is an integer. These notations give some
constraints on x and C (e.g., C is less than 1, x is less
than 2h+1). One can easily adapt the algorithms given
in the rest of the paper to variables belonging to other
domains. We chose these constraints to make the pre-
sentation of the algorithms simpler.

3. Non-Redundant Algorithm

Algorithm 1 is by far less efficient than the “redundant”
algorithm given later. We give it because it is simpler to
understand, and because the other algorithm is derived
from it. The basic idea is the following: at step i of
the algorithm, when we receive input bit xh−i of x ,
we add xh−i × (

2i mod C
)

to an accumulator. If the
accumulated value becomes larger than C , we subtract
C from it.

Let us call Ai+1 the value obtained after this oper-
ation. One can easily check that 0 ≤ Ai+1 < C and
Ai+1 − xh xh−1 · · · xh−i × 2h−i is an integer multiple of
C . Hence the final value stored in the accumulator is
equal to the reduced argument y.

Algorithm 1 Non-redundant algorithm.

A0 = 0
for i = 0 to h − � do

Ti = Ai + xh−i mh−i

if Ti < C then
Ai+1 = Ti

else
Ai+1 = Ti − C

y = Ah−�+1

A possible variant consists in computing Ui = Ai +
xh−i (mh−i − C) in parallel with Ti = Ai + xh−i mh−i ,
and then choosing Ai+1 equal to Ui if Ui ≥ 0, otherwise
Ti .

4. Redundant Algorithm

Now, to accelerate the reduction, we assume that we
perform the accumulations with carry-save additions.
The carry-save number system makes it possible to per-
form very fast, carry-free additions. On the other hand,

On-the-Fly Range Reduction 33

its intrinsic redundancy makes comparisons somewhat
more complex. The accumulator will store the values
Ai in carry-save. In the previous algorithm, we needed
“exact” comparisons between the Ai’s and C . Having
the Ai’s stored in carry-save makes these “exact” com-
parisons difficult. Instead of that, we will perform com-
parisons based on the examination of the first three
carry-save positions of Ai only. This will not allow us
to bound the Ai’s by C . Nevertheless, we will show that
the Ai’s will be upper-bounded by C + 1

2 (therefore by
3
2), which will suffice for our purpose. We denote:

Ai = ((
A(1)

i,0, A(2)
i,0

)
;
(

A(1)
i,−1, A(2)

i,−1

)
;(

A(1)
i,−2, A(2)

i,−2

)
; · · · ;

(
A(1)

i,−p, A(2)
i,−p

))

where A(1)
i, j and A(2)

i, j are in {0, 1} and

Ai =
p∑

j=0

(
A(1)

i, j + A(2)
i, j

) · 2− j .

The variable Ti of the non-redundant algorithm is used
again, and is also represented in carry-save form:

Ti = ((
T (1)

i,0 , T (2)
i,0

)
;
(
T (1)

i,−1, T (2)
i,−1

)
;(

T (1)
i,−2, T (2)

i,−2

)
; · · · ;

(
T (1)

i,−p, T (2)
i,−p

))

Algorithm 2 Redundant algorithm.

A0 = 0
for i = 0 to h − � do

Ti = Ai +cs xh−i mh−i

T̂i = ((
T (1)

i,0 , T (2)
i,0

)
;
(
T (1)

i,−1, T (2)
i,−1

)
;
(
T (1)

i,−2, T (2)
i,−2

))
converted to non-redundant binary using
a 3-bit adder

if T̂i < C then
Ai+1 = Ti

else
Ai+1 = Ti −cs C

B = Ah−�+1 −cs C
Convert Ah−�+1 and B to non-redundant binary.
if B < 0 then

y = Ah−�+1

else
y = B

This gives Algorithm 2.
In the loop, we do not want to waste time with a

full comparison to know whether we need to subtract

C from Ti or not. Thus we use a rough approximation
T̂ i to Ti based on the first three digits of Ti . Since

((
T (1)

i,−3, T (2)
i,−3

)
; · · · ;

(
T (1)

i,−p, T (2)
i,−p

))

≤ 2 · 2−3 + 2 · 2−4 + · · · + 2 · 2−p <
1

2
,

we have:

T̂ i ≤ Ti < T̂ i + 1

2

We want to ensure that Ai is always positive, that is,
Ti − C does not lead to a negative number. Then, the
subtraction is performed only when T̂ i ≥ C . In this
case, Ti − C ≥ T̂ i − C ≥ 0.

Now, we want to find an upper bound on all the Ai ’s
(and one on the Ti ’s). Suppose that for a given i , we have
Ai ≤ M . Thus Ti ≤ M + C . If T̂ i < C , then Ai+1 =
Ti < T̂ i + 1

2 < C + 1
2 ; otherwise, Ai+1 = Ti −C ≤ M .

If we choose M = C+ 1
2 , then Ai+1 ≤ M in both cases.

By induction, Ai ≤ C + 1
2 and Ti ≤ 2C + 1

2 for all i .
The final value of y is converted to non-redundant

representation using a conventional (i.e., non-redun-
dant) addition. Another, faster, solution is to convert
it on-the-fly, during the second loop of the algorithm,
using Ercegovac and Lang’s on-the-fly algorithm [11,
12] for conversion from redundant to non-redundant
representation.

5. An Example: Range Reduction
for Computation of cos(1010.111)

We choose C = π/4 ≈ 0.1100101 (p = 7). Since
x = 1010.111, we have h = 3 and � = −3).

The values of the mi ’s are:




m3 = 23 mod π/4 ≈ 0.0010011

m2 = 22 mod π/4 ≈ 0.0001001

m1 = 21 mod π/4 ≈ 0.0110111

m0 = 20 mod π/4 ≈ 0.0011011

m−1 = 2−1 mod π/4 = 0.1

m−2 = 2−2 mod π/4 = 0.01

m−3 = 2−3 mod π/4 = 0.001

The carry-save representations of the variables Ti

and Ai generated by the redundant algorithm are

34 Lefèvre and Muller

x3 = 1 T0 =
{

1.0010011

0.0000000
0 < C A1 =

{
1.0010011

0.0000000

x2 = 0 T1 =
{

1.0010011

0.0000000
0 < C A2 =

{
1.0010011

0.0000000

x1 = 1 T2 =
{

1.0100100

0.0100110
0.1 < C A3 =

{
1.0100100

0.0100110

x0 = 0 T3 =
{

1.0000010

0.1001000
0.1 < C A4 =

{
1.0000010

0.1001000

x−1 = 1 T4 =
{

1.0001010

1.0000000
1 ≥ C A5 =

{
1.0010001

0.0010100

x−2 = 1 T5 =
{

1.0100101

0.0100000
0.1 < C A6 =

{
1.0100101

0.0100000

x−3 = 1 T6 =
{

1.0010101

0.1000000
0.1 < C A7 =

{
1.0010101

0.1000000

We then get y = 0.1010101, whereas the exact value
of x mod π/4 is 0.10101010001

6. Error Analysis

Performing an error analysis for a range reduc-
tion algorithm requires the knowledge of the small-
est possible reduced argument for all possible in-
puts in a given format. Computing this value is
rather easy, using an algorithm due to Kahan (a C
program that implements the method can be found
at http://http.cs.berkeley.edu/∼wkahan. A
Maple program is given in [10]). For instance, a few
minutes of calculation suffice to find that the double
precision number greater than 1 which is closest to a
multiple of π/8 is

� = 6381956970095103 × 2795.

The distance between � and the closest multiple of π/8
is

ε ≈ 1.17179 × 10−19.

Assume that the smallest nonzero possible value of
the reduced argument is ε, that the Ai ’s are stored in a
fixed-point accumulator, that the mi ’s are precomputed
and stored with p fractional bits of accuracy, and that
we want the reduced argument to have at least ν bits of
accuracy. In Algorithms 1 and 2, the additions are er-
rorless (they are fixed-point additions), the errors come

from the fact that the stored values of the mi ’s are ap-
proximations to their exact values. Assuming we store
rounded-to-nearest values for these constants, the error
on each of them is bounded by 2−p−1. Hence, the total
error on the reduced argument is (h − � + 1) × 2−p−1.
Therefore, our accuracy requirement is:

−log2(|ε|) + ν ≤ p + 1 − log2(h − � + 1)

For instance, in double precision with C = π/8, with
ν = 53, we get p > 120. Therefore, a 121-bit fixed
point accumulator suffices to make sure that we always
get an excellent result in double precision.

7. Conclusion

The redundant algorithm presented in Section 4 allows
fast, on-the-fly, range reduction. The accuracy of this
method is the same as that of the Conventional Modular
range reduction method see [3, 10].

References

1. W. Cody and W. Waite, Software Manual for the Elementary
Functions, Englewood Cliffs, NJ: Prentice-Hall, 1980.

2. W.J. Cody, “Implementation and Testing of Function Software,”
in Problems and Methodologies in Mathematical Software Pro-
duction, P.C. Messina and A. Murli (Eds.), Berlin: Springer-
Verlag, 1982.

3. M. Daumas, C. Mazenc, X. Merrheim, and J.M. Muller, “Mod-
ular Range Reduction: A New Algorithm for Fast and Accurate
Computation of the Elementary Functions,” Journal of Univer-
sal Computer Science, vol. 1, no. 3, 1995, pp. 162–175.

4. M. Payne and R. Hanek, “Radian Reduction for Trigonometric
Functions,” SIGNUM Newsletter, vol. 18, 1983, pp. 19–24.

5. R.A. Smith, “A Continued-Fraction Analysis of Trigonomet-
ric Argument Reduction,” IEEE Transactions on Computers,
vol. 44, no. 11, 1995, pp. 1348–1351.

6. M.D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations, Boston: Kluwer
Academic Publishers, 1994.

7. J.E. Robertson, “A New Class of Digital Division Methods,”
IRE Transactions on Electronic Computers, vol. EC-7, 1958,
pp. 218–222. Reprinted in E.E. Swartzlander, Computer Arith-
metic, vol. 1, IEEE Computer Society Press Tutorial, Los Alami-
tos, CA, 1990, pp. 159–163.

8. M.D. Ercegovac and T. Lang, “On-Line Arithmetic: A Design
Methodology and Applications in Digital Signal Processing,” in
VLSI Signal Processing III, vol. 3, 1988, pp. 252–263. Reprinted
in E.E. Swartzlander, Computer Arithmetic, vol. 2, IEEE Com-
puter Society Press Tutorial, Los Alamitos, CA, 1990, pp. 66–77.

9. K.S. Trivedi and M.D. Ercegovac, “On-Line Algorithms for
Division and Multiplication,” in 3rd IEEE Symposium on
Computer Arithmetic, Dallas, Texas, USA, 1975, pp. 161–167,
Los Alamitos, CA: IEEE Computer Society Press.

On-the-Fly Range Reduction 35

10. J. Muller, Elementary Functions, Algorithms and Implementa-
tion, Boston: Birkhauser, 1997.

11. M.D. Ercegovac and T. Lang, “On-the-Fly Conversion of Re-
dundant Into Conventional Representations,” IEEE Transac-
tions on Computers, vol. C-36, no. 7, 1987. Reprinted in
E.E. Swartzlander, Computer Arithmetic, vol. 2, IEEE
Computer Society Press Tutorial, Los Alamitos, CA, 1990,
pp. 123–125.

12. M.D. Ercegovac and T. Lang, “On-the-Fly Rounding,” IEEE
Transactions on Computers, vol. 41, no. 12, 1992, pp. 1497–
1503.

Vincent Lefèvre received the MSC and Ph.D. degrees in computer
science from the École Normale Supérieure de Lyon, France, in 1996
and 2000, respectively. Since 2000, he has been an INRIA researcher

at the LORIA, France. His research interests include computer
arithmetic.
Vincent.Lefevre@inria.fr

Jean-Michel Muller received the Ph.D. degree in computer science
from Institut National Polytechnique de Grenoble, France. In 1986,
he joined the CNRS (French National Center for Scientific Research).
He chairs the LIP Laboratory, located at Ecole Normale Supérieure
de Lyon, and the CNRS/ENSL/INRIA Arenaire Project. His research
interests are in computer arithmetic. Dr. Muller served as co-program
chair of the 13th IEEE Symposium on Computer Arithmetic and gen-
eral chair of the 14th IEEE Symposium on Computer Arithmetic. He
has been an associate editor of the IEEE Transactions on Computers
from 1996 to 2000.
Jean-Michel.Muller@ens-lyon.fr

