Proof of Properties in Floating-Point Arithmetic

LMS Colloquium — Verification and Numerical Algorithms

Jean-Michel Muller

CNRS - Laboratoire LIP
(CNRS-INRIA-ENS Lyon-Université de Lyon)

http://perso.ens-lyon.fr/jean-michel.muller/
Floating-Point Arithmetic

- too often, viewed as a set of cooking recipes;
- many “theorems” that hold... frequently;
- simple–yet correct !–models such as the standard model

\[(a > b) = (a > b) \cdot (1 + \delta), \quad |\delta| \leq 2^{-p}, \]

(in radix 2, rounded to nearest, arithmetic) are very useful, but do not allow to catch subtle behaviors such as those in

\[s = a + b; \quad z = s - a; \quad r = b - z \]

and many others.
- by the way, are these “subtle behaviors” robust?
Desirable properties

- **Speed**: tomorrow’s weather must be computed in less than 24 hours;
- **Accuracy, Range**;
- “Size” : silicon area and/or code size;
- **Power consumption**;
- **Portability**: the programs we write on a given system must run on different systems without requiring huge modifications;
- **Easiness of implementation and use**: If a given arithmetic is too arcane, nobody will use it.
Introduction

Famous failures

Some can do a very poor job...

- 1994: Pentium 1 division bug:
 8391667/12582905 gave 0.666869\ldots instead of 0.666910\ldots;

- Maple version 6.0. Enter 214748364810, you get 10.
 Notice that 214748364810 = 100 \cdot 2^{31} + 10;

- Excel’2007 (first releases), compute 65535 – 2^{-37}, you get 100000;

- November 1998, USS Yorktown warship, somebody erroneously
 entered a «zero» on a keyboard \rightarrow division by 0 \rightarrow series of errors \rightarrow the propulsion system stopped.
Some strange things

- **Setun** Computer, Moscow University, 1958. 50 copies;
- radix 3 and digits $-1, 0$ and 1;
- idea: radix β, n digits, “Cost” : $\beta \times n$;
- if we wish to be able to represent M numbers, minimize $\beta \times n$
 knowing that $\beta^n \geq M$.

\[
M \approx 5 \left(\frac{2}{\ln(2)}\right) \left(\frac{3}{\ln(3)}\right) \approx 1.09 \times 10^{14}
\]
Some strange things

- **Setun** Computer, Moscow University, 1958. 50 copies;
- radix 3 and digits −1, 0 and 1;
- idea: radix β, n digits, "Cost": $\beta \times n$;
- if we wish to be able to represent M numbers, minimize $\beta \times n$ knowing that $\beta^n \geq M$.
- as soon as:

\[
M \geq e^{\frac{5}{2 \ln(2) - 3 \ln(3)}} \approx 1.09 \times 10^{14}
\]

the best β is always 3.
Floating-Point System

Parameters:

\[
\begin{align*}
\text{radix (or base)} & \quad \beta \geq 2 \text{ (almost always 2 in this presentation)} \\
\text{precision} & \quad p \geq 1 \\
\text{extremal exponents} & \quad e_{\text{min}}, e_{\text{max}}
\end{align*}
\]

A finite FP number \(x \) is represented by 2 integers:

- integral significand: \(M, \, |M| \leq \beta^p - 1 \);
- exponent \(e, \, e_{\text{min}} \leq e \leq e_{\text{max}} \).

such that

\[
x = M \times \beta^{e+1-p}
\]

with \(|M| \) largest under these constraints (\(\rightarrow |M| \geq \beta^{p-1} \), unless \(e = e_{\text{min}} \)).

(Real) significand of \(x \): the number \(m = M \times \beta^{1-p} \), so that \(x = m \times \beta^e \).
Normal and subnormal numbers

- **normal number**: $|x| \geq \beta^{e_{\text{min}}}$. The absolute value of its integral significand is $\geq \beta^{p-1}$.
- **subnormal number**: $|x| < \beta^{e_{\text{min}}}$. The absolute value of its integral significand is $< \beta^{p-1}$.

Subnormal numbers (believed to be) difficult to implement efficiently, but their availability allows for nice properties, e.g.,

the relative error of a rounded-to-nearest FP addition is always bounded by $$(1/2) \cdot \beta^{-p+1}$$

- leader: Kahan (father of the arithmetics of the HP35 and Intel 8087);
 - formats;
 - specification of operations and conversions;
 - exception handling (max+1, 1/0, $\sqrt{-2}$, 0/0, etc.);
- put an end to a mess (no portability, variable quality);
 \[a \times 1 \rightarrow \text{overflow} \] on some machines
Correct rounding

Definition 1 (Correct rounding)

The user chooses a *rounding function* among:

- **toward $-\infty$**: $\text{RD}(x)$ is the largest FP number $\leq x$;
- **toward $+\infty$**: $\text{RU}(x)$ is the smallest FP number $\geq x$;
- **toward 0**: $\text{RZ}(x)$ is equal to $\text{RD}(x)$ if $x \geq 0$, and to $\text{RU}(x)$ if $x \leq 0$;
- **to nearest**: $\text{RN}(x) =$ FPN closest to x. If halfway between two consecutive FPN: the one whose integral significand is even (default).

For a function $f : \mathbb{R}^n \mapsto \mathbb{R}$, *correctly rounded implementation* with rounding function $\circ : \text{we get } \circ[f(x_1, \ldots, x_n)]$ for all input FP numbers x_1, x_2, \ldots, x_n.
Correct rounding

IEEE-754 (1985) : Correct rounding for $\pm,\, -,\, \times,\, \div,\, \sqrt{}$ and some conversions. Advantages :

- if the result of an operation is exactly representable, we get it ;
- if we just use the 4 arith. operations and $\sqrt{}$, deterministic arithmetic : one can elaborate algorithms and proofs that use the specifications ;
- accuracy and portability are improved ;
- playing with rounding towards $+\infty$ and $-\infty \rightarrow$ certain lower and/or upper bounds : interval arithmetic.

1. and if the compiler is kind enough. . .
First example: Sterbenz Lemma

Lemma 2 (Sterbenz)

Radix β, with subnormal numbers available. Let a and b be positive FPNs. If
\[\frac{a}{2} \leq b \leq 2a \]
then $a - b$ is a FPN (\rightarrow computed exactly, with any rounding function).

Proof: straightforward using the notation $x = M \times \beta^{e+1-p}$.

J.-M. Muller

Proof of Properties in FP Arithmetic

Nov. 2012 11 / 44
First result: representability. \(\text{RN}(x) \) is \(x \) rounded to nearest.

Lemma 3

Let \(a \) and \(b \) be two FP numbers. Let

\[
s = \text{RN}(a + b)
\]

and

\[
r = (a + b) - s.
\]

If no overflow when computing \(s \), then \(r \) is a FP number.
A few elementary algorithms and properties

Error of FP addition (Møller, Knuth, Dekker, . . .)

Error of FP addition (Møller, Knuth, Dekker)

Proof: Assume $|a| \geq |b|$,

1. s is “the” FP number nearest $a + b$ → it is closest to $a + b$ than a is. Hence $|(a + b) - s| \leq |(a + b) - a|$, therefore

 $$|r| \leq |b|.$$

2. denote $a = M_a \times \beta^{e_a-p+1}$ and $b = M_b \times \beta^{e_b-p+1}$, with $|M_a|, |M_b| \leq \beta^p - 1$, and $e_a \geq e_b$.

 $a + b$ is multiple of $\beta^{e_b-p+1} \Rightarrow s$ and r are multiple of β^{e_b-p+1} too

 $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

 $$r = R \times \beta^{e_b-p+1}$$

 but, $|r| \leq |b| \Rightarrow |R| \leq |M_b| \leq \beta^p - 1 \Rightarrow r$ is a FP number.
Get \(r \): the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))

\(\beta \leq 3 \), subnormal numbers available. Let \(a \) and \(b \) be FP numbers, s.t. \(|a| \geq |b| \). Following algorithm: \(s \) and \(r \) such that

- \(s + r = a + b \) exactly;
- \(s \) is “the” FP number that is closest to \(a + b \).

Algorithm 1 (FastTwoSum)

\[
\begin{align*}
 s &\leftarrow \text{RN}(a + b) \\
z &\leftarrow \text{RN}(s - a) \\
r &\leftarrow \text{RN}(b - z)
\end{align*}
\]

C Program 1

```c
    s = a+b; \\
z = s-a; \\
r = b-z;
```

Important remark: Proving the behavior of such algorithms requires use of the correct rounding property... beware of “optimizing” compilers.
Proof in the case $\beta = 2$

$$s = \text{RN}(a + b)$$
$$z = \text{RN}(s - a)$$
$$t = \text{RN}(b - z)$$

1. if a and b have same sign, then $|a| \leq |a + b| \leq |2a|$ hence (radix 2 → 2a is a FP number, rounding is increasing) $|a| \leq |s| \leq |2a| \rightarrow$ (Sterbenz Lemma) $z = s - a$. Since $r = (a + b) - s$ is a FPN and $b - z = r$, we find $\text{RN}(b - z) = r$.

2. if a and b have opposite signs then
 - either $|b| \geq \frac{1}{2}|a|$, which implies (Sterbenz Lemma) $a + b$ is a FPN, thus $s = a + b, z = b$ and $t = 0$;
 - or $|b| < \frac{1}{2}|a|$, which implies $|a + b| > \frac{1}{2}|a|$, hence $s \geq \frac{1}{2}|a|$ (radix 2 → $\frac{1}{2}a$ is a FPN, and rounding is increasing), thus (Sterbenz Lemma) $z = \text{RN}(s - a) = s - a = b - r$. Since $r = (a + b) - s$ is a FPN and $b - z = r$, we get $\text{RN}(b - z) = r$.

J.-M. Muller
Proof of Properties in FP Arithmetic
Nov. 2012 15 / 44
The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b.

Knuth: if no underflow nor overflow occurs then $a + b = s + r$, and s is nearest $a + b$.

Boldo et al: formal proof + underflow does not hinder the result (overflow does).

TwoSum is optimal, in a way we are going to explain.

Algorithm 2 (TwoSum)

\[
\begin{align*}
s & \leftarrow \text{RN}(a + b) \\
a' & \leftarrow \text{RN}(s - b) \\
b' & \leftarrow \text{RN}(s - a') \\
\delta_a & \leftarrow \text{RN}(a - a') \\
\delta_b & \leftarrow \text{RN}(b - b') \\
r & \leftarrow \text{RN}(\delta_a + \delta_b)
\end{align*}
\]
A few elementary algorithms and properties

Error of FP addition (Møller, Knuth, Dekker, . . .)

TwoSum is optimal

Assume an algorithm satisfies:

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions: at step i we compute $\text{RN}(u + v)$ or $\text{RN}(u - v)$ where u and v are input variables or previously computed variables.

If that algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

- proof: **most inelegant proof award**;
 - 480756 algorithms with 5 operations (after suppressing the most obvious symmetries);
 - each of them tried with 2 well-chosen pairs of input values.
What about products?

- if \(a \) and \(b \) are FP numbers, then \(r = ab - \text{RN} (ab) \) is a FP number;
- obtained with algorithm **TwoMultFMA**

\[
\begin{aligned}
p &= \text{RN} (ab) \\
r &= \text{RN} (ab - p)
\end{aligned}
\]

\(\rightarrow 2 \) operations only. \(p + r = ab \).
- without fma, **Dekker's algorithm**: 17 operations (7 \(\times \), 10 \(\pm \)).
Relative error – unit roundoff

If \(z = o(a \oplus b) \), where \(o \in \{ \text{RU}, \text{RD}, \text{RZ}, \text{RN} \} \), and if no overflow occurs, then

\[
z = (a \oplus b)(1 + \epsilon) + \epsilon',
\]

with

- \(|\epsilon| \leq \frac{1}{2} \beta^{1-p} \) and \(|\epsilon'| \leq \frac{1}{2} \beta^{e_{\text{min}}-p+1} \) if \(o = \text{RN} \), and
- \(|\epsilon| < \beta^{1-p} \) and \(|\epsilon'| < \beta^{e_{\text{min}}-p+1} \) otherwise.

Moreover, \(\epsilon \) and \(\epsilon' \) cannot both be nonzero. Notice that

- if \(|z| \geq \beta^{e_{\text{min}}} \) then \(\epsilon' = 0 \);
- if \(|z| < \beta^{e_{\text{min}}} \) then \(\epsilon = 0 \). Moreover, if \(\oplus \) is + or −, then the result is exact, so that \(z = a \oplus b \) (i.e., \(\epsilon' = 0 \) too).

The bound on \(\epsilon \) (namely \(\frac{1}{2} \beta^{1-p} \) of \(\beta^{1-p} \)) is frequently called the unit roundoff, denoted \(u \).
Adding n numbers: $x_1 + x_2 + x_3 + \cdots + x_n$

- large literature, some recent and smart algorithm;
- here: Pichat, Ogita, Rump, and Oishi’s algorithm

RN: rounding to nearest

Algorithm 3

```
s ← x_1
e ← 0
for i = 2 to n do
    (s, e_i) ← 2Sum(s, x_i)
e ← RN(e + e_i)
end for
return \sigma = RN(s + e)
```
Theorem 5 (Ogita, Rump and Oishi)

Let

\[u = \frac{1}{2} \beta^{-p+1} \]

and

\[\gamma_n = \frac{nu}{1 - nu}. \]

If \(nu < 1 \), even in case of underflow (but without overflow), the computed result \(\sigma \) satisfies

\[
\left| \sigma - \sum_{i=1}^{n} x_i \right| \leq u \left| \sum_{i=1}^{n} x_i \right| + \gamma_{n-1}^2 \sum_{i=1}^{n} |x_i|.
\]
$ad - bc$ with fused multiply-add (radix 2)

Assume an \texttt{fma} instruction is available. Kahan’s algorithm for $x = ad - bc$:

1. $\hat{w} \leftarrow \text{RN}(bc)$
2. $e \leftarrow \text{RN}(\hat{w} - bc)$
3. $\hat{f} \leftarrow \text{RN}(ad - \hat{w})$
4. $\hat{x} \leftarrow \text{RN}(\hat{f} + e)$
5. Return \hat{x}

- using relative error bound u for operations:

$$|\hat{x} - x| \leq J|x|$$

with $J = 2u + u^2 + (u + u^2)u \frac{|bc|}{|x|} \rightarrow \text{high accuracy as long as } u|bc| \gg |x|$

- using properties of RN (Jeannerod, Louvet, M., 2011)

$$|\hat{x} - x| \leq 2u|x|$$

asymptotically optimal error bound.

- Complex division.

\[u = 2^{-p} \]
Mistakes do not need to be subtle

- The Mars Climate Orbiter probe crashed on Mars in 1999;
Mistakes do not need to be subtle

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;
Mistakes do not need to be subtle

- The Mars Climate Orbiter probe crashed on Mars in 1999;
- one of the software teams assumed the unit of length was the meter;
- the other team assumed it was the foot.
So we do live in the best of all possible worlds.

- correct rounding → “deterministic arithmetic”;
- we easily compute the error of a FP addition or multiplication;
- we can re-inject that error later on in a calculation, to compute accurate sums, dot-products, norms...
- already many such compensated algorithms, maybe more to come.
So we do live in the best of all possible worlds...

- correct rounding \rightarrow “deterministic arithmetic”;
- we easily compute the error of a FP addition or multiplication;
- we can re-inject that error later on in a calculation, to compute accurate sums, dot-products, norms...
- already many such **compensated** algorithms, maybe more to come.

...except life is not that simple!
Deterministic arithmetic?

C program:

```c
double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;
```

Depending on the environment, \(3.689348814741913232e+19\) or \(3.6893488147419111424e+19\) (double number closest to exact product).
Double roundings

- several FP formats supported in a given environment → difficult to know in which format some operations are performed;
- may make the result of a sequence of operations difficult to predict;

Assume the various declared variables of a program are of the same format. Two phenomenon may occur when a wider format is available:

- for implicit variables such as the result of “a+b” in “d = (a+b)*c”) : not clear in which format they are computed;
- explicit variables may be first computed in the wider format, and then rounded to their destination format → sometimes leads to a problem called double rounding.
What happened in the example?

The exact value of $a \times b$ is 36893488147419107329. In binary:

If it is first rounded to the INTEL “double-extended” format, we get

If that intermediate value is rounded to the binary64 destination format, this gives (round-to-nearest-even rounding mode)

$= 36893488147419103232_{10}$,

\rightarrow rounded down, whereas it should have been rounded up.
Is it a problem?

- In most applications, these phenomena are *innocuous*;
- they make the behavior of some numerical programs *difficult to predict* (very interesting examples given by Monniaux);
- most compilers offer options that prevent this problem. However,
 - be ready to dive into huge, unreadable documentation;
 - restricts the portability of numerical programs;
 - may have impact on performance and accuracy

→ examine which properties remain true when double roundings may occur (for instance: some summation algorithms still work, some do not).

No problem with SSE instructions, and IEEE 754-2008 improves the situation.
An example: 2Sum and double roundings

Precision-\(p\) “target” format; precision \(p + p'\) wider “internal” format.

Algorithm 4 (2Sum-with-double-roundings(\(a, b\)))

1. \(s \leftarrow RN_p\left(RN_{p+p'}(a + b)\right)\) or \(RN_p(a + b)\)
2. \(a' \leftarrow RN_p\left(RN_{p+p'}(s - b)\right)\) or \(RN_p(s - b)\)
3. \(b' \leftarrow \circ(s - a')\)
4. \(\delta_a \leftarrow RN_p\left(RN_{p+p'}(a - a')\right)\) or \(RN_p(a - a')\)
5. \(\delta_b \leftarrow RN_p\left(RN_{p+p'}(b - b')\right)\) or \(RN_p(b - b')\)
6. \(t \leftarrow RN_p\left(RN_{p+p'}(\delta_a + \delta_b)\right)\) or \(RN_p(\delta_a + \delta_b)\)

\(\circ(u)\) : \(RN_p(u)\), \(RN_{p+p'}(u)\), or \(RN_p(RN_{p+p'}(u))\), or any faithful rounding.
Theorem 6

\[p \geq 4 \text{ and } p' \geq 2. \text{ If } a \text{ and } b \text{ are precision-}p \text{ FPN, and if no overflow occurs, then Algorithm 4 satisfies :} \]

- if no double rounding bias occurred when computing \(s \) then
 \[t = (a + b - s) \text{ exactly; } \]
- otherwise, \(t = \text{RN}_p(a + b - s). \)

→ many properties remain true, or only require slight changes;
- watch interesting, in-progress, work of Sylvie Boldo
 (http://www.lri.fr/~sboldo/), on “hardware-independent” proofs.
The Hall of Shame (Ng)

<table>
<thead>
<tr>
<th>System</th>
<th>(\sin\left(10^{22}\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact result</td>
<td>(-0.8522008497671888017727\cdots)</td>
</tr>
<tr>
<td>HP 48 GX</td>
<td>(-0.852200849762)</td>
</tr>
<tr>
<td>HP 700</td>
<td>0.0</td>
</tr>
<tr>
<td>HP 375, 425t (4.3 BSD)</td>
<td>(-0.65365288\cdots)</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for Macintosh</td>
<td>0.8740</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for SPARC</td>
<td>(-0.8522)</td>
</tr>
<tr>
<td>Silicon Graphics Indy</td>
<td>0.87402806\cdots</td>
</tr>
<tr>
<td>SPARC</td>
<td>(-0.852200849767188879)</td>
</tr>
<tr>
<td>IBM RS/6000 AIX 3005</td>
<td>(-0.852200849\cdots)</td>
</tr>
<tr>
<td>DECstation 3100</td>
<td>NaN</td>
</tr>
<tr>
<td>Casio fx-8100, fx180p, fx 6910 G</td>
<td>Error</td>
</tr>
<tr>
<td>TI 89</td>
<td>Trig. arg. too large</td>
</tr>
</tbody>
</table>

Until 2008, no standard for the elementary functions.
The Hall of Shame (Ng)

<table>
<thead>
<tr>
<th>System</th>
<th>(\sin(10^{22}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact result</td>
<td>(-0.8522008497671888017727\ldots)</td>
</tr>
<tr>
<td>HP 48 GX</td>
<td>(-0.852200849762)</td>
</tr>
<tr>
<td>HP 700</td>
<td>0.0</td>
</tr>
<tr>
<td>HP 375, 425t (4.3 BSD)</td>
<td>(-0.65365288\ldots)</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for Macintosh</td>
<td>0.8740</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for SPARC</td>
<td>(-0.8522)</td>
</tr>
<tr>
<td>Silicon Graphics Indy</td>
<td>0.87402806\ldots</td>
</tr>
<tr>
<td>SPARC</td>
<td>(-0.85220084976718879)</td>
</tr>
<tr>
<td>IBM RS/6000 AIX 3005</td>
<td>(-0.852200849\ldots)</td>
</tr>
<tr>
<td>DECstation 3100</td>
<td>NaN</td>
</tr>
<tr>
<td>Casio fx-8100, fx180p, fx 6910 G</td>
<td>Error</td>
</tr>
<tr>
<td>TI 89</td>
<td>Trig. arg. too large</td>
</tr>
</tbody>
</table>

Until 2008, no standard for the elementary functions.
The Hall of Shame (Ng)

<table>
<thead>
<tr>
<th>System</th>
<th>(\sin(10^{22}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact result</td>
<td>(-0.8522008497671888017727\ldots)</td>
</tr>
<tr>
<td>HP 48 GX</td>
<td>(-0.852200849762)</td>
</tr>
<tr>
<td>HP 700</td>
<td>0.0</td>
</tr>
<tr>
<td>HP 375, 425t (4.3 BSD)</td>
<td>(-0.65365288\ldots)</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for Macintosh</td>
<td>0.8740</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for SPARC</td>
<td>(-0.8522)</td>
</tr>
<tr>
<td>Silicon Graphics Indy</td>
<td>0.87402806\ldots)</td>
</tr>
<tr>
<td>SPARC</td>
<td>(-0.85220084976718879)</td>
</tr>
<tr>
<td>IBM RS/6000 AIX 3005</td>
<td>(-0.852200849\ldots)</td>
</tr>
<tr>
<td>DECstation 3100</td>
<td>NaN</td>
</tr>
<tr>
<td>Casio fx-8100, fx180p, fx 6910 G</td>
<td>Error</td>
</tr>
<tr>
<td>TI 89</td>
<td>Trig. arg. too large</td>
</tr>
</tbody>
</table>

Until 2008, no standard for the elementary functions.
The Hall of Shame (Ng)

<table>
<thead>
<tr>
<th>System</th>
<th>$\sin(10^{22})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact result</td>
<td>$-0.8522008497671888017727$ \cdots</td>
</tr>
<tr>
<td>HP 48 GX</td>
<td>-0.852200849762</td>
</tr>
<tr>
<td>HP 700</td>
<td>0.0</td>
</tr>
<tr>
<td>HP 375, 425t (4.3 BSD)</td>
<td>-0.65365288 \cdots</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for Macintosh</td>
<td>0.8740</td>
</tr>
<tr>
<td>matlab V.4.2 c.1 for SPARC</td>
<td>-0.8522</td>
</tr>
<tr>
<td>Silicon Graphics Indy</td>
<td>0.87402806 \cdots</td>
</tr>
<tr>
<td>SPARC</td>
<td>-0.852200849767188879</td>
</tr>
<tr>
<td>IBM RS/6000 AIX 3005</td>
<td>-0.852200849 \cdots</td>
</tr>
<tr>
<td>DECstation 3100</td>
<td>NaN</td>
</tr>
<tr>
<td>Casio fx-8100, fx180p, fx 6910 G</td>
<td>Error</td>
</tr>
<tr>
<td>TI 89</td>
<td>Trig. arg. too large</td>
</tr>
</tbody>
</table>

Until 2008, no standard for the elementary functions.
Correctly-rounded elementary functions?

Evaluating \(f(x) \):
- find an approximation \(\hat{f}(x) \) to \(f(x) \);
- round that approximation to “target” format.

To certify that we always return \(\text{RN}(f(x)) \):
- solve the **Table maker’s dilemma**: determine the accuracy of the approximation that guarantees (if this is possible):
 \(\forall x, \text{RN}(\hat{f}(x)) = \text{RN}(f(x)) \);
- guarantee that your approximation is within the required accuracy.
Tools for polynomial approximations of functions

- **Sollya** (written by Sylvain Chevillard and Christoph Lauter) : computes nearly best approximations with constraints on the coefficients (such as requiring them to be FP numbers, or sums of 2 FP numbers, ...);

 http://sollya.gforge.inria.fr/

- **Gappa** (written by Guillaume Melquiond) : uses interval arithmetic to manage ranges and errors of straight-line programs (typically a polynomial evaluation), forces you to express some numerical property to prove, and outputs a proof of that property suitable for checking by Coq (or HOL light);

 http://gappa.gforge.inria.fr

- also, watch **Flocq** (Sylvie Boldo and Guillaume Melquiond) : floating-point formalization for the Coq system. Comprehensive library of theorems on a multi-radix multi-precision arithmetic.
The Table Maker’s Dilemma

Consider the double precision FP number \((\beta = 2, p = 53)\)

\[x = \frac{8520761231538509}{2^{62}} \]

We have

\[2^{53 + x} = 9018742077413030.999999999999999998805240837303 \cdots \]

So what?

Hardest-to-round case for function \(2^x\) and double precision FP numbers. Joint work with Vincent Lefèvre.
Correct rounding of the elementary functions

- base 2, precision p;
- FP number x and integer m (with $m > p$) → one can compute an approximation y to $f(x)$ whose error on the significand is $\leq 2^{-m}$.
- can be done with a possible wider format, or using algorithms such as TwoSum, TwoMultFMA, Dekker product, etc.
- getting a correct rounding of $f(x)$ from y: not possible if $f(x)$ is too close to a breakpoint: a point where the rounding function changes.
Correct rounding of the elementary functions

- RN mode,

$$\begin{align*}
m \text{ bits} \\
1.xxxxx \cdots xxx & \quad 1000000 \cdots 000000 \quad xxx \cdots \\
p \text{ bits} \\
\{z\} & \quad {p} \text{ bits} \\
\end{align*}$$

or

$$\begin{align*}
m \text{ bits} \\
1.xxxxx \cdots xxx & \quad 0111111 \cdots 111111 \quad xxx \cdots ; \\
p \text{ bits} \\
\{z\} & \quad {p} \text{ bits} \\
\end{align*}$$

- other modes,

$$\begin{align*}
m \text{ bits} \\
1.xxxxx \cdots xxx & \quad 0000000 \cdots 000000 \quad xxx \cdots \\
p \text{ bits} \\
\{z\} & \quad {p} \text{ bits} \\
\end{align*}$$

or

$$\begin{align*}
m \text{ bits} \\
1.xxxxx \cdots xxx & \quad 1111111 \cdots 111111 \quad xxx \cdots . \\
p \text{ bits} \\
\{z\} & \quad {p} \text{ bits} \\
\end{align*}$$
Finding m beyond which there is no problem?

- function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
- Lindemann’s theorem ($z \neq 0$ algebraic $\Rightarrow e^z$ transcendental) \Rightarrow
 except for straightforward cases (e^0, ln(1), sin(0), . . .), if x is a FP
 number, there exists an m, say m_x, s.t. rounding the m_x-bit
 approximation \Leftrightarrow rounding $f(x)$;
- finite number of FP numbers $\Rightarrow \exists m_{\text{max}} = \max_x(m_x)$ s.t. $\forall x$, rounding
 the m_{max}-bit approximation to $f(x)$ is equivalent to rounding $f(x)$;
- this reasoning does not give any hint on the order of magnitude of
 m_{max}. Could be huge.
A bound derived from a result due to Baker (1975)

- $\alpha = i/j$, $\beta = r/s$, with $i, j, r, s < 2^p$;
- $C = 16^{200}$;

$$|\alpha - \log(\beta)| > (p2^p)^{-Cp \log p}$$

Application: To evaluate \ln et \exp in double precision ($p = 53$) with correct rounding, it suffices to compute an approximation accurate to around
A bound derived from a result due to Baker (1975)

- $\alpha = i/j, \beta = r/s$, with $i, j, r, s < 2^p$;
- $C = 16^{200}$;

$$|\alpha - \log(\beta)| > (p2^p)^{-Cp\log p}$$

Application: To evaluate \ln et \exp in double precision ($p = 53$) with correct rounding, it suffices to compute an approximation accurate to around

$$10^{244} \text{ bits}$$

Fortunately, in practice, much less (≈ 100).
Table: Worst cases for exponentials of double precision FP numbers.

<table>
<thead>
<tr>
<th>Interval</th>
<th>worst case (binary)</th>
</tr>
</thead>
</table>
| $[-\infty, -2^{-30}]$ | $\exp(-1.111011010011000110011111111001100010011111101010 \times 2^{-27})$
\[= 1.11111111111111111111111111000100 \ 1 \ 1^{59}0001... \times 2^{-1}\] |
| $[-2^{-30}, 0)$ | $\exp(-1.001 \times 2^{-51})$
\[= 1.11111111111111111111111111111111111000 \ 0 \ 0^{100}0101... \times 2^{-1}\] |
| $(0, +2^{-30}]$ | $\exp(1.111 \times 2^{-53})$
\[= 1.000 \ 1 \ 1^{104}0101...\] |
| $[2^{-30}, +\infty]$ | $\exp(1.01111111111111111111111111111111111000 \times 2^{-32})$
\[= 1.000000000000000000000000000000010111111111111101000 \ 0 \ 0^{57}1101...\] |
| | $\exp(1.100000000000000000101111111111111111111111111000 \times 2^{-32})$
\[= 1.000000000000000000000000000000011000000000000010111 \ 1 \ 1^{57}0010...\] |
| | $\exp(1.1001111010011011111011111111110110000100000001011 \times 2^{-31})$
\[= 1.000000000000000000000000000000110011111010011101101110110 \ 1 \ 0^{57}1010...\] |
| | $\exp(110.0000111101010010111110011011110101110110111111110100)$
\[= 110101100.010100001011010000001001111001000101011101110 \ 0 \ 0^{57}1000...\] |
Results

Table: Worst cases for logarithms of double precision FP numbers.

<table>
<thead>
<tr>
<th>Interval</th>
<th>worst case (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[2^{-1074}, 1)$</td>
<td>$\log(1.111010100111000111100000101110011101110000000000100000 \times 2^{-509})$</td>
</tr>
<tr>
<td></td>
<td>$= -10110000.001010011011100110011010111001000101111111 1 \ 160_0000...$</td>
</tr>
<tr>
<td></td>
<td>$\log(1.100101000111011011000110000010011001101011100011110000111 \times 2^{-384})$</td>
</tr>
<tr>
<td></td>
<td>$= -10001001.101101100000110010111110100011110101000101 1 \ 060_0100...$</td>
</tr>
<tr>
<td>$[1, 2^{1024}]$</td>
<td>$\log(1.00100111011001100010011001100100110011110010110000 \times 2^{-232})$</td>
</tr>
<tr>
<td></td>
<td>$= -1010000.10101110010110000110010011011001101000100001000100 0 \ 060_1000...$</td>
</tr>
<tr>
<td></td>
<td>$\log(1.011000010011100101010111011000000001011111000 \times 2^{-35})$</td>
</tr>
<tr>
<td></td>
<td>$= -10111.11110000010111110011011011011101010000000110101 0 \ 160_0011...$</td>
</tr>
<tr>
<td>$[1, 2^{1024}]$</td>
<td>$\log(1.011000101010010001100010011010110011010110110110 \times 2^{678})$</td>
</tr>
<tr>
<td></td>
<td>$= 111010111.0100011110110110110101100111111001011110001 \ 0 \ 64_1110...$</td>
</tr>
</tbody>
</table>
Floating-point arithmetic on the web

- W. Kahan:
 http://http.cs.berkeley.edu/~wkahan/

- Goldberg’s paper “What every computer scientist should know about Floating-Point arithmetic”

- D. Hough:
 http://www.validlab.com/754R/

- The Arenaire team of lab. LIP (ENS Lyon)
 http://www.ens-lyon.fr/LIP/Arenaire/

- My own web page
 http://perso.ens-lyon.fr/jean-michel.muller/