Religble Computing S: 279-288, 1999. 279
© 1999 Kluwer Academic Publishers. Printed in the Netherlands.

A Few Results on Table-Based Methods

JEAN-MICHEL MULLER
CNRS, Laboratoire LIP, Projet ARENAIRE, Ecole Normale Supérieure de Lyon, France,
e-mail: Jean-Michel Muller@ens-Iyon.fr

(Received: 28 September 1998; accepted: 21 December 1598)

Abstract. Table-based methods are frequently used to implement functions. We examine some
methods introduced in the literature, and we introduce a generalization of the bipartite table method,
named the multipartite table method.

1. Introduction

Throughout the paper, f is the function to be evaluated. We assume n-bit, fixed-
point arguments, between 1/2 and 1 (that is, they are mantissas of floating-point
numbers).

Table-based methods have frequently been suggested and used to implement
some arithmetic (reciprocal, square root) and transcendental functions. One can
distinguish three different classes of methods:

+ compute-bound methods: these methods use table-lookup in a small table to
find parameters used afterward for a polynomial or rational evaluation. The main
part of the evaluation of f consists in arithmetic computations;

» table-bound methods: The main part of the evaluation of f consists in looking
up in a generally rather large table. The computational part of the function
evaluation is rather small (e.g., a few additions);

e in-between methods: these methods use the combination of table lookup in a
medium-size table and a significant yet reduced amount of computation (e.g. one
or two multiplications, or several “small multiplications” that use rectangular—
fast and/or small—multipliers).

Many methods currently used on general-purpose systems belong to the first
class (e.g. Tang’s methods [8]-[11]. The third class of methods has been widely
studied since 1981 [2]. The use of small (e.g., rectangular) multipliers to fasten the
computational part of the evalnation has been suggested by several authors (see
for instance Wong and Goto’s algorithms for double precision calculations [13], or
Ercegovac et al.’s methods [1]).

In this paper, we examine some table-bound methods. Of course, the straight-
forward method, consisting in building a table with » address bits, cannot be used
unless # is very small. The first useful table-bound methods have been introduced

280 JEAN-MICHEL MULLER

in the last decade: they have become implementable thanks to progress in VLSI
technology. Wong and Goto [12] have suggested the following method. We split the
binary representation of the input-number x into four k-bit numbers, where k = n/4.
That is, we write*:

=X +)Q2ﬁk + X3272k +X42_3k

where 0 < x; < 1 — 27%is a multiple of 2%,
Then f(x) is approximated by:

1
foa +x275) + 52—"{f(x1 + 302+ 0327 — f + 0275 — x3270))

1
+ 52"2k{f(x1 +)C227k +)C42ﬁk) — f(x1 +.)C22_k - X42_k)}

2 3
. 2—4k{%f‘2>(x1> - %f‘”m)}.

The approximation error due to the use of this approximation is about 2%,

The bipartite table method was first suggested by Das Sarma and Matula [4]
for quickly computing reciprocals. A slight improvement, the symmetric bipartite
table method was introduced by Schulte and Stine [6]. Due to the importance of
the bipartite table method (BTM), we will present it in detail in the next section.
Compared to Wong and Goto’s method, it requires larger tables. And yet, the amount
of computation required by the BTM is reduced to one addition.

The problem of evaluating a function given by a converging series can be reduced
to the evaluation of a partial product array (PPA). Schwarz [7] suggested to use
multiplier structures to sum up PPAs. Hassler and Takagi [3] use PPAs to evaluate
functions by table look-up and addition.

2. Order-1 Methods

The methods described in this section use an order-1 Taylor approximation of f.
This leads to very simple computations (mere additions), but the size of the required
tables may be quite large.

2.1. THE BIPARTITE TABLE METHOD

This method was first suggested by DasSarma and Matula [4] for computing recip-
rocals. We split the binary representation of the input number x into 3 k-bit numbers,
where k = n /3. That is, we write:

=x]+ x22—k + X32_2k

* To make the paper easier to read and more consistent, we do not use Wong and Goto’s notations
here. We use the same notations as in the sequel of this paper.

A FEW RESULTS ON TABLE-BASED METHODS 281

where 0 < x; < 1 —27% is a multiple of 27k,

We then write the order-1 Taylor expansion of f at x; +x,2 7. This gives:
FOO) = for + 0275 + 03272 (0 + 1227 F) + g 2.1)

with g = %x§2*4"f”(<§1), where & € [x] + x227% x]. Now, we approximate the

value f'(x; + x27%) by its order-O Taylor expansion at x; (that is, by f'(x1). This
gives:

FO) = F + 0275 #0327 (x) + &) + & (2.2)

with & = xx3273%f7(&,), where & € [x1,x; + x227%). This gives the bipartite
formula:

fx) = alxy, x2) + Bxy, x3) + € (2.3)

where

olxy,) = fx +x275),
B(x1,x3) = x3272f (xq),

e < (%2‘4" + 2*3") max f” = 2~ * max f”.

Hence, f(x) can be approximated, with approximately » bits of accuracy (by
this, we mean “with error = 27") by the sum of two terms (¢ and) that can be
looked-up in 2n/3-address bit tables, as illustrated by Figure 1. Moreover, whereas
the first table (function «) must contain n-bit words, we can take into account the
fact that approximately* 2k most significant bits of B(x;,x3) are zero: there is no
need to store them.

Assume we wish to compute the sine function, with 24-bit input numbers
between 1/2 and 1, and error less than 272*, Functions f* and f” are always
less than 1. A straightforward use of what we have presented leads to choose k =9,
and to perform the summation (2.3) with 25-bit words. Hence the error € of (2.3)
is approximately 2727, and the error due to the truncation to 25 bits of o and B**
is less than 272, The first table has size 25 x 217 (the first bit of x is a one: there
is no need to use it as an address bit). The second table has size 7 x 213. All this
requires 428 Kbytes of memory. It is worth noticing that one can get smaller tables
by using symmetries and splitting n into sub-words of slightly different sizes. All
this has been suggested and implemented by Schulte and Stine [5], [6].

* This depends on the values of f".
** Assuming that the values stored in the tables are rounded to the nearest.

282 JEAN-MICHEL MULLER

A/

TABLE TABLE

(function ot} (function f)

\ /

| Finaladditon |

|

fx)

Figure 1. The bipartite table method.

The BTM still leads to large tables in single precision, and thus it is far from
being implementable in double precision. And yet, this leads to another idea: we
should try to generalize the bipartite method, by splitting the input word into more
than three parts. Let us first try a splitting into five parts, we will after that generalize
to an arbitrary odd number of parts. It is worth noticing that Schulte and Stine also
have proposed [5] a method based on a splitting into more than 3 parts. Their
method is called the Symmetric table addition method (STAM). We will compare
our method and the STAM method in Section 2.4,

2.2. THE TRIPARTITE TABLE METHOD

Now, we split the input »-bit fixed-point number x into five k-bit parts x1, x, ..., Xs.
That is, we write:

2—2k 2—4k

=X +X7_2_k + X3 +)C42_3k+)65

where 0 < x; < 1 — 27 is a multiple of 27*.

X = X1 X2 X3 X4 X5

We use the order-1 Taylor expansion of f at = x| +x2 ™% + x322;
Fx) = fla + 2227 4127
+ 027 4 3527 + 02 K 11327 (2.4)
+ &3+ &

A FEW RESULTS ON TABLE-BASED METHODS 283

with & = %(x42_3]c +x527)2 57(E3), with & e [x] + x27% + x327%, x], which
gives g3 < %2_6" max f”.

In (2.4), we expand the term (x42 7% + x527*)f (x) + 2227 + x327%) as fol-
lows:

o 0273 F (xy + x227F + x3272%) is replaced by x427 3 f/(x; + x27%). The error
committed is g = x3x42_5kf”(§4), where &4 € [x; +x027F X +x027F +x32_2k].
We easily get &4 < 27 max 7.

o x52 % (x) + 22 7% +0327%) is replaced by x52~*f(x;). The error committed
is &5 = (02 7% + 232 7252~ * £ (&5), where &5 € [x1,x; + 02275 +x3272K]. We
getes < 27 max f”.

This gives the tripartite formula:
Fx) = y(x1, %2, x3) + 8(x1, X2, X4) + 6(x1, X5) + €, (2.5)
where
y(x1, 02, x3) = fn + 0275 +x327%5),
8xy,xp,x0) = 12 ¥ f (+ 0275,

0(x1,xs) = xs27 % (x)),

£

IA

1
(52—“ +2x 2—5’<) max f” = 2%+ max 7.

Hence, f(x) can be obtained by adding three terms, each of them being looked-up
in a table with (at most) 3n /5 address bits. This is illustrated by Figure 2.

2.3. GENERALIZATION: THE MULTIPARTITE TABLE METHOD

The previous approach is straightforwardly generalized. We now assume that the
n-bit input number x is split into 2p + 1 k-bit values x1,xz, ..., X3p41. That is,

2p+1

y= Z x 20Dk,

i=1

where the x;’s are multiples of 2% and satisfy 0 < x; < 1. As in the previous
sections, we use the order-1 Taylor expansion:

FX) = fE+ 027 4 x40 27P)

—p— Dk —2pky g —k —pk
+ 05422 7T a2 (0027 4 x 27PF)
+ Ep+t

with g,41 < %2*2(1’“)" max f”. We expand the term

—p—1)k —2pky ¢ ~k —pk
G227 TR, 27RO 027 4 27P5),

284 JEAN-MICHEL MULLER

TABLE 1 TABLE 2 TABLE 3

169] (8) (6)

~ | 7

i Carry-save addition ‘

||

|7 Final addition {

|

f)

Figure 2. 'The tripartite table method.

and perform Taylor approximations to f'(x; + %2 % + -+ - + x,.)277%). We then
get:

FOO = fOr+x2F 4+ 42,027 4 gy
+ xp+22(_p_1)kf'(x1 2Rt xp2(_1’“)k))
+ x,,+32(_” ke + 2 K+ xp_12(‘p+2)k) + €43

+ xp+42(_p_3)kf'(X1 +x22_k 4 +xp,22(_‘p+3)k} + &paa

—2pk ¢
+-x2p+12 P f(xl)+£2p+l

where €42, €43, ..., £2p+1 are less than 2(=2p =Dk max £”.
This gives the multipartite (or (p + 1)-partite) formula:

f) = ou(x1, X2, ... Xp+1)
+ (X1, X2, .- s Xp —1, Xp+3)
+ 03(X1, X2, ...y Xp 2, Xp+4)
+ ou(xy, X2, ... Xp—3, Xp145) (2.6)

+ 04 1(X1, X2p+1)
+e

A FEW RESULTS ON TABLE-BASED METHODS 285

where

01 (X1, s Xpa1) = O X027 F ey 27PK),
OG(X1, ey Xp 42, Xp i) = Xpei2 P TIH F (oy 4 2002 Kb+ oy 20 DR

e < (%2(‘21"2)" +p2(=2~Dk) max

~ p2(=2r =Dk max 7.

Too large values of p are unrealistic: performing many additions to avoid a few
multiplications is not reasonable.

Let us try to calculate the amount of memory that would be required for imple-
menting the double-precision sine function (n = 53), and 2p + 1 = 7. We would
choose k = 8, and perform the final summation with 55-bit accuracy. Hence the
total amount of memory would be (55+23 +15) x 231 47 x 23 bits, that is, around
20 Gbytes, which is far from being feasible: the order-1 methods do not seem to be
applicable beyond single-precision.

2.4. COMPARISON WITH THE STAM METHOD

The Symmetric table addition method (STAM) was suggested by Schulte and
Stine [5]. They split the binary representation of the input number x into m sub-
words (whose sizes may be different), xy,xs, ..., x,, and they use the order-1 Taylor
expansion of f at the midpoint of the interval of numbers whose binary representa-
tion starts with xy and x». They expand the order-1 part of the Taylor approximation
so that each term is a function of x; and a sub-word x; only. Hence they approximate
the result by the sum of m — 1 values, each of them being looked-up in a table that
receives two sub-words as an input address.

At a first glance, if we examine the multipartite method and the STAM assuming
in both cases a splitting into m sub-words, the STAM method requires smaller tables:
the STAM method use 2-sub-word tables, and the multipartite method uses p+1-sub
word tables.

And yet, assuming that the first two words have size ny and ny, the order-1 Taylor
approximation used by the STAM method has an error whose order of magnitude
is

12—2(”0*!%1 +1)f//(x)

2
therefore, to reach an error equal to approximately 27", we need
n—3
ng+n; >

Hence, the first two sub-words must represent approximately half the global input-
word. As a consequence, the tables will have around »/2 address bits.

Table 1 gives table sizes for various order-1 methods, assuming that we imple-
ment a 24-bit sine function. This table shows that both methods lead to a similar

286 JEAN-MICHEL MULLER

Table 1. Table sizes for various order-1 methods, assuming that we implement a 24-bit
sine function.

method memory size (Kbytes) error bound
bipartite (straightforward) 428 0.625 x 224
bipartite {Schulte and Stine) 244
tripartite (ours) 74 138x2%4
splitting into 4 terms (Schulte and Stine) 92
splitting into 5 terms (Schulte and Stine) 745

amount of memory. This is not surprising, since both methods are very similar.
Now, let us try to get smaller tables by using approximations of order larger than 1.

3. Higher-Order Methods

In the previous section, we have used order-1 Taylor expansions only. We also have
seen that these methods are not applicable for precisions significantly larger than
single precision. Now, let us give an example of the use of an order-2 expansion.
As in Section 2.2, we split the input n-bit fixed-point number x into five k-bit parts
X1,X2, ..., x5. That 1s, we write:

=X +x22_k +X32—2k +X42_3k +)C52_4k
where 0 < x; < 1 — 2% is a multiple of 27,
| _ "
oy, xz) = O +027 = 3f0n) — 5T+ 270G),

—_ 1 —_ 77 1 - i
o(u,x) = f0n +x3272) = 2271 () — 227 (),

- 1 — ”
oa(x1,x2) = fOxp +x427) — 52 Pz (),
ou(xy,x5) = fQ +xs274),

¥ = xp+Xx3,

Vv = X3 — X3, 3.1
w = X3 +x4,
Z

= X2 — X,
] — rrr l - 44
Biwx) = 527l) + 527),
1 — 1] - ’”
Patv.xi) = — 12 g (1) = 52 2 (),

1
Ba(w,x) = szf"(xl).

A FEW RESULTS ON TABLE-BASED METHODS 287

1
Ba(z,x1) = _Zzzf”(xl).
Then

f(x) = oq(x1,x2) + op(xy,x3) + 03(x1, x4) + 0a(xy, xs5)

+ Bi(u, x1) + Bo(v, x1) + Ba(w, x1) + Balz, x1)

with an error of the order of 2% Hence, with this method, we can use tables
with 2n/5 address bits. Four additions are used to generate u, v, w and z, and after
the table-lookups, 8 terms are added with a carry-save addition tree. This method
would require around 20 Kbytes of table for single-precision. It would require
around 100 Mbytes for double precision, which is still a lot.

Conclusion

Various table-based methods have been suggested during the last decade. When
single-precision implementation is at stake, table-bound methods seem to be a
good candidate for implementing fast functions. Unless there is a technology break-
through, these methods are not suitable for double precision.

References

1. Ercegovac, M. D., Lang, T., Muller, J. M., and Tisserand, A.: Reciprocation, Square Root,
Inverse Square Root, and Some Elementary Functions Using Small Multipliers, Technical
Report RR97-47, LIP, Ecole Normale Supérieure de Lyon, November 1997, available at
ftp://ftp.lip.ens-lyvon. fr/pub/Rapports/RR/RR97/RR97-47 .ps . Z.

2. Farmwald, P. M.: High Bandwidth Evaluation of Elementary Functions, in: Trivedi, K. S. and
Atkins, D. E. (eds), Proceedings of the 5th IEEE Symposium on Computer Arithmetic, IEEE
Computer Society Press, Los Alamitos, CA, 1981.

3. Hassler, H. and Takagi, N.: Function Evaluation by Table Look-Up and Addition, in: Knowles, S.
and McAllister, W. (eds), Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
Bath, UK, July 1995. IEEE Computer Society Press, Los Alamitos, CA.

4. Das Sarma, D. and Matula. D. W.: Faithful Bipartite Rom Reciprocal Tables, in: Knowles, S.
and McAllister, W. H. (eds), Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
Bath, UK, 1995, IEEE Computer Society Press, Los Alamitos, CA, pp. 17-28.

5. Schulte, M. and Stine, J.: Accurate Function Approximation by Symmetric Table Lookup and
Addition, in: Proceedings of ASAP’97, IEEE Computer Society Press, Los Alamitos, CA, 1997.

6. Schulte, M. and Stine, J.: Symmetric Bipartite Tables for Accurate Function Approximation,
in: Lang, T., Muller, J. M., and Takagi, N. (eds), Proceedings of the 13th IEEE Symposium on
Computer Arithmetic, IEEE Computer Society Press, Los Alamitos, CA, 1997.

7. Schwarz. E.: High-Radix Algorithms for High-Order Arithmetic Operations, PhD thesis, Dept.
of Electrical Engineering, Stanford University, 1992.

8. Tang, P. T. P.: Table Lookup Algorithms for Elementary Functions and Their Error Analysis, in:
Kornerup, P. and Matula, D. W. (eds), Proceedings of the 10th IEEE Symposium on Computer
Arithmetic, Grenoble, France, June 1991, IEEE Computer Society Press, Los Alamitos, CA,
pp. 232-236.

9. Tang, P. T. P.: Table-Driven Implementation of the Expm! Function in IEEE Floating-Point
Arithmetic, ACM Transactions on Mathematical Software 18 (2) (1992), pp. 211-222.

10. Tang, P. T. P.: Table-Driven Implementation of the Exponential Function in IEEE Floating-Point
Arithmetic, ACM Transactions on Mathematical Software 15 (2) (1989), pp. 144-157.

288 JEAN-MICHEL MULLER

11. Tang, P. T. P.: Table-Driven Implementation of the Logarithm Function in IEEE Floating-Point
Arithmetic, ACM Transactions on Mathematical Software 16 (4) (1990), pp. 378-400.

12. Wong, W. F. and Goto, E.: Fast Evaluation of the Elementary Functions in Single Precision, /EEE
Transactions on Computers 44 (3) (1995), pp. 453-457.

13. Wong, W. E. and Goto, E.: Fast Hardware-Based Algorithms for Elementary Function Computa-

tions Using Rectangular Multipliers, IEEE Transactions on Computers 43 (3) (1994), pp. 278-
204,

