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Abstract— We introduce an algorithm for multiplying a
floating-point number x by a constantC that is not exactly
representable in floating-point arithmetic. Our algorithm
uses a multiplication and a fused multiply accumulate
instruction. We give methods for checking whether, for
a given value ofC and a given floating-point format, our
algorithm returns a correctly rounded result for any x.
When it does not, our methods give the valuesx for which
the multiplication is not correctly rounded.

INTRODUCTION

Many numerical algorithms require multiplications by
constants that are not exactly representable in floating-
point (FP) arithmetic. Typical constants that are used [1],
[4] are π, 1/π, ln(2), e, Bk/k! (Euler-McLaurin sum-
mation),cos(kπ/N) andsin(kπ/N) (Fast Fourier Trans-
forms). Some numerical integration formulas such as [4],
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also naturally involve multiplications by constants.

For approximating Cx, where C is an infinite-
precision constant andx is a FP number, the desirable
result would be the best possible one, namely◦(Cx),
where◦(u) is u rounded to the nearest FP number.

In practice one usually defines a constantCh, equal to
the FP number that is closest toC, and actually computes
Chx (i.e., what is returned is◦(Chx)). The obtained
result is frequently different from◦(Cx) (see Section I
for some statistics).

Our goal here is to be able – at least for some constants
and some FP formats – to return◦(Cx) for all input FP
numbersx (provided no overflow or underflow occur),
and at a low cost (i.e., using a very few arithmetic
operations only). To do that, we will usedfused multiply
accumulateinstructions.

The fused multiply accumulate instruction (fused-
mac for short) is available on some current processors
such as the IBM Power PC or the Intel/HP Itanium.
That instruction evaluates an expressionax + b with
one final rounding error only. This makes it possible
to perform correctly rounded division using Newton-
Raphson division [9], [3], [8]. Also, this makes eval-
uation of scalar products and polynomials faster and,
generally, more accurate than with conventional (addition
and multiplication) floating-point operations.

I. SOME STATISTICS

Let n be the number of mantissa bits of the considered
floating-point format (usual values ofn are 24, 53, 64,
113). For small values ofn, it is possible to compute
◦(Chx) and◦(Cx) for all possible values of the mantissa
of x. The obtained results are given in Table I, forC = π.
They show that, at least for some values ofn, the “naive”
method that consists in computing◦(Chx) returns an
incorrectly rounded result quite often (in around41% of
the cases forn = 7).

II. T HE ALGORITHM

We want to computeCx with correct rounding (as-
suming rounding to nearest even), whereC is a constant
(i.e.,C is known at compile time).C is not an FP number
(otherwise the problem would be straightforward). We
assume that a fused-mac instruction is available. We
assume that the operands are stored in a binary FP format
with n-bit mantissas.

We assume that the two following FP numbers are
pre-computed:{

Ch = ◦(C),
C` = ◦(C − Ch), (1)
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n

Proportion of
correctly
rounded
results

4 0.62500
5 0.93750
6 0.78125
7 0.59375
8 0.96875

· · · · · ·
16 0.86765
17 0.73558
· · · · · ·
24 0.66805

TABLE I

Proportion of input valuesx for which ◦(Chx) = ◦(Cx) for

C = π and various values of the numbern of mantissa bits.

where◦(t) stands fort rounded to the nearest FP number.
In the sequel of the paper, we will analyze the

behavior of the following algorithm. We aim at being
able to know for which values ofC andn it will return
a correctly rounded result for anyx. When it does not,
we wish to know for which values ofx it does not.

Algorithm 1: (Multiplication by C with a multi-
plication and a fused-mac).From x, compute{

u1 = ◦(C`x),
u2 = ◦(Chx + u1).

(2)

The result to be returned isu2.
�

WhenC is the exact reciprocal of a FP number, this
algorithm coincides with an algorithm for division by a
constant given in [2].

Obviously (provided no overflow/underflow occur) if
Algorithm 1 gives a correct result with a given constant
C and a given input variablex, it will work as well with
a constant2pC and an input variable2qx, wherep andq
are integers. Also, ifx is a power of2 or if C is exactly
representable (i.e.,C` = 0), or if C−Ch is a power of2
(so thatu1 is exactly(C−Ch)x), it is straightforward to
show thatu2 = ◦(Cx). Hence,without loss of generality,
we assume in the following that1 < x < 2 and1 < C <
2, that C is not exactly representable, and thatC − Ch

is not a power of2.
In Section IV, we give three methods. The first two

ones either certify that Algorithm 1 always returns a
correctly rounded result, or give a “bad case” (i.e., a
numberx for which u2 6= ◦(Cx)), or are not able to
conclude. The third one is able to return all “bad cases”,

or certify that there are none. These methods use the
following property, that bound the maximum possible
distance betweenu2 andCx in Algorithm 1.

Property 1:
Definexcut = 2/C and

ε1 = |C − (Ch + C`)| (3)

• If x < xcut then |u2 − Cx| < 1/2 ulp(u2) + α,
• If x ≥ xcut then |u2 − Cx| < 1/2 ulp(u2) + α′,

where {
α = 1

2 ulp(C`xcut) + ε1xcut,
α′ = ulp(C`) + 2ε1.

�

Proof.
From 1 < C < 2 and Ch = ◦(C), we deduce|C −

Ch| < 2−n, which gives (sinceC − Ch is not a power
of 2),

|ε1| ≤
1
2

ulp(C`) ≤ 2−2n−1.

Now, we have,

|u2 − Cx| ≤ |u2 − (Chx + u1)|

+ |(Chx + u1)− (Chx + C`x)|

+ |(Ch + C`)x− Cx|

≤ 1
2 ulp(u2) + |u1 − C`x|+ ε1|x|

≤ 1
2 ulp(u2) + 1

2 ulp(C`x) + ε1|x|.
(4)
�

If |u2−Cx| is less than1/2 ulp(u2), thenu2 is the FP
number that is closest toxC. Hence our problem is to
know if Cx can be at a distance larger than or equal to
1
2 ulp(u2) from u2. From (4), this would imply thatCx
would be at a distance less than12 ulp(C`x) + ε1|x| <
2−2n+1 from the middle of two consecutive FP numbers
(see Figure 1).

If x < xcut then xC < 2, therefore the middle of
two consecutive FP numbers aroundxC is of the form
A/2n, whereA is an odd integer between2n + 1 and
2n+1−1. If x ≥ xcut, then the middle of two consecutive
FP numbers aroundxC is of the formA/2n−1. For the
sake of clarity of the proofs we assume thatxcut is not
an FP number (ifxcut is an FP number, it suffices to
separately check Algorithm 1 withx = xcut).

III. A REMINDER ON CONTINUED FRACTIONS

We just recall here the elementary results that we need
in the following, for the sake of completeness. For more
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u2

FP numbers

Domain where
xC can be
located

CanxC be here?

If xC is here, then◦(xC) = u2

1
2 ulp(u2)

Fig. 1. From (4), we know thatxC is within 1/2 ulp(u2) + α (or
α′) from the FP numberu2, whereα is less than2−2n+1. If we are
able to show thatxC cannot be at a distance less than or equal to
α (or α′) from the middle of two consecutive floating-point numbers,
then, necessarily,u2 will be the FP number that is closest toxC.

information on continued fractions, see [5], [11], [10],
[6].

Let α be a real number. Fromα, consider the two
sequences(ai) and (ri) defined by:


r0 = α,

ai = bric ,

ri+1 =
1

ri − ai
.

(5)

If α is irrational, then these sequences are defined
for any i (i.e., ri is never equal toai), and the rational
number

pi

qi
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

... +
1
ai

is called theith convergentto α. If α is rational, then
these sequences finish for somei, andpi/qi = α exactly.
The pis and theqis can be deduced from theai using
the following recurrences,

p0 = a0,

p1 = a1a0 + 1,

q0 = 1,

q1 = a1,

pn = pn−1an + pn−2,

qn = qn−1an + qn−2.

The major interest of the continued fractions lies in
the fact thatpi/qi is the best rational approximation to
α among all rational numbers of denominator less than
or equal toqi.

We will use the following two results [5]

Theorem 1: Let (pj/qj)j≥1 be the convergents ofα.
For any(p, q), with q < qn+1, we have

|p− αq| ≥ |pn − αqn|.
�

Theorem 2: Let p, q be nonzero integers, with
gcd(p, q) = 1. If ∣∣∣∣pq − α

∣∣∣∣ <
1

2q2

thenp/q is a convergent ofα.
�

IV. T HREE METHODS FOR ANALYZINGALGORITHM 1

A. Method 1: use of Theorem 1

Define X = 2n−1x and Xcut =
⌊
2n−1xcut

⌋
. X and

Xcut are integers between2n−1 + 1 and 2n − 1. We
separate the casesx < xcut andx > xcut.

1) If x < xcut: we want to know if there is an integer
A between2n + 1 and2n+1 − 1 such that∣∣∣∣Cx− A

2n

∣∣∣∣ < α (6)

whereα is defined in Property 1. (6) is equivalent to

|2CX −A| < 2nα (7)

Define(pi/qi)i≥1 as the convergents of2C. Let k be the
smallest integer such thatqk+1 > Xcut, and defineδ =
|pk − 2Cqk| . Theorem 1 implies that for anyA,X ∈ Z,
with 0 < X ≤ Xcut, |2CX −A| ≥ δ. Therefore

1) if δ ≥ 2nα then|Cx−A/2n| < α is impossible.In
that case, Algorithm 1 returns a correctly rounded
result for anyx < xcut;

2) if δ < 2nα then we try Algorithm 1 withy =
qk2−n+1. If the obtained result is not◦(yC), then
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we know that Algorithm 1 fails for at least one
value1. Otherwise, we cannot conclude.

2) If x > xcut: we want to know if there is an integer
A between2n + 1 and2n+1 − 1 such that∣∣∣∣Cx− A

2n−1

∣∣∣∣ < α′ (8)

whereα′ is defined in Property 1. (8) is equivalent to

|CX −A| < 2n−1α′ (9)

Define(p′i/q′i)i≥1 as the convergents ofC. Let k′ be the
smallest integer such thatq′k′+1 ≥ 2n, and defineδ′ =
|p′k′ − Cq′k′ | . Theorem 1 implies that for anyA,X ∈ Z,
with Xcut ≤ X < 2n, |CX −A| ≥ δ′. Therefore

1) if δ′ ≥ 2n−1α′ then |Cx − A/2n−1| < α′ is
impossible. In that case, Algorithm 1 returns a
correctly rounded result for anyx > xcut;

2) if δ′ < 2n−1α′ then we try Algorithm 1 withy =
q′k′2

−n+1. If the obtained result is not◦(yC), then
we know that Algorithm 1 fails for at least one
value. Otherwise, we cannot conclude.

B. Method 2: use of Theorem 2

Again, we useX = 2n−1x and Xcut =
⌊
2n−1xcut

⌋
,

and we separate the casesx < xcut andx > xcut.
1) If x > xcut: if∣∣∣∣Cx− A

2n−1

∣∣∣∣ < ε1x +
1
2

ulp(C`x)

then, ∣∣∣∣C − A

X

∣∣∣∣ < ε1 +
2n−2

X
ulp(C`x). (10)

Now, if

22n+1ε1 + 22n−1 ulp(2C`) ≤ 1, (11)

then for anyX < 2n (i.e., x < 2),

ε1 +
2n−2

X
ulp(C`x) <

1
2X2

.

Hence, if (11) is satisfied, then (10) implies (from
Theorem 2) thatA/X is a convergent ofC. This means
that if (11) is satisfied, to find the possible bad cases
for Algorithm 1 it suffices to examine the convergents
of C of denominator less than2n. We can quickly
eliminate most of them. A given convergentp/q (with
gcd(p, q) = 1) is a candidate for generating a valueX for

1It is possible thaty be not between1 andxcut. It will anyway be
a counterexample, i.e., ann-bit number for which Algorithm 1 fails.

which Algorithm 1 does not work if there existX = mq
andA = mp such that

Xcut < X ≤ 2n − 1,

2n + 1 ≤ A ≤ 2n+1 − 1,

| CX
2n−1 − A

2n−1 | < ε1
X

2n−1 + 1
2 ulp(C`x).

This would mean∣∣∣C mq

2n−1
− mp

2n−1

∣∣∣ < ε1
mq

2n−1
+

1
2

ulp(2C`),

which would imply

|Cq − p| < ε1q +
2n−1

m∗ ulp(C`), (12)

wherem∗ = dXcut/qe is the smallest possible value of
m. Hence, if Condition (12) is not satisfied, convergent
p/q cannot generate a bad case for Algorithm 1.

Now, if Condition (12) is satisfied, we have to check
Algorithm 1 will all valuesX = mq, with m∗ ≤ m ≤
b(2n − 1)/qc.

2) If x < xcut: if∣∣∣∣Cx− A

2n

∣∣∣∣ < ε1xcut +
1
2

ulp(C`xcut)

then ∣∣∣∣2C − A

X

∣∣∣∣ < 2n ×
ε1xcut + 1

2 ulp(C`xcut)
X

.

Therefore, sinceX ≤ Xcut, if

ε1xcut +
1
2

ulp(C`xcut) ≤
1

2n+1Xcut
(13)

then we can apply Theorem 2: if|Cx−A/2n| <
ε1xcut+ 1

2 ulp(C`xcut) thenA/X is a convergent of2C.
In that case, we have to check the convergents of

2C of denominator less than or equal toXcut. A given
convergentp/q (with gcd(p, q) = 1) is a candidate for
generating a valueX for which Algorithm 1 does not
work if there existX = mq andA = mp such that

2n−1 ≤ X ≤ Xcut

2n + 1 ≤ A ≤ 2n+1 − 1
| CX
2n−1 − A

2n | < ε1xcut + 1
2 ulp(C`xcut).

This would mean∣∣∣C mq

2n−1
− mp

2n

∣∣∣ < ε1xcut +
1
2

ulp(C`xcut),

which would imply

|2Cq − p|

<
2n

m∗

(
ε1xcut +

1
2

ulp(C`xcut)
)

,
(14)
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wherem∗ = d2n−1/qe is the smallest possible value of
m. Hence, if (14) is not satisfied, convergentp/q cannot
generate a bad case for Algorithm 1.

Now, if (14) is satisfied, we have to check Algorithm 1
will all values X = mq, with m∗ ≤ m ≤ bXcut/qc.

This last result and (4) make it possible to deduce:

Theorem 3 (Conditions onC and n): Assume1 <
C < 2. Let xcut = 2/C, andXcut =

⌊
2n−1xcut

⌋
.

• If X = 2n−1x > Xcut and 22n+1ε1 +
22n−1 ulp(2C`) ≤ 1 then Algorithm 1 will always
return a correctly rounded result, except possibly
if X is a multiple of the denominator of a con-
vergent p/q of C for which |Cq − p| < ε1q +

2n−1

dXcut/qe ulp(C`);
• if X = 2n−1x ≤ Xcut and ε1xcut +

1/2 ulp(C`xcut) ≤ 1/(2n+1Xcut) then Algorithm 1
will always return a correctly rounded result, except
possibly if X is a multiple of the denominator of
a convergentp/q of 2C for which |2Cq − p| <

2n

d2n−1/qe
(
ε1xcut + 1

2 ulp(C`xcut)
)
.

�

C. Method 3: refinement of Method 2

When Method 2 fails to return an answer, we can use
the following method.

We have|C − Ch| < 2−n, hence ulp(C`) ≤ 2−2n.
1) If x < xcut: if ulp (C`) ≤ 2−2n−2 then we have

|u2 − Cx| < 1
2

ulp(u2) + 2−2n−1.

For any integerA, the inequality∣∣∣∣Cx− 2A + 1
2n

∣∣∣∣ ≤ 1
22n+1

implies

|2CX − 2A− 1| ≤ 1
2n+1

<
1

2X
:

(2A + 1)/X is necessarily a convergent of2C from
Theorem 2. It suffices then to check, as indicated in
Method 2, the convergents of2C of denominator less
or equal toXcut.

Now, assume ulp(C`) ≥ 2−2n−1. We have,

−ulp(C`) + C`
X

2n−1
≤ u1 ≤ ulp(C`) + C`

X

2n−1

i.e.,
−22n ulp(C`) + 2n+1C`X

≤ u122n

≤ 22n ulp(C`) + 2n+1C`X.

(15)

We look for the integersX, 2n−1 ≤ X ≤ Xcut, such that
there exists an integerA, 2n−1 ≤ A ≤ 2n − 1, with∣∣∣∣Ch

X

2n−1
+ u1 −

2A + 1
2n

∣∣∣∣ < 2 ulp(C`)

i.e.,∣∣∣∣ ChX

2n ulp(C`)
+

u1

2 ulp(C`)
− 2A + 1

2n+1 ulp(C`)

∣∣∣∣ < 1.

Sinceu1/(2 ulp(C`)) is half an integer and ChX
2n ulp (C`)

and 2A+1
2n+1 ulp (C`)

are integers, we have

ChX

2n ulp(C`)
+

u1

2 ulp(C`)
− 2A + 1

2n+1 ulp(C`)
= 0,±1/2.

Then, combining these three equations with inequalities
(15), we get the following three pairs of inequalities

0 ≤ 2X(Ch + C`)− (2A + 1) + 2n ulp(C`)
≤ 2n+1 ulp(C`),

0 ≤ 2X(Ch + C`)− (2A + 1)
≤ 2n+1 ulp(C`),

0 ≤ 2X(Ch + C`)− (2A + 1) + 2n+1 ulp(C`)
≤ 2n+1 ulp(C`).

For y ∈ R, let {y} be the fractional part ofy: {y} =
y − byc. These three inequalities can be rewritten as

{2X(Ch + C`) + 2n ulp(C`)} ≤ 2n+1 ulp(C`),

{2X(Ch + C`)} ≤ 2n+1 ulp(C`),

{2X(Ch + C`) + 2n+1 ulp(C`)} ≤ 2n+1 ulp(C`).

We use an efficient algorithm due to V. Lefèvre [7] to
determine the integersX solution of each inequality.

2) If x > xcut: if ulp (C`) ≤ 2−2n−1 then we have

|u2 − Cx| < 1
2

ulp(u2) + 2−2n.

Therefore, for any integerA, the inequality∣∣∣∣Cx− 2A + 1
2n−1

∣∣∣∣ ≤ 1
22n

is equivalent to

|CX − 2A− 1| ≤ 1
2n+1

<
1

2X
,

(2A + 1)/X is necessarily a convergent ofC from
Theorem 2. It suffices then to check, as indicated in
Method 2, the convergents ofC of denominator less or
equal to2n − 1.
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Now, assume ulp(C`) = 2−2n. We look for the
integersX, Xcut + 1 ≤ X ≤ 2n − 1, such that there
exists an integerA, 2n−1 ≤ A ≤ 2n − 1, with∣∣∣∣Ch

X

2n−1
+ u1 −

2A + 1
2n−1

∣∣∣∣ <
1

22n

i.e., ∣∣2n+1ChX + u122n − 2n+1(2A + 1)
∣∣ < 1.

Sinceu122n, 2n+1ChX and2n+1(2A+1) ∈ Z, we have

2n+1ChX + u122n − 2n(2A + 1) = 0.

Then, combining this equation with inequalities (15), we
get the inequalities

0 ≤ X(Ch + C`)− (2A + 1) +
1

2n+1
≤ 1

2n
,

that is to say

{X(Ch + C`) +
1

2n+1
} ≤ 1

2n
.

Here again, we use Lefèvre’s algorithm [7] to deter-
mine the integersX solution of this inequality.

V. EXAMPLES

A. Example 1: multiplication byπ in double precision

Consider the caseC = π/2 (which corresponds to
multiplication by any number of the form2±jπ), and
n = 53 (which corresponds to double precision), and
assume we use Method 1. We find:

Ch = 884279719003555/562949953421312,

C` = 6.123233996 · · · × 10−17,

ε1 = 1.497384905 · · · × 10−33,

xcut = 1.2732395447351626862 · · · ,
ulp(C`xcut) = 2−106,

ulp(C`) = 2−106.

Hence, {
2nα = 7.268364390× 10−17,

2n−1α′ = 6.899839541× 10−17.

Computing the convergents of2C andC we find

pk

qk
=

6134899525417045
1952799169684491

andδ = 9.495905771×10−17 > 2nα (which means that
Algorithm 1 works forx < xcut), and

p′k′

q′k′
=

12055686754159438
7674888557167847

and δ′ = 6.943873667 × 10−17 > 2n−1α′(which means
that Algorithm 1 works forx > xcut). We therefore

deduce:

Theorem 4 (Correctly rounded multiplication by π):
Algorithm 1 always returns a correctly rounded result in
double precision withC = 2jπ, wherej is any integer,
provided no under/overflow occur.

�
Hence, in that case, multiplying byπ with correct
rounding only requires2 consecutive fused-macs.

B. Example 2: multiplication byln(2) in double preci-
sion

Consider the caseC = 2 ln(2) (which corresponds to
multiplication by any number of the form2±j ln(2)), and
n = 53, and assume we use Method 2. We find:

Ch = 6243314768165359
4503599627370496

,

C` = 4.638093628 · · · × 10−17,

xcut = 1.442695 · · · ,
ε1 = 1.141541688 · · · × 10−33,

ε1xcut
+ 1

2
ulp(C`xcut) = 7.8099 · · · × 10−33,

1/(2n+1Xcut) = 8.5437 · · · × 10−33.

Since ε1xcut + 1/2 ulp(C`xcut) ≤ 1/(2n+1Xcut), to
find the possible bad cases for Algorithm 1 that are
less thanxcut, it suffices to check the convergents of
2C of denominator less than or equal toXcut. These
convergents are:

2, 3, 11/4, 25/9, 36/13, 61/22, 890/321, 2731/985,
25469/9186, 1097898/395983, 1123367/405169,
2221265/801152,16672222/6013233, 18893487/6814385,
35565709/12827618, 125590614/45297239,
161156323/58124857, 609059583/219671810,
1379275489/497468477, 1988335072/717140287,
5355945633/1931749051, 7344280705/2648889338,
27388787748/9878417065, 34733068453/12527306403,
62121856201/22405723468, 96854924654/34933029871,
449541554817/162137842952,
2794104253556/1007760087583,
3243645808373/1169897930535,
6037750061929/2177658018118,
39470146179947/14235846039243,
124448188601770/44885196135847,
163918334781717/59121042175090,
288366523383487/104006238310937,
6219615325834944/2243252046704767.

None of them satisfies condition (14). Therefore
there are no bad cases less thanxcut. Processing the
casex > xcut is similar and gives the same result, hence:

Theorem 5 (Correctly rounded multiplication by ln(2)):
Algorithm 1 always returns a correctly rounded result
in double precision withC = 2j ln(2), wherej is any
integer, provided no under/overflow occur.

�
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C. Example 3: multiplication by1/π in double precision
Consider the caseC = 4/π andn = 53, and assume

we use Method 1. We find:

Ch = 5734161139222659
4503599627370496

,

C` = −7.871470670 · · · × 10−17,

ε1 = 4.288574513 · · · × 10−33,

xcut = 1.570796 · · · ,
C`xcut = −1.236447722 · · · × 10−16,

ulp(C`xcut) = 2−105,

2nα = 1.716990939 · · · × 10−16,

pk/qk = 15486085235905811
6081371451248382

,

δ = 7.669955467 · · · × 10−17.

Consider the casex < xcut. Since δ < 2nα, there
can be bad cases for Algorithm 1. We try Algorithm 1
with X equal to the denominator ofpk/qk, that is,
6081371451248382, and we find that it does not return
◦(cX) for that value. Hence,there is at least one value
of x for which Algorithm 1 does not work.

Method 3 certifies thatX = 6081371451248382, i.e.,
6081371451248382 × 2±k are theonly FP values for
which Algorithm 1 fails.

D. Example 4: multiplication by
√

2 in single precision

Consider the caseC =
√

2, and n = 24 (which
corresponds to single precision), and assume we use
Method 1. We find:

Ch = 11863283/8388608,

C` = 2.420323497 · · · × 10−8,

ε1 = 7.628067479 · · · × 10−16,

Xcut = 11863283,

ulp(C`xcut) = 2−48,

2nα = 4.790110735 · · · × 10−8,

pk/qk = 22619537/7997214,

δ = 2.210478490 · · · × 10−8,

2n−1α′ = 2.769893477 · · · × 10−8,

pk′/qk′ = 22619537/15994428,

δ′ = 2.210478490 · · · × 10−8.

Since2nα > δ and X = qk = 7997214 is not a bad
case, we cannot conclude in the casex < xcut. Also,
since2n−1α′ > δ′ andX = qk′ = 15994428 is not a bad
case, we cannot conclude in the casex ≥ xcut. Hence,
in the caseC =

√
2 and n = 24, Method 1 does not

allow us to know if the multiplication algorithm works
for any input FP numberx. In that case, Method 2 also
fails. And yet, Method 3 or exhaustive testing (which
is possible sincen = 24 is reasonably small) show that
Algorithm 1 always works.

VI. I MPLEMENTATION AND RESULTS

As the reader will have guessed from the previous
examples, using Method 1 or Method 2 by paper and

pencil calculation is fastidious and error-prone (this is
even worse with Method 3). We have written Maple pro-
grams that implement Methods 1 and 2, and a GP/PARI2

program that implements Method 3. They allow any user
to quickly check, for a given constantC and a given
numbern of mantissa bits, if Algorithm 1 works for any
x, and Method 3 gives all values ofx for which it does
not work (if there are such values). These programs can
be downloaded from the url

http://perso.ens-lyon.fr/jean-michel.

muller/MultConstant.html
These programs, along with some examples, are given

in the appendix. Table II presents some obtained results.
They show that implementing Method 1, Method 2and
Method 3 is necessary: Methods 1 and 2 do not return a
result (either a bad case, or the fact that Algorithm 1
always works) for the same values ofC and n. For
instance, in the caseC = π/2 and n = 53, we know
thanks to Method 1 that the multiplication algorithm
always works, whereas Method 2 fails to give an answer.
On the contrary, in the caseC = 1/ ln(2) and n = 24,
Method 1 does not give an answer, whereas Method
2 makes it possible to show that the multiplication
algorithm always works. Method 3 always returns an
answer, but is and more complicated to implement: this
is not a problem for getting in advance a result such as
Theorem 4, for a general constantC. And yet, this might
make method3 difficult to implement in a compiler, to
decide at compile-time if we can use our multiplication
algorithm.

VII. C ONCLUSION

The three methods we have proposed allow to check
whether correctly rounded multiplication by an “infinite
precision” constantC is feasible at a low cost (one
multiplication and one fused-mac). For instance, in dou-
ble precision arithmetic, we can multiply byπ or ln(2)
with correct rounding. Interestingly enough, although
it is always possible to buildad hoc values ofC for
which Algorithm 1 fails, for “general” values ofC,
our experiments show that Algorithm 1 works for most
values ofn.
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