Correctly rounded multiplication by arbitrary
precision constants

Nicolas BrisebarreJean-Michel Mullet
ILaboratoire LARAL, Universi¢ Jean Monnet (Sairktienne)
and Laboratoire LIP (CNRS/ENS Lyon/INRIA/Univ. Lyon 1),
2CNRS, Laboratoire LIP,
Projet Aénaire, 46 alle d'ltalie, 69364 Lyon Cedex 07,
FRANCE
Nicolas.Brisebarre@ens-lyon.fr, Jean-Michel.Muller@ens-lyon.fr

Abstract—We introduce an algorithm for multiplying a The fused multiply accumulate instruction (fused-
floating-point number z by a constantC' that is not exactly mac for short) is available on some current processors
representable in floating-point arithmetic. Our algorithm gych as the IBM Power PC or the Intel/HP Itanium.
uses a multiplication and a fused multiply accumulate That instruction evaluates an expressian + b with
instruction. We give methods for checking whether, for one final rounding error only. This makes it possible
a given value of C' and a given floating-point format, our Co :
algorithm returns a correctly rounded result for any =x. to perform .c.o.rrectly rounded division .usmg Newton-
When it does not, our methods give the values for which ~@phson division [9], [3], [8]. Also, this makes eval-
the multiplication is not correctly rounded. uation of scalar products and polynomials faster and,

generally, more accurate than with conventional (addition
and multiplication) floating-point operations.
INTRODUCTION
Many numerical algorithms require multiplications by I. SOME STATISTICS

constants that are not exactly representable in floating-) _ _
point (FP) arithmetic. Typical constants that are used [1], Let» be the number of mantissa bits of the considered

[4] are 7, 1/7, In(2), e, By/k! (Euler-McLaurin sum- floating-point format (usual values of are 24, 53, 64,
mation),cos(km/N) andsin(kr /N) (Fast Fourier Trans- 113y For small values of, it is possible to compute
forms). Some numerical integration formulas such as [L X
page 133: (Cpx) ando(Cx) for all possible values of the mantissa
of z. The obtained results are given in Table I, o= .
1 55 59 37 9 “naive”
/ F@)da ~ h <ﬂf(m1) -~ e + 5) - ﬂf(m)) They show that, at least for some valuesipthe “naive
@0 method that consists in computingCz) returns an
also naturally involve multiplications by constants. ~ incorrectly rounded result quite often (in aroutt% of
For approximating Cz, where C' is an infinite- the cases fon =7).
precision constant and is a FP number, the desirable
result would be the best possible one, namelg'x), Il. THE ALGORITHM
whereo(u) is u rounded to the nearest FP number.
In practice one usually defines a constéft equal to
the FP number that is closest@ and actually computes
Crx (i.e., what is returned i®(Cpz)). The obtained

We want to compute”’z with correct rounding (as-
suming rounding to nearest even), whétés a constant
(i.e.,C is known at compile time)C' is not an FP number
) :) (otherwise the problem would be straightforward). We
result is frequently different from(C'x) (see Section | assume that a fused-mac instruction is available. We

for some statlstlgs). assume that the operands are stored in a binary FP format
Our goal here is to be able — at least for some consta Sh n-bit mantissas

and some FP formats — to retus(C'z) for all input FP
numbersx (provided no overflow or underflow occur),
and at a low cost (i.e., using a very few arithmeti
operations only). To do that, we will usédsed multiply { Cn = o(C), (1)
accumulateinstructions. Cy = o(C—0Cy),

We assume that the two following FP numbers are
Ere—computed:

Prggr?retgl';c’f or certify that there are none. These methods use the
n rounded following property, that bound the maximum possible
results distance betweens and Cz in Algorithm 1.
4 10.62500
5 | 0.93750 Property 1:
6| 0.78125 _
8 | 0.96875
e1 = |C — (Cp + Cy)| (3)
16 | 0.86765
17 | 073558 o If x < zeyrthen|ug — Cz| < 1/2ulp(u2) + «,
o If > xcythen|ug — Cx| < 1/2ulp(ug) + o/,
24 | 0.66805 where
TABLE | { a = Lulp(Cozew) + €12cu
Proportion of input values: for which o(Crz) = o(Cxz) for o = ulp(Cp) + 2.
C = 7 and various values of the numberof mantissa bits. 0
Proof.

From1l < C < 2 andC}, = o(C), we deduceC —

whereo(t) stands fott rounded to the nearest FP numbef/»| < 27", which gives (sinceC’ — C}, is not a power
In the sequel of the paper, we will analyze thef 2), 1

behavior of the following algorithm. We aim at being [er] < 5 ulp(Cy) < 22—l

able to know for which values af' andn it will return

a correctly rounded result for any. When it does not,

we wish to know for which values of it does not.

Now, we have,

lug — Cx| < |ug — (Cpz + uq)]

Algorithm 1: (Multiplication by € with a multi- +[(Chz + u1) — (Cha + Cyx)|
plication and a fused-mac).From z, compute +(Cp, + Cp)z — Cx|
{u = ccm o < Lulp(ua) + |1 — Cral + ol
uz = o(Chz +w). < Lulp(u2) + Lulp(Crz) + €.
The result to be returned is;. (4)
0]

When C is the exact reciprocal of a FP number, this f [u2—Cz] is less than /2 ulp (uz), thenus, is the FP
algorithm coincides with an algorithm for division by g'Umper that is closest toC'. Hence our problem is to
constant given in [2]. Iinow if Cx can be at a dlstanc_e larger 'than or equal to

Obviously (provided no overflow/underflow occur) if2 UlP (u2) from uz. From (4), this would imply thaC'z
Algorithm 1 gives a correct result with a given constaﬁﬂ’_%u'flbe at a distance less thgnilp (Cyz) + eifz| <
C and a given input variable, it will work as well with 2 from the middle of two consecutive FP numbers
a constan2?C and an input variable?z, wherep andq (S€€ Figure 1). _
are integers. Also, if: is a power of2 or if C is exactly | < Zeu thenzC' < 2, therefore the middle of
representable (i.eC; = 0), or if C —C, is a power of2 two consecutlve_ FP numb_ers around' is of the form
(so thatu; is exactly(C — Cy,)z), it is straightforward to /2", Where A is an odd integer betweett" + 1 and

+1 . -
show thatus = o(C'z). Hencewithout loss of generality, 2. — 1+ I @ = @cu, then the middle of two consecutive
we assume in the following that< = < 2 and1 < C < FP numbers aroundC' is of the form A/2"~*. For the

2, that C is not exactly representable, and th@t— Cj, sake of clarity of the proofs we assume tha{; is not
is not a power of an FP number (ifz¢y is an FP number, it suffices to

In Section IV, we give three methods. The first twgeparately check Algorithm 1 with = zcuy.
ones either certify that Algorithm 1 always returns a
correctly rounded result, or give a “bad case” (ie., a !ll- A REMINDER ON CONTINUED FRACTIONS

numberz for which us # o(Cx)), or are not able to We just recall here the elementary results that we need
conclude. The third one is able to return all “bad casesh the following, for the sake of completeness. For more

FP numbers

P Po = aop,
‘\, p1 = aiap+1,
A 0 = 1,
l'\ g = aa,
/// V// % l‘”pl/(uQ) \\ Dn = DPn—10n + Pn-2,
L N Gn = Gn-10n + 2.

The major interest of the continued fractions lies in
the fact thatp;/¢; is the best rational approximation to
o« among all rational numbers of denominator less than
or equal tog;.

We will use the following two results [5]

Domain where
xzC can be uy
located

"=~ If zC is here, ther(zC) = us Theorem 1: Let (p;/q;);>1 be the convergents ef.

! For any(p, ¢), with ¢ < g,+1, we have
CanzC be here?

lp — aq| > |pn — agn.
Fig. 1. From (4), we know thatC is within 1/2ulp (u2) + « (or
a’) from the FP numbet., wherea is less thare 2", If we are
able to show that:C' cannot be at a distance less than or equal to i .
a (or o) from the middle of two consecutive floating-point numbers, 1heorem 2: Let p,q be nonzero integers, with
then, necessarilyy2 will be the FP number that is closest #aC'. ged(p,q) = 1. If

0

information on continued fractions, see [5], [11], [10],
[6]. thenp/q is a convergent ofv.

Let o be a real number. From, consider the two
sequencesa;) and (r;) defined by:

IV. THREE METHODS FOR ANALYZINGALGORITHM 1

o =% A. Method 1: use of Theorem 1

ai = |nl, (5) Define X = 2" 'z and Xcy = [2" '@cw|. X and

rig1 = 1 _ Xcut are integers betweep™ ! + 1 and 2" — 1. We
r; —a;

separate the casas< xcyt andz > zeyt
1) If x < z¢ue We want to know if there is an integer
n n+1 _
If « is irrational, then these sequences are definéldbewveen? +1and2 1 such that

for any: (i.e., r; is never equal tay;), and the rational Co— 2 0 ©6)
number 2n
where« is defined in Property 1. (6) is equivalent to
i 1
B g+ T 20X — A| < 2"« (7)
v a; +
as + % Define(pi/¢)i>1 as the convergents @C. Let k be the
asz + . smallest integer such thaj,.1 > Xcu, and defined =
L |pr. — 2Cq|. Theorem 1 implies that for any, X € Z,

with 0 < X < Xey, 20X — A| > 6. Therefore
1) if § > 2"a then|Cz—A/2"| < « is impossibleln

is called theith convergentto «. If « is rational, then
these sequences finish for somandp; /¢; = « exactly.
The p;s and theg;s can be deduced from thg using
the following recurrences,

that case, Algorithm 1 returns a correctly rounded
result for anyz < zeys;

2) if 6 < 2"« then we try Algorithm 1 withy =
qx2~ "L, If the obtained result is nat(yC), then

we know that Algorithm 1 fails for at least onewhich Algorithm 1 does not work if there exisf = mgqg
valuét. Otherwise, we cannot conclude. and A = mp such that
2) If x > zcu: We want to know if there is an integer

X X<2m—1
A between2” + 1 and2"*! — 1 such that out <A = ;

M1 < A<

OX — A < e + 2ulp(Cha).

Cz — <d 8)

2n—1

This would mean
mq mp mq
C — <
ICX — Al < 2 Lo/ (9) gn—1 — gn-1| = “gn-1
which would imply

whered’ is defined in Property 1. (8) is equivalent to

1
+ B ulp (2Cy),

Define (p,/q})i>1 as the convergents @f. Let &’ be the
smallest integer such thaf, , > 2", and defined’ = 21
Ip},, — Cql,| . Theorem 1 implies that for anyt, X € Z, Ca—pl <eaq+ m* ulp (Ce), (12)

with Xour < X <27, [OX — A| > &' Therefore wherem* = [Xeu/q] is the smallest possible value of
1) if & > 2771/ then |Cz — A/2"7!| < o is m. Hence, if Condition (12) is not satisfied, convergent
impossible.In that case, Algorithm 1 returns ap/q cannot generate a bad case for Algorithm 1.
correctly rounded result for any > zcyy, Now, if Condition (12) is satisfied, we have to check
2) if ' < 2" 1o/ then we try Algorithm 1 withy = Algorithm 1 will all values X = mgq, with m* < m <
q, 271, If the obtained result is not(yC), then L(2" — 1) /q].
we know that Algorithm 1 fails for at least one 2) |f » < g if
value Otherwise, we cannot conclude.

A 1
Cx — 271‘ < €1%cut + 5 Ulp(CéfUcut)
B. Method 2: use of Theorem 2

Again, we useX = 2" 'z and Xy = 2" 'zcw),
and we separate the cases< zgy: andx > zeyt. ‘2(; _ A} < 9" %
1) If &> zeyg if X

then

€1%cut + % Ulp (C£$cut>
e .

Therefore, sinceX < X, if

1
e1%cut + 5 UIP (Cpzout) < s (13)
2 27’L+ Xcut
then,
A on—2 then we can apply Theorem 2: ifCz — A/2"| <
‘C - X’ <@t ulp (Cex). (10) ¢ zeu+ L ulp (Craew) then A/ X is a convergent o2C.
_ In that case, we have to check the convergents of
Now, if 2C of denominator less than or equal .. A given
il a1 < convergentp/q (with gcd(p, q) = 1) is a candidate for
2 €1 +2 ulp (2Cy) < 1, (11) generating a valueX for which Algorithm 1 does not
then for anyX < 2" (i.e., z < 2), work if there existX = mg and A = mp such that
on—2 | 1 21 < X < Xewr
€1+ X Up(Cg$)<2X2. 2n+1SAS2n+1_1
Hence, if (11) is satisfied, then (10) implies (from OX — 4| < eyweu+ 3 ulp (Comew).-

Theorem 2) thatd/ X is a convergent of’. This means
that if (11) is satisfied, to find the possible bad cases
for Algorithm 1 it suffices to examine the convergents ‘C mq _ mp
of C' of denominator less thaf”. We can quickly n-l o o2m
eliminate most of them. A given convergemtg (with which would imply
gcd(p, q) = 1) is a candidate for generating a valiefor

This would mean

1
< €1%cyt + By ulp (Crxeut),

12Cq — p|
1
<€1$cut+ 5 Ulp (Cﬁmcut)>)

Ut is possi : n (14)
It is possible thay be not between andxcyt. It will anyway be <

a counterexample, i.e., anbit number for which Algorithm 1 fails. m*

wherem* = [2"~1/4] is the smallest possible value ofWe look for the integers(, 2"~ < X < X, such that
m. Hence, if (14) is not satisfied, convergeny cannot there exists an integet, 2"~ < A4 < 2" — 1, with
generate a bad case for Algorithm 1. Y 24 41

Now, if (14) is satisfied, we have to check Algorithm 1 ’C"W +up — o ‘ < 2ulp(Cy)
will all values X = mgq, with m* < m < | Xcu/q].
This last result and (4) make it possible to deduce:i.e.,
ChX Ui 2A +1

Theorem 3 (Conditions onC and n): Assumel < o + " ontl
O <2 Let o= 20, and Xogg o |2 Lra] 2mulp(Cy) -~ 2ulp(Cy) 27+ ulp(Cy)
e If X = 2"z > Xg and 22tle; + Sincew/(2ulp(Cy)) is half an integer andz—u'%
22"~1ulp(2Cy) < 1 then Algorithm 1 will always gnq 2441 5re integers. we have Z
return a correctly rounded result, except possibly 2 up(c) ke

if X is a multiple of the denominator of a con- ;X Uy 2A+1 0.41/9
vezrggntp/q of C for which [Cq—p| < e1g+ 2nulp(C)) + 2ulp(Cy) 27+lulp(Cy) /2
“——ulp (Cy); . . . -
TXcut/al
i cuX — oty < Xup and eey + Then, combining these three equations with inequalities

1/2ulp (Cozrew) < 1/(27+1 Xew) then Algorithm 1 (15), we get the following three pairs of inequalities

will always return a correctly rounded result, except 0<2X(Ch+Cy) — (244 1)+ 2"ulp(Cy)

possibly if X is a multiple of the denominator of < 271 ulp (Cy)
a convergentp/q of 2C for which [2Cq —p| < - ’
mzﬁ (1zeut+ 3 3 Ulp (Crmeu)).- - 0<2X(Ch+Cy)—(2A+1)

< 2n+l UIp (Cé)a

0<2X(Ch+Cp) — (2A+1) 4+ 271 ulp (Cy)

C. Method 3: refinement of Method 2 < 27+l ulp(CY).
When Method 2 fails to return an answer, we can use .
the following method. Fory e R, let {y} b_e the frg'ctlonal part of: _{y} =
We have|C' — Cy| < 27", hence ulgCy) < 22" y — ly]. These three inequalities can be rewritten as
1) If x < xeue if ulp (Cy) < 272772 then we have (2X(Ch + Cp) + 27 ulp (Cp)} < 2 ulp (Cy),
1 Con_
[uz = O] < 5 ulp(u2) + 2727 {2X(Ch + Co)} < 27 ulp(C),
For any integerA, the inequality (2X(Cp + Cy) + 27+ ulp (C)} < 2™+ ulp ().
2A+1 1
Czx — 2?{ ‘ < St We use an efficient algorithm due to V. l&sfre [7] to
o determine the integer¥ solution of each inequality.
implies 2) If 2 > xeue if ulp (Cp) < 27271 then we have
1 1 1
20X —24 -1 < oo < 55 Juz = Cxr| < 5 ulp (ug) + 277",

(24 +1)/X is necessarily a convergent @ from Therefore, for any mtegeA the inequality
Theorem 2. It suffices then to check, as indicated in

Method 2, the convergents @iC' of denominator less ‘Cgc _ ﬂ 1
or equal toX¢yt. A
Now, assume ulpCy) > 272"~1. We have, is equivalent to
X X
—ulp(C C C Cio— ! !
P(Co) + Crgrs (Co) + Crgps CX —24-1]< 5 < o5

€., (2A + 1)/X is necessarily a convergent @f from

_92n n+1
27 ulp(Co) 4;”2 CeX Theorem 2. It suffices then to check, as indicated in
< w2 (15) Mmethod 2, the convergents ¢f of denominator less or
< 22"ulp (Cy) + 210y X. equal to2" — 1.

Now, assume ulpCy) = 2727, We look for the deduce:
integers X, Xcut+1 < X < 2™ — 1, such that there
exists an integer, 2"~ < 4 < 2" — 1, with Theorem 4 (Correctly rounded multiplication by =):
X 24 + 1 1 Algorithm 1 always returns a correctly rounded result in
Chﬁ +uy — Ton—1_ < 520 double precision withC' = 277, wherej is any integer,
provided no under/overflow occur.
i.e., N
|2n+IChX+U122n _2n+1(2A+1)| <1 Hence, in that case, multiplying byt with correct

rounding only require€ consecutive fused-macs.
Sinceu2%", 2"y, X and2" (24 +1) € Z, we have

n+1 2n __ on —
27 OhX + w2 2'(24+1) =0. B. Example 2: multiplication byn(2) in double preci-
Then, combining this equation with inequalities (15), weion

get the inequalities Consider the cas€’ = 2In(2) (which corresponds to

1 1 multiplication by any number of the for#t/ In(2)), and
0<X(Cp+Cp)—(24+1) + il = o n = 53, and assume we use Method 2. We find:
that is to say Ch = 0243314708165859
1 1 C = 4.638093628 .- x 107",
{(X(Ch+Cy) + ﬁ} < on Teut = 1.442695---,
= 1.141541688--- x 10733,
Here again, we use Leé¥re’s algorithm [7] to deter- chut
mine the integers\ solution of this inequality. +zulp(Ceeyt) = 7.8099--- x 107%,
/(2" Xeu) = 8.5437--- x 1073,

V. EXAMPLES

: T - - Since e;weyt + 1/2ulp (Cozewr) < 1/(27H Xew), to
A Example 1. multiplication byt |n. double precision find the p(glésible ba casecéJ for Algorithm ?Lu that are
Consider the cas€ = 7 /2 (which corresponds to less thanxzc, it suffices to check the convergents of

multiplication by any number of the forra*ix), and 2C Of dentomina_ltor less than or equal fo.u. These
n = 53 (which corresponds to double precision), angPnVergents are.

assume we use Method 1. We find: 2, 3, 11/4, 25/9, 36/13, 61/22, 890/321, 2731/985,
25460/9186, 1097898/395983, 1123367/405169,
Ch = 884279719003555/562949953421312, 2221265/801152,16672222/6013233, 18893487/6814385,
_ 17 35565709/12827618, 125590614/45297239,
Cy = 6.123233996--- x 107, 161156323/58124857, 609059583/219671810,
€1 — 1.497384905--- x 1033, 1379275480/497468477, 1988335072/717140287,
5355945633/1931749051, 7344280705/2648889338,
Teut = 1.2732395447351626862 - - -, 27388787748/9878417065, 34733068453/12527306403,
ulp (Cpzeut) = 27106 62121856201/22405723468, 96854924654/34933029871,
' ' 449541554817/162137842952,
ulp (Cy) = 27106, 2794104253556/1007760087583,
3243645808373/1169897930535,
Hence, 6037750061929/2177658018118,
39470146179947/14235846039243,
n _ ~17 124448188601770/44885196135847,
2o = 7.268364390 x 107, 163918334781717/59121042175090,
2"—lo/ = 6.899839541 x 10~17. 288366523383487/104006238310937,

6219615325834944/2243252046704767.

Computing the convergents at”' and C' we find N - - it 14 Theref
t t .
be 6134809525417045 one o em satisfies condition (14) erefore

AL there are no bad cases less thay:. Processing the
g 1952799169684491 caser > xqyt is similar and gives the same result, hence:
andé = 9.495905771 x 10717 > 2"« (which means that
Algorithm 1 works forz < z¢y), and Theorem 5 (Correctly rounded multiplication by In(2)):
P, 12055686754159438 Algorithm 1 al_/v‘_slys rgturns a'correctly round_ed result
J = S 67ASRBEET1678AT in double precision withC' = 27 In(2), wherej is any
k! integer, provided no under/overflow occur.
and ¢’ = 6.943873667 x 10717 > 27~1o/(which means O
that Algorithm 1 works forz > xz¢y). We therefore

C. Example 3: multiplication by /7 in double precision

Consider the casé = 4/7 andn = 53, and assume
we use Method 1. We find:

C _ 5734161139222659

h 4503599627370496

Cy = —7.871470670--- x 1077,

€1 = 4.288574513--- x 10733,

Teut = 1.570796- -,

Coxeut = —1.236447722--- x 1071,

ulp (Cozeut) = 2719,

2" = 1.716990939--- x 10716,
_ 15486085235905811

Pre/ = T6081371451248382 °

5 = 7.669955467--- x 10717,

Consider the case < zqt Sinced < 2"a, there

pencil calculation is fastidious and error-prone (this is
even worse with Method 3). We have written Maple pro-
grams that implement Methods 1 and 2, and a GP/PARI
program that implements Method 3. They allow any user
to quickly check, for a given constarit and a given
numbern of mantissa bits, if Algorithm 1 works for any
z, and Method 3 gives all values affor which it does
not work (if there are such values). These programs can
be downloaded from the url
http://perso.ens-lyon.fr/jean-michel.
muller/MultConstant.html
These programs, along with some examples, are given
in the appendix. Table Il presents some obtained results.

can be bad cases for Algorithm 1. We try Algorithm They show that implementing Method 1, Method2d

with X equal to the denominator agby/qx, that is,

Method 3 is necessary: Methods 1 and 2 do not return a

6081371451248382, and we find that it does not returnresult (either a bad case, or the fact that Algorithm 1

o(cX) for that value. Hencethere is at least one value
of x for which Algorithm 1 does not work.

Method 3 certifies thaX = 6081371451248382, i.e.,
6081371451248382 x 2** are theonly FP values for
which Algorithm 1 fails.

D. Example 4: multiplication by/2 in single precision

Consider the cas€ = 2, andn = 24 (which
corresponds to single precision), and assume we
Method 1. We find:

Ch = 11863283/8388608,

Cy = 2.420323497--- x 1078,
€1 = 7.628067479--- x 107°,
Xeut = 11863283,

ulp (Cozeut) = 2%,

2" = 4.790110735--- x 1078,
Pr/qk = 22619537/7997214,

5 = 2.210478490--- x 1078,
iy = 2.769893477--- x 1078,
Dr Qi = 22619537/15994428,

5 = 2.210478490--- x 1078.

Since2"a > § and X = ¢, = 7997214 is not a bad
case, we cannot conclude in the case< zgy. AlSo,
since2" o/ > ¢ and X = ¢, = 15994428 is not a bad
case, we cannot conclude in the case z., Hence,
in the caseC’ = v/2 andn = 24, Method 1 does not
allow us to know if the multiplication algorithm works
for any input FP numbet. In that case, Method 2 also

always works) for the same values 6f and n. For
instance, in the cas€’ = 7/2 andn = 53, we know
thanks to Method 1 that the multiplication algorithm
always works, whereas Method 2 fails to give an answer.
On the contrary, in the casé = 1/1n(2) andn = 24,
Method 1 does not give an answer, whereas Method
2 makes it possible to show that the multiplication
algorithm always works. Method 3 always returns an

wer, but is and more complicated to implement: this
is not a problem for getting in advance a result such as
Theorem 4, for a general constarit And yet, this might
make method difficult to implement in a compiler, to
decide at compile-time if we can use our multiplication
algorithm.

VIlI. CONCLUSION

The three methods we have proposed allow to check
whether correctly rounded multiplication by an “infinite
precision” constant”' is feasible at a low cost (one
multiplication and one fused-mac). For instance, in dou-
ble precision arithmetic, we can multiply by or In(2)
with correct rounding. Interestingly enough, although
it is always possible to builéhd hoc values of C' for
which Algorithm 1 fails, for “general” values of”,
our experiments show that Algorithm 1 works for most
values ofn.

REFERENCES
[1] M. Abramowitz and I. A. Stegun.Handbook of mathemati-

fails. And yet, Method 3 or exhaustive testing (which' ~ caj functions with formulas, graphs and mathematical tables
is possible sincey, = 24 is reasonably small) show that Applied Math. Series 55. National Bureau of Standards, Wash-

Algorithm 1 always works.

VI. IMPLEMENTATION AND RESULTS

As the reader will have guessed from the previous

ington, D.C., 1964.
[2] N. Brisebarre, J.-M. Muller, and S. Raina. Accelerating cor-
rectly rounded floating-point division when the divisor is known
in advance. IEEE Transactions on Computer§3(8):1069—
1072, August 2004.

examples, using Method 1 or Method 2 by paper and?htip://pari.math.u-bordeaux.fr/

| ¢ | n] methodl method2 method3 |
Does not Does not AW
T 8 work for work for unlessX =
226 226 226
T 24 unable unable AW
T 53 AW unable AW
T 64 unable AW AW (c)
T | 113 AW AW AW (c)
1/7 24 unable unable AW
Does not AW
1/7 53 work for unable unlessX =
6081371451248382 6081371451248382
1/m | 64 AW AW AW (c)
1/m | 113 unable unable AW
In2 | 24 AW AW AW (c)
In2 53 AW unable AW (c)
In2 64 AW unable AW (c)
In2 | 113 AW AW AW (c)
s 24 unable AW AW (c)
= 53 AW AW AW (c)
s | 64 unable unable AW
oS | 113 unable unable AW
In10 | 24 unable AW AW (c)
In10 | 53 unable unable AW
In10 | 64 unable AW AW (c)
In10 | 113 AW AW AW (c)
2| 24 unable unable AW
25| 53 unable AW AW (c)
S| 64 unable AW AW (c)
25| 113 unable unable AW
cosg | 24 unable unable AW
cosg | 53 AW AW AW (c)
cosg | 64 AW unable AW
cos g | 113 unable AW AW (c)
TABLE I

Some results obtained using methdd® and 3. The results given
for constantC' hold for all values2*’C. “AW” means “always

works” and “unable” means “the method is unable to conclude”.

For method 3, “(c)” means that we have needed to check the
convergents.

(3]

(4]

(5]

M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein.
Correctness proofs outline for newton-raphson based floating-
point divide and square root algorithms. In Koren and Kornerup,
editors,Proceedings of the 14th IEEE Symposium on Computer
Arithmetic (Adelaide, Australiapages 96-105, Los Alamitos,
CA, April 1999. IEEE Computer Society Press.

B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. T.
Vetterling. Numerical recipes in CCambridge University Press,

2 edition, 1992.

G. H. Hardy and E. M. Wright.An introduction to the theory

of numbers Oxford University Press, 1979.

[6] A.Ya. Khinchin. Continued FractionsDover, New York, 1997.
[7] V. Lefevre. Developments in Reliable Computjnchapter An

(8]

(9]

[10]

[11]

Algorithm That Computes a Lower Bound on the Distance
Between a Segment ad@if, pages 203-212. Kluwer, Dordrecht,
Netherlands, 1999.

P. Markstein. la-64 and Elementary Functions : Speed and
Precision Hewlett-Packard Professional Books. Prentice Hall,
2000. ISBN: 0130183482.

P. W. Markstein. Computation of elementary functions on the
IBM risc system/6000 processdBM Journal of Research and
Development34(1):111-119, January 1990.

O. Perron. Die Lehre von den Kettenbruchen, 3. verb. und
erweiterte Aufl.Teubner, Stuttgart, 1954-57.

H. M. Stark. An Introduction to Number TheoryMIT Press,
Cambridge, MA, 1981.

