
Division by Constant for the ST100 DSP Microprocessor

Jean-Michel Muller and Arnaud Tisserand
Arénaire project (CNRS–ENS Lyon–INRIA–UCBL)

LIP, ENS Lyon. 46 allée d’Italie
F–69364 Lyon Cedex 07, France

E-mail: {firstame.lastname}@ens-lyon.fr
Benoı̂t de Dinechin and Christophe Monat

STMicroelectronics
12 rue Jules Horowitz

F–38019 Grenoble, France
Email: {firstame.lastname}@st.com

Abstract

Algorithms for Euclidean (i.e., integer) division by a con-
stant operation are presented. They allow fast computation
for some values of the divisor (known at compile time) or
also when both quotient and modulus are required. These
algorithms are based on the multiply-accumulate instruc-
tion and the 40-bit arithmetic available in DSPs such as
the ST100 DSP from STMicroelectronics. The results are
demonstrated in the case of standard speech coding appli-
cations.

1. Introduction

Significant optimizations of the speed, memory require-
ment and power consumption of signal processing applica-
tions can be achieved by using dedicated arithmetic oper-
ations instead of general ones whenever possible. In this
paper we focus on algorithms for DSP (digital signal pro-
cessor) implementation of an efficient Euclidean (i.e., inte-
ger) division by a constant.

Instead of using rather slow algorithms for “general” di-
vision, when the divisor is known a priori, it is possible to
generate specialized division by a constant code on-the-fly
(i.e., at compile time). Advantages expected are not only
reduced execution time, but also the facilitation of other op-
timizations that are inhibited by the call sequence. Let us
now give a few examples of possible applications of an ef-
ficient division by a constant algorithm. Most of them are
interesting for designing efficient compilers.

• Trip count computations:

Some DSPs provide advanced hardware support to
speed-up execution of loops: hardware loops. Many
well-formed loops can be transformed at compile time
into a finite loop whose trip count must be computed
at run time. For instance, consider the following frag-
ment of C code:

for (i=i0 ; i<imax ; i+=STEP)
/* loop code */

The upper bound on the number of times the loop will
be executed is⌈

imax - i0

STEP

⌉
=

⌊
imax - i0 + STEP - 1

STEP

⌋

Since STEP is most often known at compile time, this
run time computation can be partly reduced by using a
division by constant method.

• Addresses of objects difference:

In ANSI C/C++, computing p-q where p and q are
of type T* requires generating code that evaluates
(p-q)/sizeof(T).

Some critical library codes use this feature (and there-
fore generate costly division calls), and could benefit
from the availability of a division by a constant algo-
rithm. It is worth noticing that in such a case, we know
that the remainder of the division is always zero. We

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

can try to take advantage from that to design an even
faster division algorithm.

• Hash-tables:

As pointed out by Mosberger [8], computing a hash-
table index typically involves dividing by a prime inte-
ger constant. Mosberger cites an example (the time it
takes to look-up all symbols in the standard C library),
for which replacing “general” division by a more spe-
cific algorithm leads to a 62% improvement.

• Radix conversions:

Radix-10 to radix-2 as well as radix-2 to radix-10 con-
versions are frequently needed when reading or dis-
playing/storing variables. These conversions do not
necessarily need to be fast (the time of computation
is of course much smaller than the delay required to
write or read in a file), but they must be correct and the
code size should be as small as possible. Such conver-
sions are best performed using integer division by 10
(quotient and modulus are required).

Compared to previous solutions, our algorithms allow to
get the quotient as well as the modulus (or remainder) very
quickly. They rely on the multiply-accumulate (MAC) op-
eration and the 40-bit arithmetic provided in many DSPs.

This paper is organized as follows. The arithmetic re-
sources of the DSP used in this work, the ST100 from
STMicroelectronics, are presented in Section 2. Section 3
presents the definitions and notations used below. Previ-
ous work is presented in Section 4. Our algorithms are pre-
sented in Section 5. Section 6 briefly presents the applica-
tion of our division by a constant algorithms on a speech
coding algorithms on the ST100 processor.

2. The ST100 DSP from STMicroelectronics

STMicroelectronics’s ST100 DSP core architecture [9]
is aimed at advanced embedded system-on-chip (SoC) so-
lutions for wireless terminals and base stations, networking,
broadband modems, voice-over-IP, data storage and mo-
bile multimedia applications where high performance, low
power and fast development are all essential. The first im-
plementation, called ST120, includes 5 processing units (2
for data arithmetic), 16 working data registers and 16 con-
trol registers, giving 3200 MOP/s and 800 MMAC/s (Mega
MAC per second) at 400 MHz in a 1.2 V static design.

All data registers are 40-bit wide and can be used with
signed/unsigned, 16, 32 or 40 integers or fractional values
(with several formats). For multiplication (and MAC), as
the 2 operands of the multiplier are only 16-bit wide, both
the lower or the upper 16-bit half words (of the 32-bit lower

bits in the data register) can be considered. The ST100
processor is able to execute 2 arithmetic instructions per
clock cycle. Those instructions can be 40-bit ALU (arith-
metic and logic unit) operations or 16 × 16 ± 40 → 40
MAC operations. The ST100 core provides 2 ALUs and 2
multiply-and-accumulate (or subtract) units. The full 40-
bit data registers and data-path allow up to 255 consecutive
16×16±32 → 40 multiply-accumulate operations without
any overflow.

3. Definitions and Notations

Division by a constant is also dealt with in [5], but in
a totally different context. The authors of that paper wish
to implement floating-point division, assuming that a full-
precision floating-point fused multiply-add unit is available.
Here, we are interested in integer division, and we assume
we use the integer units of the ST100 processor.

An important point is to clearly define what we mean by
“integer division”. As pointed out by Boute [4], the defini-
tions of functions div and mod in the computer science lit-
erature and in programming languages sometimes differ. As
a consequence, when a and b are not both positive, the re-
sult returned when computing a mod b and a div b may dif-
fer, depending on the programming environment (and may
be different from what the programmer had in mind). This
of course may be a severe source of bugs and problems of
portability.

The definition we chose in this paper is the following:

Definition 1 The quotient Q and remainder R of the divi-
sion of A by B are defined by :

A = BQ + R
0 ≤ |R| < |B|
R has the same sign as A

This convention is not the best one from a mathemati-
cal point of view (the best one is probably the one defined
from Euclide’s theorem [4]), and yet it is used in most C
compilers. Anyway, adapting our algorithms to other defi-
nitions is rather straightforward. Using this definition, and
denoting respectively Q(A,B) and R(A,B) the quotient
and remainder of the division of A by B, we get:

• Q(35, 4) = 8 and R(35, 4) = 3;

• Q(35,−4) = −8 and R(35,−4) = 3;

• Q(−35, 4) = −8 and R(−35, 4) = −3;

• Q(−35,−4) = +8 and R(−35,−4) = −3.

The following relations allow to easily deduce the gen-
eral case from the case of unsigned integers:

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

• Q(A,−B) = −Q(A,B) and R(A,−B) = R(A,B);

• Q(−A,B) = −Q(A,B) and R(−A,B) =
−R(A,B).

When implementing arithmetic operators, it is essential
to make sure that the potential overflow problems are ad-
dressed correctly. Concerning division with the above cho-
sen convention, the overflow detection is easily done: if A
and B are representable on a p-bit binary format (i.e., they
are between 0 and 2p − 1 if we assume an unsigned inte-
ger format, or they are between −2p−1 and 2p−1 − 1 if we
assume 2’s complement representation) then Q(A,B) and
R(A,B) are always representable in the same format unless
we are in 2′s complement and A = −2p−1 and B = −1.
This only exception is easily handled (the best solution is to
include it in a separate treatment of the otherwise obvious
case B = −1). In all that follows, we now assume that the
straightforward cases B = 0,±1,±2k are handled sepa-
rately, and we focus on the other cases.

In the sequel of the paper, we wish to divide A by B,
where A and B are 32-bit integers, and B is known at com-
pile time. Without loss of generality, we assume that B is
nonnegative. Since we assume that B is not a power of 2,
we have B ≥ 3. When fast multipliers are not available, one
can perform division by a constant as a sequence of shifts
and additions [3]. That was frequent with old circuits, and
that still can be used, for instance if one wishes to do some
computations in the address unit of the ST100 (in this work,
we design algorithms for the data unit of the ST100).

Now, most techniques [7, 6], including ours, consists in
multiplying A by some approximation to 1/B and then in
performing some correcting step, to get an exact quotient
and remainder. The approximation must be accurate enough
to make the correcting step simple, and yet must be so that
the initial multiplication be as simple as possible. The cor-
recting step is very architecture-dependent. One of the main
issues is to avoid tests as much as possible.

4. Granlund and Montgomery’s algorithm

Granlund and Montgomery’s algorithm [6] is based on
the following result.

Theorem 1 Suppose N , m, �, B are positive integers such
that

2N+� ≤ m × B ≤ 2N+� + 2�

then �A/B� = �m × A/2N+�� for every integer A with
0 ≤ A < 2N .

Hence, when A (unknown at compile time) and B
(known at compile time) are N -bit numbers, division by B
is replaced by multiplication by a suitable value m. Since

m can be as large as 2N+1, Granlund and Montgomery re-
place this multiplication by a shift, an addition and an N -bit
×N -bit multiplication:

A × m = A × 2N + A × (m − 2N).

On the ST100 DSP, this will require 4 16 × 16 + 40-bit
multiplications-accumulations, an addition, and shifts. Now
our goal is to check whether, for special cases, we can get a
faster and/or smaller code.

5. Division of unsigned integers

We assume that A is a positive 32-bit integer. Signed
values are handled using the formulas given in Section 3.
Our goal is to get a simple algorithm in some cases that, in
practice, occur quite often (e.g., we know in advance that
the remainder is zero, or the divisor is small).

We will use the following, straightforward, lemma.

Lemma 1 Let A and B be nonnegative integers. If ρ is an
approximation to A/B such that

0 ≤ ρ − A

B
<

1
B

,

then

�ρ� =
⌊

A

B

⌋

This case is very frequent, since is corresponds to the cal-
culation of addresses of objects difference (see Section 1).
Assume we divide A by B, where A and B are 32-bit un-
signed integers, B is known at compile time, and A is a
multiple of B. Define

A = AH216 + AL

B = BH216 + BL

Assuming B ≥ 3, one can compute at compile time two
integers ZH and ZL such that

Z =
1
B

= ZH2−17 − ZL2−33 − ZR2−33

where

ZH �= 0 is a 16-bit integer
ZL is a 16-bit integer
0 ≤ ZR < 1

At run-time, we compute

ρ1 = AHZH

ρ2 = −AHZL + ALZH

Q̂ =
⌊
2−1ρ1 + 2−17ρ2

⌋

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

(i.e., Q̂ is obtained by first computing ρ1+2−16ρ2, and then
by shifting the result by one position to the right.)

Define ρ = 2−1ρ1 + 2−17ρ2. we have:

ρ − A
B = ρ − AZ = (ALZL + AZR)2−33

≤ (
(216 − 1)ZL + (232 − 1)ZR

)
2−33

This last bound is always less than 1. Hence, since AZ =
A/B is an integer , and 0 ≤ ρ − AZ < 1, we necessarily
have �ρ� = AZ, therefore Q̂ is the quotient we are looking
for.

This case is easily handled. Let Z = 1/B, with B > 2.
At compile time, we compute two 16-bit positive integers
ZH and ZL that satisfy

Z = ZH × 2−17 + (ZL − ZR) × 2−33,

where 0 ≤ ZR < 1 (hence, ZH × 2−17 + ZL × 2−33

overestimates 1/B).
At run-time, we compute

ρ1 = AZH

ρ2 = AZL

Q̂ =
⌊
2−17ρ1 + 2−33ρ2

⌋
(Q̂ is obtained by first computing ρ1 + 2−16ρ2, and then by
shifting the result by 17 positions to the right)

We easily get:

0 ≤ (
2−17ρ1 + 2−33ρ2

)−AZ < (216−1)×2−33 < 2−17 <
1
B

,

Therefore, from Lemma (1), Q̂ = 1/B. If the remainder
is required, it is directly obtained by R = A−BQ̂, without
any risk of overflow.

We start from:

A = AH216 + AL

B = BH216 + BL

At compile time, we compute two positive integers ZH and
ZL such that

Z =
1
B

= ZH2−16−δ − ZL2−32−δ − ZR2−32−δ

where

ZH �= 0 is a 16-bit integer
ZL is a 16-bit integer
0 ≤ ZR < 1
δ is an integer, as large as possible

This computation of ZH et ZL can be done as follows:

power ←− 65536
δ ←− 0
ZH ←− power DIV B
while ZH ≤ 32767 do

δ := δ + 1
power := 2 × power
ZH := power DIV B

end
ZH := ZH + 1
rem := (ZH/power − 1/B) ∗ 2(32+δ)

ZL := trunc(rem)
ZR := rem − ZL

At run-time, we compute:

ρ1 = AHZH

ρ2 = −AHZL + ALZH

Q̂ =
⌊
2−δρ1 + 2−16−δρ2

⌋
(i.e., Q̂ is obtained by first computing ρ1+2−16ρ2, and then
by shifting the result by δ positions to the right.)

Define ρ = 2−δρ1 + 2−16−δρ2. We have:

ρ − A
B = ρ − AZ = (ALZL + AZR)2−32−δ

≤ (
(216 − 1)ZL + (232 − 1)ZR

)
2−32−δ

At compile time, we can compute (for a given value of
B) the bound:(

(216 − 1)ZL + (232 − 1)ZR

)
2−32−δ

When that bound is less than Z (which happens 231 times
for the first 1000 values of B, and 16185 times for the first
65535 values), the required quotient is Q̂, from Lemma (1).

The values of B less than 200 for which this special case
occurs are: 3, 5, 6, 10, 11, 12, 13, 17, 20, 22, 24, 26, 29,
34, 40, 43, 44, 48, 52, 58, 59, 67, 68, 80, 81, 85, 86, 88, 96,
104, 116, 118, 129, 134, 136, 137, 139, 141, 143, 149, 157,
160, 162, 163, 169, 170, 172, 175, 176, 181, 187, 192 and
199.

Example

Assume B = 85. The binary representation of Z is
0.0000001100000011000000110 We have:

δ = 6
ZH = 4934510

= 11000000110000012

ZL = 1619110

= 00111111001111112

ZR = 0.2470588 · · · 10
= 0.00111111001111110 · · · 2

For A = 546559, we get AH = 8 and AL = 22271. We
find ρ1 = 394760 and ρ2 = 1098832967, which gives Q̂ =
6430, which is the right quotient.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

When the simplifications presented in Sections 5.1, 5.2,
and 5.3 do not apply, we need a slightly more complex al-
gorithm. Let

A = AH × 216 + AL

B = BH × 216 + BL

Z = 1/B
= ZH × 2−17 + (ZL + ZR) × 2−33

where

• AH , AL, BH , BL, ZH et ZL are integers between 0
and 216 − 1 ;

• the first fractional bit of Z is zero;

• ZR is a real number between 0 and 1.

We get :

0 ≤ Z − (ZH × 2−17 + ZL × 2−33) < +2−33.

At run-time, we successively compute:{
ρ1 = 1

2AHZH

ρ2 = (AHZL + ALZH) × 2−17

It is worth noticing that these calculations are error-free and
overflow-free. Also, as soon as B > 217, ZH = 0. Since
this is known at compile time, the computation of ρ1 and ρ2

is simplified (in that case, ρ1 = 0 and ρ2 = AHZL×2−17).
Define Q̂ as the integer part of ρ1 + ρ2 (obtained by a mere
right shift of the 40-bit register that contains ρ1 + ρ2).

We have:

AZ − (ρ1 + ρ2) = (ALZL + AZR) × 2−33 (1)

This gives:
0 ≤ AZ − (ρ1 + ρ2)

≤ [
(216 − 1)2 + (232 − 1)

] × 2−33 = 1 − 2−17

Now define Q as the exact required quotient of the division
of A by B.

From:

Q = �A/B� = �AZ�
Q̂ = �ρ1 + ρ2�
0 ≤ AZ − (ρ1 + ρ2) ≤ 1 − 2−17 < 1

We deduce that Q is equal to Q̂ or to Q̂ + 1. What fol-
lows consists in trying to evaluate the “tentative remainder”
A−B(Q̂+1). Since −B ≤ A−B(Q̂+1) < +B, that tenta-
tive remainder is representable without overflow. Also, the
largest possible value of B(Q̂ + 1) is |A + B| which is rep-
resentable with the 40-bit format (since A and B are 32-bit
integers), so this multiplication cannot lead to an overflow.

Define Q̄L and Q̄H as Q̂+1 = Q̄H×216+Q̄L. Comput-
ing the product B(Q̂ + 1) does not require the calculation
of all partial products:

• if BH = 0 then BHQ̄H = 0;

• if BH �= 0 then either B equals 216 or 216 +1 (in such
cases, one may have Q̄H = 1 but the product B(Q̂+1)
is straightforwardly computed), or B ≥ 216+2. In that
last case, Q̄H = 0, therefore BHQ̄H = 0.

Hence, in almost all cases, BHQ̄H = 0. Therefore, in the
calculation of

R̂ = A−B(Q̂+1) = A−(BHQ̄L+BLQ̄H)×216−BLQL,

at least one term (either BHQ̄L or BLQ̄H), is known in
advance to be zero. The quotient Q and the remainder R of
the Euclidean division are obtained as:

• if R̂ < 0, then Q = Q̂ and R = R̂ + B;

• otherwise, Q = Q̂ + 1 and R = R̂.

Our calculation leads to adding to the 3 multiplications-
additions needed to compute ρ1 and ρ2 the computation of a
tentative remainder. Hence, if the remainder is not needed,
it is preferable to use Montgomery and Grandlung’s divi-
sion algorithm. If we need to compute the quotient and re-
mainder, our algorithm is preferable.

Example

Assume B = 560410 = 15E416. We find:

• Z = 0.0017844396859386152748037116345467 . . .10

• ZH = 2310 = 1716

• ZL = 2549410 = 639616

• ZR = 0.01855817273376159885 . . .10

• BH = 0

• BL = 560410 = 15E416

If A = 93272910 = E3B7916 then:

• ρ1 = 16110 = A116

• ρ2 = 70709110 × 2−17 = 5.6509816

• Q̂ = �ρ1 + ρ2� = 16610 = A616

Therefore Q̄H = 0, Q̄L = 16710 = A716. Since BH =
0, R̂ is computed as:

R̂ = A − B(Q̂ + 1) = A − BLQ̄H × 216 − BLQL.

We then get: R̂ = −3139. Therefore:

• Q = Q̂ = 16610 = A616;

• R = R̂ + B = 246510 = 9A116.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

6. Application

To demonstrate the benefits of our division by a constant
methods, we use the ETSI (European Telecommunication
Standards Institute) and ITU (International Telecommuni-
cation Union) reference implementations of speech coding
algorithms such as the ETSI EFR-5.1.0, the ETSI AMR-
NB [1], the ITU G.723.1 and G729 [2]. Our division by a
constant algorithms have been implemented in the C/C++
compiler from STMicroelectronics for the ST100 proces-
sor. The benchmarks have been compiled with the original
division algorithm and with our division by a constant algo-
rithms.

It should be noted that the original run-time division sup-
port of the ST100 core is already quite efficient, despite be-
ing a software only (library) implementation: this algorithm
runs in time proportional to the difference of absolute mag-
nitudes between the dividend and the divisor, and also takes
advantage of specific ST100 instructions: the Leading Zero
Count (LZC) to compute the difference of magnitudes be-
tween the dividend and the divisor, and the Viterbi instruc-
tion to implement the compare and subtract of the inner loop
in a single step.

The benefits of this replacement are not limited to the
sole net gain due to the smaller sequence, as they also en-
able other optimizations:

• Elimination of all edge cases such as trivial division or
division by zero.

• Call elimination removes optimization barriers, for in-
stance exposing another level of hardware loop and
freeing more registers that should be otherwise saved.

• Arithmetic operations can easily be speculated (in a
model where we accept to ignore sticky effects, which
is always the case with non-DSP arithmetic), thus giv-
ing more scheduling freedom.

• Partial redundancies can be exposed, thus eliminated
by further optimizations.

A drawback is a slight amount of code size expansion
but this effect is sometimes balanced by better opportuni-
ties to use the machine resources, filling otherwise unused
scheduling slots.

Performance of the vocoder algorithm families is usually
measured in MCycles/s, defined as the frequency at which
the core must run to sustain real-time speech coding and de-
coding. Since for a given compression rate speech is treated
as fixed duration samples, the performance computation is
straightforward.

This reduction of MCycles/s should be balanced against
the possible increase in code size, that has a negative impact

on the final circuit cost. Thus we measure the code bloat due
to inline expansion, that we define as :

Bloat =
Code size using optimization

Code size without the optimization

Table 1 presents the results for several benchmarks. For
each test, the number of executed cycles, the code size, the
speedup (original vs. using our algorithms) and the code
bloat are reported.

7. Conclusion

We developed and implemented a new integer division
by a constant method, that takes advantage of the native 40-
bit and MAC arithmetic capabilities found on modern digi-
tal signal processors such as the STMicroelectronics ST100
family.

Our algorithms allow to speedup the computation for
some special values of the divisor (known at compile time),
for reduced format operands, and when the remainder is
known to be zero. When both the quotient and the modu-
lus are required, our algorithms ensure faster computations.
All those cases can be implemented in a compiler to chose,
on-the-fly, the best possible algorithm for each value of the
divisor.

Our algorithms have been implemented in the ST100
compilation tools and have been validated on standard
speech coding algorithms from the ITU (International
Telecommunication Union) [2] and the ETSI (European
Telecommunication Standards Institute) [1].

References

[1] European telecommunications standards institute – ETSI:
GSM technical activity, SMG11 (speech) working group.
available at http://www.etsi.org.

[2] International telecommunication union (ITU). available at
http://www.itu.int.

[3] E. Artzy, J. Hinds, and H. Saal. A fast division technique for
constant divisors. Communications of the ACM, 19(2):98–
101, Feb. 1976.

[4] R. T. Boute. The euclidean definition of the functions div
and mod. ACM Trans. Program. Lang. Syst., 14(2):127–144,
1992.

[5] N. Brisebarre, J.-M. Muller, and S. Raina. Accelerating
correctly rounded floating-point division when the divisor
is known in advance. IEEE Transactions on Computers,
53(8):1069–1072, Aug. 2004.

[6] T. Granlund and P. L. Montgomery. Division by invariant in-
tegers using multiplication. In Proceedings of the ACM SIG-
PLAN’94 Conference on Programming Language Design and
Implementation, pages 61–72. ACM Press , New York, NY,
USA, Aug. 1994.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Original division Our division Improvement
Bench/Function/Variant (Divisor) Cycles (Bytes) Cycles (Bytes) Speedup (Bloat)

EFR/c1035pf set sign/C (5) 1554 (484) 1220 (512) 1.27 (1.17)
EFR/c1035pf set sign/LAI (5) 1652 (472) 1323 (504) 1.25 (1.07)
EFR/c1035pf cor h x/C (5) 3496 (388) 3175 (416) 1.10 (1.07)
EFR/c1035pf cor h x/LAI (5) 2553 (336) 2194 (352) 1.16 (1.05)
EFR/c1035pf search 10i40/C (5) 41620 (5068) 30261 (5460) 1.38 (1.11)
EFR/c1035pf search 10i40/LAI(5) 36490 (4720) 21876 (4832) 1.67 (1.02)

[7] D. Magenheimer, L. Peters, K. Pettis, and D. Zuras. Inte-
ger multiplication and division on the HP precision architec-
ture. IEEE Transactions on Computers, 37(8):980–990, Aug.
1988.

[8] D. Mosberger. Linux and the Alpha, how to make your appli-
cation fly, part 2. Linux Journal, 1997.

[9] STMicroelectronics. ST 122 DSP core overview hand-
book. available at http://us.st.com/stonline/
prodpres/dedicate/st100/document/
document.htm%, 2003.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

