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2Sum and Fast2Sum

Kahan/Dekker and Møller/Knuth;
used (implicitely or explicitely) in most compensated
algorithms (such as compensated summation, dot product
or polynomial evaluation), for manipulating
Floating-Point expansions, etc.
presented assuming round-to-nearest (RN), and no
overflow;
much more robust than usually believed: the result makes
sense even when the rounding function is not RN, and
they are almost immune to overflow.
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First (implicit) use of Fast2Sum

where the symbol f'l denotes an AND operation and the symbol 
• denotes a multiplication operation. 

(2) The result of an OR operation w i t h  any number of Boolean 
variables is the same as the (ar i thmetic)  addition of tile x, y, z 
integer variables after the following t e s t  is made: 

(a) If the sum is equal to zero, the  result  is correct; 
(b) If the sum is larger thart zero, the  answer is a 1; i.e. 

x + y + z =  A U B U C i f x + y +  z = 0 (2) 
x + y +  z = 1 if ( x - F y +  z) ~ 1 

where the symbol O denotes an OR (}peration and the symbol 
-{- denotes an addition operation. 

(3) The result of a NOT operation with a Bo{}lean variable is 
the same as subtracting an integer variable x from 1; i.e. 

i = (1 - -  x) (3) 

because if A = x = l, t h e n A  = 1 --  1 = 0 ; a n d i f  A = x = 0, 
then /[ = I -- 0 = I .  

The FOUTm~N program in Figure 1 illustrates the method pre- 
sented. I t  simulates the logic of a full-adder as described by the 
folh}wing two Boolean flmctions: 

.L = K1K.., + K~Ka + K2Ka (4) 

M = L(K, + K~ + Ka) + K~K~KKa (5) 

where K~ , K.a and Ka are the two inpu t  bits attd previous carry 
to be added, L is the output carry, and M is the output sum. 
htteger variables were chosen for compatibi l i ty with the FOEn'R~N 
language. 

E EXAMPLE OF BQOLEAN S I M U L A T I O N  
L SIMULAT |ON (IF A FULL-ADI IER 

DIMENSION K( 3 1  
C INITIAL.  I / E  IHE INPUT TRUTtt TABLE r 0  ZERO 

[10 1{} 1 = 1 , 3  
I0 K { I } ; O  

L { )~RIVE THE [RtJIH rABLE FOR THE SUM Mt AN[) THE CARRY L, 
I}f] 110 I=1,8 
L : K I I ) ' K I 2 I ~ K I I ) * K I 3 } ~ K I 2 I m E { 3 )  
IT IL}  2 ( } , ~ 0 , 2 0  

20 L = 1 
30 I . I = K [ I } + K I 2 ) ~ K ( 3 }  

1 F I L l )  6 0 , 5 0 , 4 0  
4 0  t l = l  
5 0  ~ = ( I - L I . L I  + K I I I ~ R I g I ~ K ( 3 )  

I F ( R )  6 0 , T 0 , 6 0  
6 0  M = 1 
tO PRINT T S , K I 3 I , K I 2 I , K I I I , M , L  

C GENERATE THE NEXT INPUT C O M B I N A I I ( } N  
K I 3 ) : K I I ) * K ( 2 I i ( I - K ( 3 ) )  ~ I I - K ( 1 ) ' K I 2 I } ~ K I I )  
IF (RI3 } )  80,90,g0 

80 K I 3 } = l  
90 K ( 2 }  = K I I ) ~ I I - K ( 2 } }  + { I - K I I I | ~ K { 2 }  

IF IK(2 ) )  TO0,110,100 
tO0 K ( 2 ) = l  
IiO K ( I I = ( I - K [ I ) )  

75 F O R M A T ( 1 0 X , I 3 , I 3 , I 3 , 6 X , I 3 , 1 3 )  
PAUSE 
END 

]?iG, 1 

The AND and NOT operatimts are  transf0rlned to multiplica- 
tion and subtraction operations as described in (1) and (3). The 
OR operation needs a control IF  s t a t e m e n t  after the arithmetic 
addition is performed in order to res tore  the value of tile variable 
to unity. This may be simplified by using a li'unction subprogram 
to calculate tile result of the OIL operat ion,  thus eliminating the 
need for repetition of the IF s t a t emen t s .  It was not done in this 
example because of the l imitat ien of the  FOremAN colnpiier in the 
1620 Model 1 computer where this p rogram was checked out, and 
where the use of subprograms is not pernfit ted.  

M .  M O R R I S  M A N O  
California State College at Los Angeles 
Los Angeles, California. 

R E C E I W B D  F E B R U A R Y ,  1964 

40 C o m m u n i c a t i o n s  o f  t h e  AC~I 

F U R T H E R  REMARKS ON R E D U  
TRUNCATION ERRORS 

Recent ly  Jack M. Wolfe [1] proposed the use o f  
accumulators to evaluate a sum of the form S = 
when N is large and all the y's are of rougMy the s a m (  
magnitude. His intention was to alleviate tile accumula~tion 0/ 
rounding or t runcat ion errors which otherwise occurs wlmn S i~ 
evaluated in the straightforward way illustrated by t h e  followbv, ! 
iFoRTtRAN program. 

1 S = 0.0 
2 D O 4 I  = 1, N 
3 Y[ . . . .  
4 S = S + Y [  
5 . . . .  

The rounding or truncation in s ta tement  4 could c o n t r i b u t e  to a 
loss of almost log~o N significant decimals in S. 2}his w o u k t  be 
important  in those cases where the values of YI c o m p u t e d  in 
s ta tement  3 were correct to nearly full machine p r e c i s i o n  ; ether. 
wise the  uncertainty in tile Yl 's  would swamp any addi t ional  
error introduced in s ta tement  4. 

Of course, the simplest and fastest way to prevent  s u c h  figure. 
loss is to accumulate S to double-precision. For e x ~ m p I e ,  ia 
FOn'rRAN IV program it would suffice to precede s t , '~teinent  1 
above by tile TYPE s ta tement  DOUBLE P R E C I S I O N  S • 
The convenient  accessibility of double-precision in m a n y  Fol~Taax 
and some ALGOL compilers indicates that  doub le -p rec i s ion  will 
soon be universally acceptable as a subst i tute for i n g e n u i t y  iT, 
the solution of muncrieal problems. 

In the meantime, programmers without easy access t o  dou[ 
precision arithmetic may be able to simulate it in t h e  progr  
above by a method far simpler than Wolfe's, p ro v i d ed  t h e y  
usit~g one of the electronic computers which normal ize  floati 
point sums before rounding or truncating them. A m o n g  s~ 
machines are, for ext~mple, tile I,B.M. 704, 709, 7090, 7094, 7( 
7044 and 360 (short word arithmetic).  

The trick to be described below does not work on  roach'  
such as the I.B.M. 650, 1620, Univac 1l(t7 and the C o n t r o l  I 
3600 which round or t runcate floating-point sums to  s i n g l e  
cision before normalizing them. 

In the following program $2 is an estimate of the e r r o r  caused 
when S = T was last rounded or truncated, and is u s e d  in  s tate  ~ 
ment 13 to compensate for that  error. The pa ren theses  in  state- 
merit 23 must not be omitted; they cause tile d i f f e r ence  (S--T) 
to be evaluated first and hence, in most e~ses, w i t h o u t  e r ror  be- 
cause the difference is normalized before it is rounded o r  t r u n c a t e d .  

1 S = 0 . 0  
s 2  = o . o  

2 D O 4 I  = I , N  
3 YI . . . .  

13 82 = 82 + YI 
T = S + 82 

23 $2 = ( S - T )  + $2 
4 S - T  i! 
5 . . . .  

Until  double-precision arithmetic was made ~;::k:l 
of tile t;OI~TRAX language, the author and his t I s 
trick on a 7090 in ili'OI~TmtN II programs to perform q u a d r a t u r e ,  
solve differential equations and sum infinite series. 

I{.E F E  I~.E N E E  : 

1. WOLFE, J. 5/[. Reducing truncation errors by p r o g r a m m i n g .  
Comm. ACM 7 (Jmm 1964), 355-35B. 

W. KAHAN 
University of Toronto 

I{E:CELVED JULY, 1964 Toronto, Ontqrio, C'ar~ada 

(Pracniques are eontin~,ed on page 48} 

Volume 8 N u m b e r  1 / J a n u a r y ,  1965 

!{ 

ii 

Kahan, Comm. ACM,
Jan. 1965;
error of the addition
S + S2, re-injected in the
calculation.
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First appearance of Twosum

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 43 

and making allowance for the specific t reatment of abs(v)< ½E u as e.g. 
takes place in the GIER computer, we conclude tha t  provided ]v I < ]u[ 
c gives the exact correction sought for except in the following special 
c a s e s :  

al  u:  I 0 . 0 0 0 0 - - - 2  and - E u < v < -½E  u (consequently lev(s)> 
lev(u)) causing the error to be the last figure of v. 

a2 u:  O l . l l . . l x x . . x l  
v: 0 0 . 0 0 . . 0 1 1 . .  1 l x i x ~ x a . . ,  x /  (and consequently lev(s) >lev(u)) 
in which cases the last figure of v, x~ (subf for finis), is lost. 

Even more bi~efly we can state tha t  in the rare cases in which Process 
A is incorrect the error is a cut away of the last figure of v and will never 
exceed ½E u. And when the error equals ½E u the result is equivalent to 
using no Process A (c = 0), i.e. we never do things worse than the bare 
addition s : = u + v. 

I t  should be noticed tha t  only when lev (s)> lev(u) and combination 
I I I  or IV occurs need we evaluate eu; in all other cases c :=  ev is suf- 
ficient. 

The process could be put in a compact form by writing 

8 : =  ~ + V ;  

c:-- (v-  
For the sake of completeness we shall present an extension of (3) 

which masters cases al ,  a2. 
What  we do is to evaluate vlabi : = v -  (vl + ev) (vlabi for last bit of v) 

and add this quant i ty  to c: 

c : = ev + eu + vlabi ; 

Written in the compact fashion c assumes the monstrous appearance 

(8- + (v-  ÷ ( v -  ; 
In case a2 this is sufficient in the sense tha t  the pair of numbers (s,c) 
here comprises all information about the addition u + v .  In  case a l  it is 
the triple (s, c, vlabi) tha t  comprises all information concerning the result 
from the addition. We confine ourselves to showing by means of examples 
how this works. 

Ex. 1 u: 10.0000 
v: l l . l l l l O x ~ x ~ x d x  5 
s :  101.111 

vl:  11 .11100 0 0 0 0 ev: O 0 . O 0 0 1 0 x ~ x a x  4 
u l :  10.0000 eu: 0 

v l + e v :  l l . l l l l O x ~ x 3 x 4 0  vlabi: O 0 . O 0 0 0 0 0 0 0 x s O 0 0 0  

Møller, Quasi
double-precision in
floating-point addition, BIT,
1965;
c is the error of the
addition s := u + v.
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Error of a FP addition

barring overflow, the error of a rounded-to-nearest FP
addition or subtraction is a FPN;
RN is necessary: radix-2, precision-p, rounding toward
−∞, if a = 1 and b = −2−3p, then

s = RD(a + b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1− 2−p,

and
a + b− s = 1.1111111111 · · · 11︸ ︷︷ ︸

2p

×2−p−1,

→ cannot be exactly represented with precision p.
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And yet. . .

directed rounding functions are very useful (upper/lower
bounds, stochastic arithmetic);
a piece of code designed with RN in mind may be used in
another context, willingly or not;
furthermore,

Let a and b be binary, precision-p, FPNs. Let
s ∈ {RD(a + b),RU(a + b)}. If |ea − eb| ≤ p− 1, then
s− (a + b) is a binary, precision-p, FPN.

even when the error of + is not a FPN, can we get a good
approximation to that error ? Would frequently suffice;
partial answers: Demmel & Nguyen; Graillat, Jézéquel, &
Picot (Fast2Sum), Martin-Dorel et al. (RN with possible
double roundings);
can we have spurious overflows ?
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Some notation

radix-2, precision-p, FP arithmetic, of extremal exponents
emin and emax (set Fp);
Ω = largest representable FPN:

Ω = (2− 21−p) · 2emax .

FP predecessor and successor of x: pred(x) and succ(x);
if x ∈ R, 2k ≤ |x| < 2k+1,

ulp(x) = 2max(k,emin)−p+1.

rounding functions RN, RD, RU, RZ (for RN the choice of
the tie-breaking rule is not important);
the FP number x̂ is a faithful rounding of x ∈ R if
x̂ ∈ {RD(x),RU(x)}.
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Rounding functions

Definition 1 (Rounding function—“optimal rounding” in
[Kulisch71])

Function ◦ from R to Fp is a rounding function if
∀x ∈ Fp, ◦(x) = x;
∀(x, y) ∈ R2, x ≤ y⇒ ◦(x) ≤ ◦(y).

Remark 2
If ◦ is a rounding function, then for any x, ◦(x) ∈ {RD(x),RU(x)}.
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Fast2Sum

Introduced by Dekker in 1971 (yet used by Kahan in 1965).

Algorithm 1: Conventional Fast2Sum Algorithm.

1: s← RN(a + b)
2: z← RN(s− a)
3: t← RN(b− z)

In the absence of overflow, if the radix of the FP system is ≤ 3,
and if the FP exponents ea and eb of a and b satisfy ea ≥ eb, then

s + t = a + b.
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TwoSum

Knuth (1969?) transforms Møller’ trick (1965) into a Theorem.

Algorithm 2: Conventional 2Sum algorithm.

1: s← RN(a + b)
2: a′ ← RN(s− b)
3: b′ ← RN(s− a′)
4: δa ← RN(a− a′)
5: δb ← RN(b− b′)
6: t← RN(δa + δb)

In the absence of overflow,

s + t = a + b.

Without knowing the respective orders of magnitude of a & b,
calling 2Sum in general more efficient than comparing them,
swapping them if needed, and calling Fast2Sum.
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We won’t say anything about underflows

Theorem 3 (Hauser)

If x and y are radix-β FP numbers, and if the number RN(x + y) is
subnormal, then x + y is a FP number (so that ◦(x + y) = x + y for
any rounding function).

Proof. x and y are multiples of the smallest nonzero FPN
α = βemin−p+1 → x + y is a multiple of α. If it is in the
subnormal range, then it is < βemin ⇒ exactly representable.
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What we are going to discuss. . .

Algorithm 3: Fast2Sum with faithful roundings: ◦1, ◦2, ◦3 are
rounding functions.

1: s← ◦1(a + b)
2: z← ◦2(s− a)
3: t← ◦3(b− z)

Algorithm 4: 2Sum with faithful roundings: ◦i, for i = 1, . . . , 6,
are rounding functions.

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)
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Some preliminary results

Lemma 4 (Sterbenz)

If x and y are finite floating-point numbers such that

y
2
≤ x ≤ 2y,

then x− y is a FP number.

Lemma 5

Let a and b be two binary FPN of exponents ea and eb. Let
s ∈ {RD(a + b),RU(a + b)}. If the exponent es of s is ≤ min(ea, eb)
then s = a + b.

Proof. a and b are multiple of 2ea−p+1 and 2eb−p+1, respectively. Since
es ≤ min(ea, eb), a + b is a multiple of 2es−p+1. By rounding it (through
any rounding function) to a multiple of 2es−p+1 we just get it.
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Accuracy of Fast2Sum assuming no overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a)
3: t← ◦3(b− z)

Lemma 6

Let a and b be two binary FPNs, with ea ≥ eb. Let
s ∈ {RD(a + b),RU(a + b)}. The number s− a is a FP number (→
computed exactly, with any rounding function).

Proof. Adaptation of Dekker’s original proof. If |b| ≤ |a| the
proof becomes straightforward: assuming a ≥ 0 (symmetry),
we have −a ≤ b ≤ a, and

if −a ≤ b ≤ −a/2 then Sterbenz⇒ s = a + b⇒ s− a = b is a
FPN;
if −a/2 ≤ b ≤ a then a/2 ≤ a + b ≤ 2a hence
a/2 ≤ s ≤ 2a⇒ s− a is aFPN.
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Accuracy of Fast2Sum assuming no overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a)
3: t← ◦3(b− z)

Lemma 6 only holds in radix 2.
Example: In radix 3 with p = 4 and ◦i = RU, if a = 10023 = 2910
and b = 22223 = 8010, then

s = RU(a + b) = 110103 = 11110,

so that s− a = 100013 = 8210 is not exactly representable with
precision 4.
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Accuracy of Fast2Sum assuming no overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a) = s− a
3: t← ◦3(b− z)= ◦3(b− (s− a)) = ◦3((a + b)− s)

Theorem 7

If no overflow occurs, and ea ≥ eb then the values s and t returned by
Algorithm 3 satisfy

t = ◦3((a + b)− s),

i.e., t is a faithful rounding of the error of the FP addition
s← ◦1(a + b).

→ if the difference of the exponents of a and b does not exceed
p− 1 (will occur in many practical cases), then t = (a + b)− s.
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2Sum: more tricky. . .

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

t not always faithful rounding of (a + b)− s:
p = 24, a = 3076485 · 2−21, b = −6130317 · 2−49,
◦1 = ◦2 = ◦5 = RU, ◦3 = ◦4 = ◦6 = RD, gives

s = a = 3076485 · 2−21 → (a + b)− s = b;
t = −1532579 · 2−47;

With any rounding function ◦, ◦((a + b)− s) = b 6= t.
However, (a + b− s)− t = −2−49 → t remains a very good
approximation to (a + b)− s.
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2Sum: more tricky. . .

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Theorem 8

If p ≥ 4 and no overflow occurs, then s and t satisfy

t = (a + b)− s + α,

with |α| < 2−p+1 · ulp(a + b) ≤ 2−p+1 · ulp(s). Furthermore, if es
and eb satisfy es − eb ≤ p− 1 then t is a faithful rounding of
(a + b)− s.
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Case splitting based on the location of b

Case 1

Case 2 Case 3

b
−a a0

−a/2
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An easy case: |b| ≥ a

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

|b| ≥ a⇒ lines (1), (2), and (4) of Algorithm 4 are
Fast2Sum(b,a).

→we have a′ = s− b and δa = ◦4(a + b− s). An immediate
consequence of a′ = s− b is b′ = b and δb = 0. From this, we find

t = ◦4(a + b− s)

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 20/36



A straightforward case: −a < b ≤ −a/2

Case 1

Case 2 Case 3

b
−a a0

−a/2
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A straightforward case: −a < b ≤ −a/2

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Sterbenz Lemma→ s = a + b. Successively implies a′ = a,
b′ = b, δa = δb = t = 0, so that

t = (a + b)− s.
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We are left with the painful part: −a/2 < b < a

Case 1

Case 2 Case 3

b
−a a0

−a/2
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We are left with the painful part: −a/2 < b < a

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Let u = 21−p. We have

s = (a + b) · (1 + ε1); with |ε1| ≤ u;
a′ = (s− b) · (1 + ε2); with |ε2| ≤ u.

→ a′ = (a + aε1 + bε1) · (1 + ε2).

|b| < a→ aε1 + bε1 = 2aε3, with |ε3| ≤ u. Therefore
a′ = a · (1 + η), with |η| ≤ 3u + 2u2. As soon as p ≥ 4, |η| < 1/2
so that a/2 ≤ a′ ≤ 2a→ δa = a− a′ by Sterbenz Lemma.
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We are left with the painful part: −a/2 < b < a

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

s ≥ |b| → Lines (2), (3), and (5) are equivalent to
Fast2Sum(s,−b), so that

b′ = s− a′, (1)

and
δb = ◦5(a′ − (s− b)). (2)

If es − eb ≤ p− 1, then (2) implies δb = a′ − (s− b), from which
we deduce t = ◦6(a + b− s).
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We are left with −a/2 < b < a and es − eb ≥ p

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′) = s− a′

4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

es − eb ≥ p⇒ |b| < ulp(s)⇒ a′ ∈ {succ(s), s,pred(s),pred(pred(s))},
and the case a′ = pred(pred(s)) can occur only when s is a power of 2.

spred(s) succ(s)

area where s − b can lie
ulp(s)

possible locations of a′ = ◦2(s − b)

General case: s is not a power of 2
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s

pred(pred(s))

succ(s)

area where s − b can lie
ulp(s)

possible locations of a′ = ◦2(s − b)

Special case: s is a power of 2
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We are left with −a/2 < b < a and es − eb ≥ p

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′) = s− a′

4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Remember: a′ ∈ {succ(s), s,pred(s),pred(pred(s))},

1 If a′ = s then b′ = 0. It follows that δb = b and δa = a− s, for
which we deduce t = ◦6(a + b− s),

2 If a′ 6= s then

a′ = s− σ · ulp(s),with σ ∈ {−1,+1/2,+1},

and we have

b′ = σ · ulp(s); δa = a− s + σ · ulp(s); and δb = ◦5(b− σ · ulp(s)).
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−a/2 < b < a, es − eb ≥ p, and a′ = s− σ · ulp(s)

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b) = s− σ · ulp(s)
3: b′ ← ◦3(s− a′) = s− a′ = σ · ulp(s)
4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′) = ◦5(b− σ · ulp(s))
6: t← ◦6(δa + δb)

Remember: |b| < ulp(s). Furthermore, b has the same sign as σ.
Therefore

either |b| ≥ |σ|/2 · ulp(s), in which case Sterbenz Lemma
→ δb = b− σ · ulp(s)⇒ δa + δb = a + b− s⇒ t = ◦6(a + b− s)

or |b| < |σ|/2 · ulp(s), in which case, from

|b− σ · ulp(s)| < |σ| · ulp(s)

(unless b = 0 but that case is straightforwardly handled), we get
(since |σ| · ulp(s) is a power of 2),

|δb − (b− σ · ulp(s))| < 1
2

ulp(σ·ulp(s)) =
|σ|
2

ulp(ulp(s)) = |σ|·2−pulp(s)
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−a/2 < b < a, es − eb ≥ p, and a′ = s− σ · ulp(s)

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b) = s− σ · ulp(s)
3: b′ ← ◦3(s− a′) = s− a′ = σ · ulp(s)
4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′) = ◦5(b− σ · ulp(s))
6: t← ◦6(δa + δb)

Consequence:

|(δa + δb)− (a + b− s)| < |σ| · 2−pulp(s).
|δa + δb| < ulp(a + b) + |σ| · 2−pulp(s). (3)

show that δa + δb is a multiple of
|σ| · 2−pulp(s)→ |δa + δb| < ulp(a + b);

case splitting (is s a power of 2?, is it above or below a + b ?)

→ |t− (a + b− s)| < 2−p+1ulp(a + b).
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Fast2Sum is immune to overflow

1: s← ◦1(a + b) reminder: ea ≥ eb
2: z← ◦2(s− a)
3: t← ◦3(b− z)

assume no overflow at line 1;
without l.o.g., assume a > 0;
s = a + b + ε, with |ε| < ulp(a + b) ≤ 2ulp(a), hence

s− a = b + ε

therefore, if line (2) overflows then b < −Ω + 2ulp(a) or
b > Ω− 2ulp(a)

if b < −Ω + 2ulp(a) then b < −Ω + 2ulp(Ω) and (since
ea ≥ eb), Ω/2 < 2emax ≤ a ≤ Ω. Sterbenz Lemma
→ s = a + b→ z = b→ no overflow at line 2;
if b > Ω− 2ulp(a) is impossible: this and ea ≥ eb imply
a + b > Ω/2 + Ω− 2ulp(Ω)→ line 1 overflows.

→ Line 2 cannot overflow.
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Fast2Sum is immune to overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a) no overflow→ z = s− a
3: t← ◦3(b− z)

Line 3 ?
Since line 2 does not overflow, z = s− a. Hence
b− z = (a + b)− s, hence

|b− z| < |(a + b)− s| < ulp(s) < |s|

→ no overflow.

Theorem 9
Assuming ea ≥ eb, if the computation of s (first line of Fast2Sum)
does not overflow, then the other lines cannot overflow.
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Of course, with 2Sum it is more tricky

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Theorem 10

If |a| < Ω and if there is no overflow at line (1) of the algorithm, then
there will be no overflow at lines (2) to (6).

Condition |a| < Ω is necessary. Assume all rounding functions
are RN (ties-to-even). The choice a = Ω and b = −(3/2) · ulp(Ω)
gives no overflow at line (1), and an overflow at line (2).
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On the list stds-754@IEEE.ORG

De: Jason Riedy <jason.riedy@cc.gatech.edu>
Objet: Updated twoSum proposal
Date: 18 mai 2016 17:15:58 UTC+2

Attached is an updated twoSum proposal that provides more
thorough justification for exceptional behavior.
There also is some example C code for context,
although that code ignores the rounding mode.

...
--------------------------------------
PROPOSAL: TWOSUM OPERATION

Jason Riedy
--------------------------------------

Table of Contents
--------------------
...
.. 2.1 Properties of an existing software implementation
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On the list stds-754@IEEE.ORG

De: Jason Riedy <jason.riedy@cc.gatech.edu>
Objet: Updated twoSum proposal
Date: 18 mai 2016 20:11:35 UTC+2

And Jean-Michel Muller writes:

> That analyses the behaviour of these algorithms with various
rounding modes, and shows that they are rather immune from
spurious overflow.

Thank you. My "careful" version fail with your example. augh.
I’ll work on that.
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Conclusion

In binary FP arithmetic, 2Sum and Fast2Sum are more “robust”
than it is usually believed:

even when the error of the initial FP addition is not a FP
number, they return a very good approximation to that
error (→ can be used in many compensated algorithms);
Fast2Sum totally immune to overflow;
2Sum almost totally immune to overflow: the only case
where a “spurious” overflow may occur is when the
absolute value of a is equal to Ω.
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