On the robustness of the 2Sum and Fast2Sum

algorithms

Sylvie Boldo Stef Graillat Jean-Michel Muller
Toulouse, May 2016

https://hal-ens-1lyon.archives-ouvertes.fr/ensl-01310023

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 1/36

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01310023

2Sum and Fast2Sum

o Kahan/Dekker and Mgller/Knuth;

@ used (implicitely or explicitely) in most compensated
algorithms (such as compensated summation, dot product
or polynomial evaluation), for manipulating
Floating-Point expansions, etc.

@ presented assuming round-to-nearest (RN), and no
overflow;
@ much more robust than usually believed: the result makes

sense even when the rounding function is not RN, and
they are almost immune to overflow.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016

First (implicit) use of Fast2Sum

In the following program S2 is aun estimate of the error caused
when 8 = T was last rounded or truncated, and is used in state
ment 13 to compensate for that error. The parenth s in state
ment 23 must not be omitted; they cause the difference (8—T)
to be evaluated first and hence, in most cases, without, error be-
cause the difference is normalized before it is rounded or truncated

18 =00
82 = 0.0

2 DO4L=1,N

3 YI= ..

13082 =82+ YI

=§ 482
G-1) + 82

3

4

5

Until double-precision arithmetic was made a standard feature
of the ForrrayN language, the author and his students used this

trick on a 7090 in Forrray 1L programs to perform quadrature,
solve differential equations and sum infinite series.

On the robustne

o Kahan, Comm. ACM,
Jan. 1965;

@ error of the addition

S + Sy, re-injected in the
calculation.

May 26, 2016

First appearance of Twosum

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 43

and making allowance for the specific treatment of abs(v)<1E, as e.g.
takes place in the GIER computer, we conclude that provided |v] < |u|
¢ gives the exact correction sought for except in the following special
cases:
al u:10.0000~ -2 and —E,<v<-—1E, (consequently lev(s)>
lev(u)) causing the error to be the last figure of v.
a2 wu: 01.11..1zz..z1
»: 00.00..011..112,;2,2;...2, (and consequently lev(s)>lev(x))
in which cases the last figure of v, z, (subf for finis), is lost.

Even more briefly we can state that in the rare cases in which Process
A is incorrect the error is a cut away of the last figure of » and will never
exceed 1%,. And when the error equals 3, the result is equivalent to
using no Process A (¢=0), i.e. we never do things worse than the bare
addition s := u+v.

It should be noticed that only when lev(s)>lev(z) and combination
IIT or IV occurs need we evaluate ew; in all other cases ¢ := ev is suf-
ficient.

The process could be put in a compact form by writing

8= u+v;
c:= (v—(s—w)+ (u——(sA(s-u)));
For the sake of completeness we shall present an extension of (3)
which masters cases al, a2.
What we do is to evaluate vlabi := v— (v1+ev) (vlabi for last bit of v)
and add this quantity to c:

c:= ev+eu+tvlabi;

On the robustne

o Moller, Quasi
double-precision in
floating-point addition, BIT,
1965;

@ cis the error of the
addition s := u + v.

Error of a FP addition

@ barring overflow, the error of a rounded-to-nearest FP
addition or subtraction is a FPN;

@ RN is necessary: radix-2, precision-p, rounding toward
—o0,ifa=1and b = -2, then
s=RD(a+b)=0.111111---11 =1 - 277,
—_—
p

and
a+b—s=11111111111---11 x2 7771,

2p

— cannot be exactly represented with precision p.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016

@ directed rounding functions are very useful (upper/lower
bounds, stochastic arithmetic);

@ a piece of code designed with RN in mind may be used in
another context, willingly or not;
o furthermore,

Let a and b be binary, precision-p, FPNs. Let
s € {RD(a+0b),RU(a+Db)}. If les —ey| < p—1, then
s — (a + b) is a binary, precision-p, FPN.

@ even when the error of + is not a FPN, can we get a good
approximation to that error ? Would frequently suffice;

@ partial answers: Demmel & Nguyen; Graillat, Jézéquel, &
Picot (Fast2Sum), Martin-Dorel et al. (RN with possible
double roundings);

@ can we have spurious overflows ?

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016

Some notation

e radix-2, precision-p, FP arithmetic, of extremal exponents
emin and emax (set Fp);

o () = largest representable FPN:
Q= (2-2177) . 20max,

@ FP predecessor and successor of x: pred(x) and succ(x);
o ifx € R, 2F < [x] < 2K,

ulp(x) = omax(k,emin) —p+1

e rounding functions RN, RD, RU, RZ (for RN the choice of
the tie-breaking rule is not important);

@ the FP number X is a faithful rounding of x € R if
x € {RD(x),RU(x)}.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016

Rounding functions

Definition 1 (Rounding function—"optimal rounding” in

[Kulisch71])

Function o from R to F, is a rounding function if
@ Vx € Fp,o(x) =x;
o V(x,y) € RZ,x <y = o(x) < o(y).

If o is a rounding function, then for any x, o(x) € {RD(x), RU(x)}.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 8/36

Introduced by Dekker in 1971 (yet used by Kahan in 1965).

Algorithm 1: Conventional Fast2Sum Algorithm.

1: s« RN(a+)
2: z+ RN(s —a)
3: t < RN(b —2z)

In the absence of overflow, if the radix of the FP system is < 3,
and if the FP exponents e, and e, of a and b satisfy e, > e}, then

s+t=a-+b.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016

Knuth (1969?) transforms Maeller’ trick (1965) into a Theorem.

Algorithm 2: Conventional 25um algorithm.

1: s < RN(a+b)
2: a' < RN(s — b)
3: b + RN(s —a')
4: 0; < RN(a —a')
5. 0p + RN(b = V')
6: t « RN(0, + 0p)

In the absence of overflow,
s+t=a-+0b.

Without knowing the respective orders of magnitude of a & b,
calling 2Sum in general more efficient than comparing them,
swapping them if needed, and calling Fast2Sum.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 10/36

We won't say anything about underflows

Theorem 3 (Hauser)

If x and y are radix-f3 FP numbers, and if the number RN(x +) is
subnormal, then x + y is a FP number (so that o(x +y) = x + y for
any rounding function).

Proof. x and y are multiples of the smallest nonzero FPN
o = emin=P+1 5 x 4y is a multiple of . If it is in the
subnormal range, then it is < 5°min = exactly representable.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 11/36

What we are going to discuss. ..

Algorithm 3: Fast2Sum with faithful roundings: o1, 0;, 03 are
rounding functions.

1: s < o1(a+Db)
2: z 4 ox(s —a)
3: t + o3(b—2)

Algorithm 4: 2Sum with faithful roundings: o;, fori =1,...,6,
are rounding functions.

1: s < ol<a + b)
2: a' + oy(s —b)
3: b < o3(s —a')
4: Oy <+ og(a—a’)
5. 0p < O5(b — b,)
6: t <+ 06((5{1 + (5b)

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 12/36

Some preliminary results
Lemma 4 (Sterbenz)

If x and y are finite floating-point numbers such that

%SxSZy,

then x — y is a FP number.

Lemma 5

Let a and b be two binary FPN of exponents e, and e;. Let
s € {RD(a + b),RU(a + b)}. If the exponent es of s is < min(eg, e;)
thens =a +b.

Proof. a and b are multiple of 2%~P*! and 2% ~#+1, respectively. Since
es < min(e,, e), a + b is a multiple of 26s—pH+, By rounding it (through
any rounding function) to a multiple of 24~P*! we just get it.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 13/36

Accuracy of Fast2Sum assuming no overflow

1: s+ o1(a+D)
2: 24 ox(s —a)
3: t + o3(b—2)

Let a and b be two binary FPNs, with e, > ey,. Let
s € {RD(a+b),RU(a + b)}. The number s — a is a FP number (—
computed exactly, with any rounding function).

Proof. Adaptation of Dekker’s original proof. If |b| < |a| the
proof becomes straightforward: assuming a > 0 (symmetry),
we have —a < b <g,and
@ if —a <b< —a/2thenSterbenz=s=a+b=s—a=">bisa
FPN;
e if —a/2 <b<athena/2 <a-+b < 2ahence
a/2 <s<2a=s—aisaFPN.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 14/36

Accuracy of Fast2Sum assuming no overflow

1: s+ o1(a+D)
2: 24 op(s —a)
3: t <+ o3(b —2)

Lemma 6 only holds in radix 2.
Example: In radix 3 with p =4 and o; = RU, if = 10023 = 29
and b = 22225 = 804, then

§ = RU(g + b) = 110103 = 111105

so that s — a = 100013 = 829 is not exactly representable with
precision 4.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 15/36

Accuracy of Fast2Sum assuming no overflow

1: s+ o1(a+D)
2024 0x(s—a)=s—ua
3t o3(b—z)=o03(b—(s—a)) =o3((a+b) —5)

Theorem 7

If no overflow occurs, and e, > e, then the values s and t returned by
Algorithm 3 satisfy

t = o3((a+1b)),

i.e., t is a faithful rounding of the error of the FP addition
s« o1(a+D).

— if the difference of the exponents of 2 and b does not exceed
p — 1 (will occur in many practical cases), then t = (a + b) —s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 16/36

25um: more tricky...

s < o1(a+b)
a 02(5 — b)
b < o3(s —a)
0g <+ og(a—a’)
0y < o5(b— 1)
t 4+ 06(0a +)

SANRSUI I v

t not always faithful rounding of (a + b) — s:
p=24,0 = 3076485 - 2721, b = —6130317 - 2%,
01 = 0p = 05 = RU, 03 = 04 = O = RD, giVQS

s = a=3076485-2"2 — (a+b) —s=1b;
—1532579 . 247,

With any rounding function o, o((a +b) —s) =b # t.
However, (a +b —s) — t = —27% — t remains a very good
approximation to (a + b) — s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 17/36

25um: more tricky...

1: s+ o1(a+Db)

2: a' + oy(s —b)
3: b+ o3(s—a')
4: 0y + og(a—a’)
5: 5;, — O5(b — b/)
6: < 0g(0, + 0p)

!

Theorem 8
If p > 4 and no overflow occurs, then s and t satisfy
t=(@+b)—s+a,

with |a| < 27P1 .ulp(a + b) < 27P+! . ulp(s). Furthermore, if e
and ey, satisfy e; — e, < p — 1 then t is a faithful rounding of
(a+Db) —s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 18/36

Case splitting based on the location of b

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 19/36

An easy case: |b| > a

1
2:
3: b o3(s—a')
4.
5

5 os(b—b)
6: f < 06(5ﬂ + 517)

|b| > a = lines and (4) of Algorithm 4 are

—wehaved =s—band §, = oy(a + b — s). An immediate
consequence of @’ = s —bisb’ = band §, = 0. From this, we find

t:O4(ﬂ+b—S)

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 20/36

A straightforward case: —a < b < —a/2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 21/36

A straightforward case: —a < b < —a/2

a’ < oy(s —b)
b+ o3(s—a’)
0g < og(a—a’)
0y < o5(b— 1)
6: t < 0g(dz + 0p)

Sterbenz Lemma — s = a + b. Successively implies a’ = g,
b'=0b,6,=0,=t=0,so0 that

t=(a+b)—s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 22/36

We are left with the painful part: —a/2 <b <a

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 23/36

We are left with the painful part: —a/2 <b <a

s+ oy(a+b)

a 02(5 — b)
b« o3(s —a)
0g < og(a—a’)
0y < os5(b—1b')
6: t < 0g(0y + 0p)

Let 1 = 2177, We have

= (@a+b)-(1+e); with |eg]| < u
a = (s—b) - (1+e); with |e| <u.

—d = (Cl+ﬂ€1+b61) . (1+62).

|b| < a — aey + be; = 2ae3, with |e3] < u. Therefore
a' =a-(1+n),with [n| <3u+2u? Assoonasp >4, |n| <1/2
so thata/2 <a' <2a — 0, = a — a’ by Sterbenz Lemma.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 24/36

We are left with the painful part: —a/2 <b <a

s < o1(a+Db)
a’ < oy(s —b)
b <+ o3(s —a)
Ogocs(a—a)y=a—a
§p < os(b— 1)

t < 06(8s + Op)

SANSUE I v

s > |b| — Lines (2), (3), and (5) are equivalent to
Fast2Sum(s, —b), so that

b =s—4d, (1)

and
0 = o5(a’ — (s = b)). ()

If e — e, < p — 1, then (2) implies 6, = a’ — (s — b), from which
we deduce t = og(a +b —s).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 25/36

We are left with —a/2 <b<aande;—e, > p

s<oi(a+Db)
a 02(5 — b)
b < o3(s —a)
0p + o4(a—a’)
617 — O5(b — b/)
< 06(0s +)

=s—a
=a—a

SANS U IS v

es—ep > p = |b] <ulp(s) = a’ € {succ(s),s, pred(s), pred(pred(s))}.
and the case a2’ = pred(pred(s)) can occur only when s is a power of 2.

ulp(s)
| | | | ‘ | | | |
pred(s) s succ(s)
NI

possible locations of ' = oz(s — b)

/ area where s — b can lie

General case: s is not a power of 2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 26/36

area where s — b can lie

pred(pred(s)) ulp(s)
l —>
< —————
s succ(s)

ANV,

possible locations of ' = oy(s — b)

Special case: s is a power of 2

raillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 27/36

We are left with —a/2 <b<aande;—e, > p

s+ o1(a+Db)
a' + oy(s —b)
b« o3(s—a)
0q ¢ 04(a—a’)
§p < os(b—b')
t <+ 06(611 + 5[,)

=s—da
=a—a

AN L N e

Remember: a’ € {succ(s), s, pred(s), pred(pred(s))},

Q Ifa’ =sthen?t = 0. It follows that 6, = band §, = a — s, for
which we deduce t = og(a + b — s),

Q Ifa’ # s then
a'=s—o-ulp(s),witho € {-1,+1/2,+1},
and we have

b' =0 -ulp(s);0, =a—s+o-ulp(s); and 6, = o5(b — o - ulp(s)).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 28/36

—aj/2<b<a,e;s—e,>p,anda’ =s— o -ulp(s)

s+ o1(a+Db)

a' < oy(s —b) =s—o-ulp(s)
b+ o3(s—a') = s—a = o - ulp(s)
Og—ogla—a)=a—

dp —o5(b—0") = o(— o -ulp(s))
6: t(—06(5 +5b)

Remember: |b| < ulp(s). Furthermore, b has the same sign as o.
Therefore

@ either |b| > |o|/2 - ulp(s), in which case Sterbenz Lemma
—p=b—0c-ulp(s)=>d+dh=a+b—s=t=o¢a+b—>s)

@ or |b| < |o|/2 - ulp(s), in which case, from
|b — o -ulp(s)| < |o| - ulp(s)

(unless b = 0 but that case is straightforwardly handled), we get
(since || - ulp(s) is a power of 2),

s~ (b~ o ulp(s))| < ulp(oulp(s)) = Zulp(ulp(s)) = |o] 2 Pulp(s

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 29/36

—aj/2<b<a,e;s—e,>p,anda’ =s— o -ulp(s)

1: seol(a+b)

2:a < ox(s —b) =s—oc-ulp(s)

3 V< o3(s—a)=s—a =o-ulp(s)
4: g ogla—a)=a—a

5: O <= o5(b —b") = o5(b — o - ulp(s))
6: t(*o6(5 +6l7)

Consequence:

[(0a +6p) —(@a+b—5s)| < |o|-27Pulp(s). 3)
|0a + 0p| < ulp(a +b) + |o| - 27Pulp(s).

@ show that §, + J; is a multiple of
lo| - 27Pulp(s) — |0z + 0p| < ulp(a + b);

@ case splitting (is s a power of 2?, is it above or below a + b ?)

= t—(a+b—s)| <27PFlulp(a +b).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016

30/36

Fast2Sum is immune to overflow

1: s<—o1(a+0b) reminder: e, > ¢
2: 24+ op(s—a)
3: t+o3(b—2z2)

@ assume no overflow at line 1;
e withoutl.o.g., assume a > 0;
@ s=a+ b+ ¢ with |e] <ulp(a+b) < 2ulp(a), hence

s—a=b-+e¢

o therefore, if line (2) overflows then b < —Q + 2ulp(a) or
b > Q —2ulp(a)
o if b < —Q +2ulp(a) then b < —Q 4 2ulp(Q2) and (since
e, > ep), Q)2 < 20 < g < (). Sterbenz Lemma
—s$=a-+b—z=>b— nooverflow at line 2;
o if b > Q1 —2ulp(a) is impossible: this and e, > ¢, imply
a+b>Q/2+Q—2ulp(Q) — line 1 overflows.
— Line 2 cannot overflow.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 31/36

Fast2Sum is immune to overflow

1: s+ o1(a+D)

2: z 4 op(s —a) nooverflow - z=s5—a

3: t <+ o3(b—2)
Line3?
Since line 2 does not overflow, z = s — 4. Hence
b—z=(a+0b)—s, hence

|b—z| <|(a+b)—s| <ulp(s) < |s]

— no overflow.

Theorem 9

Assuming e, > ey, if the computation of s (first line of Fast2Sum)
does not overflow, then the other lines cannot overflow.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 32/36

Of course, with 25um it is more tricky

s« o1(a+b)
a’ + op(s —b)
b« o3(s—a)
0q 4 o4(a—a’)
(Sb — 05(17 — b/)
t <+ 06(512 + (Sb)

SANNS U N e

Theorem 10

If |a| < Q and if there is no overflow at line (1) of the algorithm, then
there will be no overflow at lines (2) to (6).

Condition |a| <) is necessary. Assume all rounding functions
are RN (ties-to-even). The choicea = Q and b = —(3/2) - ulp(Q2)
gives no overflow at line (1), and an overflow at line (2).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 33/36

On the list stds-754@IEEE.ORG

De: Jason Riedy <jason.riedy@cc.gatech.edu>
Objet: Updated twoSum proposal
Date: 18 mai 2016 17:15:58 UTC+2

Attached is an updated twoSum proposal that provides more
thorough justification for exceptional behavior.

There also is some example C code for context,

although that code ignores the rounding mode.

PROPOSAL: TWOSUM OPERATION
Jason Riedy

raillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum

On the list stds-754@IEEE.ORG

De: Jason Riedy <jason.riedy@cc.gatech.edu>
Objet: Updated twoSum proposal
Date: 18 mai 2016 20:11:35 UTC+2

And Jean-Michel Muller writes:
> That analyses the behaviour of these algorithms with various
rounding modes, and shows that they are rather immune from

spurious overflow.

Thank you. My "careful" version fail with your example. augh
I’11 work on that.

raillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum

Conclusion

In binary FP arithmetic, 2Sum and Fast25um are more “robust”
than it is usually believed:

@ even when the error of the initial FP addition is not a FP
number, they return a very good approximation to that
error (— can be used in many compensated algorithms);

@ Fast2Sum totally immune to overflow;

@ 25um almost totally immune to overflow: the only case
where a “spurious” overflow may occur is when the
absolute value of 4 is equal to €.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 36/36

