
On the robustness of the 2Sum and Fast2Sum
algorithms

Sylvie Boldo Stef Graillat Jean-Michel Muller

Toulouse, May 2016

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01310023

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 1/36

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01310023

2Sum and Fast2Sum

Kahan/Dekker and Møller/Knuth;
used (implicitely or explicitely) in most compensated
algorithms (such as compensated summation, dot product
or polynomial evaluation), for manipulating
Floating-Point expansions, etc.
presented assuming round-to-nearest (RN), and no
overflow;
much more robust than usually believed: the result makes
sense even when the rounding function is not RN, and
they are almost immune to overflow.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 2/36

First (implicit) use of Fast2Sum

where the symbol f'l denotes an AND operation and the symbol
• denotes a multiplication operation.

(2) The result of an OR operation w i t h any number of Boolean
variables is the same as the (ar i thmetic) addition of tile x, y, z
integer variables after the following t e s t is made:

(a) If the sum is equal to zero, the result is correct;
(b) If the sum is larger thart zero, the answer is a 1; i.e.

x + y + z = A U B U C i f x + y + z = 0 (2)
x + y + z = 1 if (x - F y + z) ~ 1

where the symbol O denotes an OR (}peration and the symbol
-{- denotes an addition operation.

(3) The result of a NOT operation with a Bo{}lean variable is
the same as subtracting an integer variable x from 1; i.e.

i = (1 - - x) (3)

because if A = x = l, t h e n A = 1 -- 1 = 0 ; a n d i f A = x = 0,
then /[= I -- 0 = I .

The FOUTm~N program in Figure 1 illustrates the method pre-
sented. I t simulates the logic of a full-adder as described by the
folh}wing two Boolean flmctions:

.L = K1K.., + K~Ka + K2Ka (4)

M = L(K, + K~ + Ka) + K~K~KKa (5)

where K~ , K.a and Ka are the two inpu t bits attd previous carry
to be added, L is the output carry, and M is the output sum.
htteger variables were chosen for compatibi l i ty with the FOEn'R~N
language.

E EXAMPLE OF BQOLEAN S I M U L A T I O N
L SIMULAT |ON (IF A FULL-ADI IER

DIMENSION K(3 1
C INITIAL. I / E IHE INPUT TRUTtt TABLE r 0 ZERO

[10 1{} 1 = 1 , 3
I0 K { I } ; O

L {)~RIVE THE [RtJIH rABLE FOR THE SUM Mt AN[) THE CARRY L,
I}f] 110 I=1,8
L : K I I) ' K I 2 I ~ K I I) * K I 3 } ~ K I 2 I m E { 3)
IT IL} 2 (} , ~ 0 , 2 0

20 L = 1
30 I . I = K [I } + K I 2) ~ K (3 }

1 F I L l) 6 0 , 5 0 , 4 0
4 0 t l = l
5 0 ~ = (I - L I . L I + K I I I ~ R I g I ~ K (3)

I F (R) 6 0 , T 0 , 6 0
6 0 M = 1
tO PRINT T S , K I 3 I , K I 2 I , K I I I , M , L

C GENERATE THE NEXT INPUT C O M B I N A I I (} N
K I 3) : K I I) * K (2 I i (I - K (3)) ~ I I - K (1) ' K I 2 I } ~ K I I)
IF (RI3 }) 80,90,g0

80 K I 3 } = l
90 K (2 } = K I I) ~ I I - K (2 } } + { I - K I I I | ~ K { 2 }

IF IK(2)) TO0,110,100
tO0 K (2) = l
IiO K (I I = (I - K [I))

75 F O R M A T (1 0 X , I 3 , I 3 , I 3 , 6 X , I 3 , 1 3)
PAUSE
END

]?iG, 1

The AND and NOT operatimts are transf0rlned to multiplica-
tion and subtraction operations as described in (1) and (3). The
OR operation needs a control IF s t a t e m e n t after the arithmetic
addition is performed in order to res tore the value of tile variable
to unity. This may be simplified by using a li'unction subprogram
to calculate tile result of the OIL operat ion, thus eliminating the
need for repetition of the IF s t a t emen t s . It was not done in this
example because of the l imitat ien of the FOremAN colnpiier in the
1620 Model 1 computer where this p rogram was checked out, and
where the use of subprograms is not pernfit ted.

M . M O R R I S M A N O
California State College at Los Angeles
Los Angeles, California.

R E C E I W B D F E B R U A R Y , 1964

40 C o m m u n i c a t i o n s o f t h e AC~I

F U R T H E R REMARKS ON R E D U
TRUNCATION ERRORS

Recent ly Jack M. Wolfe [1] proposed the use o f
accumulators to evaluate a sum of the form S =
when N is large and all the y's are of rougMy the s a m (
magnitude. His intention was to alleviate tile accumula~tion 0/
rounding or t runcat ion errors which otherwise occurs wlmn S i~
evaluated in the straightforward way illustrated by t h e followbv, !
iFoRTtRAN program.

1 S = 0.0
2 D O 4 I = 1, N
3 Y[. . . .
4 S = S + Y [
5

The rounding or truncation in s ta tement 4 could c o n t r i b u t e to a
loss of almost log~o N significant decimals in S. 2}his w o u k t be
important in those cases where the values of YI c o m p u t e d in
s ta tement 3 were correct to nearly full machine p r e c i s i o n ; ether.
wise the uncertainty in tile Yl 's would swamp any addi t ional
error introduced in s ta tement 4.

Of course, the simplest and fastest way to prevent s u c h figure.
loss is to accumulate S to double-precision. For e x ~ m p I e , ia
FOn'rRAN IV program it would suffice to precede s t , '~teinent 1
above by tile TYPE s ta tement DOUBLE P R E C I S I O N S •
The convenient accessibility of double-precision in m a n y Fol~Taax
and some ALGOL compilers indicates that doub le -p rec i s ion will
soon be universally acceptable as a subst i tute for i n g e n u i t y iT,
the solution of muncrieal problems.

In the meantime, programmers without easy access t o dou[
precision arithmetic may be able to simulate it in t h e progr
above by a method far simpler than Wolfe's, p ro v i d ed t h e y
usit~g one of the electronic computers which normal ize floati
point sums before rounding or truncating them. A m o n g s~
machines are, for ext~mple, tile I,B.M. 704, 709, 7090, 7094, 7(
7044 and 360 (short word arithmetic).

The trick to be described below does not work on roach'
such as the I.B.M. 650, 1620, Univac 1l(t7 and the C o n t r o l I
3600 which round or t runcate floating-point sums to s i n g l e
cision before normalizing them.

In the following program $2 is an estimate of the e r r o r caused
when S = T was last rounded or truncated, and is u s e d in s tate ~
ment 13 to compensate for that error. The pa ren theses in state-
merit 23 must not be omitted; they cause tile d i f f e r ence (S--T)
to be evaluated first and hence, in most e~ses, w i t h o u t e r ror be-
cause the difference is normalized before it is rounded o r t r u n c a t e d .

1 S = 0 . 0
s 2 = o . o

2 D O 4 I = I , N
3 YI

13 82 = 82 + YI
T = S + 82

23 $2 = (S - T) + $2
4 S - T i!
5

Until double-precision arithmetic was made ~;::k:l
of tile t;OI~TRAX language, the author and his t I s
trick on a 7090 in ili'OI~TmtN II programs to perform q u a d r a t u r e ,
solve differential equations and sum infinite series.

I{.E F E I~.E N E E :

1. WOLFE, J. 5/[. Reducing truncation errors by p r o g r a m m i n g .
Comm. ACM 7 (Jmm 1964), 355-35B.

W. KAHAN
University of Toronto

I{E:CELVED JULY, 1964 Toronto, Ontqrio, C'ar~ada

(Pracniques are eontin~,ed on page 48}

Volume 8 N u m b e r 1 / J a n u a r y , 1965

!{

ii

Kahan, Comm. ACM,
Jan. 1965;
error of the addition
S + S2, re-injected in the
calculation.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 3/36

First appearance of Twosum

QUASI DOUBLE-PRECISION IN FLOATING POINT ADDITION 43

and making allowance for the specific t reatment of abs(v)< ½E u as e.g.
takes place in the GIER computer, we conclude tha t provided]v I <]u[
c gives the exact correction sought for except in the following special
c a s e s :

al u: I 0 . 0 0 0 0 - - - 2 and - E u < v < -½E u (consequently lev(s)>
lev(u)) causing the error to be the last figure of v.

a2 u: O l . l l . . l x x . . x l
v: 0 0 . 0 0 . . 0 1 1 . . 1 l x i x ~ x a . . , x / (and consequently lev(s) >lev(u))
in which cases the last figure of v, x~ (subf for finis), is lost.

Even more bi~efly we can state tha t in the rare cases in which Process
A is incorrect the error is a cut away of the last figure of v and will never
exceed ½E u. And when the error equals ½E u the result is equivalent to
using no Process A (c = 0), i.e. we never do things worse than the bare
addition s : = u + v.

I t should be noticed tha t only when lev (s)> lev(u) and combination
I I I or IV occurs need we evaluate eu; in all other cases c := ev is suf-
ficient.

The process could be put in a compact form by writing

8 : = ~ + V ;

c:-- (v-
For the sake of completeness we shall present an extension of (3)

which masters cases al , a2.
What we do is to evaluate vlabi : = v - (vl + ev) (vlabi for last bit of v)

and add this quant i ty to c:

c : = ev + eu + vlabi ;

Written in the compact fashion c assumes the monstrous appearance

(8- + (v- ÷ (v - ;
In case a2 this is sufficient in the sense tha t the pair of numbers (s,c)
here comprises all information about the addition u + v . In case a l it is
the triple (s, c, vlabi) tha t comprises all information concerning the result
from the addition. We confine ourselves to showing by means of examples
how this works.

Ex. 1 u: 10.0000
v: l l . l l l l O x ~ x ~ x d x 5
s : 101.111

vl: 11 .11100 0 0 0 0 ev: O 0 . O 0 0 1 0 x ~ x a x 4
u l : 10.0000 eu: 0

v l + e v : l l . l l l l O x ~ x 3 x 4 0 vlabi: O 0 . O 0 0 0 0 0 0 0 x s O 0 0 0

Møller, Quasi
double-precision in
floating-point addition, BIT,
1965;
c is the error of the
addition s := u + v.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 4/36

Error of a FP addition

barring overflow, the error of a rounded-to-nearest FP
addition or subtraction is a FPN;
RN is necessary: radix-2, precision-p, rounding toward
−∞, if a = 1 and b = −2−3p, then

s = RD(a + b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1− 2−p,

and
a + b− s = 1.1111111111 · · · 11︸ ︷︷ ︸

2p

×2−p−1,

→ cannot be exactly represented with precision p.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 5/36

And yet. . .

directed rounding functions are very useful (upper/lower
bounds, stochastic arithmetic);
a piece of code designed with RN in mind may be used in
another context, willingly or not;
furthermore,

Let a and b be binary, precision-p, FPNs. Let
s ∈ {RD(a + b),RU(a + b)}. If |ea − eb| ≤ p− 1, then
s− (a + b) is a binary, precision-p, FPN.

even when the error of + is not a FPN, can we get a good
approximation to that error ? Would frequently suffice;
partial answers: Demmel & Nguyen; Graillat, Jézéquel, &
Picot (Fast2Sum), Martin-Dorel et al. (RN with possible
double roundings);
can we have spurious overflows ?

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 6/36

Some notation

radix-2, precision-p, FP arithmetic, of extremal exponents
emin and emax (set Fp);
Ω = largest representable FPN:

Ω = (2− 21−p) · 2emax .

FP predecessor and successor of x: pred(x) and succ(x);
if x ∈ R, 2k ≤ |x| < 2k+1,

ulp(x) = 2max(k,emin)−p+1.

rounding functions RN, RD, RU, RZ (for RN the choice of
the tie-breaking rule is not important);
the FP number x̂ is a faithful rounding of x ∈ R if
x̂ ∈ {RD(x),RU(x)}.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 7/36

Rounding functions

Definition 1 (Rounding function—“optimal rounding” in
[Kulisch71])

Function ◦ from R to Fp is a rounding function if
∀x ∈ Fp, ◦(x) = x;
∀(x, y) ∈ R2, x ≤ y⇒ ◦(x) ≤ ◦(y).

Remark 2
If ◦ is a rounding function, then for any x, ◦(x) ∈ {RD(x),RU(x)}.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 8/36

Fast2Sum

Introduced by Dekker in 1971 (yet used by Kahan in 1965).

Algorithm 1: Conventional Fast2Sum Algorithm.

1: s← RN(a + b)
2: z← RN(s− a)
3: t← RN(b− z)

In the absence of overflow, if the radix of the FP system is ≤ 3,
and if the FP exponents ea and eb of a and b satisfy ea ≥ eb, then

s + t = a + b.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 9/36

TwoSum

Knuth (1969?) transforms Møller’ trick (1965) into a Theorem.

Algorithm 2: Conventional 2Sum algorithm.

1: s← RN(a + b)
2: a′ ← RN(s− b)
3: b′ ← RN(s− a′)
4: δa ← RN(a− a′)
5: δb ← RN(b− b′)
6: t← RN(δa + δb)

In the absence of overflow,

s + t = a + b.

Without knowing the respective orders of magnitude of a & b,
calling 2Sum in general more efficient than comparing them,
swapping them if needed, and calling Fast2Sum.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 10/36

We won’t say anything about underflows

Theorem 3 (Hauser)

If x and y are radix-β FP numbers, and if the number RN(x + y) is
subnormal, then x + y is a FP number (so that ◦(x + y) = x + y for
any rounding function).

Proof. x and y are multiples of the smallest nonzero FPN
α = βemin−p+1 → x + y is a multiple of α. If it is in the
subnormal range, then it is < βemin ⇒ exactly representable.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 11/36

What we are going to discuss. . .

Algorithm 3: Fast2Sum with faithful roundings: ◦1, ◦2, ◦3 are
rounding functions.

1: s← ◦1(a + b)
2: z← ◦2(s− a)
3: t← ◦3(b− z)

Algorithm 4: 2Sum with faithful roundings: ◦i, for i = 1, . . . , 6,
are rounding functions.

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 12/36

Some preliminary results

Lemma 4 (Sterbenz)

If x and y are finite floating-point numbers such that

y
2
≤ x ≤ 2y,

then x− y is a FP number.

Lemma 5

Let a and b be two binary FPN of exponents ea and eb. Let
s ∈ {RD(a + b),RU(a + b)}. If the exponent es of s is ≤ min(ea, eb)
then s = a + b.

Proof. a and b are multiple of 2ea−p+1 and 2eb−p+1, respectively. Since
es ≤ min(ea, eb), a + b is a multiple of 2es−p+1. By rounding it (through
any rounding function) to a multiple of 2es−p+1 we just get it.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 13/36

Accuracy of Fast2Sum assuming no overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a)
3: t← ◦3(b− z)

Lemma 6

Let a and b be two binary FPNs, with ea ≥ eb. Let
s ∈ {RD(a + b),RU(a + b)}. The number s− a is a FP number (→
computed exactly, with any rounding function).

Proof. Adaptation of Dekker’s original proof. If |b| ≤ |a| the
proof becomes straightforward: assuming a ≥ 0 (symmetry),
we have −a ≤ b ≤ a, and

if −a ≤ b ≤ −a/2 then Sterbenz⇒ s = a + b⇒ s− a = b is a
FPN;
if −a/2 ≤ b ≤ a then a/2 ≤ a + b ≤ 2a hence
a/2 ≤ s ≤ 2a⇒ s− a is aFPN.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 14/36

Accuracy of Fast2Sum assuming no overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a)
3: t← ◦3(b− z)

Lemma 6 only holds in radix 2.
Example: In radix 3 with p = 4 and ◦i = RU, if a = 10023 = 2910
and b = 22223 = 8010, then

s = RU(a + b) = 110103 = 11110,

so that s− a = 100013 = 8210 is not exactly representable with
precision 4.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 15/36

Accuracy of Fast2Sum assuming no overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a) = s− a
3: t← ◦3(b− z)= ◦3(b− (s− a)) = ◦3((a + b)− s)

Theorem 7

If no overflow occurs, and ea ≥ eb then the values s and t returned by
Algorithm 3 satisfy

t = ◦3((a + b)− s),

i.e., t is a faithful rounding of the error of the FP addition
s← ◦1(a + b).

→ if the difference of the exponents of a and b does not exceed
p− 1 (will occur in many practical cases), then t = (a + b)− s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 16/36

2Sum: more tricky. . .

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

t not always faithful rounding of (a + b)− s:
p = 24, a = 3076485 · 2−21, b = −6130317 · 2−49,
◦1 = ◦2 = ◦5 = RU, ◦3 = ◦4 = ◦6 = RD, gives

s = a = 3076485 · 2−21 → (a + b)− s = b;
t = −1532579 · 2−47;

With any rounding function ◦, ◦((a + b)− s) = b 6= t.
However, (a + b− s)− t = −2−49 → t remains a very good
approximation to (a + b)− s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 17/36

2Sum: more tricky. . .

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Theorem 8

If p ≥ 4 and no overflow occurs, then s and t satisfy

t = (a + b)− s + α,

with |α| < 2−p+1 · ulp(a + b) ≤ 2−p+1 · ulp(s). Furthermore, if es
and eb satisfy es − eb ≤ p− 1 then t is a faithful rounding of
(a + b)− s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 18/36

Case splitting based on the location of b

Case 1

Case 2 Case 3

b
−a a0

−a/2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 19/36

An easy case: |b| ≥ a

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

|b| ≥ a⇒ lines (1), (2), and (4) of Algorithm 4 are
Fast2Sum(b,a).

→we have a′ = s− b and δa = ◦4(a + b− s). An immediate
consequence of a′ = s− b is b′ = b and δb = 0. From this, we find

t = ◦4(a + b− s)

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 20/36

A straightforward case: −a < b ≤ −a/2

Case 1

Case 2 Case 3

b
−a a0

−a/2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 21/36

A straightforward case: −a < b ≤ −a/2

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Sterbenz Lemma→ s = a + b. Successively implies a′ = a,
b′ = b, δa = δb = t = 0, so that

t = (a + b)− s.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 22/36

We are left with the painful part: −a/2 < b < a

Case 1

Case 2 Case 3

b
−a a0

−a/2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 23/36

We are left with the painful part: −a/2 < b < a

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Let u = 21−p. We have

s = (a + b) · (1 + ε1); with |ε1| ≤ u;
a′ = (s− b) · (1 + ε2); with |ε2| ≤ u.

→ a′ = (a + aε1 + bε1) · (1 + ε2).

|b| < a→ aε1 + bε1 = 2aε3, with |ε3| ≤ u. Therefore
a′ = a · (1 + η), with |η| ≤ 3u + 2u2. As soon as p ≥ 4, |η| < 1/2
so that a/2 ≤ a′ ≤ 2a→ δa = a− a′ by Sterbenz Lemma.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 24/36

We are left with the painful part: −a/2 < b < a

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

s ≥ |b| → Lines (2), (3), and (5) are equivalent to
Fast2Sum(s,−b), so that

b′ = s− a′, (1)

and
δb = ◦5(a′ − (s− b)). (2)

If es − eb ≤ p− 1, then (2) implies δb = a′ − (s− b), from which
we deduce t = ◦6(a + b− s).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 25/36

We are left with −a/2 < b < a and es − eb ≥ p

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′) = s− a′

4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

es − eb ≥ p⇒ |b| < ulp(s)⇒ a′ ∈ {succ(s), s,pred(s),pred(pred(s))},
and the case a′ = pred(pred(s)) can occur only when s is a power of 2.

spred(s) succ(s)

area where s − b can lie
ulp(s)

possible locations of a′ = ◦2(s − b)

General case: s is not a power of 2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 26/36

s

pred(pred(s))

succ(s)

area where s − b can lie
ulp(s)

possible locations of a′ = ◦2(s − b)

Special case: s is a power of 2

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 27/36

We are left with −a/2 < b < a and es − eb ≥ p

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′) = s− a′

4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Remember: a′ ∈ {succ(s), s,pred(s),pred(pred(s))},

1 If a′ = s then b′ = 0. It follows that δb = b and δa = a− s, for
which we deduce t = ◦6(a + b− s),

2 If a′ 6= s then

a′ = s− σ · ulp(s),with σ ∈ {−1,+1/2,+1},

and we have

b′ = σ · ulp(s); δa = a− s + σ · ulp(s); and δb = ◦5(b− σ · ulp(s)).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 28/36

−a/2 < b < a, es − eb ≥ p, and a′ = s− σ · ulp(s)

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b) = s− σ · ulp(s)
3: b′ ← ◦3(s− a′) = s− a′ = σ · ulp(s)
4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′) = ◦5(b− σ · ulp(s))
6: t← ◦6(δa + δb)

Remember: |b| < ulp(s). Furthermore, b has the same sign as σ.
Therefore

either |b| ≥ |σ|/2 · ulp(s), in which case Sterbenz Lemma
→ δb = b− σ · ulp(s)⇒ δa + δb = a + b− s⇒ t = ◦6(a + b− s)

or |b| < |σ|/2 · ulp(s), in which case, from

|b− σ · ulp(s)| < |σ| · ulp(s)

(unless b = 0 but that case is straightforwardly handled), we get
(since |σ| · ulp(s) is a power of 2),

|δb − (b− σ · ulp(s))| < 1
2

ulp(σ·ulp(s)) =
|σ|
2

ulp(ulp(s)) = |σ|·2−pulp(s)

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 29/36

−a/2 < b < a, es − eb ≥ p, and a′ = s− σ · ulp(s)

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b) = s− σ · ulp(s)
3: b′ ← ◦3(s− a′) = s− a′ = σ · ulp(s)
4: δa ← ◦4(a− a′) = a− a′

5: δb ← ◦5(b− b′) = ◦5(b− σ · ulp(s))
6: t← ◦6(δa + δb)

Consequence:

|(δa + δb)− (a + b− s)| < |σ| · 2−pulp(s).
|δa + δb| < ulp(a + b) + |σ| · 2−pulp(s). (3)

show that δa + δb is a multiple of
|σ| · 2−pulp(s)→ |δa + δb| < ulp(a + b);

case splitting (is s a power of 2?, is it above or below a + b ?)

→ |t− (a + b− s)| < 2−p+1ulp(a + b).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 30/36

Fast2Sum is immune to overflow

1: s← ◦1(a + b) reminder: ea ≥ eb
2: z← ◦2(s− a)
3: t← ◦3(b− z)

assume no overflow at line 1;
without l.o.g., assume a > 0;
s = a + b + ε, with |ε| < ulp(a + b) ≤ 2ulp(a), hence

s− a = b + ε

therefore, if line (2) overflows then b < −Ω + 2ulp(a) or
b > Ω− 2ulp(a)

if b < −Ω + 2ulp(a) then b < −Ω + 2ulp(Ω) and (since
ea ≥ eb), Ω/2 < 2emax ≤ a ≤ Ω. Sterbenz Lemma
→ s = a + b→ z = b→ no overflow at line 2;
if b > Ω− 2ulp(a) is impossible: this and ea ≥ eb imply
a + b > Ω/2 + Ω− 2ulp(Ω)→ line 1 overflows.

→ Line 2 cannot overflow.
S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 31/36

Fast2Sum is immune to overflow

1: s← ◦1(a + b)
2: z← ◦2(s− a) no overflow→ z = s− a
3: t← ◦3(b− z)

Line 3 ?
Since line 2 does not overflow, z = s− a. Hence
b− z = (a + b)− s, hence

|b− z| < |(a + b)− s| < ulp(s) < |s|

→ no overflow.

Theorem 9
Assuming ea ≥ eb, if the computation of s (first line of Fast2Sum)
does not overflow, then the other lines cannot overflow.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 32/36

Of course, with 2Sum it is more tricky

1: s← ◦1(a + b)
2: a′ ← ◦2(s− b)
3: b′ ← ◦3(s− a′)
4: δa ← ◦4(a− a′)
5: δb ← ◦5(b− b′)
6: t← ◦6(δa + δb)

Theorem 10

If |a| < Ω and if there is no overflow at line (1) of the algorithm, then
there will be no overflow at lines (2) to (6).

Condition |a| < Ω is necessary. Assume all rounding functions
are RN (ties-to-even). The choice a = Ω and b = −(3/2) · ulp(Ω)
gives no overflow at line (1), and an overflow at line (2).

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 33/36

On the list stds-754@IEEE.ORG

De: Jason Riedy <jason.riedy@cc.gatech.edu>
Objet: Updated twoSum proposal
Date: 18 mai 2016 17:15:58 UTC+2

Attached is an updated twoSum proposal that provides more
thorough justification for exceptional behavior.
There also is some example C code for context,
although that code ignores the rounding mode.

...

PROPOSAL: TWOSUM OPERATION

Jason Riedy

Table of Contents

...
.. 2.1 Properties of an existing software implementation

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 34/36

On the list stds-754@IEEE.ORG

De: Jason Riedy <jason.riedy@cc.gatech.edu>
Objet: Updated twoSum proposal
Date: 18 mai 2016 20:11:35 UTC+2

And Jean-Michel Muller writes:

> That analyses the behaviour of these algorithms with various
rounding modes, and shows that they are rather immune from
spurious overflow.

Thank you. My "careful" version fail with your example. augh.
I’ll work on that.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 35/36

Conclusion

In binary FP arithmetic, 2Sum and Fast2Sum are more “robust”
than it is usually believed:

even when the error of the initial FP addition is not a FP
number, they return a very good approximation to that
error (→ can be used in many compensated algorithms);
Fast2Sum totally immune to overflow;
2Sum almost totally immune to overflow: the only case
where a “spurious” overflow may occur is when the
absolute value of a is equal to Ω.

S. Boldo, S. Graillat, J.-M. Muller On the robustness of 2Sum & Fast2Sum May 26, 2016 36/36

