Accurate Complex Multiplication in Floating-Point
Arithmetic

Vincent Lefévre Jean-Michel Muller.

Université de Lyon, CNRS, Inria, France.

Arith26,

Kyoto, June 2019

UNIVERSITE D= LYON
,,,,,,,,,,,,, . menamatives = —

s 2L
‘a— ENS DE LYON

Iy, s
N\
: l
[|

Accurate complex multiplication in FP arithmetic

> w - x, emphasis on the case where R(w) and J(w) are double-word
numbers—i.e., pairs (high-order, low-order) of FP numbers;

» applications: Fourier transforms, iterated products.
Assumptions:

» radix-2, precision-p, FP arithmetic;

» rounded to nearest (RN) FP operations;

» an FMA instruction is available;

» underflow/overflow do not occur.
Bound on relative error of (real) operations:
v

- <
RN(a 4 b) — (2 + b)) < ;-

“lat+ bl <u-la+ b,

where u (rounding unit) equals 27°.

Some variables: double-word (DW) numbers

» also called double-double in the literature;
v € R represented by a pair of FP numbers v, and v, such that

v=v,+ v,
vel < Zulp(v) < u- v,

» algorithms and libraries for manipulating DW numbers: QD (Hida,
Li & Bailey), Campary (Joldes, Popescu & others),

» use the 2Sum, Fast2Sum & Fast2Mult algorithms (see later).

Naive algorithms for complex FP multiplication
» straightforward transcription of the formula
z= (R i) (R i) = FYR =Xy i (YR xRy,

» bad solution if componentwise relative error is to be minimized;

» adequate solution if normwise relative error is at stake.
(2 approximates z with normwise error |(2 — z)/z|)

Algorithms:
» if no FMA instruction is available
2R = RN(RN(xRyR) — RN(x'y')), (1)
2l = RN(RN(xRy') + RN(x'y®)).

» if an FMA instruction is available
{ R = RN(XRyR — RN(X’y'))7)

N>
|

! RN(xRy! + RN(x'y®)).

N>

Naive algorithms for complex multiplication

» if no FMA instruction is available

{

» if an FMA instruction is available

{ R RN(x®y® — RN(x'y")),

I = RN(xRy' +RN(x/yR)). 2)
Asymptotically optimal bounds on the normwise relative error of (1) and
(2) are known:

R _ RN(RN(XRyR)—RN(XI}/I))7 (1)
/ _ RN(RN(XRyI)+RN(XIyR))

N> N>

N> N>
Il

e Brent et al (2007): bound /5 - u for (1),
e Jeannerod et al. (2017): bound 2 - u for (2).

Accurate complex multiplication

Our goal:

e smaller normwise relative errors,

e closer to the best possible one (i.e., u, unless we
output DW numbers),

e at the cost of more complex algorithms.
We consider the product

with
w=wf+i wand x=xR+i-x,

where:
» wR and w' are DW numbers (special case FP considered later)

» xR and x! are FP numbers.

Basic building blocks: Error-Free Transforms

Expressing a + b as a DW number

Algorithm 1: 2Sum(a, b). Returns s and t such that s = RN(a + b) and
t=a+b—s

s+ RN(a+b)
a’ + RN(s — b)
b’ < RN(s — &)
3, + RN(a—2')
8y« RN(b — b')
t + RN(d, + dp)

Expressing a- b as a DW number

Algorithm 2: Fast2Mult(a, b). Returns m and p such that 7 = RN(ab)
andp=ab—7

7 < RN(ab)
p < RN(ab —)

The multiplication algorithm

» Wk =R(w) and w!' = I(w): DW numbers, i.e.,
w=wlf+iw =W+ +i (W +uwh),

where wf, wf, w/’T, and wé are FP numbers that satisfy:
R|.

i

o [wi < tulp(wf) < u-|w
o |wh < ulp(w’) < u- W]

» Real part zR of the result (similar for imaginary part):

o difference v¥ of the high-order parts of wf{x® and w}x/,

e add approximated sum ’yf of all the error terms that may have
a significant influence on the normwise relative error.

» rather straightforward algorithms: the tricky part is the error
bounds.

Real part (Wl + wf) - xF — (w] + W) - x!

The multiplication algorithm

Algorithm 3: Computes w - x, where the real & imaginary parts of w =
(W +wf) 4+ i - (wh +wp) are DW, and the real & im. parts of x are FP.

tR « RN(wjx")

7y < RN(wfx® — tF)

(PF, PF) « Fast2Mult(w}, x")

rf <« RN(mf — PF)

(QF, QF) + Fast2Mult(wf, x)

sf < RN(QF + rf)

(Vflwl?v VlB) — QSum(Qf, _Pi’f)

Y6 RN(v + 57°)

return z® = RN(vF + ~F) (real part)
t' < RN(wjxR)

. mp < RN(wfix' 4+ t)

. (PL, P}) < Fast2Mult(w}, x)

ri < RN(m}) + P})

(Q}, Q) + Fast2Mult(wf, x")

. sh < RN(Q) +1r))

(Vi v2) < 2Sum(Q;, Py)

Ve RN(v + s7)

return z' = RN(v) +~/) (imaginary part)

XN WN

[e S S R e
NN OO

The multiplication algorithm

Theorem 1
As soon as p > 4, the normwise relative error n of Algorithm 3 satisfies

n < u+33u>.

(remember: the best possible bound is u)

Remarks:
e Condition “p > 4" always holds in practice;
e Algorithm 3 easily transformed (see later)

into an algorithm that returns the real and
imaginary parts of z as DW numbers.

11

Sketch of the proof

» first, we show that

|2 = R(wx)| < an®+BNE,
2 = S(wx)| < an' + BN,
with
NR — \wRXR|+\w’x'|,
nR — ‘wRXwaIXIL
NI — ‘wRX/‘+|OJIXR|,
nl — ‘wRX/—I—UJIXRL
a = u+3u®+ 43
B = 15u% 4 38u® 4+ 39u* + 220° + 7 + u7;

» then we deduce
2 _ (2F = R(wx))? + (2 = F(wx))?
(R(wx))® + (S(wx))?

(V) + (W)

SRl)

» the theorem follows, by using
(V) + (V1)? _
(nF)* +(n)*

12

Obtaining the real and imaginary parts of z as DW numbers

> replace the FP addition zf = RN(v/ +) of line 9 of Algorithm 3

by a call to 2Sum(v/,),

> replace the FP addition z/ = RN(v/ +~/) of line 18 by a call to
2Sum(v},~}).

» resulting relative error
V241 - 1? + O(u®) =~ 15.53u° + O(u®)

(instead of u + 33u?).

Interest:
e iterative product z; X z3 X - - X z,: keep the real and
imaginary parts of the partial products as DW numbers,

e Fourier transforms: when computing z; + wz,, keep
R(wzz) and S(wzz) as DW numbers before the +.

13

If w' and WR are floating-point numbers

w) = wlt = 0 = Algorithm 3 becomes simpler:

Algorithm 4: Complex multiplication w - x, where ®(w) and $(w) are FP

numbers.

1: (PR, Pf) < Fast2Mult(w', x")

2: (QF, QF) + Fast2Mult(w®, x7)

3: s < RN(QF — Pf)

4 (Vﬁa Vf) — ZSum(Q,’i _Pi,v?)

5: 78 + RN(vf + sf)

6: return z® = RN(vf +~F) (real part)
7: (P}, P}) « Fast2Mult(w', x*)

8: (Qf, Q) + Fast2Mult(w®, x")

9: s; < RN(Q} + P})
10: (v}, v}) < 2Sum(Q}, P})
11:) < RN(v} +s})
12: return z' = RN(v; 4 ~4) (imaginary part)

14

Real part

15

Real part

16

Real part

17

If w' and WR are floating-point numbers

» Real and complex parts of Algorithm 4 similar to:

Cornea, Harrison and Tang's algorithm for ab + cd (with a “+"
replaced by a 2Sum),

Alg. 5.3 in Ogita, Rump and Oishi’'s Accurate sum & dot product
(with different order of summation of P, QF & vF).

» The error bound v + 33u? of Theorem 1 still applies, but it can be
slightly improved:

Theorem 2

As soon as p > 4, the normwise relative error n of Algorithm 4 satisfies

n < u+ 1907

18

Implementation and experiments

» Main algorithm (Algorithm 3) implemented in binary64 (a.k.a.
double-precision) arithmetic, compared with other solutions:

e naive formula in binary64 arithmetic;
e naive formula in binary128 arithmetic;
e GNU MPFR with precision ranging from 53 to 106 bits.

» loop over N random inputs, itself inside another loop doing
K iterations;

» Goal of the external loop: get accurate timings without having to
choose a large N, with input data that would not fit in the cache;

> For each test, we chose (N, K) = (1024,65536), (2048,32768) and
(4096, 16384).

10

Implementation and experiments

» tests run on two computers with a hardware FMA:

e x86 64 with Intel Xeon E5-2609 v3 CPUs, under Linux
(Debian/unstable), with GCC 8.2.0 and a Clang 8 preversion,
using -march=native;

e ppcbdle with POWER9 CPUs, under Linux (CentOS 7), with
GCC 8.2.1, using -mcpu=power?9.

» options -03 and -02.

» With GCC, -03 -fno-tree-slp-vectorize also used to avoid a
loss of performance with some vectorized codes.

» In all cases, -static used to avoid the overhead due to function
calls to dynamic libraries.

20

Implementation and experiments

Table 1: Timings on x86_ 64 (in secs, for NK = 22° ops) with GCC. GNU
MPFR is used with separate &+ and x.

minimums maximums
N — | 1024 2048 4096 | 1024 2048 4096
Algorithm 3 0.92 0.97 0.97 0.95 1.02 1.02
gcc Naive, Binary64 0.61 0.61 0.62 0.61 0.62 0.62
-03 Naive, Binary128 | 21.32 21.44 21.46 | 21.43 21.53 21.54
-f. GNU MPFR 1259 13.01 13.12 | 22.72 22.85 22.80
Algorithm 3 091 097 097)| 095 1.02 1.02
Naive, Binary64 0.61 0.62 0.62 0.61 0.62 0.62
gec Naive, Binary128 | 20.90 21.03 21.08 | 21.01 21.10 21.13
-02 GNU MPFR | 12.31 1274 12.85 | 23.11 2320 23.18

21

Implementation and experiments

Table 2: Timings on x86_ 64 (in secs, for NK = 22® ops) with Clang.

minimums maximums
N — | 1024 2048 4096 | 1024 2048 4096
Algorithm 3 086 1.090 1.10| 096 1.15 1.15
Naive, Binary64 | 0.39 0.61 063 | 047 0.65 0.66
clang | Naive, Binaryl28 | 21.65 21.77 21.81 | 21.74 21.87 21.88
-03 GNU MPFR | 1224 1263 12.72 | 2291 22.94 22.97
Algorithm 3 088 1.08 1.10| 096 1.14 1.15
Naive, Binary64 0.40 061 063| 048 0.6 0.66
clang | Naive, Binary128 | 21.33 21.45 21.50 | 21.49 21.57 21.59
-02 GNU MPFR | 12.15 1254 12.65|23.15 2321 23.21

29

Implementation and experiments

Table 3: Timings on a POWERY (in secs, for NK = 2% ops). The POWER9

has hardware support for Binary128.

minimums maximums
N — | 1024 2048 4096 | 1024 2048 4096
Algorithm 3 0.97 0.97 0.97 0.98 0.99 1.00
gcc Naive, Binary64 0.47 0.47 0.51 0.48 0.48 0.52
-03 Naive, Binary128 2.22 2.22 2.22 2.24 2.24 2.24
-f. GNU MPFR 16.42 16.59 16.66 | 30.06 30.39 30.44
Algorithm 3 0.98 0.98 0.98 0.99 1.01 1.01
Naive, Binary64 0.47 0.47 0.51 0.47 0.47 0.51
gee Naive, Binaryl28 | 222 222 222| 224 224 224
-02 GNU MPFR 16.36 16.58 16.63 | 30.29 30.29 30.49

b}

Implementation and experiments

> Naive formula in binary64 (inlined code) ~ two times as fast as
our implementation of Algorithm 3, but significantly less accurate;

» Naive formula in binary128, using the __float128 C type
(inlined code):
e x86 64: from 19 to 25 times as slow as Algorithm 3,
e on POWER9: 2.3 times as slow.

» GNU MPFR using precisions from 53 to 106: from 11 to 26 times
as slow as Algorithm 3 on x86 64, and from 17 to 31 times as slow
on POWERO.

The error bound of Theorem 1 is tight: In Binary64 arithmetic, with

wf = 0xl.dlef9ead4aall3p—1 + Ox1.2e88ba2a277ep—56

w!' = 0x1.f5c28321df365p—81 + 0x1.c4c3e7b506d06p—135
xR = 0x1.194f298b4d152p—1

x! = 0x1.5clfdca444f7cp—14

the normwise relative error is 0.99999900913907117123 u.

24

Conclusion

» Main algorithm:

e the real and imaginary parts of one of the operands are DW,
and for the other one they are FP,

e normwise relative error bound close to the best one (u) that
one can guarantee,

e only twice as slow as a naive multiplication,

e much faster than binary128 or multiple-precision software.

» 2 variants:

e real and imaginary parts of the output are DW,
e real and imaginary parts of the inputs are FP.

25

Conclusion

» Main algorithm:

e the real and imaginary parts of one of the operands are DW,
and for the other one they are FP,

e normwise relative error bound close to the best one (u) that
one can guarantee,

e only twice as slow as a naive multiplication,

e much faster than binary128 or multiple-precision software.

» 2 variants:

e real and imaginary parts of the output are DW,
e real and imaginary parts of the inputs are FP.

Thank youl!

25

