Accurate Complex Multiplication in Floating-Point Arithmetic

Vincent Lefèvre Jean-Michel Muller.

Université de Lyon, CNRS, Inria, France.

Arith26,

Kyoto, June 2019

Accurate complex multiplication in FP arithmetic

- *ω* · *x*, emphasis on the case where ℜ(ω) and ℜ(ω) are double-word numbers—i.e., pairs (high-order, low-order) of FP numbers;
- applications: Fourier transforms, iterated products.

Assumptions:

- radix-2, precision-p, FP arithmetic;
- rounded to nearest (RN) FP operations;
- an FMA instruction is available;
- underflow/overflow do not occur.

Bound on relative error of (real) operations:

$$|\mathsf{RN}(a+b) - (a+b)| \leq rac{u}{1+u} \cdot |a+b| < u \cdot |a+b|,$$

where u (rounding unit) equals 2^{-p} .

- also called double-double in the literature;
- ▶ $v \in \mathbb{R}$ represented by a pair of FP numbers v_h and v_ℓ such that

 $\begin{aligned} v &= v_h + v_\ell, \\ |v_\ell| &\leq \frac{1}{2} \mathsf{ulp}(v) \leq u \cdot |v|. \end{aligned}$

- algorithms and libraries for manipulating DW numbers: QD (Hida, Li & Bailey), Campary (Joldes, Popescu & others),
- use the 2Sum, Fast2Sum & Fast2Mult algorithms (see later).

Naive algorithms for complex FP multiplication

straightforward transcription of the formula

 $z = (x^{R} + ix^{l}) \cdot (y^{R} + iy^{l}) = (x^{R}y^{R} - x^{l}y^{l}) + i \cdot (x^{l}y^{R} + x^{R}y^{l});$

bad solution if componentwise relative error is to be minimized;

• adequate solution if normwise relative error is at stake. (\hat{z} approximates z with normwise error $|(\hat{z} - z)/z|$)

Algorithms:

if no FMA instruction is available

$$\begin{cases} \hat{z}^R = \mathsf{RN}(\mathsf{RN}(x^R y^R) - \mathsf{RN}(x^I y^I)), \\ \hat{z}^I = \mathsf{RN}(\mathsf{RN}(x^R y^I) + \mathsf{RN}(x^I y^R)). \end{cases}$$
(1)

if an FMA instruction is available

$$\begin{cases} \hat{z}^R = \mathsf{RN}(x^R y^R - \mathsf{RN}(x^I y^I)), \\ \hat{z}^I = \mathsf{RN}(x^R y^I + \mathsf{RN}(x^I y^R)). \end{cases}$$
(2)

Naive algorithms for complex multiplication

if no FMA instruction is available

$$\begin{cases} \hat{z}^R = \mathsf{RN}(\mathsf{RN}(x^R y^R) - \mathsf{RN}(x^I y^I)), \\ \hat{z}^I = \mathsf{RN}(\mathsf{RN}(x^R y^I) + \mathsf{RN}(x^I y^R)). \end{cases}$$
(1)

if an FMA instruction is available

$$\begin{cases} \hat{z}^R = \mathsf{RN}(x^R y^R - \mathsf{RN}(x^I y^I)), \\ \hat{z}^I = \mathsf{RN}(x^R y^I + \mathsf{RN}(x^I y^R)). \end{cases}$$
(2)

Asymptotically optimal bounds on the normwise relative error of (1) and (2) are known:

- Brent et al (2007): bound $\sqrt{5} \cdot u$ for (1),
- Jeannerod et al. (2017): bound $2 \cdot u$ for (2).

Accurate complex multiplication

Our goal:

- smaller normwise relative errors,
- closer to the best possible one (i.e., *u*, unless we output DW numbers),
- at the cost of more complex algorithms.

We consider the product

 $\omega \cdot x$,

with

$$\omega = \omega^R + i \cdot \omega^I$$
 and $x = x^R + i \cdot x^I$,

where:

ω^R and ω^I are DW numbers (special case FP considered later)
 x^R and x^I are FP numbers.

Basic building blocks: Error-Free Transforms

Expressing a + b as a DW number

Algorithm 1: 2Sum(a, b). Returns s and t such that s = RN(a + b) and t = a + b - s

$$s \leftarrow \mathsf{RN}(a+b)$$

$$a' \leftarrow \mathsf{RN}(s-b)$$

$$b' \leftarrow \mathsf{RN}(s-a')$$

$$\delta_a \leftarrow \mathsf{RN}(a-a')$$

$$\delta_b \leftarrow \mathsf{RN}(b-b')$$

$$t \leftarrow \mathsf{RN}(\delta_a + \delta_b)$$

Expressing $a \cdot b$ as a DW number

Algorithm 2: Fast2Mult(a, b). Returns π and ρ such that $\pi = RN(ab)$ and $\rho = ab - \pi$

 $\pi \leftarrow \mathsf{RN}(ab) \\ \rho \leftarrow \mathsf{RN}(ab - \pi)$

The multiplication algorithm

• $\omega^R = \Re(\omega)$ and $\omega' = \Im(\omega)$: DW numbers, i.e.,

 $\omega = \omega^{R} + i \cdot \omega' = (\omega_{h}^{R} + \omega_{\ell}^{R}) + i \cdot (\omega_{h}^{I} + \omega_{\ell}^{I}),$

where ω_h^R , ω_ℓ^R , ω_h^I , and ω_ℓ^I are FP numbers that satisfy:

•
$$|\omega_{\ell}^{R}| \leq \frac{1}{2} \operatorname{ulp}(\omega^{R}) \leq u \cdot |\omega^{R}|;$$

•
$$|\omega_{\ell}^{\prime}| \leq \frac{1}{2} \operatorname{ulp}(\omega^{\prime}) \leq u \cdot |\omega^{\prime}|.$$

• Real part z^R of the result (similar for imaginary part):

- difference v_h^R of the high-order parts of $\omega_h^R x^R$ and $\omega_h^I x^I$,
- add approximated sum γ_{ℓ}^{R} of all the error terms that may have a significant influence on the normwise relative error.
- rather straightforward algorithms: the tricky part is the error bounds.

Real part $(\omega_h^R + \omega_\ell^R) \cdot x^R - (\omega_h^I + \omega_\ell^I) \cdot x^I$

The multiplication algorithm

Algorithm 3: Computes $\omega \cdot x$, where the real & imaginary parts of $\omega = (\omega_h^R + \omega_\ell^R) + i \cdot (\omega_h^I + \omega_\ell^I)$ are DW, and the real & im. parts of x are FP.

```
1: t^R \leftarrow \text{RN}(\omega_{\ell}^I x^I)
  2: \pi^{R}_{\ell} \leftarrow \mathsf{RN}(\omega^{R}_{\ell}x^{R} - t^{R})
  3: (P_h^R, P_\ell^R) \leftarrow \text{Fast2Mult}(\omega_h^l, x^l)
  4: r_{\ell}^{R} \leftarrow \text{RN}(\pi_{\ell}^{R} - P_{\ell}^{R})
  5: (Q_h^R, Q_\ell^R) \leftarrow \text{Fast2Mult}(\omega_h^R, x^R)
  6: s_{\ell}^{R} \leftarrow \text{RN}(Q_{\ell}^{R} + r_{\ell}^{R})
  7: (\mathbf{v}_{h}^{R}, \mathbf{v}_{\ell}^{R}) \leftarrow 2\mathrm{Sum}(\mathbf{Q}_{h}^{R}, -\mathbf{P}_{h}^{R})
  8: \gamma_{\ell}^{R} \leftarrow \mathsf{RN}(v_{\ell}^{R} + s_{\ell}^{R})
  9: return z^R = RN(v^R_h + \gamma^R_\ell) (real part)
10: t' \leftarrow \mathsf{RN}(\omega_\ell^I x^R)
11: \pi_{\ell}^{\prime} \leftarrow \mathsf{RN}(\omega_{\ell}^{R}x^{\prime} + t^{\prime})
12: (P_h^l, P_\ell^l) \leftarrow \text{Fast2Mult}(\omega_h^l, x^R)
13: r_{\ell}^{l} \leftarrow \mathsf{RN}(\pi_{\ell}^{l} + P_{\ell}^{l})
14: (Q_h^l, Q_\ell^l) \leftarrow \text{Fast2Mult}(\omega_h^R, x^l)
15: s_{\ell}^{l} \leftarrow \mathsf{RN}(Q_{\ell}^{l} + r_{\ell}^{l})
16: (v_h^l, v_\ell^l) \leftarrow 2 \operatorname{Sum}(Q_h^l, P_h^l)
17: \gamma_{\ell}^{\prime} \leftarrow \mathsf{RN}(v_{\ell}^{\prime} + s_{\ell}^{\prime})
18: return z' = \text{RN}(v_b' + \gamma_\ell') (imaginary part)
```

Theorem 1 As soon as $p \ge 4$, the normwise relative error η of Algorithm 3 satisfies

 $\eta < u + 33u^2.$

(remember: the best possible bound is **u**)

Remarks:

- Condition " $p \ge 4$ " always holds in practice;
- Algorithm 3 easily transformed (see later) into an algorithm that returns the real and imaginary parts of z as DW numbers.

Sketch of the proof

▶ first, we show that

$$\begin{aligned} |z^{R} - \Re(wx)| &\leq \alpha n^{R} + \beta N^{R}, \\ |z' - \Im(wx)| &\leq \alpha n' + \beta N', \end{aligned}$$

with

then we deduce

$$\eta^{2} = \frac{(z^{R} - \Re(\omega x))^{2} + (z^{I} - \Im(\omega x))^{2}}{(\Re(\omega x))^{2} + (\Im(\omega x))^{2}} \leqslant \alpha^{2} + (2\alpha\beta + \beta^{2}) \cdot \frac{(N^{R})^{2} + (N^{I})^{2}}{(n^{R})^{2} + (n^{I})^{2}};$$

the theorem follows, by using

$$\frac{(N^R)^2 + (N')^2}{(n^R)^2 + (n')^2} \leqslant 2.$$

Obtaining the real and imaginary parts of z as DW numbers

- ► replace the FP addition $z^R = \text{RN}(v_h^R + \gamma_\ell^R)$ of line 9 of Algorithm 3 by a call to $2\text{Sum}(v_h^R, \gamma_\ell^R)$,
- ► replace the FP addition $z' = \text{RN}(v'_h + \gamma'_\ell)$ of line 18 by a call to $2\text{Sum}(v'_h, \gamma'_\ell)$.

resulting relative error

$$\sqrt{241} \cdot u^2 + \mathcal{O}(u^3) \approx 15.53u^2 + \mathcal{O}(u^3)$$

(instead of $u + 33u^2$).

Interest:

- iterative product $z_1 \times z_2 \times \cdots \times z_n$: keep the real and imaginary parts of the partial products as DW numbers,
- Fourier transforms: when computing $z_1 \pm \omega z_2$, keep $\Re(\omega z_2)$ and $\Im(\omega z_2)$ as DW numbers before the \pm .

If ω' and ω^R are floating-point numbers

 $\omega_{\ell}^{I}=\omega_{\ell}^{R}=0\Rightarrow$ Algorithm 3 becomes simpler:

Algorithm 4: Complex multiplication $\omega \cdot x$, where $\Re(\omega)$ and $\Im(\omega)$ are FP numbers.

$$\begin{array}{ll} & (P_h^R, P_\ell^R) \leftarrow \mathsf{Fast2Mult}(\omega^l, x^l) \\ & 2 \colon (Q_h^R, Q_\ell^R) \leftarrow \mathsf{Fast2Mult}(\omega^R, x^R) \\ & 3 \colon s_\ell^R \leftarrow \mathsf{RN}(Q_\ell^R - P_\ell^R) \\ & 4 \colon (v_h^R, v_\ell^R) \leftarrow 2 \mathsf{Sum}(Q_h^R, -P_h^R) \\ & 5 \colon \gamma_\ell^R \leftarrow \mathsf{RN}(v_\ell^R + s_\ell^R) \\ & 6 \colon \mathsf{return} \ z^R = \mathsf{RN}(v_h^R + \gamma_\ell^R) \ (\mathsf{real part}) \\ & 7 \colon (P_h^l, P_\ell^l) \leftarrow \mathsf{Fast2Mult}(\omega^l, x^R) \\ & 8 \colon (Q_h^l, Q_\ell^l) \leftarrow \mathsf{Fast2Mult}(\omega^R, x^l) \\ & 9 \colon s_\ell^l \leftarrow \mathsf{RN}(Q_\ell^l + P_\ell^l) \\ & 10 \colon (v_h^l, v_\ell^l) \leftarrow 2\mathsf{Sum}(Q_h^l, P_h^l) \\ & 11 \colon \gamma_\ell^l \leftarrow \mathsf{RN}(v_\ell^l + s_\ell^l) \\ & 12 \colon \mathsf{return} \ z^l = \mathsf{RN}(v_h^l + \gamma_\ell^l) \ (\mathsf{imaginary part}) \end{array}$$

Real part

Real part

Real part

If ω^{I} and ω^{R} are floating-point numbers

Real and complex parts of Algorithm 4 similar to:

- Cornea, Harrison and Tang's algorithm for *ab* + *cd* (with a "+" replaced by a 2Sum),
- Alg. 5.3 in Ogita, Rump and Oishi's Accurate sum & dot product (with different order of summation of P^R_ℓ, Q^R_ℓ & v^R_ℓ).
- The error bound $u + 33u^2$ of Theorem 1 still applies, but it can be slightly improved:

Theorem 2

As soon as $p \ge 4$, the normwise relative error η of Algorithm 4 satisfies

 $\eta < u + 19u^2.$

- Main algorithm (Algorithm 3) implemented in binary64 (a.k.a. double-precision) arithmetic, compared with other solutions:
 - naive formula in binary64 arithmetic;
 - naive formula in binary128 arithmetic;
 - GNU MPFR with precision ranging from 53 to 106 bits.
- loop over N random inputs, itself inside another loop doing K iterations;
- Goal of the external loop: get accurate timings without having to choose a large N, with input data that would not fit in the cache;
- ► For each test, we chose (N, K) = (1024, 65536), (2048, 32768) and (4096, 16384).

tests run on two computers with a hardware FMA:

- x86_64 with Intel Xeon E5-2609 v3 CPUs, under Linux (Debian/unstable), with GCC 8.2.0 and a Clang 8 preversion, using -march=native;
- ppc64le with POWER9 CPUs, under Linux (CentOS 7), with GCC 8.2.1, using -mcpu=power9.
- options -03 and -02.
- With GCC, -O3 -fno-tree-slp-vectorize also used to avoid a loss of performance with some vectorized codes.
- In all cases, -static used to avoid the overhead due to function calls to dynamic libraries.

Table 1: Timings on x86_64 (in secs, for $NK = 2^{26}$ ops) with GCC. GNU MPFR is used with separate \pm and \times .

		minimums		maximums			
$N \rightarrow$		1024	2048	4096	1024	2048	4096
gcc -03	Algorithm 3	0.92	0.97	0.97	0.95	1.02	1.02
	Naive, Binary64	0.61	0.61	0.62	0.61	0.62	0.62
	Naive, Binary128	21.32	21.44	21.46	21.43	21.53	21.54
-f	GNU MPFR	12.59	13.01	13.12	22.72	22.85	22.80
gcc -02	Algorithm 3	0.91	0.97	0.97	0.95	1.02	1.02
	Naive, Binary64	0.61	0.62	0.62	0.61	0.62	0.62
	Naive, Binary128	20.90	21.03	21.08	21.01	21.10	21.13
	GNU MPFR	12.31	12.74	12.85	23.11	23.20	23.18

Table 2: Timings on x86_64 (in secs, for $NK = 2^{26}$ ops) with Clang.

		minimums		maximums			
$N \rightarrow$		1024	2048	4096	1024	2048	4096
clang -03	Algorithm 3	0.86	1.09	1.10	0.96	1.15	1.15
	Naive, Binary64	0.39	0.61	0.63	0.47	0.65	0.66
	Naive, Binary128	21.65	21.77	21.81	21.74	21.87	21.88
	GNU MPFR	12.24	12.63	12.72	22.91	22.94	22.97
	Algorithm 3	0.88	1.08	1.10	0.96	1.14	1.15
clang -02	Naive, Binary64	0.40	0.61	0.63	0.48	0.65	0.66
	Naive, Binary128	21.33	21.45	21.50	21.49	21.57	21.59
	GNU MPFR	12.15	12.54	12.65	23.15	23.21	23.21

Table 3: Timings on a POWER9 (in secs, for $NK = 2^{26}$ ops). The POWER9 has hardware support for Binary128.

		minimums			maximums		
$N \rightarrow$		1024	2048	4096	1024	2048	4096
gcc -03	Algorithm 3	0.97	0.97	0.97	0.98	0.99	1.00
	Naive, Binary64	0.47	0.47	0.51	0.48	0.48	0.52
	Naive, Binary128	2.22	2.22	2.22	2.24	2.24	2.24
-f	GNU MPFR	16.42	16.59	16.66	30.06	30.39	30.44
gcc -02	Algorithm 3	0.98	0.98	0.98	0.99	1.01	1.01
	Naive, Binary64	0.47	0.47	0.51	0.47	0.47	0.51
	Naive, Binary128	2.22	2.22	2.22	2.24	2.24	2.24
	GNU MPFR	16.36	16.58	16.63	30.29	30.29	30.49

- ► Naive formula in binary64 (inlined code) ≈ two times as fast as our implementation of Algorithm 3, but significantly less accurate;
- Naive formula in binary128, using the __float128 C type (inlined code):
 - x86 64: from 19 to 25 times as slow as Algorithm 3,
 - on POWER9: 2.3 times as slow.
- GNU MPFR using precisions from 53 to 106: from 11 to 26 times as slow as Algorithm 3 on x86_64, and from 17 to 31 times as slow on POWER9.

The error bound of Theorem 1 is tight: In Binary64 arithmetic, with

the normwise relative error is 0.99999900913907117123 u.

Conclusion

Main algorithm:

- the real and imaginary parts of one of the operands are DW, and for the other one they are FP,
- normwise relative error bound close to the best one (*u*) that one can guarantee,
- only twice as slow as a naive multiplication,
- much faster than binary128 or multiple-precision software.

2 variants:

- real and imaginary parts of the output are DW,
- real and imaginary parts of the inputs are FP.

Conclusion

Main algorithm:

- the real and imaginary parts of one of the operands are DW, and for the other one they are FP,
- normwise relative error bound close to the best one (*u*) that one can guarantee,
- only twice as slow as a naive multiplication,
- much faster than binary128 or multiple-precision software.

2 variants:

- real and imaginary parts of the output are DW,
- real and imaginary parts of the inputs are FP.

Thank you!