
Accurate Complex Multiplication in Floating-Point
Arithmetic

Vincent Lefèvre Jean-Michel Muller.
Université de Lyon, CNRS, Inria, France.

Arith26,
Kyoto, June 2019

1

Accurate complex multiplication in FP arithmetic

I ω · x , emphasis on the case where <(ω) and =(ω) are double-word
numbers—i.e., pairs (high-order, low-order) of FP numbers;

I applications: Fourier transforms, iterated products.

Assumptions:

I radix-2, precision-p, FP arithmetic;

I rounded to nearest (RN) FP operations;

I an FMA instruction is available;

I underflow/overflow do not occur.

Bound on relative error of (real) operations:

|RN(a+ b)− (a+ b)| 6 u

1+ u
· |a+ b| < u · |a+ b|,

where u (rounding unit) equals 2−p.

2

Some variables: double-word (DW) numbers

I also called double-double in the literature;

I v ∈ R represented by a pair of FP numbers vh and v` such that

v = vh + v`,
|v`| 6 1

2ulp(v) 6 u · |v |.

I algorithms and libraries for manipulating DW numbers: QD (Hida,
Li & Bailey), Campary (Joldes, Popescu & others),

I use the 2Sum, Fast2Sum & Fast2Mult algorithms (see later).

3

Naive algorithms for complex FP multiplication

I straightforward transcription of the formula

z = (xR + ix I) · (yR + iy I) = (xRyR − x I y I) + i · (x I yR + xRy I);

I bad solution if componentwise relative error is to be minimized;

I adequate solution if normwise relative error is at stake.
(ẑ approximates z with normwise error |(ẑ − z)/z |)

Algorithms:

I if no FMA instruction is available{
ẑR = RN(RN(xRyR)− RN(x I y I)),
ẑ I = RN(RN(xRy I) + RN(x I yR)).

(1)

I if an FMA instruction is available{
ẑR = RN(xRyR − RN(x I y I)),
ẑ I = RN(xRy I + RN(x I yR)).

(2)

4

Naive algorithms for complex multiplication

I if no FMA instruction is available{
ẑR = RN(RN(xRyR)− RN(x I y I)),
ẑ I = RN(RN(xRy I) + RN(x I yR)).

(1)

I if an FMA instruction is available{
ẑR = RN(xRyR − RN(x I y I)),
ẑ I = RN(xRy I + RN(x I yR)).

(2)

Asymptotically optimal bounds on the normwise relative error of (1) and
(2) are known:

• Brent et al (2007): bound
√
5 · u for (1),

• Jeannerod et al. (2017): bound 2 · u for (2).

5

Accurate complex multiplication

Our goal:
• smaller normwise relative errors,

• closer to the best possible one (i.e., u, unless we
output DW numbers),

• at the cost of more complex algorithms.

We consider the product
ω · x ,

with
ω = ωR + i · ωI and x = xR + i · x I ,

where:

I ωR and ωI are DW numbers (special case FP considered later)

I xR and x I are FP numbers.

6

Basic building blocks: Error-Free Transforms

Expressing a+ b as a DW number

Algorithm 1: 2Sum(a, b). Returns s and t such that s = RN(a + b) and
t = a+ b − s

s ← RN(a+ b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a− a′)
δb ← RN(b − b′)
t ← RN(δa + δb)

Expressing a · b as a DW number

Algorithm 2: Fast2Mult(a, b). Returns π and ρ such that π = RN(ab)
and ρ = ab − π

π ← RN(ab)
ρ← RN(ab − π)

7

The multiplication algorithm

I ωR = <(ω) and ωI = =(ω): DW numbers, i.e.,

ω = ωR + i · ωI = (ωR
h + ωR

`) + i · (ωI
h + ωI

`),

where ωR
h , ω

R
` , ω

I
h, and ω

I
` are FP numbers that satisfy:

• |ωR
` | 6 1

2ulp(ω
R) 6 u · |ωR |;

• |ωI
`| 6 1

2ulp(ω
I) 6 u · |ωI |.

I Real part zR of the result (similar for imaginary part):

• difference vR
h of the high-order parts of ωR

h x
R and ωI

hx
I ,

• add approximated sum γR` of all the error terms that may have
a significant influence on the normwise relative error.

I rather straightforward algorithms: the tricky part is the error
bounds.

8

Real part (ωR
h + ωR

`) · xR − (ωI
h + ωI

`) · x I

× FMA Fast2Mult Fast2Mult

2Sum

+ + + +

ωI
` x I ωR

` xR ωI
h x I ωR

h xR

zR

tR

PR
` PR

h

QR
` QR

h

vR
` vR

h

πR
`

rR` sR` γR`

9

The multiplication algorithm

Algorithm 3: Computes ω · x , where the real & imaginary parts of ω =

(ωR
h + ωR

`) + i · (ωI
h + ωI

`) are DW, and the real & im. parts of x are FP.

1: tR ← RN(ωI
`x

I)
2: πR

` ← RN(ωR
` x

R − tR)
3: (PR

h ,P
R
`)← Fast2Mult(ωI

h, x
I)

4: rR` ← RN(πR
` − PR

`)
5: (QR

h ,Q
R
`)← Fast2Mult(ωR

h , x
R)

6: sR` ← RN(QR
` + rR`)

7: (vR
h , v

R
`)← 2Sum(QR

h ,−PR
h)

8: γR
` ← RN(vR

` + sR`)
9: return zR = RN(vR

h + γR
`) (real part)

10: t I ← RN(ωI
`x

R)
11: πI

` ← RN(ωR
` x

I + t I)
12: (P I

h,P
I
`)← Fast2Mult(ωI

h, x
R)

13: r I` ← RN(πI
` + P I

`)
14: (Q I

h,Q
I
`)← Fast2Mult(ωR

h , x
I)

15: s I` ← RN(Q I
` + r I`)

16: (v I
h, v

I
`)← 2Sum(Q I

h,P
I
h)

17: γI
` ← RN(v I

` + s I`)

18: return z I = RN(v I
h + γI

`) (imaginary part)
10

The multiplication algorithm

Theorem 1
As soon as p > 4, the normwise relative error η of Algorithm 3 satisfies

η < u + 33u2.

(remember: the best possible bound is u)

Remarks:
• Condition “p > 4” always holds in practice;

• Algorithm 3 easily transformed (see later)
into an algorithm that returns the real and
imaginary parts of z as DW numbers.

11

Sketch of the proof

I first, we show that
|zR −<(wx)| 6 αnR + βNR ,

|z I −=(wx)| 6 αnI + βN I ,

with
NR = |ωRxR |+ |ωI x I |,
nR = |ωRxR − ωI x I |,
N I = |ωRx I |+ |ωI xR |,
nI = |ωRx I + ωI xR |,
α = u + 3u2 + u3,
β = 15u2 + 38u3 + 39u4 + 22u5 + 7u6 + u7;

I then we deduce

η2 =
(zR −<(ωx))2 + (z I −=(ωx))2

(<(ωx))2 + (=(ωx))2
6 α2+

(
2αβ + β2)·(NR

)2
+

(
N I

)2

(nR)2 + (nI)2
;

I the theorem follows, by using(
NR

)2
+

(
N I

)2

(nR)2 + (nI)2
6 2.

12

Obtaining the real and imaginary parts of z as DW numbers

I replace the FP addition zR = RN(vR
h + γR`) of line 9 of Algorithm 3

by a call to 2Sum(vR
h , γ

R
`),

I replace the FP addition z I = RN(v I
h + γI`) of line 18 by a call to

2Sum(v I
h, γ

I
`).

I resulting relative error
√
241 · u2 +O(u3) ≈ 15.53u2 +O(u3)

(instead of u + 33u2).

Interest:
• iterative product z1 × z2 × · · · × zn: keep the real and

imaginary parts of the partial products as DW numbers,

• Fourier transforms: when computing z1 ± ωz2, keep
<(ωz2) and =(ωz2) as DW numbers before the ±.

13

If ωI and ωR are floating-point numbers

ωI
` = ωR

` = 0⇒ Algorithm 3 becomes simpler:

Algorithm 4: Complex multiplication ω · x , where <(ω) and =(ω) are FP
numbers.

1: (PR
h ,P

R
`)← Fast2Mult(ωI , x I)

2: (QR
h ,Q

R
`)← Fast2Mult(ωR , xR)

3: sR` ← RN(QR
` − PR

`)
4: (vR

h , v
R
`)← 2Sum(QR

h ,−PR
h)

5: γR
` ← RN(vR

` + sR`)
6: return zR = RN(vR

h + γR
`) (real part)

7: (P I
h,P

I
`)← Fast2Mult(ωI , xR)

8: (Q I
h,Q

I
`)← Fast2Mult(ωR , x I)

9: s I` ← RN(Q I
` + P I

`)
10: (v I

h, v
I
`)← 2Sum(Q I

h,P
I
h)

11: γI
` ← RN(v I

` + s I`)
12: return z I = RN(v I

h + γI
`) (imaginary part)

14

Real part

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

ωI
` x I ωR

` xR ωI
h x I ωR

h xR

zR

tR

PR
`

PR
`

PR
h

QR
` QR

h

vR
` vR

h

πR
`

rR` sR` γR`

15

Real part

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

ωI
` x I ωR

` xR ωI
h x I ωR

h xR

zR

tR

PR
`

PR
`

PR
h

QR
` QR

h

vR
` vR

h

πR
`

rR` sR` γR`

16

Real part

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

ωI
` x I ωR

` xR ωI
h x I ωR

h xR

zR

tR

PR
`

PR
`

PR
h

QR
` QR

h

vR
` vR

h

πR
`

rR` sR` γR`

17

If ωI and ωR are floating-point numbers

I Real and complex parts of Algorithm 4 similar to:

• Cornea, Harrison and Tang’s algorithm for ab + cd (with a “+”
replaced by a 2Sum),

• Alg. 5.3 in Ogita, Rump and Oishi’s Accurate sum & dot product
(with different order of summation of PR

` , Q
R
` & vR

`).

I The error bound u + 33u2 of Theorem 1 still applies, but it can be
slightly improved:

Theorem 2
As soon as p > 4, the normwise relative error η of Algorithm 4 satisfies

η < u + 19u2.

18

Implementation and experiments

I Main algorithm (Algorithm 3) implemented in binary64 (a.k.a.
double-precision) arithmetic, compared with other solutions:

• naive formula in binary64 arithmetic;
• naive formula in binary128 arithmetic;
• GNU MPFR with precision ranging from 53 to 106 bits.

I loop over N random inputs, itself inside another loop doing
K iterations;

I Goal of the external loop: get accurate timings without having to
choose a large N, with input data that would not fit in the cache;

I For each test, we chose (N,K) = (1024, 65536), (2048, 32768) and
(4096, 16384).

19

Implementation and experiments

I tests run on two computers with a hardware FMA:

• x86_64 with Intel Xeon E5-2609 v3 CPUs, under Linux
(Debian/unstable), with GCC 8.2.0 and a Clang 8 preversion,
using -march=native;

• ppc64le with POWER9 CPUs, under Linux (CentOS 7), with
GCC 8.2.1, using -mcpu=power9.

I options -O3 and -O2.

I With GCC, -O3 -fno-tree-slp-vectorize also used to avoid a
loss of performance with some vectorized codes.

I In all cases, -static used to avoid the overhead due to function
calls to dynamic libraries.

20

Implementation and experiments

Table 1: Timings on x86_64 (in secs, for NK = 226 ops) with GCC. GNU
MPFR is used with separate ± and ×.

minimums maximums
N → 1024 2048 4096 1024 2048 4096

gcc
-O3
-f...

Algorithm 3 0.92 0.97 0.97 0.95 1.02 1.02
Naive, Binary64 0.61 0.61 0.62 0.61 0.62 0.62
Naive, Binary128 21.32 21.44 21.46 21.43 21.53 21.54
GNU MPFR 12.59 13.01 13.12 22.72 22.85 22.80

gcc
-O2

Algorithm 3 0.91 0.97 0.97 0.95 1.02 1.02
Naive, Binary64 0.61 0.62 0.62 0.61 0.62 0.62
Naive, Binary128 20.90 21.03 21.08 21.01 21.10 21.13
GNU MPFR 12.31 12.74 12.85 23.11 23.20 23.18

21

Implementation and experiments

Table 2: Timings on x86_64 (in secs, for NK = 226 ops) with Clang.

minimums maximums
N → 1024 2048 4096 1024 2048 4096

clang
-O3

Algorithm 3 0.86 1.09 1.10 0.96 1.15 1.15
Naive, Binary64 0.39 0.61 0.63 0.47 0.65 0.66
Naive, Binary128 21.65 21.77 21.81 21.74 21.87 21.88
GNU MPFR 12.24 12.63 12.72 22.91 22.94 22.97

clang
-O2

Algorithm 3 0.88 1.08 1.10 0.96 1.14 1.15
Naive, Binary64 0.40 0.61 0.63 0.48 0.65 0.66
Naive, Binary128 21.33 21.45 21.50 21.49 21.57 21.59
GNU MPFR 12.15 12.54 12.65 23.15 23.21 23.21

22

Implementation and experiments

Table 3: Timings on a POWER9 (in secs, for NK = 226 ops). The POWER9
has hardware support for Binary128.

minimums maximums
N → 1024 2048 4096 1024 2048 4096

gcc
-O3
-f...

Algorithm 3 0.97 0.97 0.97 0.98 0.99 1.00
Naive, Binary64 0.47 0.47 0.51 0.48 0.48 0.52
Naive, Binary128 2.22 2.22 2.22 2.24 2.24 2.24
GNU MPFR 16.42 16.59 16.66 30.06 30.39 30.44

gcc
-O2

Algorithm 3 0.98 0.98 0.98 0.99 1.01 1.01
Naive, Binary64 0.47 0.47 0.51 0.47 0.47 0.51
Naive, Binary128 2.22 2.22 2.22 2.24 2.24 2.24
GNU MPFR 16.36 16.58 16.63 30.29 30.29 30.49

23

Implementation and experiments

I Naive formula in binary64 (inlined code) ≈ two times as fast as
our implementation of Algorithm 3, but significantly less accurate;

I Naive formula in binary128, using the __float128 C type
(inlined code):

• x86_64: from 19 to 25 times as slow as Algorithm 3,
• on POWER9: 2.3 times as slow.

I GNU MPFR using precisions from 53 to 106: from 11 to 26 times
as slow as Algorithm 3 on x86_64, and from 17 to 31 times as slow
on POWER9.

The error bound of Theorem 1 is tight: In Binary64 arithmetic, with

ωR = 0x1.d1ef9ea4aa013p−1+ 0x1.ae88ba2a277ep−56
ωI = 0x1.f5c28321df365p−81+ 0x1.c4c3e7b506d06p−135
xR = 0x1.194f298b4d152p−1
x I = 0x1.5c1fdca444f7cp−14

the normwise relative error is 0.99999900913907117123 u.
24

Conclusion

I Main algorithm:

• the real and imaginary parts of one of the operands are DW,
and for the other one they are FP,

• normwise relative error bound close to the best one (u) that
one can guarantee,

• only twice as slow as a naive multiplication,
• much faster than binary128 or multiple-precision software.

I 2 variants:

• real and imaginary parts of the output are DW,
• real and imaginary parts of the inputs are FP.

Thank you!

25

Conclusion

I Main algorithm:

• the real and imaginary parts of one of the operands are DW,
and for the other one they are FP,

• normwise relative error bound close to the best one (u) that
one can guarantee,

• only twice as slow as a naive multiplication,
• much faster than binary128 or multiple-precision software.

I 2 variants:

• real and imaginary parts of the output are DW,
• real and imaginary parts of the inputs are FP.

Thank you!

25

