
Accurate calculation of Euclidean Norms using
Double-word arithmetic

Vincent Lefèvreb Nicolas Louvetd Jean-Michel Mullera

Joris Picotc Laurence Rideaub

aCNRS, bINRIA, cENS de Lyon, dUniv. Lyon 1

1



Computation of Euclidean norms

I Euclidean (a.k.a. L2) norm of the vector (a0, a1, a2, . . . , an−1)

N =

√√√√n−1∑
i=0

a2
i

in radix-2, precision-p Floating-Point arithmetic;

I we assume n ≥ 3 (and rather large);

I Goals:

• avoid spurious overflows and underflows;
• very accurate results (error bound very slightly above 0.5ulp);
• formally proven behavior (work in progress);

I we start from an algorithm due to Graillat, Lauter, Tang, Yamanaka
and Oishi (ACM TOMS – 2015).

2



Spurious under/overflows can jeopardize the computation

I IEEE 754 binary64 arithmetic with n = 3, and the round-to-nearest,
ties-to-even, rounding function;

I “straightforward” solution (first sum the squares serially, then take
the square root):

• with a0 = 1.5× 2511, a1 = 0, and a2 = 2512, we obtain +∞,
whereas the exact result is 5× 2510;

• with a0 = a1 = a2 = (45/64)× 2−537, the computed result is 0,
whereas the exact result is around 1.2178× 2−537.

I From an accuracy point-of-view, spurious underflow is a problem
only if all terms ai are tiny.

I However, itcan be very harmful from a performance point-of-view
when subnormal numbers are handled in software.

3



Avoiding spurious overflow and harmful underflow

C ·
n−1∑
i=0

a2i

• possible scaling factor C

• find m = max |ai |
• compute

∑n−1
i=0

(
ai
m

)2
variant: scale only if m larger than mbig

or less than msmall

naiv
e m

etho
d

• before step j , m = maxi<j |ai | and s =
∑

i<j

(
ai
m

)2
• if |aj | ≤ m then s ← s +

( aj
m

)2Hammarling

• else s ← s ·
(

m
aj

)2
+ 1 and m← |aj |

variant: scale only if m ≥ mbig or m ≤ msmall

• 3 classes of FPNs: TINY, MED, and BIG
• 2 constants: ttiny and tbig, powers of 2

• Separately compute:
Stiny =

∑
ai∈TINY

(ttiny · ai )2
Smed =

∑
ai∈MED a2i

Sbig =
∑

ai∈BIG
(tbig · ai )2

variant: BIG nonempty → no need to consider TINY

Blue

4



A few landmarks

I Blue (1978): robust yet complex algorithm (with final operations
that are no longer necessary on IEEE-754-compliant systems);

I Lawson et al. (1979): variant of Hammarling’s algorithm where
scaling only if m ≥ mbig or m ≤ msmall ;

I Hammarling’s algorithm included in Lapack (1987);

I Kahan (1997 ?): compensated summation of the sums of squares
(but each square represented by 1 FPN only), scaling by constant
factors when needed, correct handling of IEEE-754 exceptions;

I Graillat et al. (2015): variant of Blue’s algorithm with double-word
arithmetic, that targets faithful rounding;

I Hanson & Hopkins (2017): hybrid method (compensated
summation—suffices for most common cases, then Kahan’s
algorithm if an exception occurred);

5



Underlying FP arithmetic

I Radix-2, precision-p (with p ≥ 5), FP arithmetic,

I extremal exponents emin and emax = 1− emin

I RN(t) stands for t rounded to nearest FP number.

Table 1: Notation for the important FP parameters

Notation numerical value explanation

Ω 2emax · (2− 2−p+1) largest finite FPN
α 2emin−p+1 smallest positive FPN

η 2(emin+p)/2 the square of a FPN ≥ η
is the sum of two FPNs

u 2−p roundoff error unit
ulp(x) 2max{blog2 |x|c,emin}−p+1 unit in the last place

6



Blue’s algorithm: classes MED, BIG and TINY

I MED Class: FPN that can be squared, and whose squares can be
accumulated (up to nmax terms), without under/overflows.
ai ∈ MED if minmed ≤ |ai | ≤ maxmed. We compute

Smed =
∑

ai∈MED

a2
i ;

I ai ∈ BIG if maxmed < |ai |. All FPN ∈ BIG are “scaled down”, i.e.,
multiplied by the same constant tbig. We compute

Sbig =
∑

ai∈BIG

(tbig · ai )2
.

I ai ∈ TINY if |ai | < minmed. All FPN ∈ TINY are “scaled up”, i.e.,
multiplied by the same constant ttiny. We compute

Stiny =
∑

ai∈TINY

(ttiny · ai )2
.

I we need tbig × BIG ⊆ MED and ttiny × TINY ⊆ MED.

One needs to cleverly combine Sbig, Smed, and Stiny.
7



Parameters

minmed2 ≥ 2emin , (1a)

nmax ·maxmed2 · (1 + ρ) < Ω +
1
2
ulp(Ω) = 2emax+1 − 2emax−p, (1b)

maxmed · tbig ≥ minmed, (1c)

Ω · tbig ≤ maxmed, (1d)

minmed · ttiny ≤ maxmed, (1e)

α · ttiny ≥ minmed, (1f)

where

I Ω and α are the largest and smallest positive FPNs;

I ρ is a bound on the relative error of the algorithm used for
computing the sum of squares in MED;

I If maxmed and nmax are powers of 2, (1b) can be replaced by

nmax ·maxmed2 < 2emax+1 − 2emax−p.

8



Basic building blocks

Algorithm 1 – Fast2Sum(a, b) (Dekker, 1971)

s ← RN(a + b)
z ← RN(s − a)
t ← RN(b − z)

If |a| ≥ |b| and no overflow occurs, s + t = a + b, i.e., t is the error of the FP
addition of a and b.

Algorithm 2 – 2Sum(a, b) (Knuth). It takes 6 FP operations.

s ← RN(a + b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a− a′)
δb ← RN(b − b′)
t ← RN(δa + δb)

Same as Algorithm 1 without any condition on a and b.
9



Basic building blocks

Algorithm 3 – Fast2Mult(a, b). Requires the availability of an FMA instruction.

πh ← RN(a · b)
π` ← RN(a · b − πh)

I used for expressing the square of a FP number a as a double-word
number;

I barring overflow, the condition for that algorithm to guarantee that
πh + π` = a2 is

|a| ≥ η = 2(emin+p)/2. (2)

When the augmented operations specified by IEEE 754-2019 become efficiently
implemented, 2Sum, Fast2Sum and Fast2Mult may be replaced by them.

10



Double Word Arithmetic

Also called “double-double” in the literature. Goes back to Dekker (1971).
Double-word (DW) number x : unevaluated sum xh + x` of two FPN xh
and x` such that

xh = RN(x).

Algorithm 4 – DWPlusFP(xh, x`, y).Computes (xh, x`) + y (implemented in the
QD library), x = (xh, x`) is a DWN and y is a FPN.

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN(x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

I In general, asymptotically optimal relative error bound

2 · u2

1− 2u
= 2u2 + 4u3 + 8u4 + · · ·

I if x and y are nonnegative, the bound becomes u2.
11



Double Word Arithmetic

Algorithm 5 – SloppyDWPlusDW(xh, x`, yh, y`). Computes (xh, x`) + (yh, y`).

1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: (zh, z`)← Fast2Sum(sh,w)
5: return (zh, z`)

I can be very inaccurate in the general case;

I when the inputs operands xh and yh have the same sign,
asymptotically optimal relative error bound 3u2.

12



Graillat et al. (2015)

I Goal: faithful rounding, and no spurious under/overflow;

I handling of scalings: essentially Blue’s method, adapted;

I sum-of-squares in Double-Word arithmetic, using Algorithm
SloppyDWPlusDW, final result FP;

I then, FP square root.

Note: Kahan (1997) uses compensated summation of the sum of squares
to obtain accuracy of the same order of magnitude (but not enough to
guarantee faithful rounding).

13



Suggested modifications

I more accurate DW sum-of-squares using Algorithm DWPlusFP (and
our new bound u2 for positive operands), final result DW;

I ad-hoc algorithm SQRTDWtoFP: avoids the loss of information due
to converting to FP before square root;

I slightly different choices of parameters (minmed, maxmed. . . )

I Goal: error bound very slightly above 0.5ulp.

14



Double-Word to FP square root

Algorithm 6 – SQRTDWtoFP(xh, x`). Computes the square-root of the DW
number (xh, x`) and returns a FPN z .

1: sh ← RN(
√
xh)

2: ρ1 ← RN(xh − s2h ) (with an FMA instruction)
3: ρ2 ← RN(x` + ρ1)
4: s` ← RN(ρ2/(2 · sh))
5: z ← RN(sh + s`)
6: return z

Theorem 1
If x = (xh, x`) is a DW number, p ≥ 5, x ≥ 22d(emin+p)/2e, then z is
within (

1
2

+
7
4
· 2−p

)
· ulp(

√
xh + x`)

from
√
xh + x`, and the relative error of that algorithm is bounded by

u + 17
8 u2 + 33

8 u3.

Theorem 1 has been formally proven using the Coq proof assistant.
15



Sequential DW computation of the sum of squares

Algorithm 7 Sequential computation of
∑n−1

i=0 a2i assuming no under/overflow.

1. For i = 0 . . . n − 1, compute (yh
i , y

`
i ) = Fast2Mult(ai , ai ).

(gives a2i = yh
i + y `

i ).

2. Accumulate the terms yh
i in DW arithmetic: starting from

(xh
1 , x

`
1) = 2Sum(yh

0 , y
h
1 ), for i = 2 . . . n − 1, compute

(xh
i , x

`
i ) = DWPlusFP(xh

i−1, x
`
i−1, y

h
i ).

3. Accumulate the terms y `
i in FP arithmetic: for i = 0 . . . n − 2, compute

σi+1 = RN(σi + y `
i+1), with σ0 = y `

0 .

4. Obtain the approximation to (Sh, S`) to
∑n−1

i=0 a2i as

(Sh, S`) = DWPlusFP(xh
n−1, x

`
n−1, σn−1).

16



Blockwise DW computation of the sum of squares

I the ai are separated into k blocks of m numbers, with n = k ×m;
I parallelizing the calculation & obtaining a more accurate result;
I block j (j = 0, . . . , k − 1) contains amj , amj+1, . . . , am(j+1)−1.

Algorithm 8 Blockwise computation of
∑n−1

i=0 a2i assuming no under/overflow.

1. for j = 0, 1, . . . , k − 1, compute an approximation (Z h
j ,Z

`
j ) to∑m(j+1)−1

i=mj a2i using the sequential summation algorithm applied to
amj , amj+1, amj+2, . . . , am(j+1)−1;

2. accumulate the terms Z h
j in DW arithmetic, i.e., starting from(

Σh
1,Σ

`
1
)

= 2Sum(Z h
0 ,Z

h
1 ), iteratively compute, for j = 2 . . . k − 1 the

terms
(
Σh

j ,Σ
`
j

)
= DWPlusFP

(
Σh

j−1,Σ
`
j−1,Z

h
j

)
;

3. accumulate the terms Z `
j using the conventional “recursive” summation,

i.e., for j = 0 . . . k − 2, compute τj+1 = RN(τj + Z `
j+1), with τ0 = Z `

0 ;

4. obtain the approximation (Sh,S`) to
∑n−1

i=0 a2i as

(Sh, S`) = DWPlusFP
(

Σh
k−1,Σ

`
k−1, τk−1

)
.

17



Computing Euclidean norms barring underflow/overflow

Theorem 2
Assume all ai ∈ MED, the sequential or blockwise summation (with k
blocks of m elements) is used to compute (Sh,S`) and Algorithm
SQRTDWtoFP is used to approximate

√
Sh + S` by a FP number R. Let

λ(t) = (2t − 1) + (t − 1)u + (2t − 2)u2 + (t − 1)u3,

and define

ν =

 λ(n) with the sequential summation

λ(k) + λ(m) + λ(k)λ(m) with the blockwise summation

If ν < 1
2u , then:∣∣∣∣∣∣R −

√√√√n−1∑
i=0

a2i

∣∣∣∣∣∣ ≤
(
1
2

+ u ·
(
7
4

+
ν

1− ν · u2

))
ulp


√√√√n−1∑

i=0

a2i

 . (3)

18



Computing Euclidean norms in the general case

Parameters:

I nmax = 1/u = 2p, i.e., we wish to guarantee a correct behavior of
the algorithms for vectors of dimension up to 2p;

I MED as large as possible:

→ minmed is the power of 2 just above η (so that the squares of
the elements of MED are computed without error), i.e.,

minmed = 2d(emin+p)/2e;

→ maxmed is the power of 2 just below
√

Ω/2p, i.e.,

maxmed = 2b(emax−p)/2c;

I ttiny = 1/tbig is an even power of 2 (so that multiplying/dividing by
it and its square root is errorless);

I we need tbig × BIG ⊆ MED and ttiny × TINY ⊆ MED.

19



Computing Euclidean norms in the general case

Table 2: The various parameters of our algorithm for the binary16 format, the
bfloat16 format, and the binary32, binary64, and binary128 formats.

parameters binary16 bfloat16 binary32 binary64 binary128

p 11 8 24 53 113

emax 15 127 127 1023 16383

minmed 1/2 2−59 2−51 2−484 2−8134

maxmed 4 259 251 2485 28135

Constraints

on tbig

1
4 ≤ tbig ≤ 2−14

(IMPOSSIBLE)

2−118

≤ tbig
≤ 2−70

2−102

≤ tbig
≤ 2−78

2−968

≤ tbig
≤ 2−540

2−16268

≤ tbig
≤ 2−8250

Constraints

on ttiny

224 ≤ ttiny ≤ 4

(IMPOSSIBLE)

274

≤ ttiny
≤ 2118

298

≤ ttiny
≤ 2102

2590

≤ ttiny
≤ 2968

28360

≤ ttiny
≤ 216268

20



Computing Euclidean norms in the general case

Algorithm 9 Obtaining the norm from Sbig, Smed, Stiny

if BIG is nonempty then
if Sh

med < u2minmed2/t2big or Sh
big > maxmed2 · t2big/u3 then

return 1
tbig
·SQRTDWtoFP(Sh

big, S
`
big) = ttiny ·SQRTDWtoFP(Sh

big, S
`
big)

else
compute χ̂ = SloppyDWPlusDW(ttinyS

h
big, ttinyS

`
big, tbigS

h
med, tbigS

`
med)

return SQRTDWtoFP(χ̂)
end if

else
if MED is nonempty then

if TINY is empty or Sh
tiny < minmed2u2/t2big or S

h
med > maxmed2 ·t2big/u3

then
return SQRTDWtoFP(Sh

med, S
`
med)

else
compute χ̂ = SloppyDWPlusDW(ttinyS

h
med, ttinyS

`
med, tbigS

h
tiny, tbigS

`
tiny)

return SQRTDWtoFP(χ̂)
end if

else
return tbig × SQRTDWtoFP(Sk

tiny, S
`
tiny)

end if
end if

21



Computing Euclidean norms in the general case

Theorem 3
If n ≤ 1

u , k + m ≤ 1
4u − 2 and u ≤ 1

32 and if the blockwise algorithm
(Algorithm 8) is used for the summation of squares, with k blocks of m
elements, then Algorithm 9 computes√√√√n−1∑

i=0

a2
i

with an error bounded by(
1
2

+

(
3.12 + 2(k + m)

)
u + 1.8u2

1− u
2

)
ulp


√√√√n−1∑

i=0

a2
i

 ,

without any risk of spurious underflow or overflow.

22



Accuracy comparisons

Table 3: For S = 7, 8, . . . , 14, we generate 4096 · 214−S arrays of uniform
random lengths between 2S−1 and 2S and for each term, we generate a uniform
random exponent between emin + p and emax − p (to avoid non-spurious
underflow/overflow) and uniform random significand between 1 and 2− 2u.

Maximum Rounding
Algorithm p relative error/u Faithful Correct

Hammarling 24 15.3468 9% 4%
53 6.4166 59% 32%

Graillat et al. 24 1.4916 100% 87%
53 1.4608 100% 89%

Ours 24 0.9990 100% 100%
53 0.9989 100% 100%

Important: we do not guarantee correct rounding (one can build ad-hoc
cases for which Algorithm 9 does not return a correctly rounded result).
The error bound being very near 1

2ulp, incorrect rounding is just very
unlikely (so that we do not observe it in experiments).

23



Performance comparisons on AMD Zen 2

Table 4: Comparisons of four algorithms on AMD Zen2, for three different
array sizes, and three different profiles of input. For each entry, the mean value
and standard deviation of a population of 100 000 runs is given.

AMD Zen2 (AVX2)

Algorithm n Timing averages in microseconds
AROUND_ONE FULL_RANGE REALLY_SMALL

straightforward 256 0.2(0) 0.4(0) 0.4(0)
(no scaling) 1024 1.0(0) 1.4(1) 1.4(1)

4096 3.9(1) 5.7(2) 5.5(2)

Hammarling 256 0.4(0) 1.1(1) 0.8(1)
1024 1.6(1) 4.4(1) 3.0(1)
4096 6.5(2) 17.7(5) 12.1(4)

Graillat et al. 256 0.6(0) 0.6(0) 0.8(1)
1024 2.1(0) 2.1(1) 3.2(1)
4096 8.3(3) 8.3(3) 12.9(4)

Ours 256 0.5(0) 0.5(0) 0.7(1)
1024 1.7(0) 1.7(0) 2.7(1)
4096 6.7(2) 6.7(2) 10.6(3)

24



Performance comparisons on Intel Skylake

Table 5: Comparisons of four algorithms on Intel Skylake (AVX512), for three
different array sizes, and three different profiles of input. For each entry, the
mean value and standard deviation of a population of 100 000 runs is given.

Intel Skylake (AVX512) @3.0GHz

Algorithm n Timing averages in microseconds
AROUND_ONE FULL_RANGE REALLY_SMALL

Straightforward 256 0.4(0) 0.6(1) 1.1(1)
(no scaling) 1024 1.5(0) 2.3(2) 4.0(3)

4096 6.1(1) 9.1(4) 15.8(6)

Hammarling 256 0.5(0) 1.3(3) 1.9(3)
1024 1.6(1) 5.0(6) 7.3(6)
4096 6.2(1) 19.6(12) 28.8(11)

Graillat et al. 256 0.5(1) 0.6(1) 1.5(2)
1024 1.8(1) 1.8(1) 5.8(3)
4096 6.8(1) 6.8(2) 22.8(7)

Ours 256 0.5(0) 0.6(1) 1.5(2)
1024 1.6(0) 1.6(1) 5.4(3)
4096 6.1(1) 6.1(2) 21.1(6)

25



Conclusion

I algorithm that computes euclidean norms of large vectors very
accurately, and without spurious underflows or overflows;

I performance similar to that of the less accurate algorithm of Graillat
et al.;

I not more than twice slower than the straightforward,
under/overflow-prone, method;

I besides the euclidean norm:

• when the operands are positive, the DWPlusFP algorithm has
relative error bound u2, and that bound is asymptotically
optimal;

• DW SQRT algorithm, with asymptotically optimal relative
error bound.

I preprint available at
https://hal.archives-ouvertes.fr/hal-03482567;

I code and formal proofs available on demand

26

https://hal.archives-ouvertes.fr/hal-03482567

