Accurate calculation of Euclidean Norms using Double-word arithmetic

Vincent Lefèvre ${ }^{b} \quad$ Nicolas Louvet ${ }^{d}$ Jean-Michel Muller ${ }^{\text {a }}$ Joris Picot ${ }^{c} \quad$ Laurence Rideau ${ }^{b}$

${ }^{a}$ CNRS, ${ }^{b}$ INRIA, ${ }^{c}$ ENS de Lyon, ${ }^{d}$ Univ. Lyon 1

Computation of Euclidean norms

- Euclidean (a.k.a. L2) norm of the vector $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$

$$
N=\sqrt{\sum_{i=0}^{n-1} a_{i}^{2}}
$$

in radix-2, precision- p Floating-Point arithmetic;

- we assume $n \geq 3$ (and rather large);
- Goals:
- avoid spurious overflows and underflows;
- very accurate results (error bound very slightly above 0.5ulp);
- formally proven behavior (work in progress);
- we start from an algorithm due to Graillat, Lauter, Tang, Yamanaka and Oishi (ACM TOMS - 2015).

Spurious under/overflows can jeopardize the computation

- IEEE 754 binary 64 arithmetic with $n=3$, and the round-to-nearest, ties-to-even, rounding function;
- "straightforward" solution (first sum the squares serially, then take the square root):
- with $a_{0}=1.5 \times 2^{511}, a_{1}=0$, and $a_{2}=2^{512}$, we obtain $+\infty$, whereas the exact result is 5×2^{510};
- with $a_{0}=a_{1}=a_{2}=(45 / 64) \times 2^{-537}$, the computed result is 0 , whereas the exact result is around 1.2178×2^{-537}.
- From an accuracy point-of-view, spurious underflow is a problem only if all terms a_{i} are tiny.
- However, itcan be very harmful from a performance point-of-view when subnormal numbers are handled in software.

Avoiding spurious overflow and harmful underflow

- possible scaling factor C
- find $m=\max \left|a_{i}\right|$
- compute $\sum_{i=0}^{n-1}\left(\frac{a_{i}}{m}\right)^{2}$
variant: scale only if m larger than $m_{\text {big }}$ or less than $m_{\text {small }}$
- before step $j, m=\max _{i<j}\left|a_{i}\right|$ and $s=\sum_{i<j}\left(\frac{a_{j}}{m}\right)^{2}$
- if $\left|a_{j}\right| \leq m$ then $s \leftarrow s+\left(\frac{a_{j}}{m}\right)^{2}$
- else $s \leftarrow s \cdot\left(\frac{m}{a_{j}}\right)^{2}+1$ and $m \leftarrow\left|a_{j}\right|$
variant: scale only if $m \geq m_{\text {big }}$ or $m \leq m_{\text {small }}$
- 3 classes of FPNs: TINY, MED, and BIG
- 2 constants: $t_{\text {tiny }}$ and $t_{\text {big }}$, powers of 2
- Separately compute:

$$
\begin{aligned}
& S_{\text {tiny }}=\sum_{a_{i} \in \operatorname{TINY}}\left(t_{\text {tiny }} \cdot a_{i}\right)^{2} \\
& S_{\text {med }}=\sum_{a_{i} \in \text { MED }} a_{i}^{2} \\
& S_{\text {big }}=\sum_{a_{i} \in \text { BIG }}\left(t_{\text {big }} \cdot a_{i}\right)^{2}
\end{aligned}
$$

variant: BIG nonempty \rightarrow no need to consider TINY

A few landmarks

- Blue (1978): robust yet complex algorithm (with final operations that are no longer necessary on IEEE-754-compliant systems);
- Lawson et al. (1979): variant of Hammarling's algorithm where scaling only if $m \geq m_{\text {big }}$ or $m \leq m_{\text {small }}$;
- Hammarling's algorithm included in Lapack (1987);
- Kahan (1997 ?): compensated summation of the sums of squares (but each square represented by 1 FPN only), scaling by constant factors when needed, correct handling of IEEE-754 exceptions;
- Graillat et al. (2015): variant of Blue's algorithm with double-word arithmetic, that targets faithful rounding;
- Hanson \& Hopkins (2017): hybrid method (compensated summation-suffices for most common cases, then Kahan's algorithm if an exception occurred);

Underlying FP arithmetic

- Radix-2, precision- p (with $p \geq 5$), FP arithmetic,
- extremal exponents $e_{\text {min }}$ and $e_{\text {max }}=1-e_{\text {min }}$
- $\mathrm{RN}(t)$ stands for t rounded to nearest FP number.

Table 1: Notation for the important FP parameters

Notation	numerical value	explanation
Ω	$2^{e_{\max }} \cdot\left(2-2^{-p+1}\right)$	largest finite FPN
α	$2^{e_{\min }-p+1}$	smallest positive FPN
η	$2^{\left(e_{\min }+p\right) / 2}$	the square of a FPN $\geq \eta$ is the sum of two FPNs
u	2^{-p}	roundoff error unit
$u \operatorname{ulp}(x)$	$2^{\max \left\{\left[\log _{\mathbf{2}}\|x\|\right], e_{\min }\right\}-p+1}$	unit in the last place

Blue's algorithm: classes MED, BIG and TINY

- MED Class: FPN that can be squared, and whose squares can be accumulated (up to $n_{\text {max }}$ terms), without under/overflows. $a_{i} \in$ MED if minmed $\leq\left|a_{i}\right| \leq$ maxmed. We compute

$$
S_{\text {med }}=\sum_{a_{i} \in \mathrm{MED}} a_{i}^{2}
$$

- $a_{i} \in$ BIG if maxmed $<\left|a_{i}\right|$. All FPN \in BIG are "scaled down", i.e., multiplied by the same constant $t_{\text {big }}$. We compute

$$
S_{\mathrm{big}}=\sum_{a_{i} \in \mathrm{BIG}}\left(t_{\mathrm{big}} \cdot a_{i}\right)^{2}
$$

- $a_{i} \in$ TINY if $\left|a_{i}\right|<$ minmed. All FPN \in TINY are "scaled up", i.e., multiplied by the same constant $t_{\text {tiny }}$. We compute

$$
S_{\text {tiny }}=\sum_{a_{i} \in \text { TINY }}\left(t_{\text {tiny }} \cdot a_{i}\right)^{2} .
$$

- we need $t_{\mathrm{big}} \times$ BIG \subseteq MED and $t_{\text {tiny }} \times$ TINY \subseteq MED.

One needs to cleverly combine $S_{\text {big }}, S_{\text {med }}$, and $S_{\text {tiny }}$.

Parameters

$$
\begin{gather*}
\operatorname{minmed}^{2} \geq 2^{e_{\min }} \tag{1a}\\
n_{\max } \cdot \text { maxmed }^{2} \cdot(1+\rho)<\Omega+\frac{1}{2} \mathrm{ulp}(\Omega)=2^{e_{\max }+1}-2^{e_{\max }-p} \tag{1b}\\
\text { maxmed } \cdot t_{\mathrm{big}} \geq \text { minmed } \tag{1c}\\
\Omega \cdot t_{\mathrm{big}} \leq \text { maxmed } \tag{1d}\\
\text { minmed } \cdot t_{\text {tiny }} \leq \text { maxmed } \\
\alpha \cdot t_{\text {tiny }} \geq \text { minmed } \tag{1f}
\end{gather*}
$$

where

- Ω and α are the largest and smallest positive FPNs;
- ρ is a bound on the relative error of the algorithm used for computing the sum of squares in MED;
- If maxmed and $n_{\max }$ are powers of $2,(1 b)$ can be replaced by

$$
n_{\max } \cdot \operatorname{maxmed}^{2}<2^{e_{\max }+1}-2^{e_{\max }-p}
$$

Basic building blocks

```
Algorithm 1 - Fast2Sum( \(a, b\) ) (Dekker, 1971)
    \(s \leftarrow \mathrm{RN}(a+b)\)
    \(z \leftarrow \operatorname{RN}(s-a)\)
    \(t \leftarrow \operatorname{RN}(b-z)\)
```

If $|a| \geq|b|$ and no overflow occurs, $s+t=a+b$, i.e., t is the error of the FP addition of a and b.

Algorithm 2 - $2 \operatorname{Sum}(a, b)$ (Knuth). It takes 6 FP operations.

$$
\begin{aligned}
& s \leftarrow \operatorname{RN}(a+b) \\
& a^{\prime} \leftarrow \operatorname{RN}(s-b) \\
& b^{\prime} \leftarrow \operatorname{RN}\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow \operatorname{RN}\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow \operatorname{RN}\left(b-b^{\prime}\right) \\
& t \leftarrow \operatorname{RN}\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

Same as Algorithm 1 without any condition on a and b.

Basic building blocks

Algorithm 3 - Fast2Mult (a, b). Requires the availability of an FMA instruction.
$\pi_{h} \leftarrow \operatorname{RN}(a \cdot b)$
$\pi_{\ell} \leftarrow \operatorname{RN}\left(a \cdot b-\pi_{h}\right)$

- used for expressing the square of a FP number a as a double-word number;
- barring overflow, the condition for that algorithm to guarantee that

$$
\pi_{h}+\pi_{\ell}=a^{2} \text { is }
$$

$$
\begin{equation*}
|a| \geq \eta=2^{\left(e_{\min }+p\right) / 2} \tag{2}
\end{equation*}
$$

When the augmented operations specified by IEEE 754-2019 become efficiently implemented, 2Sum, Fast2Sum and Fast2Mult may be replaced by them.

Double Word Arithmetic

Also called "double-double" in the literature. Goes back to Dekker (1971). Double-word (DW) number x : unevaluated sum $x_{h}+x_{\ell}$ of two FPN x_{h} and x_{ℓ} such that

$$
x_{h}=\operatorname{RN}(x) .
$$

```
Algorithm 4 - DWPlusFP \(\left(x_{h}, x_{\ell}, y\right)\).Computes \(\left(x_{h}, x_{\ell}\right)+y\) (implemented in the
QD library), \(x=\left(x_{h}, x_{\ell}\right)\) is a DWN and \(y\) is a FPN.
    1: \(\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y\right)\)
    2: \(v \leftarrow \operatorname{RN}\left(x_{\ell}+s_{\ell}\right)\)
    3: \(\left(z_{h}, z_{\ell}\right) \leftarrow\) Fast2Sum \(\left(s_{h}, v\right)\)
    4: return \(\left(z_{h}, z_{\ell}\right)\)
```

- In general, asymptotically optimal relative error bound

$$
\frac{2 \cdot u^{2}}{1-2 u}=2 u^{2}+4 u^{3}+8 u^{4}+\cdots
$$

- if x and y are nonnegative, the bound becomes u^{2}.

Double Word Arithmetic

```
Algorithm 5 - SloppyDWPlusDW \(\left(x_{h}, x_{\ell}, y_{h}, y_{\ell}\right)\). Computes \(\left(x_{h}, x_{\ell}\right)+\left(y_{h}, y_{\ell}\right)\).
    1: \(\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y_{h}\right)\)
    2: \(v \leftarrow \operatorname{RN}\left(x_{\ell}+y_{\ell}\right)\)
    3: \(w \leftarrow \operatorname{RN}\left(s_{\ell}+v\right)\)
    4: \(\left(z_{h}, z_{\ell}\right) \leftarrow\) Fast2Sum \(\left(s_{h}, w\right)\)
    5: return \(\left(z_{h}, z_{\ell}\right)\)
```

- can be very inaccurate in the general case;
- when the inputs operands x_{h} and y_{h} have the same sign, asymptotically optimal relative error bound $3 u^{2}$.

Graillat et al. (2015)

- Goal: faithful rounding, and no spurious under/overflow;
- handling of scalings: essentially Blue's method, adapted;
- sum-of-squares in Double-Word arithmetic, using Algorithm SloppyDWPlusDW, final result FP;
- then, FP square root.

Note: Kahan (1997) uses compensated summation of the sum of squares to obtain accuracy of the same order of magnitude (but not enough to guarantee faithful rounding).

Suggested modifications

- more accurate DW sum-of-squares using Algorithm DWPlusFP (and our new bound u^{2} for positive operands), final result DW;
- ad-hoc algorithm SQRTDWtoFP: avoids the loss of information due to converting to FP before square root;
- slightly different choices of parameters (minmed, maxmed...)
- Goal: error bound very slightly above 0.5 ulp.

Double-Word to FP square root

Algorithm 6 - $\operatorname{SQRTDWtoFP}\left(x_{h}, x_{\ell}\right)$. Computes the square-root of the DW number $\left(x_{h}, x_{\ell}\right)$ and returns a FPN z.

1: $s_{h} \leftarrow \operatorname{RN}\left(\sqrt{x_{h}}\right)$
2: $\rho_{1} \leftarrow \mathrm{RN}\left(x_{h}-s_{h}^{2}\right)$ (with an FMA instruction)
3: $\rho_{2} \leftarrow \operatorname{RN}\left(x_{\ell}+\rho_{1}\right)$
4: $s_{\ell} \leftarrow \operatorname{RN}\left(\rho_{2} /\left(2 \cdot s_{h}\right)\right)$
5: $z \leftarrow \operatorname{RN}\left(s_{h}+s_{\ell}\right)$
6: return z

Theorem 1
If $x=\left(x_{h}, x_{\ell}\right)$ is a DW number, $p \geq 5, x \geq 2^{2\left\lceil\left(e_{\min }+p\right) / 2\right\rceil}$, then z is within

$$
\left(\frac{1}{2}+\frac{7}{4} \cdot 2^{-p}\right) \cdot u \operatorname{lp}\left(\sqrt{x_{h}+x_{\ell}}\right)
$$

from $\sqrt{x_{h}+x_{\ell}}$, and the relative error of that algorithm is bounded by $u+\frac{17}{8} u^{2}+\frac{33}{8} u^{3}$.
Theorem 1 has been formally proven using the Coq proof assistant.

Sequential DW computation of the sum of squares

Algorithm 7 Sequential computation of $\sum_{i=0}^{n-1} a_{i}^{2}$ assuming no under/overflow.

1. For $i=0 \ldots n-1$, compute $\left(y_{i}^{h}, y_{i}^{\ell}\right)=\operatorname{Fast2Mult}\left(a_{i}, a_{i}\right)$. (gives $a_{i}^{2}=y_{i}^{h}+y_{i}^{\ell}$).
2. Accumulate the terms y_{i}^{h} in DW arithmetic: starting from $\left(x_{1}^{h}, x_{1}^{\ell}\right)=2 \operatorname{Sum}\left(y_{0}^{h}, y_{1}^{h}\right)$, for $i=2 \ldots n-1$, compute $\left(x_{i}^{h}, x_{i}^{\ell}\right)=\operatorname{DWPlusFP}\left(x_{i-1}^{h}, x_{i-1}^{\ell}, y_{i}^{h}\right)$.
3. Accumulate the terms y_{i}^{ℓ} in FP arithmetic: for $i=0 \ldots n-2$, compute $\sigma_{i+1}=\operatorname{RN}\left(\sigma_{i}+y_{i+1}^{\ell}\right)$, with $\sigma_{0}=y_{0}^{\ell}$.
4. Obtain the approximation to $\left(S_{h}, S_{\ell}\right)$ to $\sum_{i=0}^{n-1} a_{i}^{2}$ as

$$
\left(S_{h}, S_{\ell}\right)=\operatorname{DWPlusFP}\left(x_{n-1}^{h}, x_{n-1}^{\ell}, \sigma_{n-1}\right)
$$

Blockwise DW computation of the sum of squares

- the a_{i} are separated into k blocks of m numbers, with $n=k \times m$;
- parallelizing the calculation \& obtaining a more accurate result;
- block $j(j=0, \ldots, k-1)$ contains $a_{m j}, a_{m j+1}, \ldots, a_{m(j+1)-1}$.

Algorithm 8 Blockwise computation of $\sum_{i=0}^{n-1} a_{i}^{2}$ assuming no under/overflow.

1. for $j=0,1, \ldots, k-1$, compute an approximation $\left(Z_{j}^{h}, Z_{j}^{\ell}\right)$ to $\sum_{i=m j}^{m(j+1)-1} a_{i}^{2}$ using the sequential summation algorithm applied to $a_{m j}, a_{m j+1}, a_{m j+2}, \ldots, a_{m(j+1)-1} ;$
2. accumulate the terms Z_{j}^{h} in DW arithmetic, i.e., starting from $\left(\Sigma_{1}^{h}, \Sigma_{1}^{\ell}\right)=2 \operatorname{Sum}\left(Z_{0}^{h}, Z_{1}^{h}\right)$, iteratively compute, for $j=2 \ldots k-1$ the terms $\left(\sum_{j}^{h}, \Sigma_{j}^{\ell}\right)=\operatorname{DWPlusFP}\left(\sum_{j-1}^{h}, \Sigma_{j-1}^{\ell}, Z_{j}^{h}\right)$;
3. accumulate the terms Z_{j}^{ℓ} using the conventional "recursive" summation, i.e., for $j=0 \ldots k-2$, compute $\tau_{j+1}=\operatorname{RN}\left(\tau_{j}+Z_{j+1}^{\ell}\right)$, with $\tau_{0}=Z_{0}^{\ell}$;
4. obtain the approximation $\left(S_{h}, S_{\ell}\right)$ to $\sum_{i=0}^{n-1} a_{i}^{2}$ as

$$
\left(S_{h}, S_{\ell}\right)=\operatorname{DWPlusFP}\left(\sum_{k-1}^{h}, \Sigma_{k-1}^{\ell}, \tau_{k-1}\right) .
$$

Computing Euclidean norms barring underflow/overflow

Theorem 2
Assume all $a_{i} \in$ MED, the sequential or blockwise summation (with k blocks of m elements) is used to compute $\left(S_{h}, S_{\ell}\right)$ and Algorithm SQRTDWtoFP is used to approximate $\sqrt{S_{h}+S_{\ell}}$ by a FP number R. Let

$$
\lambda(t)=(2 t-1)+(t-1) u+(2 t-2) u^{2}+(t-1) u^{3},
$$

and define

$$
\nu= \begin{cases}\lambda(n) & \text { with the sequential summation } \\ \lambda(k)+\lambda(m)+\lambda(k) \lambda(m) & \text { with the blockwise summation }\end{cases}
$$

If $\nu<\frac{1}{2 u}$, then:

$$
\begin{equation*}
\left|R-\sqrt{\sum_{i=0}^{n-1} a_{i}^{2}}\right| \leq\left(\frac{1}{2}+u \cdot\left(\frac{7}{4}+\frac{\nu}{1-\nu \cdot u^{2}}\right)\right) \mathrm{ulp}\left(\sqrt{\sum_{i=0}^{n-1} a_{i}^{2}}\right) . \tag{3}
\end{equation*}
$$

Computing Euclidean norms in the general case

Parameters:

- $n_{\max }=1 / u=2^{\text {p }}$, i.e., we wish to guarantee a correct behavior of the algorithms for vectors of dimension up to 2^{p};
- MED as large as possible:
\rightarrow minmed is the power of 2 just above η (so that the squares of the elements of MED are computed without error), i.e.,

$$
\operatorname{minmed}=2^{\left\lceil\left(e_{\min }+p\right) / 2\right\rceil} ;
$$

\rightarrow maxmed is the power of 2 just below $\sqrt{\Omega / 2^{p}}$, i.e.,

$$
\operatorname{maxmed}=2^{\left\lfloor\left(e_{\max }-p\right) / 2\right\rfloor} ;
$$

- $t_{\text {tiny }}=1 / t_{\text {big }}$ is an even power of 2 (so that multiplying/dividing by it and its square root is errorless);
- we need $t_{\mathrm{big}} \times \mathrm{BIG} \subseteq$ MED and $t_{\text {tiny }} \times$ TINY \subseteq MED.

Computing Euclidean norms in the general case

Table 2: The various parameters of our algorithm for the binary16 format, the bfloat16 format, and the binary32, binary64, and binary128 formats.

parameters	binary16	bfloat16	binary32	binary64	binary128
p	11	8	24	53	113
$e_{\text {max }}$	15	127	127	1023	16383
minmed	1/2	2^{-59}	2^{-51}	2^{-484}	2^{-8134}
maxmed	4	2^{59}	2^{51}	2^{485}	2^{8135}
Constraints on $t_{b i g}$	$\begin{gathered} \frac{1}{4} \leq t_{\mathrm{big}} \leq 2^{-\mathbf{1 4}} \\ (\text { IMPOSSIBLE }) \end{gathered}$	$\begin{aligned} & 2^{-118} \\ & \leq t_{\mathrm{big}} \\ & \leq 2^{-70} \end{aligned}$	$\begin{aligned} & 2^{-102} \\ & \leq t_{\mathrm{big}} \\ & \leq 2^{-78} \end{aligned}$	$\begin{gathered} 2^{-968} \\ \leq t_{b i g} \\ \leq 2^{-540} \end{gathered}$	$\begin{gathered} 2^{-16268} \\ \leq t \operatorname{tbig} \\ \leq 2^{-8250} \end{gathered}$
Constraints on $t_{\text {tiny }}$	$2^{24} \leq t_{\text {tiny }} \leq 4$ (IMPOSSIBLE)	$\begin{aligned} & 2^{74} \\ \leq & t_{\text {tiny }} \\ \leq & 2^{118} \end{aligned}$	$\begin{aligned} & 2^{98} \\ \leq & t_{\text {tiny }} \\ \leq & 2^{102} \end{aligned}$	$\begin{aligned} & 2^{590} \\ \leq & t_{\text {tiny }} \\ \leq & 2^{968} \end{aligned}$	$\begin{gathered} 2^{8360} \\ \leq t_{\text {tiny }} \\ \leq 2^{\mathbf{1 6 2 6 8}} \end{gathered}$

Computing Euclidean norms in the general case

```
Algorithm 9 Obtaining the norm from \(S_{\text {big }}, S_{\text {med }}, S_{\text {tiny }}\)
    if BIG is nonempty then
        if \(S_{\text {med }}^{h}<u^{2}\) minmed \(^{2} / t_{\text {big }}^{2}\) or \(S_{\text {big }}^{h}>\operatorname{maxmed}^{2} \cdot t_{\text {big }}^{2} / u^{3}\) then
        return \(\frac{1}{t_{\text {big }}} \cdot \operatorname{SQRTDWtoFP}\left(S_{\text {big }}^{h}, S_{\text {big }}^{\ell}\right)=t_{\text {tiny }} \cdot \operatorname{SQRTDWtoFP}\left(S_{\text {big }}^{h}, S_{\text {big }}^{\ell}\right)\)
    else
        compute \(\hat{\chi}=\) SloppyDWPlusDW \(\left(t_{\text {tiny }} S_{\text {big }}^{h}, t_{\text {tiny }} S_{\text {big }}^{\ell}, t_{\text {big }} S_{\text {med }}^{h}, t_{\text {big }} S_{\text {med }}^{\ell}\right)\)
        return \(\operatorname{SQRTDWtoFP}(\hat{\chi})\)
    end if
    else
    if MED is nonempty then
        if TINY is empty or \(S_{\text {tiny }}^{h}<\operatorname{minmed}^{2} u^{2} / t_{\text {big }}^{2}\) or \(S_{\text {med }}^{h}>\operatorname{maxmed}^{2} \cdot t_{\text {big }}^{2} / u^{3}\)
        then
            return \(\operatorname{SQRTDWtoFP}\left(S_{\text {med }}^{h}, S_{\text {med }}^{\ell}\right)\)
        else
            compute \(\hat{\chi}=\) SloppyDWPlusDW \(\left(t_{\text {tiny }} S_{\text {med }}^{h}, t_{\text {tiny }} S_{\text {med }}^{\ell}, t_{\text {big }} S_{\text {tiny }}^{h}, t_{\text {big }} S_{\text {tiny }}^{\ell}\right)\)
            return SQRTDWtoFP \((\hat{\chi})\)
        end if
    else
        return \(t_{\text {big }} \times \operatorname{SQRTDWtoFP}\left(S_{\text {tiny }}^{k}, S_{\text {tiny }}^{\ell}\right)\)
    end if
```


Computing Euclidean norms in the general case

Theorem 3
If $n \leq \frac{1}{u}, k+m \leq \frac{1}{4 u}-2$ and $u \leq \frac{1}{32}$ and if the blockwise algorithm (Algorithm 8) is used for the summation of squares, with k blocks of m elements, then Algorithm 9 computes

$$
\sqrt{\sum_{i=0}^{n-1} a_{i}^{2}}
$$

with an error bounded by

$$
\left(\frac{1}{2}+\frac{(3.12+2(k+m)) u+1.8 u^{2}}{1-\frac{u}{2}}\right) \text { ulp }\left(\sqrt{\sum_{i=0}^{n-1} a_{i}^{2}}\right)
$$

without any risk of spurious underflow or overflow.

Accuracy comparisons

Table 3: For $S=7,8, \ldots, 14$, we generate $4096 \cdot 2^{14-S}$ arrays of uniform random lengths between 2^{S-1} and 2^{S} and for each term, we generate a uniform random exponent between $e_{\min }+p$ and $e_{\max }-p$ (to avoid non-spurious underflow/overflow) and uniform random significand between 1 and $2-2 u$.

		Maximum	Rounding	
Algorithm	p	relative error $/ u$	Faithful	Correct
Hammarling	24	15.3468	9%	4%
	53	6.4166	59%	32%
Graillat et al.	24	1.4916	100%	87%
	53	1.4608	100%	89%
Ours	24	0.9990	100%	100%
	53	0.9989	100%	100%

Important: we do not guarantee correct rounding (one can build ad-hoc cases for which Algorithm 9 does not return a correctly rounded result). The error bound being very near $\frac{1}{2} u l p$, incorrect rounding is just very unlikely (so that we do not observe it in experiments).

Performance comparisons on AMD Zen 2

Table 4: Comparisons of four algorithms on AMD Zen2, for three different array sizes, and three different profiles of input. For each entry, the mean value and standard deviation of a population of 100000 runs is given.

AMD Zen2 (AVX2)				
Algorithm	n	Timing averages in microseconds		
		AROUND_ONE	FULL_RANGE	REALLY_SMALL
straightforward	256	$0.2(0)$	$0.4(0)$	$0.4(0)$
(no scaling)	1024	$1.0(0)$	$1.4(1)$	$1.4(1)$
	4096	$3.9(1)$	$5.7(2)$	$5.5(2)$
Hammarling	256	$0.4(0)$	$1.1(1)$	$0.8(1)$
	1024	$1.6(1)$	$4.4(1)$	$3.0(1)$
	4096	$6.5(2)$	$17.7(5)$	$12.1(4)$
Graillat et al.	256	$0.6(0)$	$0.6(0)$	$0.8(1)$
	1024	$2.1(0)$	$2.1(1)$	$3.2(1)$
	4096	$8.3(3)$	$8.3(3)$	$12.9(4)$
Ours	256	$0.5(0)$	$0.5(0)$	$0.7(1)$
	1024	$1.7(0)$	$1.7(0)$	$2.7(1)$
	4096	$6.7(2)$	$6.7(2)$	$10.6(3)$

Performance comparisons on Intel Skylake

Table 5: Comparisons of four algorithms on Intel Skylake (AVX512), for three different array sizes, and three different profiles of input. For each entry, the mean value and standard deviation of a population of 100000 runs is given.

Intel Skylake (AVX512) ©3.0GHz				
Algorithm	n	Timing averages in microseconds		
		AROUND ONE	FULL RANGE	REALLY _SMALL
Straightforward (no scaling)	256	0.4(0)	0.6(1)	1.1(1)
	1024	$1.5(0)$	$2.3(2)$	$4.0(3)$
	4096	$6.1(1)$	9.1(4)	15.8(6)
Hammarling	256	0.5(0)	1.3(3)	1.9(3)
	1024	1.6(1)	5.0(6)	7.3(6)
	4096	6.2(1)	19.6(12)	28.8(11)
Graillat et al.	256	0.5(1)	0.6(1)	1.5(2)
	1024	$1.8(1)$	$1.8(1)$	5.8(3)
	4096	$6.8(1)$	$6.8(2)$	22.8(7)
Ours	256	0.5(0)	0.6(1)	1.5(2)
	1024	1.6(0)	1.6(1)	5.4(3)
	4096	6.1(1)	6.1(2)	21.1(6)

Conclusion

- algorithm that computes euclidean norms of large vectors very accurately, and without spurious underflows or overflows;
- performance similar to that of the less accurate algorithm of Graillat et al.;
- not more than twice slower than the straightforward, under/overflow-prone, method;
- besides the euclidean norm:
- when the operands are positive, the DWPlusFP algorithm has relative error bound u^{2}, and that bound is asymptotically optimal;
- DW SQRT algorithm, with asymptotically optimal relative error bound.
- preprint available at
https://hal.archives-ouvertes.fr/hal-03482567;
- code and formal proofs available on demand

