Make Computer Arithmetic Great Again?

Jean-Michel Muller

CNRS, ENS Lyon, Inria, Université de Lyon
France

ARITH-25
June 2018

7 pamese et —_—— UNIVERSITE D= LYON
L ==

ENS DE LYON

N

K

An apparent contradiction

@ low number of paper submissions to Arith these last &~ 5 years

o few PhD defenses, few academic positions (at least in North America)
and yet. ..

o just in the last 9 months, great arithmetic-related papers in IEEE
Trans. VLSI, IEEE Trans. Computers, ACM TOMS, Mathematics in
Computer Science, Numerical Algorithms, Mathematics of
Computation, BIT. .. by authors who don’t or rarely frequent the Arith
conferences;

e people in the industry still design arithmetic operators, they also have
new needs: deep learning, certified and /or reproducible calculations
(e.g. for automated transportation), mixed precision. . .

Why don't we see these people?

Why don’t we see these people?

@ because it is seldom “pure” arithmetic, merely arithmetic and
something;

@ because if they submitted to Arith, we might well reject their papers!

Why don’t we see these people?

@ because it is seldom “pure” arithmetic, merely arithmetic and
something;

@ because if they submitted to Arith, we might well reject their papers!

(and we probably have)

Why don’t we see these people?

@ because it is seldom “pure” arithmetic, merely arithmetic and
something;

@ because if they submitted to Arith, we might well reject their papers!

(and we probably have)

Necessary expertise in related areas:
@ our community has expertise on circuit design;

@ we have low expertise in numerical analysis, compilation, formal
proof, finite field arithmetic. . .

We used to have
@ a few formats: single precision, double precision;

@ a few applications: numerical simulation, financial calculations.

Is there a thing such as an “Universal solution”?

Numerical simulation

Embedded computing

Entertainment

Is there a thing such as an “Universal solution”?

N ical simulati .
umerical simulation Embedded computing

@ trillions of operations

o floating-point (dynamic range,
speed, accuracy)

@ crash? just start again the
simulation (but not too often)

Entertainment

Is there a thing such as an “Universal solution”?

N ical simulati .
umerical simulation Embedded computing

@ trillions of operations

@ speed: no need to be faster than
o floating-point (dynamic range, real time:
speed, accuracy)
@ crash? ahem...
@ crash? just start again the

simulation (but not too often) — certified calculations.

Entertainment

Is there a thing such as an “Universal solution”?

N ical simulati .
umerical simulation Embedded computing

@ trillions of operations

@ speed: no need to be faster than
o floating-point (dynamic range, real time:
speed, accuracy)
@ crash? ahem...
@ crash? just start again the

simulation (but not too often) — certified calculations.

Entertainment

@ supermario's pizza does not need
to carefully follow the laws of
physics;

@ fluidity matters.

Playing with different formats ?

See Nick Higham's talk at Arith 24.

“quarter precision”

“half precision” (binary16)
binary32

binary64

binary128 (quad)

single precision (a.k.a. binary32)
double precision (a.k.a. binary64)

Combinatorial explosion of all the possible arithmetic operators of the form
Format 1 X Format 2 — Format 3.

Cleverly using these formats:

Locate when Locate when
low precision big precision
puts us < > totally destroys
at an unacceptable risk. performance.
Numerical analysis Compilation

abstract interpretation Computer architecture

Reproducible computing: useful and sometimes dangerous

Reproducibility in computer arithmetic: examples are

@ Reproducible Basic Linear Algebra Subprograms at Berkeley
(https://bebop.cs.berkeley.edu/reproblas/);

@ paper on reproducible summation by P. Ahrens, H.D. Nguyen and J.
Demmel.

Main arguments in favor of reproducibility:

@ consistence (parallelism: sometimes evaluating the same expression in
different places is cheaper than transmitting it);

@ debugging is difficult if we cannot reproduce errors;
@ contractual/legal reasons.

Significant demand (from HPC) and interesting problems — need to work
on these issues.

https://bebop.cs.berkeley.edu/reproblas/

Reproducible computing: useful and sometimes dangerous

However. . .

@ obtaining very different results when running the same program twice
is a sign that something weird is going on (of physical, numerical or
programming origin). This is an useful warning, not to be disabled
systematically;

@ the legal reasons are fine, but there may as well be legal reasons
against reproducibility: be ready to explain to a court that you
deliberately delivered a less accurate result.

Libraries of math functions

; # of priorities:
"generic"
Nurmber of e Number of Aomracy
unctions
architectures FP formats

throughput

thousands of function programs

@ impossible to debug, maintain, keep consistent, improve. ..
@ and physicists would like many other functions

First solution: computer-assisted library design

Metalibm project (http://www.metalibm.org). Two versions
o fully automated for the end user;
@ assistance for the specialist.

Metalibm builds upon tools such as

@ Sollya (http://sollya.gforge.inria.fr): get approximations
with many possible constraints;

e Gappa (http://gappa.gforge.inria.fr): tight bounds to
polynomial evaluation errors and formal proofs.

But this is not the ultimate goal

http://www.metalibm.org
http://sollya.gforge.inria.fr
http://gappa.gforge.inria.fr

Tools from computer algebra

Taylor expansions

Differential Symmetries Decent code
equation Singularities . that

Asymptotic expansions implements

the function

Periodicity

@ NumGfun: a Package for Numerical and Analytic Computation with

D-finite Functions. ISSAC 2010.

@ Mezzarobba’'s PhD dissertation Autour de I'évaluation numérique des

fonctions D-finies (Ecole Polytechnique, Paris, 2011);

@ complex mathematics but big reward.

Incidentally, people from computer algebra need us to speed up various

algebraic computations.

~10-

Tools from computer algebra

Dynamic Dictionary of Mathematical Functions:
http://ddmf .msr-inria.inria.fr/1.9.1/ddmf

1. Differential Equation

The function 2 (%) satisfies the differential equation

& d
2)+ e 22 _ -
wt oy (@) +agy @) + (¢ 4)y(a)=0
with initial values ¥ (0) = 1/4ang y ¥ (0) = ~1/4,
1 2. Plot
0.57
10 \/ \/ 10
0.39
min= 0 max= 1o envoyer
1 3. Derivative in Terms of Lower-Order Derivatives
o, = (—a® + 212" — 42022 + 2520) J, () — B (" — 3522 + 420) &L, ()
o= 2 :

order= & Envoyer.

1 4. Taylor Expansion at 0

Taylor coefiicients:

1) gtns
al(n+ 2
-11-

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

Generation of functions at compile-time

@ take into account the exact context: underlying architecture, accuracy
requirements, priorities (latency/throughput);

@ possibly, information on input domain (— simplify/avoid range
reduction), or special cases (e.g., infinities, NaNs known not to
happen);

@ compound functions: if you need

X
Eo(x) = o —In(1— &™),

then you directly generate E4(x) instead of generating exp, In and
combining them.

e formal proof absolutely necessary (no library to heavily test
beforehand);

@ need to work with people from mathematics, computer algebra,
compilation, formal proof. ..

Alternate number representations?

| am not a big fan of Unums, but | reckon J. Gustafson has a point: the
considerable increase, in the last 20 years, of the ratio

time to read/write in memory
time to perform +, x, +, v

should be viewed as an interesting challenge, not as a sign that we have
become useless.

@ we have time to do “more” things
@ attach easy-to-compute additional information to FP numbers?

@ develop communication-avoiding algorithms.

~13-

Other topics of interest

Approximate computing. Requires more science than computing
“exactly”: estimate largest errors, average errors, probabilities of
failures, make sure branches are taken consistently, ...

Complex arithmetic that is i. accurate; ii. fast, and iii.
overflow/underflow-safe;

large interchange formats (we will more and more have to deal with
data from sensors, previous computations, databases, ...);

hide divisions (this is not only the compiler’s task: for instance one
can choose rational approximations that help);

one day, the quantum computer will be here. Do you want physicists
to re-invent the carry-skip adder or the Dadda multiplier for it?

14

Time travel

PROCEEDINGS

14th IEEE SYMPOSIUM on

oty &

Arith 14, 1999.

16

Time travel

R —— ‘ Some sessions:

M(EEESVMPOSIUMO ' o Addltlon

@ Division

@ Divide and Square root

@ Multiplication and Rounding
o CORDIC algorithms

Quite a change, isn't it?

16

Time travel

PROCEEDINGS

14th IEEE SYMPOSIUM on

Some sessions:
o Addition
@ Division
@ Divide and Square root
@ Multiplication and Rounding
o CORDIC algorithms

Quite a change, isn't it?

Need to reflect that change (or even antici-
pate it) in the composition of our PC.

16

