
Make Computer Arithmetic Great Again?

Jean-Michel Muller

CNRS, ENS Lyon, Inria, Université de Lyon
France

ARITH-25
June 2018

-1-

An apparent contradiction

low number of paper submissions to Arith these last ≈ 5 years

few PhD defenses, few academic positions (at least in North America)

and yet. . .

just in the last 9 months, great arithmetic-related papers in IEEE
Trans. VLSI, IEEE Trans. Computers, ACM TOMS, Mathematics in
Computer Science, Numerical Algorithms, Mathematics of
Computation, BIT. . . by authors who don’t or rarely frequent the Arith
conferences;
people in the industry still design arithmetic operators, they also have
new needs: deep learning, certified and /or reproducible calculations
(e.g. for automated transportation), mixed precision. . .

Why don’t we see these people?

-2-

Why don’t we see these people?

because it is seldom “pure” arithmetic, merely arithmetic and
something;

because if they submitted to Arith, we might well reject their papers!

(and we probably have)

Necessary expertise in related areas:

our community has expertise on circuit design;

we have low expertise in numerical analysis, compilation, formal
proof, finite field arithmetic. . .

We used to have

a few formats: single precision, double precision;

a few applications: numerical simulation, financial calculations.

-3-

Why don’t we see these people?

because it is seldom “pure” arithmetic, merely arithmetic and
something;

because if they submitted to Arith, we might well reject their papers!

(and we probably have)

Necessary expertise in related areas:

our community has expertise on circuit design;

we have low expertise in numerical analysis, compilation, formal
proof, finite field arithmetic. . .

We used to have

a few formats: single precision, double precision;

a few applications: numerical simulation, financial calculations.

-3-

Why don’t we see these people?

because it is seldom “pure” arithmetic, merely arithmetic and
something;

because if they submitted to Arith, we might well reject their papers!

(and we probably have)

Necessary expertise in related areas:

our community has expertise on circuit design;

we have low expertise in numerical analysis, compilation, formal
proof, finite field arithmetic. . .

We used to have

a few formats: single precision, double precision;

a few applications: numerical simulation, financial calculations.

-3-

Is there a thing such as an “Universal solution”?

Numerical simulation

trillions of operations

floating-point (dynamic range,
speed, accuracy)

crash? just start again the
simulation (but not too often)

Embedded computing

speed: no need to be faster than
real time;

crash? ahem. . .

→ certified calculations.

Entertainment

supermario’s pizza does not need
to carefully follow the laws of
physics;

fluidity matters.

-4-

Is there a thing such as an “Universal solution”?

Numerical simulation

trillions of operations

floating-point (dynamic range,
speed, accuracy)

crash? just start again the
simulation (but not too often)

Embedded computing

speed: no need to be faster than
real time;

crash? ahem. . .

→ certified calculations.

Entertainment

supermario’s pizza does not need
to carefully follow the laws of
physics;

fluidity matters.

-4-

Is there a thing such as an “Universal solution”?

Numerical simulation

trillions of operations

floating-point (dynamic range,
speed, accuracy)

crash? just start again the
simulation (but not too often)

Embedded computing

speed: no need to be faster than
real time;

crash? ahem. . .

→ certified calculations.

Entertainment

supermario’s pizza does not need
to carefully follow the laws of
physics;

fluidity matters.

-4-

Is there a thing such as an “Universal solution”?

Numerical simulation

trillions of operations

floating-point (dynamic range,
speed, accuracy)

crash? just start again the
simulation (but not too often)

Embedded computing

speed: no need to be faster than
real time;

crash? ahem. . .

→ certified calculations.

Entertainment
supermario’s pizza does not need
to carefully follow the laws of
physics;

fluidity matters.
-4-

Playing with different formats ?

See Nick Higham’s talk at Arith 24.

single precision (a.k.a. binary32)
double precision (a.k.a. binary64)

⇒


“quarter precision”
“half precision” (binary16)
binary32
binary64
binary128 (quad)

Combinatorial explosion of all the possible arithmetic operators of the form
Format 1 × Format 2 → Format 3.

Cleverly using these formats:

Locate when
low precision

puts us
at an unacceptable risk.

Numerical analysis
abstract interpretation

←→
Locate when
big precision

totally destroys
performance.
Compilation

Computer architecture
-5-

Reproducible computing: useful and sometimes dangerous

Reproducibility in computer arithmetic: examples are

Reproducible Basic Linear Algebra Subprograms at Berkeley
(https://bebop.cs.berkeley.edu/reproblas/);

paper on reproducible summation by P. Ahrens, H.D. Nguyen and J.
Demmel.

Main arguments in favor of reproducibility:

consistence (parallelism: sometimes evaluating the same expression in
different places is cheaper than transmitting it);

debugging is difficult if we cannot reproduce errors;

contractual/legal reasons.

Significant demand (from HPC) and interesting problems → need to work
on these issues.

-6-

https://bebop.cs.berkeley.edu/reproblas/

Reproducible computing: useful and sometimes dangerous

However. . .

obtaining very different results when running the same program twice
is a sign that something weird is going on (of physical, numerical or
programming origin). This is an useful warning, not to be disabled
systematically;

the legal reasons are fine, but there may as well be legal reasons
against reproducibility: be ready to explain to a court that you
deliberately delivered a less accurate result.

-7-

Libraries of math functions

Number of
functions

1 "generic"
+ # of

architectures
Number of
FP formats

of priorities:
 accuracy
latency

throughput
...

thousands of function programs

impossible to debug, maintain, keep consistent, improve. . .

and physicists would like many other functions

-8-

First solution: computer-assisted library design

Metalibm project (http://www.metalibm.org). Two versions

fully automated for the end user;

assistance for the specialist.

Metalibm builds upon tools such as

Sollya (http://sollya.gforge.inria.fr): get approximations
with many possible constraints;

Gappa (http://gappa.gforge.inria.fr): tight bounds to
polynomial evaluation errors and formal proofs.

But this is not the ultimate goal

-9-

http://www.metalibm.org
http://sollya.gforge.inria.fr
http://gappa.gforge.inria.fr

Tools from computer algebra

Differential
equation

Taylor expansions
Symmetries
Singularities

Asymptotic expansions
Periodicity

…

Decent code
that

implements
the function

NumGfun: a Package for Numerical and Analytic Computation with
D-finite Functions. ISSAC 2010.

Mezzarobba’s PhD dissertation Autour de l’évaluation numérique des
fonctions D-finies (Ecole Polytechnique, Paris, 2011);

complex mathematics but big reward.

Incidentally, people from computer algebra need us to speed up various
algebraic computations.

-10-

Tools from computer algebra

Dynamic Dictionary of Mathematical Functions:
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

-11-

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

Generation of functions at compile-time

take into account the exact context: underlying architecture, accuracy
requirements, priorities (latency/throughput);

possibly, information on input domain (→ simplify/avoid range
reduction), or special cases (e.g., infinities, NaNs known not to
happen);

compound functions: if you need

E4(x) =
x

ex − 1
− ln(1− e−x),

then you directly generate E4(x) instead of generating exp, ln and
combining them.

formal proof absolutely necessary (no library to heavily test
beforehand);

need to work with people from mathematics, computer algebra,
compilation, formal proof. . .

-12-

Alternate number representations?

I am not a big fan of Unums, but I reckon J. Gustafson has a point: the
considerable increase, in the last 20 years, of the ratio

time to read/write in memory

time to perform +,×,÷,√

should be viewed as an interesting challenge, not as a sign that we have
become useless.

we have time to do “more” things

attach easy-to-compute additional information to FP numbers?

develop communication-avoiding algorithms.

-13-

Other topics of interest

Approximate computing. Requires more science than computing
“exactly”: estimate largest errors, average errors, probabilities of
failures, make sure branches are taken consistently, . . .

Complex arithmetic that is i. accurate; ii. fast, and iii.
overflow/underflow-safe;

large interchange formats (we will more and more have to deal with
data from sensors, previous computations, databases, . . .);

hide divisions (this is not only the compiler’s task: for instance one
can choose rational approximations that help);

one day, the quantum computer will be here. Do you want physicists
to re-invent the carry-skip adder or the Dadda multiplier for it?

. . .

-14-

Time travel

Arith 14, 1999.

Some sessions:

Addition

Division

Divide and Square root

Multiplication and Rounding

CORDIC algorithms

Quite a change, isn’t it?

Need to reflect that change (or even antici-
pate it) in the composition of our PC.

-15-

Time travel

Arith 14, 1999.

Some sessions:

Addition

Division

Divide and Square root

Multiplication and Rounding

CORDIC algorithms

Quite a change, isn’t it?

Need to reflect that change (or even antici-
pate it) in the composition of our PC.

-15-

Time travel

Arith 14, 1999.

Some sessions:

Addition

Division

Divide and Square root

Multiplication and Rounding

CORDIC algorithms

Quite a change, isn’t it?

Need to reflect that change (or even antici-
pate it) in the composition of our PC.

-15-

