Some issues related to double roundings

Erik Martin-Dorel ${ }^{1} \quad$ Guillaume Melquiond ${ }^{2}$ Jean-Michel Muller ${ }^{3}$
${ }^{1}$ ENS Lyon, ${ }^{2}$ Inria, ${ }^{3}$ CNRS

Valencia, June 2012

Floating-Point arithmetic, very quickly...

Assuming extremal exponents $e_{\min }$ and $e_{\max }$, a finite, precision- p, binary FP number x is of the form

$$
\begin{equation*}
x=M \cdot 2^{e-p+1} \tag{1}
\end{equation*}
$$

M and e : integers such that

$$
\left\{\begin{array}{l}
|M| \leq 2^{p}-1 \tag{2}\\
e_{\min } \leq e \leq e_{\max }
\end{array}\right.
$$

- Largest M (in magnitude) such that (1) and (2) hold: integral significand of x;
- corresponding value of $e($ for $x \neq 0)$: exponent of x;
- subnormal number: $e=e_{\min }$ and $|M|<2^{p-1}$ (assumed available).

IEEE 754: correctly rounded operations

Definition 1 (Correct rounding)

Rounding function \circ, chosen among:

- toward $-\infty$: $\mathrm{RD}(x)$ is the largest FP number $\leq x$;
- toward $+\infty$: $\mathrm{RU}(x)$ is the smallest FP number $\geq x$;
- toward zero: $\mathrm{RZ}(x)$ is equal to $\mathrm{RD}(x)$ if $x \geq 0$, and to $\mathrm{RU}(x)$ if $x \leq 0$;
- to nearest: $\mathrm{RN}(x)=$ FP number closest to x. In case of a tie: the one whose integral significand is even (another tie-breaking rule: away from 0)

Correctly rounded operation T : returns $\circ(a \top b)$ for all FP numbers a and b.

IEEE 754: correctly rounded operations

IEEE 754-1985: Correct rounding for,,$+- \times, \div, \sqrt{ }$ and some conversions. Advantages:

- if the result of an operation is exactly representable, we get it;
- if we just use the 4 arith. operations and $\sqrt{ }$, deterministic arithmetic: \rightarrow algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- . . .

FP arithmetic becomes a structure in itself, that can be studied.

First example: Sterbenz Lemma

Lemma 2 (Sterbenz)
Let a and b be positive FP numbers. If

$$
\frac{a}{2} \leq b \leq 2 a
$$

then $a-b$ is a FP number (\rightarrow computed exactly, in any rounding mode).

Proof: straightforward using the notation $x=M \times 2^{e+1-p}$.

Error of rounded-to-nearest FP addition

Reminder: $\mathrm{RN}(x)$ is x rounded to nearest.

Lemma 3
Let a and b be two FP numbers. Let

$$
s=\mathrm{RN}(a+b)
$$

and

$$
r=(a+b)-s
$$

If no overflow when computing s, then r is a FP number.
\rightarrow the error of a FP addition is exactly representable by a FPN.

Error of FP addition

Proof: Assume $|a| \geq|b|$,
(1) s is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

Error of FP addition

Proof: Assume $|a| \geq|b|$,
(1) s is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

(2) denote $a=M_{a} \times 2^{e_{a}-p+1}$ and $b=M_{b} \times 2^{e_{b}-p+1}$, with $\left|M_{a}\right|,\left|M_{b}\right| \leq 2^{p}-1, M_{a}$ and M_{b} largest, and $e_{a} \geq e_{b}$.

Error of FP addition

Proof: Assume $|a| \geq|b|$,
(1) s is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

(2) denote $a=M_{a} \times 2^{e_{a}-p+1}$ and $b=M_{b} \times 2^{e_{b}-p+1}$, with $\left|M_{a}\right|,\left|M_{b}\right| \leq 2^{p}-1, M_{a}$ and M_{b} largest, and $e_{a} \geq e_{b}$.
$a+b$ is multiple of $2^{e_{b}-p+1} \Rightarrow s$ and r are multiple of $2^{e_{b}-p+1}$ too $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

$$
r=R \times 2^{e_{b}-p+1}
$$

Error of FP addition

Proof: Assume $|a| \geq|b|$,
(1) s is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

(2) denote $a=M_{a} \times 2^{e_{a}-p+1}$ and $b=M_{b} \times 2^{e_{b}-p+1}$, with $\left|M_{a}\right|,\left|M_{b}\right| \leq 2^{p}-1, M_{a}$ and M_{b} largest, and $e_{a} \geq e_{b}$.
$a+b$ is multiple of $2^{e_{b}-p+1} \Rightarrow s$ and r are multiple of $2^{e_{b}-p+1}$ too $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

$$
r=R \times 2^{e_{b}-p+1}
$$

but, $|r| \leq|b| \Rightarrow|R| \leq\left|M_{b}\right| \leq 2^{p}-1 \Rightarrow r$ is a FP number.

Theorem 4 (Fast2Sum (Dekker))
Subnormal numbers available, no overflows. FP numbers a and b s.t. $e_{a} \geq e_{b}$. Following algorithm:

- $s+r=a+b$ exactly;
- s is "the" FP number that is closest to $a+b$.

Algorithm 1 (FastTwoSum)

$$
\begin{aligned}
& s \leftarrow \operatorname{RN}(a+b) \\
& z \leftarrow \operatorname{RN}(s-a) \\
& r \leftarrow \operatorname{RN}(b-z)
\end{aligned}
$$

C Program 1

$$
\begin{aligned}
& s=a+b ; \\
& z=s-a ; \\
& r=b-z
\end{aligned}
$$

Important remark: Proving the behavior of such algorithms requires use of the correct rounding property.

Does not require comparison of a and b.
Algorithm 2 (2Sum (a, b))

```
s\leftarrow\textrm{RN}(a+b)
a
b ^ { \prime } \leftarrow \mathrm { RN } ( s - a ^ { \prime } )
\deltaa}\leftarrow\textrm{RN}(a-\mp@subsup{a}{}{\prime}
\deltab}\leftarrow\textrm{RN}(b-\mp@subsup{b}{}{\prime}
t\leftarrowRN(\deltaa}+\mp@subsup{\delta}{b}{}
```

If a and b are normal FPN, then $a+b=s+t$.

So we do live in the best of all possible worlds. . .

- correct rounding \rightarrow "deterministic arithmetic";

So we do live in the best of all possible worlds. . .

- correct rounding \rightarrow "deterministic arithmetic";
- we easily compute the error of a FP addition (by the way: same for \times);

So we do live in the best of all possible worlds. . .

- correct rounding \rightarrow "deterministic arithmetic";
- we easily compute the error of a FP addition (by the way: same for \times);
- we can re-inject that error later on in a calculation, to compute accurate sums, dot-products...

So we do live in the best of all possible worlds. . .

- correct rounding \rightarrow "deterministic arithmetic";
- we easily compute the error of a FP addition (by the way: same for \times);
- we can re-inject that error later on in a calculation, to compute accurate sums, dot-products...
- already many such algorithms, probably more to come.

So we do live in the best of all possible worlds. . .

- correct rounding \rightarrow "deterministic arithmetic";
- we easily compute the error of a FP addition (by the way: same for \times);
- we can re-inject that error later on in a calculation, to compute accurate sums, dot-products...
- already many such algorithms, probably more to come.

Deterministic arithmetic?

- several FP formats in a given environment \rightarrow difficult to know in which format some operations are performed;
- may make the result of a sequence of operations difficult to predict;

Assume all declared variables are of the same format. Two phenomenons may occur when a wider format is available:

- implicit variables such as result of "a+b" in "d = (a+b) *c": not clear in which format they are computed;
- explicit variables may be first computed (hence rounded) in the wider format, and then rounded again to the destination format.

Deterministic arithmetic?

C program:

```
double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;
```

Depending on the environment, $3.6893488147419103232 \mathrm{e}+19$ or $3.6893488147419111424 \mathrm{e}+19$ (binary64 number closest to the exact product).

What happened?

Exact value of $\mathrm{a} * \mathrm{~b}$: 36893488147419107329 . Binary representation:

53 bits
If the product is first rounded to "double-extended precision", we get

53 bits
if that intermediate value is rounded to the binary64 destination format,

\rightarrow rounded down, whereas it should have been rounded up.

Is it a problem ?

- these phenomenons: almost always innocuous (error very slightly above $1 / 2$ ulp);
- they may make the behavior of some programs difficult to predict;
- most compilers offer options that prevent this problem. And yet, needing these options
- restricts the portability of numerical programs;
- possible bad impact on performance and/or accuracy.
\rightarrow examine which properties remain true when double roundings occur.

Double roundings: known issues

- $\pm, \times, \div \sqrt{ }$: conditions on the precision of the wider format under which double roundings do not change the result (Kahan, Figueroa's PhD—2000);
- double roundings may cause a problem in binary to decimal conversions. Solutions given by Goldberg, and by Cornea et al;
- double roundings may occur, even without available wider format, when performing scaled division iterations to avoid overflow or underflow;
- Rounding towards $\pm \infty$ or 0 : double roundings do not change the result of a calculation \rightarrow we focus on "round to nearest" only.

Notation

- precision- p target format, and precision- $\left(p+p^{\prime}\right)$ "internal" format;
- $\mathrm{RN}_{k}(u)$ means u rounded to the nearest precision- k FP number;
- when the precision is omitted: it is p;
- precision- p midpoint: exactly halfway between two consecutive precision- p FPN.

Throughout the presentation: we assume that no overflow occurs.

Double roundings and double rounding slips

When the arithmetic operation $x \top y$ appears in a program:

- double rounding: what is actually performed is

$$
\operatorname{RN}_{p}\left(\operatorname{RN}_{p+p^{\prime}}(x \top y)\right),
$$

- double rounding slip: a double rounding occurs and the obtained result differs from $\mathrm{RN}_{p}(x \top y)$.

Remark 1
Double rounding slip \rightarrow the error of $a+b$ may not be a FPN.

Double rounding \rightarrow the error of $a+b$ may not be a FPN

Consider $a=1 \underbrace{x x x x \cdots x} 01$, where $x x x x \cdots x$ is any $(p-3)$-bit bit-chain. $p-3$ bits
Also consider, $b=0.0 \underbrace{111111 \cdots 1}=\frac{1}{2}-2^{-p-1}$. We have:

$$
a+b=\underbrace{1 x x x x \ldots x 01}_{p \text { bits }} .0 \underbrace{111111 \ldots 1}_{p \text { bits }}
$$

so that if $1 \leq p^{\prime} \leq p, u=R N_{p+p^{\prime}}(a+b)=1 x x x x \ldots x 01.100 \ldots 0$,

Double rounding \rightarrow the error of $a+b$ may not be a FPN

$$
u=R N_{p+p^{\prime}}(a+b)=1 x x x x \ldots \times 01.100 \ldots 0,
$$

The "round to nearest even" rule thus implies

$$
s=R N_{p}(u)=1 x x x x \ldots x 10=a+1
$$

Therefore,

$$
s-(a+b)=a+1-\left(a+\frac{1}{2}-2^{-p-1}\right)=\frac{1}{2}+2^{-p-1}=0 \cdot \underbrace{10000 \cdots 01}_{p+1 \text { bits }},
$$

which is not exactly representable in precision- p FP arithmetic.

A few preliminary remarks

Remark 2

If a double rounding slip occurs when evaluating $a \top b$ then $\mathrm{RN}_{p+p^{\prime}}(a \top b)$ is a precision-p midpoint, i.e., a number exactly halfway between two consecutive precision-p FP numbers.

A few preliminary remarks

Remark 3

Since the precision-p FPNs are precision- $\left(p+p^{\prime}\right)$ FPNs, each time $a \top b$ is exactly representable in precision-p arithmetic, we get it:

$$
\mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(a \top b)\right)=\mathrm{RN}_{p}(a \top b)=a \top b .
$$

\rightarrow Sterbenz Lemma still holds in presence of double roundings.
Remark 4
Let a and b be precision-p FP numbers, and define

$$
s=\mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(a+b)\right) .
$$

$a+b-s$ fits in at most $p+2$ bits, so that as soon as $p^{\prime} \geq 2$, we have

$$
\begin{equation*}
\operatorname{RN}_{p}\left(\operatorname{RN}_{p+p^{\prime}}(a+b-s)\right)=\operatorname{RN}_{p}(a+b-s) . \tag{3}
\end{equation*}
$$

Fast2Sum and double roundings

Algorithm 3 (Fast2Sum-with-double-roundings (a, b))

$$
\begin{aligned}
& s \leftarrow \operatorname{RN}_{p}\left[\operatorname{RN}_{p+p^{\prime}}(a+b)\right] \\
& z \leftarrow o(s-a) \\
& t \leftarrow \operatorname{RN}_{p}\left[\operatorname{RN}_{p+p^{\prime}}(b-z)\right]
\end{aligned}
$$

$\circ(u): \mathrm{RN}_{p}(u), \mathrm{RN}_{p+p^{\prime}}(u)$, or $\mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(u)\right)$, or any faithful rounding.

Fast2Sum and double roundings

Theorem 5

If $p \geq 3, p^{\prime} \geq 2$, and a and b are precision-p FPN with $e_{a} \geq e_{b}$, then Algorithm 3 satisfies:

- $z=s-a$ exactly;
- if no double rounding slip occurred when computing s (i.e., if $s=\operatorname{RN}_{p}(a+b)$), then $t=(a+b-s)$ exactly;
- otherwise, $t=\mathrm{RN}_{p}(a+b-s)$.

The proof of Theorem 5 is rather complex (many sub-cases). We have a formal proof that uses the Coq proof assistant.

Proof in the (much simpler) case $|a| \geq|b|$

(1) if a and b have same sign, $|a| \leq|a+b| \leq|2 a|$, hence ($2 a$ is a FPN, rounding is increasing) $|a| \leq|s| \leq|2 a| \rightarrow$ (Sterbenz) $z=s-a$. Therefore $t=\operatorname{RN}_{p}\left[\operatorname{RN}_{p+p^{\prime}}(b-z)\right]=\operatorname{RN}_{p}\left[\operatorname{RN}_{p+p^{\prime}}((a+b)-s)\right]$.

Proof in the (much simpler) case $|a| \geq|b|$

(1) if a and b have same sign, $|a| \leq|a+b| \leq|2 a|$, hence ($2 a$ is a FPN, rounding is increasing) $|a| \leq|s| \leq|2 a| \rightarrow$ (Sterbenz) $z=s-a$. Therefore $t=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}(b-z)\right]=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}((a+b)-s)\right]$.
(2) if a and b have opposite signs then

- either $|b| \geq|a / 2|$, which implies (Sterbenz) $a+b$ is a FPN, thus

$$
s=a+b, z=b \text { and } t=0
$$

- or $|b|<|a / 2|$, which implies $|a+b|>|a / 2|$, hence $s \geq|a / 2|$, thus (Sterbenz) $z=s-a$. Therefore $t=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}(b-z)\right]=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}((a+b)-s)\right]$.

Proof in the (much simpler) case $|a| \geq|b|$

(1) if a and b have same sign, $|a| \leq|a+b| \leq|2 a|$, hence ($2 a$ is a FPN, rounding is increasing) $|a| \leq|s| \leq|2 a| \rightarrow$ (Sterbenz) $z=s-a$. Therefore $t=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}(b-z)\right]=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}((a+b)-s)\right]$.
(2) if a and b have opposite signs then

- either $|b| \geq|a / 2|$, which implies (Sterbenz) $a+b$ is a FPN, thus

$$
s=a+b, z=b \text { and } t=0
$$

- or $|b|<|a / 2|$, which implies $|a+b|>|a / 2|$, hence $s \geq|a / 2|$, thus (Sterbenz) $z=s-a$. Therefore

$$
t=\mathrm{RN}_{p}\left[\mathrm{RN}_{p+p^{\prime}}(b-z)\right]=\operatorname{RN}_{p}\left[\operatorname{RN}_{p+p^{\prime}}((a+b)-s)\right] .
$$

Remark $4 \Rightarrow t=\operatorname{RN}_{p}((a+b)-s)$.

2Sum and double roundings

Algorithm 4 (2Sum-with-double-roundings($a, b)$)
(1) $s \leftarrow \mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(a+b)\right)$ or $\mathrm{RN}_{p}(a+b)$
(2) $a^{\prime} \leftarrow \mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(s-b)\right)$ or $\left.\mathrm{RN}_{p}(s-b)\right)$
(3) $b^{\prime} \leftarrow o\left(s-a^{\prime}\right)$
(4) $\delta_{a} \leftarrow \mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}\left(a-a^{\prime}\right)\right)$ or $\mathrm{RN}_{p}\left(a-a^{\prime}\right)$
(5) $\delta_{b} \leftarrow \mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}\left(b-b^{\prime}\right)\right)$ or $\mathrm{RN}_{p}\left(b-b^{\prime}\right)$
(6) $t \leftarrow \mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}\left(\delta_{a}+\delta_{b}\right)\right)$ or $\mathrm{RN}_{p}\left(\delta_{a}+\delta_{b}\right)$
$\circ(u): \mathrm{RN}_{p}(u), \mathrm{RN}_{p+p^{\prime}}(u)$, or $\mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(u)\right)$, or any faithful rounding.

Theorem 6
If $p \geq 4$ and $p+p^{\prime}$, with $p^{\prime} \geq 2$. If a and b are precision- $p F P N$, and if no overflow occurs, then Algorithm 4 satisfies:

- if no double rounding slip occurred when computing s then $t=(a+b-s)$ exactly;
- otherwise, $t=\mathrm{RN}_{p}(a+b-s)$.

Proofs and tech. report available at http://hal-ens-lyon.archives-ouvertes.fr/ensl-00644408 (submitted to a journal)

u and γ_{k} notations

- Higham's notations, very slightly adapted to the context of double roundings.
- Define $u=2^{-p}$ and $u^{\prime}=2^{-p}+2^{-p-p^{\prime}}+2^{-2 p-p^{\prime}}$. For any integer $k \ll 2^{p}$, define

$$
\gamma_{k}=\frac{k u}{1-k u} \approx k \cdot 2^{-p},
$$

- and

$$
\gamma_{k}^{\prime}=\frac{k u^{\prime}}{1-k u^{\prime}} \approx k \cdot\left(2^{-p}+2^{-p-p^{\prime}}\right)
$$

Application: summation algorithms

Naive, recursive-sum algorithm, rewritten with double roundings.
Algorithm 5
$r \leftarrow a_{1}$
for $i=2$ to n do $r \leftarrow \mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}\left(r+a_{i}\right)\right)$
end for
return r

Property 1

$$
\left|r-\sum_{i=1}^{n} a_{i}\right| \leq \gamma_{n-1}^{\prime} \sum_{i=1}^{n}\left|a_{i}\right|
$$

Without double roundings, the bound is $\gamma_{n-1} \sum_{i=1}^{n}\left|a_{i}\right|$.

Rump, Ogita and Oishi's K-fold summation algorithm

Algorithm 6 (VecSum(a), where $\left.a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)$

```
p\leftarrowa
for i=2 to n do
    (pi, pi-1)\leftarrow2Sum ( pi, pi-1)
end for
return p
```

Algorithm 7 (K-fold summation algorithm)

```
for \(k=1\) to \(K-1\) do
        \(a \leftarrow \operatorname{VecSum}(a)\)
end for
\(c=a_{1}\)
for \(i=2\) to \(n-1\) do
        \(c \leftarrow \operatorname{RN}\left(c+a_{i}\right)\)
```

end for
return $\mathrm{RN}\left(a_{n}+c\right)$

Rump, Ogita and Oishi's K-fold summation algorithm

- without double roundings, if $4 n u<1$, the FPN σ returned by Algorithm 7 satisfies

$$
\begin{equation*}
\left|\sigma-\sum_{i=1}^{n} a_{i}\right| \leq\left(u+\gamma_{n-1}^{2}\right)\left|\sum_{i=1}^{n} a_{i}\right|+\gamma_{2 n-2}^{K} \sum_{i=1}^{n}\left|a_{i}\right| . \tag{4}
\end{equation*}
$$

- if a double-rounding slip occurs in the first call to VecSum, not possible to show an error bound better than prop. to $2^{-2 p} \sum_{i=1}^{n}\left|a_{i}\right|$;

Rump, Ogita and Oishi's K-fold summation algorithm

Example (with $n=5$, but easily generalizable):

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(2^{p-1}+1, \frac{1}{2}-2^{-p-1},-2^{p-1},-2, \frac{1}{2}\right)
$$

- Algorithm 7 run with double roundings, with $1 \leq p^{\prime} \leq p$;
- in the first addition $\left(a_{1}+a_{2}\right)$, double rounding slip \rightarrow after the first Fast2Sum, $p_{2}=2^{p-1}+2$ and $p_{1}=-1 / 2$, so that $p_{1}+p_{2} \neq a_{1}+a_{2}$;
- At the end of the first call to VecSum, the returned vector is

$$
\left(-\frac{1}{2}, 0,0,0, \frac{1}{2}\right)
$$

Rump, Ogita and Oishi's K-fold summation algorithm

Example (with $n=5$, but easily generalizable):

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(2^{p-1}+1, \frac{1}{2}-2^{-p-1},-2^{p-1},-2, \frac{1}{2}\right)
$$

- Algorithm 7 run with double roundings, with $1 \leq p^{\prime} \leq p$;
- in the first addition $\left(a_{1}+a_{2}\right)$, double rounding slip \rightarrow after the first Fast2Sum, $p_{2}=2^{p-1}+2$ and $p_{1}=-1 / 2$, so that $p_{1}+p_{2} \neq a_{1}+a_{2}$;
- At the end of the first call to VecSum, the returned vector is

$$
\left(-\frac{1}{2}, 0,0,0, \frac{1}{2}\right)
$$

\rightarrow Algorithm 7 returns $0, \forall K$, whereas $\sum a_{i}=-2^{-p-1}$. Final error $\approx 2^{-2 p-1} \sum\left|a_{i}\right|, \forall K$.

Conclusion

- investigated possible influence of double roundings on several algorithms of the FP literature;
- many important properties are preserved;
- depending on the considered applications, these properties may suffice, or specific compilation options should be chosen to prevent double roundings;
- hopefully, implementation of IEEE 754-2008 will bring some help;
- some proofs (e.g., 2Sum) long and tricky \rightarrow formal proof.

