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Introduction Definition

Floating-Point arithmetic, very quickly. . .

Assuming extremal exponents emin and emax, a finite, precision-p, binary
FP number x is of the form

x = M · 2e−p+1, (1)

M and e: integers such that{
|M| ≤ 2p − 1
emin ≤ e ≤ emax

(2)

Largest M (in magnitude) such that (1) and (2) hold: integral
significand of x ;
corresponding value of e (for x 6= 0): exponent of x ;
subnormal number: e = emin and |M| < 2p−1 (assumed available).
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Introduction Correct rounding

IEEE 754: correctly rounded operations

Definition 1 (Correct rounding)

Rounding function ◦, chosen among:
toward −∞: RD(x) is the largest FP number ≤ x ;
toward +∞: RU(x) is the smallest FP number ≥ x ;
toward zero: RZ(x) is equal to RD(x) if x ≥ 0, and to RU(x) if x ≤ 0;
to nearest: RN(x) = FP number closest to x . In case of a tie: the one
whose integral significand is even (another tie-breaking rule: away
from 0)

Correctly rounded operation >: returns ◦(a>b) for all FP numbers a and b.

Martin-Dorel, Melquiond, Muller Some issues related to double roundings Valencia, June 2012 3 / 32



Introduction Correct rounding

IEEE 754: correctly rounded operations

IEEE 754-1985: Correct rounding for +, −, ×, ÷, √ and some
conversions. Advantages:

if the result of an operation is exactly representable, we get it;
if we just use the 4 arith. operations and √, deterministic arithmetic:
→ algorithms and proofs that use the specifications;
accuracy and portability are improved;
. . .

FP arithmetic becomes a structure in itself, that can be studied.
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A few elementary algorithms and properties Sterbenz Lemma

First example: Sterbenz Lemma

Lemma 2 (Sterbenz)

Let a and b be positive FP numbers. If

a
2
≤ b ≤ 2a

then a − b is a FP number (→ computed exactly, in any rounding mode).

Proof: straightforward using the notation x = M × 2e+1−p.
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A few elementary algorithms and properties Error of FP addition (Moller, Knuth, Dekker)

Error of rounded-to-nearest FP addition

Reminder: RN(x) is x rounded to nearest.

Lemma 3
Let a and b be two FP numbers. Let

s = RN(a + b)

and
r = (a + b)− s.

If no overflow when computing s, then r is a FP number.

→ the error of a FP addition is exactly representable by a FPN.
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A few elementary algorithms and properties Error of FP addition (Moller, Knuth, Dekker)

Error of FP addition

Proof: Assume |a| ≥ |b|,
1 s is “the” FP number nearest a + b → it is closest to a + b than a.

Hence |(a + b)− s| ≤ |(a + b)− a|, therefore

|r | ≤ |b|.

2 denote a = Ma × 2ea−p+1 and b = Mb × 2eb−p+1, with
|Ma|, |Mb| ≤ 2p − 1, Ma and Mb largest, and ea ≥ eb.

a + b is multiple of 2eb−p+1 ⇒ s and r are multiple of 2eb−p+1 too
⇒ ∃R ∈ Z s.t.

r = R × 2eb−p+1

but, |r | ≤ |b| ⇒ |R| ≤ |Mb| ≤ 2p − 1⇒ r is a FP number.
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A few elementary algorithms and properties Error of FP addition (Moller, Knuth, Dekker)

Get r : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))

Subnormal numbers available, no overflows. FP numbers a and b s.t.
ea ≥ eb. Following algorithm:

s + r = a + b exactly;
s is “the” FP number that is closest to a + b.

Algorithm 1 (FastTwoSum)

s ← RN(a + b)
z ← RN(s − a)
r ← RN(b − z)

C Program 1
s = a+b;
z = s-a;
r = b-z;

Important remark: Proving the behavior of such algorithms requires use of
the correct rounding property.
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A few elementary algorithms and properties Error of FP addition (Moller, Knuth, Dekker)

The 2Sum algorithm (Knuth)

Does not require comparison of a and b.

Algorithm 2 (2Sum(a, b))

s ← RN(a + b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a − a′)
δb ← RN(b − b′)
t ← RN(δa + δb)

If a and b are normal FPN, then a + b = s + t.
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It’s not that simple

So we do live in the best of all possible worlds. . .

correct rounding → “deterministic arithmetic”;

we easily compute the error of a FP addition (by the way: same for ×);
we can re-inject that error later on in a calculation, to compute
accurate sums, dot-products. . .
already many such algorithms, probably more to come.

. . . except I’m a liar!
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It’s not that simple Double roundings and similar problems

Deterministic arithmetic?

several FP formats in a given environment → difficult to know in
which format some operations are performed;
may make the result of a sequence of operations difficult to predict;

Assume all declared variables are of the same format. Two phenomenons
may occur when a wider format is available:

implicit variables such as result of “a+b” in “d = (a+b)*c”: not clear
in which format they are computed;
explicit variables may be first computed (hence rounded) in the wider
format, and then rounded again to the destination format.
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It’s not that simple Double roundings and similar problems

Deterministic arithmetic?

C program:

double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;

Depending on the environment, 3.6893488147419103232e+19 or
3.6893488147419111424e+19 (binary64 number closest to the exact
product).
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It’s not that simple Double roundings and similar problems

What happened?

Exact value of a*b: 36893488147419107329. Binary representation:
64 bitsz }| {

10000000000000000000000000000000000000000000000000000| {z }
53 bits

10000000000 01

If the product is first rounded to “double-extended precision”, we get
64 bitsz }| {

10000000000000000000000000000000000000000000000000000| {z }
53 bits

10000000000×4

if that intermediate value is rounded to the binary64 destination format,

10000000000000000000000000000000000000000000000000000| {z }
53 bits

× 213

= 3689348814741910323210,

→ rounded down, whereas it should have been rounded up.
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It’s not that simple Double roundings and similar problems

Is it a problem ?

these phenomenons: almost always innocuous (error very slightly
above 1/2 ulp);
they may make the behavior of some programs difficult to predict;
most compilers offer options that prevent this problem. And yet,
needing these options

restricts the portability of numerical programs;
possible bad impact on performance and/or accuracy.

→ examine which properties remain true when double roundings occur.
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Double rounding Known issues

Double roundings: known issues

±, ×, ÷, √ : conditions on the precision of the wider format under
which double roundings do not change the result (Kahan, Figueroa’s
PhD—2000);
double roundings may cause a problem in binary to decimal
conversions. Solutions given by Goldberg, and by Cornea et al;
double roundings may occur, even without available wider format,
when performing scaled division iterations to avoid overflow or
underflow;
Rounding towards ±∞ or 0: double roundings do not change the
result of a calculation → we focus on “round to nearest” only.
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Notation, background material and preliminary remarks Notation

Notation

precision-p target format, and precision-(p + p′) “internal” format;
RNk(u) means u rounded to the nearest precision-k FP number;
when the precision is omitted: it is p;
precision-p midpoint: exactly halfway between two consecutive
precision-p FPN.

ulp(x)

FPN midpoint x

Throughout the presentation: we assume that no overflow occurs.
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Notation, background material and preliminary remarks Double roundings and double rounding slips

Double roundings and double rounding slips

When the arithmetic operation x>y appears in a program:

double rounding: what is actually performed is

RNp
(
RNp+p′(x>y)

)
,

double rounding slip: a double rounding occurs and the obtained result
differs from RNp(x>y).

Remark 1
Double rounding slip → the error of a + b may not be a FPN.
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Some preliminary remarks

Double rounding → the error of a + b may not be a FPN

Consider a = 1 xxxx · · · x︸ ︷︷ ︸
p−3 bits

01, where xxxx · · · x is any (p − 3)-bit bit-chain.

Also consider, b = 0.0 111111 · · · 1︸ ︷︷ ︸
p ones

= 1
2 − 2−p−1. We have:

a + b = 1xxxx ...x01︸ ︷︷ ︸
p bits

.0 111111...1︸ ︷︷ ︸
p bits

,

so that if 1 ≤ p′ ≤ p, u = RNp+p′(a + b) = 1xxxx ...x01.100...0,
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Some preliminary remarks

Double rounding → the error of a + b may not be a FPN

u = RNp+p′(a + b) = 1xxxx ...x01.100...0,

The “round to nearest even” rule thus implies

s = RNp(u) = 1xxxx ...x10 = a + 1

Therefore,

s − (a + b) = a + 1− (a +
1
2
− 2−p−1) =

1
2

+ 2−p−1 = 0. 10000 · · · 01︸ ︷︷ ︸
p+1 bits

,

which is not exactly representable in precision-p FP arithmetic.
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Some preliminary remarks

A few preliminary remarks

Remark 2

If a double rounding slip occurs when evaluating a>b then RNp+p′(a>b) is
a precision-p midpoint, i.e., a number exactly halfway between two
consecutive precision-p FP numbers.

RNp(RNp+p′(x))

x

RNp+p′(x)
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Some preliminary remarks

A few preliminary remarks

Remark 3
Since the precision-p FPNs are precision-(p + p′) FPNs, each time a>b is
exactly representable in precision-p arithmetic, we get it:

RNp
(
RNp+p′(a>b)

)
= RNp(a>b) = a>b.

→ Sterbenz Lemma still holds in presence of double roundings.

Remark 4

Let a and b be precision-p FP numbers, and define

s = RNp
(
RNp+p′ (a + b)

)
.

a + b − s fits in at most p + 2 bits, so that as soon as p′ ≥ 2, we have

RNp
(
RNp+p′ (a + b − s)

)
= RNp(a + b − s). (3)
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Fast2Sum and double roundings

Fast2Sum and double roundings

Algorithm 3 (Fast2Sum-with-double-roundings(a, b))

s ← RNp
[
RNp+p′(a + b)

]
z ← ◦(s − a)
t ← RNp

[
RNp+p′(b − z)

]
◦(u): RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any faithful rounding.
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Fast2Sum and double roundings

Fast2Sum and double roundings

Theorem 5

If p ≥ 3, p′ ≥ 2, and a and b are precision-p FPN with ea ≥ eb, then
Algorithm 3 satisfies:

z = s − a exactly;
if no double rounding slip occurred when computing s (i.e., if
s = RNp(a + b)), then t = (a + b − s) exactly;
otherwise, t = RNp(a + b − s).

The proof of Theorem 5 is rather complex (many sub-cases). We have a
formal proof that uses the Coq proof assistant.

Martin-Dorel, Melquiond, Muller Some issues related to double roundings Valencia, June 2012 23 / 32



Fast2Sum and double roundings

Proof in the (much simpler) case |a| ≥ |b|

1 if a and b have same sign, |a| ≤ |a + b| ≤ |2a|, hence (2a is a FPN,
rounding is increasing) |a| ≤ |s| ≤ |2a| → (Sterbenz) z = s − a.
Therefore t = RNp

[
RNp+p′(b − z)

]
= RNp

[
RNp+p′((a + b)− s)

]
.

2 if a and b have opposite signs then
either |b| ≥ |a/2|, which implies (Sterbenz) a + b is a FPN, thus
s = a + b, z = b and t = 0;
or |b| < |a/2|, which implies |a + b| > |a/2|, hence s ≥ |a/2|, thus
(Sterbenz) z = s − a. Therefore
t = RNp [RNp+p′(b − z)] = RNp [RNp+p′((a + b)− s)] .

Remark 4 ⇒ t = RNp((a + b)− s).
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2Sum and double roundings

2Sum and double roundings

Algorithm 4 (2Sum-with-double-roundings(a, b))

(1) s ← RNp(RNp+p′(a + b)) or RNp(a + b)
(2) a′ ← RNp(RNp+p′(s − b)) or RNp(s − b))
(3) b′ ← ◦(s − a′)
(4) δa ← RNp(RNp+p′(a − a′)) or RNp(a − a′)
(5) δb ← RNp(RNp+p′(b − b′)) or RNp(b − b′)
(6) t ← RNp(RNp+p′(δa + δb)) or RNp(δa + δb)

◦(u): RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any faithful rounding.
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2Sum and double roundings

Theorem 6
If p ≥ 4 and p + p′, with p′ ≥ 2. If a and b are precision-p FPN, and if no
overflow occurs, then Algorithm 4 satisfies:

if no double rounding slip occurred when computing s then
t = (a + b − s) exactly;
otherwise, t = RNp(a + b − s).

Proofs and tech. report available at
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00644408
(submitted to a journal)
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Application: summation algorithms u and γk notations

u and γk notations

Higham’s notations, very slightly adapted to the context of double
roundings.
Define u = 2−p and u′ = 2−p + 2−p−p′

+ 2−2p−p′
. For any integer

k � 2p, define

γk =
ku

1− ku
≈ k · 2−p,

and

γ′k =
ku′

1− ku′
≈ k · (2−p + 2−p−p′

).
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Application: summation algorithms u and γk notations

Application: summation algorithms

Naive, recursive-sum algorithm, rewritten with double roundings.

Algorithm 5

r ← a1
for i = 2 to n do

r ← RNp(RNp+p′(r + ai ))
end for
return r

Property 1

∣∣∣∣∣r −
n∑

i=1

ai

∣∣∣∣∣ ≤ γ′n−1

n∑
i=1

|ai |.

Without double roundings, the bound is γn−1
∑n

i=1 |ai |.
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Application: summation algorithms u and γk notations

Rump, Ogita and Oishi’s K -fold summation algorithm

Algorithm 6 (VecSum(a), where a = (a1, a2, . . . , an))

p ← a
for i = 2 to n do

(pi , pi−1)← 2Sum(pi , pi−1)
end for
return p

Algorithm 7 (K -fold summation algorithm)

for k = 1 to K − 1 do
a← VecSum(a)

end for
c = a1
for i = 2 to n − 1 do

c ← RN(c + ai )
end for
return RN(an + c)
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Application: summation algorithms u and γk notations

Rump, Ogita and Oishi’s K -fold summation algorithm

without double roundings, if 4nu < 1, the FPN σ returned by
Algorithm 7 satisfies∣∣∣∣∣σ −

n∑
i=1

ai

∣∣∣∣∣ ≤ (u + γ2
n−1)

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣+ γK
2n−2

n∑
i=1

|ai |. (4)

if a double-rounding slip occurs in the first call to VecSum, not
possible to show an error bound better than prop. to 2−2p∑n

i=1 |ai |;
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Application: summation algorithms u and γk notations

Rump, Ogita and Oishi’s K -fold summation algorithm

Example (with n = 5, but easily generalizable):

(a1, a2, a3, a4, a5) =

(
2p−1 + 1 ,

1
2
− 2−p−1 , −2p−1 , −2 , 1

2

)

Algorithm 7 run with double roundings, with 1 ≤ p′ ≤ p;
in the first addition (a1 + a2), double rounding slip → after the first
Fast2Sum, p2 = 2p−1 + 2 and p1 = −1/2, so that p1 + p2 6= a1 + a2;
At the end of the first call to VecSum, the returned vector is(

−1
2
, 0, 0, 0,

1
2

)

→ Algorithm 7 returns 0, ∀K , whereas
∑

ai = −2−p−1. Final error
≈ 2−2p−1∑ |ai |, ∀K .
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Conclusion

Conclusion

investigated possible influence of double roundings on several
algorithms of the FP literature;
many important properties are preserved;
depending on the considered applications, these properties may suffice,
or specific compilation options should be chosen to prevent double
roundings;
hopefully, implementation of IEEE 754-2008 will bring some help;
some proofs (e.g., 2Sum) long and tricky → formal proof.
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