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Abstract

We propose a digit-recurrence algorithm for division in
real and complex number domains using a variable radix.
The objective of the approach is to simplify the prescaling
of the operands by using a suitable low radix, and switch
to higher radices in the remaining iterations to reduce their
number. The prescaling is used to allow a simple quotient-
digit selection by rounding of the residual. We discuss the
algorithm, its implementation, and estimate its time and
cost characteristics with respect to fixed high-radix division
algorithms.

1 Introduction

As shown by Oberman and Flynn [10], although division
is a rather infrequent arithmetic operation, ignoring its im-
plementation may result in significant performance degra-
dation. Digit-recurrence algorithms are frequently used to
implement division and square root of real (fixed-point or
floating-point) operands in hardware [11, 3, 4]. They also
have been generalized to complex division [7] and square-
root [6]. For computing x/y (assuming |x| ≤ y) the radix-
r (real) digit-recurrence division algorithm uses the recur-
rence

w[j + 1] = rw[j] − qj+1y (1)

where w[0] = x, and the radix-r quotient digits qj’s are
selected so that the residuals w[j]’s remain bounded. This
ensures the convergence of the algorithm:

(0.q1q2 · · · qn)r = q1r
−1 + q2r

−2 + · · · + qnr−n → x/y.

The quotient-digit set is redundant which causes the
quotient-digit selection intervals to overlap which, in turn,
allows the use of (i) low-precision estimates of the residuals
(i.e., the residual can be computed using a redundant adder)
and, (ii) simple selection constants (for small radices). At
each iteration, one new radix-r digit of the quotient is gen-
erated. Hence, to minimize the number of iterations, it is
advantageous to use a high radix: for instance a radix-2k

algorithm generates k bits of quotient per iteration.

However, selecting the qj+1’s becomes more difficult as
the radix increases. The usual way is to perform the selec-
tion either by comparing the residual w[j] to some selec-
tion constants, or through table look-up (with a few most
significant bits of w[j] and y as address bits). For radices
higher than 2, these approaches also require the use of the
divisor [4]. However, the number of selection constants in-
creases with r (roughly linearly in the real case and quadrat-
ically in the complex case). The size of the lookup table
also increases with r. In the real case, if the table takes
the residuals w[j] in carry-save or borrow-save form, the
increase will roughly be quadratic. If a short adder is used
to convert the most significant part of w[j] to nonredundant
representation, the table will be smaller, but the delay of the
quotient digit selection will be increased by the delay of the
adder. All this makes very-high radix digit recurrence divi-
sion too difficult to implement using the selection function
with constants.

To have a feasible selection function for very-high radix
division, prescaling of operands is used. It consists in mul-
tiplying x and y by a constant M chosen so that first, My
is close to 1, and second, the precision of M is short so that

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05) 
1063-6862/05 $20.00 © 2005 IEEE 



the products Mx and My are computed exactly, and using
a few additions only). Then the digit-recurrence is used to
compute (Mx)/(My). Since My is very close to 1, one
can choose qj+1 by rounding w[j] (or, merely, an approxi-
mation to w[j], made up with a few most significant digits of
w[j]) to the nearest integer, provided that some conditions
are satisfied. Therefore, the quotient-digit selection has a
delay proportional to the log2r and it is independent of the
divisor. The idea of scaling operands to make the quotient-
digit selection independent of the divisor was proposed in
[14] for a decimal computer. This scheme was extended
by in [15] to an arbitrary radix. A general derivation and
analysis of prescaling is given in [3].

Finding an adequate value for M is usually done through
table look-up. Again, the size of the lookup table increases
with the radix, making very-high radix division difficult to
implement (this is even worse for complex division, where
radices greater than or equal to 8 are not implementable
with current technology [7]). One can make the table
smaller using the bipartite method [12, 13]. Alternatively,
the scaling constant can be computed in few steps, using
a suitable approximation, such as a linear interpolation, as
suggested by Ercegovac, Lang and Montuschi [5, 9] (the co-
efficients of the linear approximation that generates M are
obtained using smaller tables). In this paper, we explore the
idea of using a variable radix to simplify the prescaling, and
exploit the idea of a higher radix in later steps to reduce the
overall time.

Since M is an approximation to 1/y, a solution to gener-
ate it would be to perform a few iterations of a low-radix di-
vision (we will call it the “preliminary division”), and then,
once M is obtain to enough accuracy, to start the high-radix
of Mx by My. Unfortunately, this would increase the delay
of the computation of x/y (the “main division”). A solution
we wish to analyse here is to try to somewhat overlap the
preliminary and main division.

2 Division, real case

Assume we wish to compute x/y, with 1 ≤ y < 2. First,
we perform δ radix-2 iterations for 1/y (adequate values of
δ will be suggested later). This gives

M = 0.m1m2m3 · · ·mδ (2)

with mi ∈ {−1, 0, 1} and

1
y
− 2−δ < M <

1
y

+ 2−δ. (3)

In parallel with the δ radix-2 iterations, we compute

x∗ = Mx
y∗ = My.

These multiplications are overlapped with the division it-
erations: each time we get a new quotient bit mi we ac-
cumulate miy2−i and mix2−i. The accumulations can be
done using a redundant adder (e.g., carry-save or borrow-
save). with the y∗ being converted on-the-fly to non redun-
dant representation using the techniques introduced in [1].
However, this process produces only b most significant bits
of the scaled divisor. Regarding the redundant scaled di-
visor, one alternative is to use a fast CPA to obtain the re-
maining bits of y∗. Another alternative is to use the scaled
divisor in the redundant form. As discussed later, this adds
another level of reduction stages in the rectangular multi-
plier. The scaled dividend can also be used in the redundant
form. We will focus on this alternative. Note that it is also
possible to use the on-line division method which handles
the remaining digits of the scaled divisor as they become
available.

Using (3) we derive

1 − 2−δ+1 < y∗ = My < 1 + 2−δ+1, (4)

hence, ∣∣∣∣
1
y∗ − 1

∣∣∣∣ < 2−δ+2 (5)

Assume that δ − 2 is a multiple of k, say δ − 2 = k∆.
From (5), we deduce that there is a radix-2 signed-digit rep-
resentation of 1/y∗ that starts with the sequence

1. 00000 · · · 00︸ ︷︷ ︸
δ−2 zeros

Hence, there is a radix-2k maximally redundant signed-digit
representation of 1/y∗ that starts with the sequence

1. 0000 · · · 0︸ ︷︷ ︸
∆ zeros

.

Denote r = 2k. We suggest to start radix-r division itera-
tions for computing 1/y∗, namely iterations of the form

W [i + 1] = rW [i] − m′
i+1y

∗ (6)

from step i = ∆, with

m′
0 = 1, m′

1 = m′
2 = m′

3 = · · · = m′
∆ = 0

and
W [∆] = r∆(1 − y∗).

In parallel with (6), we will perform (for i ≥ ∆)

Q[i + 1] = Q[i] + m′
i+1r

−i−1x∗

with
Q[∆] = x∗

2
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using a left-to-right multiplication with on-the-fly conver-
sion which does not require a final adder to produce the
most significant n bits of the result [1, 2].

Note that if (6) is a “valid” digit-recurrence division (that
is, if the W [j] are bounded), then

Q[n] → x

y
,

since

Q[j] = x∗(1.000 · · ·m′
∆+1m

′
∆+2m

′
∆+3 · · ·m′

j)

and

1.000 · · ·m′
∆+1m

′
∆+2m

′
∆+3 · · · =

1
y∗

and
x

y
= x∗ × 1

y∗ .

Now, since y∗ is very close to 1, we can select digit
m′

i+1 by rounding rW [i] to the nearest integer (this is stan-
dard in high-radix digit-recurrence division algorithms with
prescaling [5, 3]). More precisely, from (4), we get

1 − r−∆

2
< y∗ < 1 +

r−∆

2
.

Hence, if −r + 1 ≤ m′
i+1 ≤ r − 1 then

−(r − 1)
r−∆

2
< m′

i+1 − m′
i+1y

∗ < (r − 1)
r−∆

2
,

Since

rW [i]−m′
i+1y

∗ =
(
rW [i] − m′

i+1

)
+

(
m′

i+1 − m′
i+1y

∗) ,

we find

|W [i + 1]| <
1
2

+ (r − 1)
r−∆

2
. (7)

Assuring that rW [i] rounded to the nearest integer is always
between −r + 1 and r − 1 requires

|W [i]| ≤ 1 − 1
2r

. (8)

Therefore, based on (7) and (8), the proposed scheme will
converge (i.e., the W [j]’s will be bounded) provided that

1
2

+ (r − 1)
r−∆

2
≤ 1 − 1

2r
,

i.e.,

(r − 1)r−∆ +
1
r
≤ 1. (9)

A quick look on (9) reveals that all values ∆ ≥ 1 are a
solution. Taking ∆ = 1, from δ − 2 = k∆, we deduce
that we can start radix r = 2k iterations after k + 2 radix-2
iterations.

Moreover, we can continue to increase the radix. For in-
stance, after iteration number δ1 of the radix r1 = 2k1 divi-
sion (that is, when we have obtained quotient digit number
δ1 of 1/y∗), defining M ′ = 0.m′

1m
′
2 · · ·m′

δ1
and assum-

ing we have continued to compute y × 0.m′
1m

′
2 · · ·m′

δ1
by

successive accumulations, we have

1
y
− 2−k1δ1 < M ′ <

1
y

+ 2−k1δ1 . (10)

This last equation is the same as equation (3), with δ
replaced by k1δ1. This means that we can start a radix 2k2

iteration from step 1, where k2 = k1δ1 − 2.
For instance, after 4 radix-2 iterations, we can start the

radix 4 iterations, after 4 radix 4 iterations, we can start
radix 16 iterations, and after 4 radix 16 iterations, we can
start radix 256 iterations. We now consider an implemen-
tation of variable-radix division for 53-bit operands. An
initial prescaling of the divisor y into Y 0 ∈ (7/8, 9/8)
uses a separate [3:2] adder with inputs selected from the set
{y, y/2, y/4, y/8,−y/8} based on the three MS bits of the
divisor y. The radix 4 digits of the short reciprocal 1/Y 0
are in the set {−2,−1, 0, 1, 2}, selected by rounding of the
shifted residual. We perform four iterations in radix 4. In
parallel, we compute a first scaled dividend X0 using a left-
to-right multiplier, producing the product in a redundant
(carry-save) form. Next we perform four radix 4 iterations,
producing 4 radix-4 digits (8 bits) of the scaled reciprocal
y∗. These digits are used in parallel to obtain scaled divi-
dend x∗ and the MS digits of the quotient. Next 4 iterations
are performed in radix-16, producing next 4 radix-16 dig-
its of the reciprocal, and, in parallel, a scaled dividend, and
additional digits of the quotient. Finally, we perform 4 iter-
ations in radix 256, producing remaining digits in a similar
manner. A general scheme is indicated in Figure 1.

We now briefly describe the main modules shown in
Figure 1. The RR Module produces five radix-4 digits by
rounding and recoding (parallel) of the corresponding num-
ber of leading WS and WC bits. The outputs of the par-
allel radix-4 recoder are selectively enabled according to
the radix of the iteration. So, during the radix-4 iterations
only two MS recoded digits are used; three during the radix-
16 iterations, and five during the radix-256 iterations. The
central module is a rectangular multiplier-accumulator RO-
MAC. We assume that the multiplicand (i.e., the progres-
sively scaled divisor y∗) is the redundant carry-save form.
The design of operand reduction array is based on the de-
sign of a fully redundant multiplier [8]. The ROMAC is
designed for radix-256 and it is used for radix 4 and radix
16 iterations to keep the cycle time uniform. The scal-
ing left-to-right (LR) multipliers in the scheme do not use
CPA adders so ROMAC accommodates redundant multipli-
cands. The quotient produced by another LR multiplier is
converted to its conventional form using on-the-fly conver-
sion approach [1].

3
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SL2;4;8 SC-Y

ROMAC
(Multiple generators + reduction

array)

RR

LR-MULT-Y
(Multiple generator+

[4:2] adder)

LR-MULT-X
(Multiple generator+

[4:2] adder)

LR-MULT+ OFC

X0

MUX

WS, WC Regs

W[j]

Shift-Left 2, 4, or 8
positions

Round and 
Recode

Y Divisor

Rectangular Multiplier-Accumulator
with redundant operands

Reciprocal
digits in
radix r

(r=4, or 16
or 256)

Y0

(XS*, XC*) Regs

MUX

Scaled dividend
Scaled divisor

(short reciprocal)

Y*

Q Quotient

Left-to-right multiplier
and on-the-fly converter

(YS*,YC*) Regs

redundant (C.S) bit-vectors

conventional bit-vectors
radix r digit, or short bit-vector

W[j]

W[j+1]

rW[j]

Radix-4 operands
scaling

Left-to-right multipliers

Scaled Dividend

X Dividend

X0
Y0

Scaled Divisor 

Figure 1. Variable-Radix 4-16-256 Division Scheme.
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Rough estimates of delay and area are based on using the
delay and area of a full-adder tFA and AFA, respectively.
We use n = 53. We estimate that the radix-256 cycle time
is

t256 = tRR + tMG + tRA + tSL + treg

≈ (1.5 + 0.5 + 3.5 + 0.5 + 1)tFA = 7tFA

The number of iterations (cycles) for the variable-radix
scheme is

N4−16−256

= prescale + r4cycles + r16cycles + r256cycles
= 1 + 4 + 4 + 4 = 13

The latency of the proposed scheme is T4−16−256 =
13 × 7tFA = 91tFA. This is not the shortest latency
that one can achieve. By decoupling radix-4, radix-16,
and radix-256 iterations, the latency could be reduced to
1+4× (4+5+7) = 65tFA which is similar to the latency
of a radix-256 divider which is estimated to have a cycle
time of 7tFA and it takes 2 cycles for operands scaling and
7 cycles for computation of the quotient, resulting in a total
latency of 63tFA.

We now estimate the cost of the proposed scheme and
compare it with a cost of a radix-256 divider roughly assum-
ing internal precision of 64 bits. The cost of the proposed
scheme, using area of a full-adder AFA as unit, is shown in
Table 1.

Table 1. Proposed scheme
Module Area [AFA]

RR 70
SL2;4;8 50

2 2-1 MUXES 50
ROMAC 700

3 LR-MULT and OFC 765
MISC 50

TOTAL: 1750

Using a similar analysis of the cost, we estimate that a
radix-256 divider has the costs shown in Table 2.

These rough cost estimates indicate a slight advantage of
the proposed scheme.

3 Division, complex case

Throughout this section, i is
√−1, and if z is a complex

number, then �(z) and �(z) denote the real and imaginary
parts of z. The norm ||z||∞ denotes max{|�(z)|, |�(z)|}.

In [7], we adapted the radix-r digit-recurrence division
algorithm to complex division. The iterations for computing

Table 2. Radix-256 scheme
Module Area [AFA]

Tables and multiplier 700
RR 70

2-1 MUXES 50
Fast CPA 400

MAC 600
OFC 100

MISC 50
TOTAL: 1880

x/y are of the form

w[j + 1] = rw[j] − qj+1y (11)

with qj+1 = qRj+1 + iqIj+1, where qRj+1 and qIj+1 belong
to the digit set S of a redundant radix-r representation (a
typical example is the maximally redundant set S = {−r +
1,−r + 2, . . . , r − 2, r − 1}). We assume 1 ≤ ||y||∞ < 2.
To make the selection of the quotient digits simple we need
to prescale the input operands. In the complex case, the
prescaling step, if implemented using tables, requires much
larger tables than in the real case. In practice, this limits our
complex division method to radices less than 8. Hence it is
of interest to adapt the variable-radix method presented in
the previous section to the complex case.

As in the real case, we can start radix-2 iterations1, so
that at step δ of these iterations, we get

M = 0.m1m2m3 · · ·mδ (12)

with �(mi),�(mi) ∈ {−1, 0, 1} and

�( 1
y ) − 2−δ < �(M) < �( 1

y ) + 2−δ

�( 1
y ) − 2−δ < �(M) < �( 1

y ) + 2−δ
(13)

In parallel with the δ radix-2 iterations, we compute

x∗ = Mx
y∗ = My.

The major difference with what we did for the real case
is that now, instead of (4), we have:

||1 − My||∞ < 2−δ+2

Hence, compared to the real case, we have (−δ + 2) in-
stead of (−δ + 1) which comes from

||1 − My||∞ < 2||y||∞||1/y − M ||∞
1They will be prescaled: this is necessary in the complex case. Prescal-

ing in radix 2 is done easily [7].
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Assume r = 2k, and define ∆ as δ − 3 = k∆ (which
is not the same definition as in the real case). We wish to
know when (i.e., at which step ∆) we can start the radix-r
iterations. Very similar calculations to the ones performed
in the real case give

||m′
i+1 − m′

i+1y||∞ ≤ 2(r − 1)
r−∆

2
, (14)

which gives

||W [i + 1]||∞ <
1
2

+ 2(r − 1)
r−∆

2
(15)

instead of (7). Assuring that the real and imaginary parts
of rW [i] rounded to the nearest integer are always between
−r + 1 and r − 1 requires

||W [i]||∞ ≤ 1 − 1
2r

. (16)

so that we get, instead of (9):

2(r − 1)r−∆ +
1
r
≤ 1. (17)

A quick look at (17) reveals that all values ∆ ≥ 2 are
a solution. Taking ∆ = 2, from δ − 3 = k∆, we deduce
that we can start radix r = 2k iterations after 2k+3 radix-2
iterations. We can continue to increase the radix as in the
real case.

Consequently, we can avoid the demand for rather large
prescaling tables by starting with a small radix and gradu-
ally increasing it as we did in real division.

Summary

We have considered a variable radix approach to divi-
sion. To have a practical arbitrary radix division, the selec-
tion of the quotient digits has to be done via rounding of the
residual. This requires scaling of the operands. The scaling
is typically accomplished using tables for the coefficients of
a suitable linear or quadratic approximation of the short re-
ciprocal. Our objective is to eliminate these tables by using
gradually increasing radix. Such an approach would be of
particular importance in implementing division in the com-
plex domain. We presented the derivation of the method
and preliminary results regarding an implementation. The
latency and cost comparisons with these of a radix-256 di-
vider indicate a good potential of the proposed approach.
Detailed designs remain to be developed.
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