
Getting tight error bounds in floating-point arithmetic:
illustration with complex functions, and the real xn

function

Jean-Michel Muller

collaborators: S. Graillat, C.-P. Jeannerod, N. Louvet V. Lefèvre
NSV–2014

Floating-Point Arithmetic

too often, viewed as a set of cooking recipes;
too many “theorems” that hold. . . provided no variable is very near a
power of the radix, there is no underflow/overflow; or that are
dangerously generalized from radix 2 to radix 10, etc.
simple models such as the standard model

◦(a>b) = (a>b) · (1 + δ), |δ| ≤ u,

(u = 2−p in radix 2, precision-p, rounded to nearest, arithmetic) do
not allow to catch subtle behaviors such as those in

s = a + b ; z = s - a ; r = b - z

(fast2sum) and many others.
by the way, are these “subtle behaviors” robust?

Long term goals

revisit “folklore knowledge” on FP arithmetic, and determine which
properties are really true, and in what context they are true;
build new knowledge on FP arithmetic;
try to get optimal/asymptotically optimal/close-to-optimal error
bounds;

· · · all this in close collaboration with the formal proof folks.

Binary Floating-Point System

Parameters: 
radix (or base) : 2 here;
precision p ≥ 1
extremal exponents emin, emax,

A finite FP number x is represented by 2 integers:
integral significand: M, |M| ≤ 2p − 1;
exponent e, emin ≤ e ≤ emax.

such that

x = M × 2e+1−p

with |M| largest under these constraints (→ |M| ≥ 2p−1, unless e = emin).
(Real) significand of x : the number m = M × 21−p, so that x = m × 2e .

Correct rounding

In general, the sum, product, quotient, etc., of two FP numbers is not
an FP number: it must be rounded;
correct rounding: Rounding function ◦, and when (a>b) is performed,
the returned value is ◦(a>b);

default rounding function RN (round to nearest even):

(i) for all FP numbers y , |RN(t)− t| ≤ |y − t|
(ii) if there are two FP numbers that satisfy (i), RN(t) is the one whose

integral significand is even.

In the following. . .

a few “basic building blocks” of numerical computing: ab ± cd ,
complex arithmetic, xn;
“usual” error bounds:

prove them;
try to improve them;
discuss their possible optimality or near-optimality.

we assume than an FMA instruction is available: computes
RN(ab + c).

(FMA: first appeared in IBMP RS/6000, then PowerPC and Itanium, now
specified by IEEE 754-2008)

Relative error due to roundings, u, and ulp notations

Let t ∈ R, 2e ≤ t < 2e+1, with e ≥ emin;

we have 2e ≤ RN(t) ≤ 2e+1, and

|RN(t)− t| ≤ 2e−p. (1)

→ upper bound on the relative error due to rounding t:∣∣∣∣RN(t)− t
t

∣∣∣∣ ≤ u = 2−p. (2)

u = 2−p: rounding unit.
ulp(t) = 2e−p+1.

Relative error due to roundings, u, and ulp notations

2e−p = 1
2ulp(t)

2e 2e+1

t̂ = RN(t)

t

|t − t̂| ≤ 2e−p

≤ u · t.

Figure 1: In precision-p binary FP arithmetic, in the normal range, the relative
error due to rounding to nearest is bounded by u = 2−p.

A small improvement

The bound on the relative error due to rounding can be slightly improved
(using a remark by Jeannerod and Rump):

if 2e ≤ t < 2e+1, then |t − RN(t)| ≤ 2e−p = u · 2e , and

if t ≥ 2e · (1 + u), then |t − RN(t)|/t ≤ u/(1 + u);
if t = 2e · (1 + τ · u) with τ ∈ [0, 1), then
|t − RN(t)|/t = τ · u/(1 + τ · u) < u/(1 + u),

→ the maximum relative error due to rounding is bounded by

u
1 + u

.

attained → no further “general” improvement.

“Wobbling” relative error

For t 6= 0, define

t =
t

2blog2 |t|c
.

We have,

Lemma 1

Let t ∈ R. If
2e ≤ w · 2e ≤ |t| < 2e+1, e ∈ Z (3)

(in other words, if 1 ≤ w ≤ |t|) then∣∣∣∣RN(t)− t
t

∣∣∣∣ ≤ u
w
.

2e 2e+1

ŷ = RN(y)

y

w |t−RN(t)|
t ≤ u

w

|y−ŷ |
y = u

1+u (largest)

ẑ = RN(z)

z

|z−ẑ|
z = u

2−u

Figure 2: The bound on the relative error due to rounding to nearest can be
reduced to u/(1 + u). Furthermore, if we know that w ≤ t = t/2e , then
|RN(t)− t|/t ≤ u/w.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8

t

Figure 3: Relative error due to rounding, namely |RN(t)− t|/t, for 1
5 ≤ t ≤ 8,

and p = 4.

First example: ab + cd with an FMA

Assume an fma instruction is available. Kahan’s algorithm for x = ab + cd :

ŵ ← RN(cd)
e ← RN(ŵ − cd)
f̂ ← RN(ab + ŵ)
x̂ ← RN(f̂ − e)
Return x̂

using std model (Higham, 2002):

|x̂ − x | ≤ J|x |

with J = 2u + u2 + (u + u2)u |cd ||x | → high
accuracy as long as u|cd | 6� |x |
using properties of RN (Jeannerod,
Louvet, M., 2011)

|x̂ − x | ≤ 2u|x |

asymptotically optimal error bound.
Complex multiplication & division.

A somewhat simpler algorithm for ab + cd

Cornea, Harrison and Tang (2002) approximate

r = ab + cd

by r̂ obtained as follows

algorithm CHT(a, b, c , d)
ŵ1 := RN(ab); ŵ2 := RN(cd);
e1 := RN(ab − ŵ1); e2 := RN(cd − ŵ2); // exact operations
f̂ := RN(ŵ1 + ŵ2);
ê := RN(e1 + e2);
r̂ := RN

(
f̂ + ê

)
;

return r̂ ;

They show that the error is O(u). Since the 2u relative error bound of
Kahan’s algorithm was not known at that time, the CHT algorithm was
favored.

A somewhat simpler algorithm for ab + cd

We have shown the following result (ACM TOMS, to appear).

Theorem 2

Provided no underflow/overflow occurs, and assuming radix-2, precision-p
floating-point arithmetic, the relative error of Cornea et al’s algorithm is
bounded by 2u + 7u2 + 6u3.

improvement compared to the previous O(u).
however, does not help to choose between Kahan and CHT.

An almost-worst-case example. . .

Consider 
a = 2p − 1,
b = 2p−3 + 1

2 ,
c = 2p − 1,
d = 2p−3 + 1

4 ,

One easily checks that a, b, c , and d are precision-p FP numbers. One
easily finds:

ab + cd = 22p−2 + 2p−1 − 3
4 ,

π1 = 22p−3 + 2p−2,
e1 = 2p−3 − 1

2 ,
π2 = 22p−3,
e2 = 2p−3 − 1

4 ,
π = 22p−2,
e = 2p−2 − 3

4 ,
s = 22p−2.

An almost-worst-case “generic” example. . .

The relative error |s − (ab + cd)|/|ab + cd | is equal to

2p−1 − 3
4

22p−2 + 2p−1 − 3
4

=
2u − 3u2

1 + 2u − 3u2 = 2u − 7u2 + 20u3 + · · ·

This shows that our relative error bound

2u + 7u2 + 6u3

is asymptotically optimal (as u → 0 or, equivalently, as p →∞).

So that Kahan’s algorithm is to be preferred, unless one wishes to get the
same result when computing ab + cd and cd + ab (e.g., to get a
commutative complex ×).

The really difficult part. . .

Is not the theorem that gives the upper bound. It is to find the “generic”
(i.e., valid ∀p) example.

perform the algorithm for zillions of different input values, for a given
p, find the largest obtained relative errors,
try to hint patterns,
try to show that the chosen patterns effectively lead to an error close
to (or, better, asymptotically equal to, or, even better, equal to) the
bound.

painful, error-prone → we are trying to (partly) automatize that step, using
a “symbolic floating point” arithmetic written in Maple.

Complex multiplication and division

Given x = a + ib and y = c + id , their product z = xy can be expressed as

z = ac − bd + i(ad + bc);

and their quotient x/y can be expressed as

q =
ac + bd
c2 + d2 + i

bc − ad
c2 + d2 .

In floating-point arithmetic, several issues:
tradeoff accuracy vs speed,
spurious overflow/underflow (e.g., c2 + d2 overflows, whereas the real
and imaginary parts of q are representable);

Here: accuracy problems. Scaling techniques to avoid spurious
overflow/underflow dealt with in separately.
Focus on very simple algorithms.

Componentwise and normwise relative errors

When ẑ approximates z :
componentwise error:

max
{∣∣∣∣<(z)−<(ẑ)

<(z)

∣∣∣∣ ; ∣∣∣∣=(z)−=(ẑ)
=(z)

∣∣∣∣} ;

normwise error: ∣∣∣∣z − ẑ
z

∣∣∣∣ .
Choosing between both kinds of error depends on the application.

componentwise error ≤ ε⇒ normwise error ≤ ε;
the converse is not true.

Naive multiplication algorithm without an FMA

A0 : (a+ ib, c+ id) 7→ RN
(
RN(ac)−RN(bd)

)
+ i ·RN

(
RN(ad)+RN(bc)

)
componentwise error: can be huge (yet finite);
Normwise accuracy: studied by Brent, Percival, and Zimmermann
(2007). The computed value has the form

ẑ0 = z(1 + ε), |ε| <
√
5 u,

→ the normwise relative error |ẑ0/z − 1| is always ≤
√
5 · u.

For any p ≥ 2 they provide FP numbers a, b, c , d for which
|ẑ0/z − 1| =

√
5 u − O(u2)→ the relative error bound

√
5 u is

asymptotically optimal as u → 0 (or, equivalently, as p → +∞).

Can we do better if an FMA instruction is available?

Naive multiplication algorithm with an FMA

With an FMA, the simple way of evaluating ac − bd + i(ad + bc) becomes:

A1 : (a + ib, c + id) 7→ RN
(
ac − RN(bd)

)
+ i · RN

(
ad + RN(bc)

)
Algorithm A1 is just one of 4 variants that differ only in the choice of the
products to which the FMA operations apply.

componentwise error: can be huge (even infinite);
normwise error:

for any of these 4 variants the computed complex product ẑ1 satisfies

|ẑ1 − z | ≤ 2u|z | (4)

we build inputs a, b, c , d for which |ẑ1/z − 1| = 2u − O(u1.5) as
u → 0⇒ the error bound (4) is asymptotically optimal (given later on).

→ the FMA improves the situation from a normwise point of view.

Application of Kahan’s algorithm to the complex product

Fp: precision-p, radix-2 FP numbers with unlimited exponents;
Evaluate separately the real and imaginary parts of
z = ac − bd + i(ad + bc) using Kahan’s algorithm;
uses 8 floating-point operations;

A2 : (a + ib, c + id) 7→ Kahan(a, c ,−b, d) + i · Kahan(a, d , b, c)

componentwise error ≤ 2u (asymptotically optimal);
consequence: normwise error ≤ 2u.

The normwise bound is asymptotically optimal.

Theorem 3

Let a, b ∈ Fp be given by

a = pred
(√

2p−2
)
, b = 2p−1 +

⌊√
2p−2

⌋
+ 1,

where, for t ∈ R>0, pred(t) = max{f ∈ Fp : f < t} denotes the
predecessor of t in Fp. Let also ẑ1 and ẑ2 be the approximations to
z = (a + ib)2 computed by algorithms A1 and A2, respectively. If p ≥ 5
then, barring underflow and overflow,

|ẑh/z − 1| > 2u − 8u1.5 − 4u2, h ∈ {1, 2}.

Iterated products and powers

Floating-point multiplication a * b:
exact result z = ab;
computed result ẑ = RN(z);

(1− u) · z ≤ ẑ ≤ (1 + u) · z ; (5)

→ when we approximate πn = a1 · a2 · · · · · · · an by

π̂n = RN(· · · RN(RN(a1 · a2) · a3) · · · ·) · an),

we have

Property 1

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn. (6)

γ notation

→ relative error on the product a1 · a2 · · · · · · · an bounded by

ψn−1 = (1 + u)n−1 − 1.

if we define (Higham)

γk =
ku

1− ku
,

then, as long as ku < 1 (holds in practical cases),

k · u ≤ ψk ≤ γk .

→ classical relative error bound: γn−1.
For “reasonable” n, ψn−1 is very slightly better than γn−1, yet γn−1 is
easier to manipulate;
note that in single and double precision we never observed a relative
error ≥ (n − 1) · u.

Special case: n ≤ 4

As we have seen before, the relative error bound u can be replaced by

u
1 + u

.

→ we can replace

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn

by (
1− u

1 + u

)n−1

πn ≤ π̂n ≤
(
1 +

u
1 + u

)n−1

πn. (7)

Special case: n ≤ 4

Property 2

If 1 ≤ k ≤ 3 then (
1 +

u
1 + u

)k

< 1 + k · u.

k = 2: (
1 +

u
1 + u

)2

− (1 + 2u) = −u2 · (1 + 2u)

(1 + u)2
< 0;

k = 3: (
1 +

u
1 + u

)3

− (1 + 3u) = −u3 · (2 + 3u)

(1 + u)3
< 0.

k = n − 1→ for n ≤ 4, the relative error of the iterative product of n FP
numbers is bounded by (n − 1) · u.

The particular case of computing powers

“General” case of an iterated product: no proof for n ≥ 5 that
(n − 1) · u is a valid bound;

→ focus on xn, where x ∈ Fp and n ∈ N;
we assume the “naive” algorithm is used:

y ← x
for k = 2 to n do

y ← RN(x · y)
end for
return y

notation: x̂j = value of y after the iteration corresponding to k = j in
the for loop.

Main result

We are going to show:

Theorem 4

Assume p ≥ 5 (holds in all practical cases). If

n ≤
√

21/3 − 1 · 2p/2,

then
|x̂n − xn| ≤ (n − 1) · u · xn.

we can assume 1 ≤ x < 2;
two cases: x close to 1, and x far from 1.

Preliminary results

First,
(1− u)n−1 ≥ 1− (n − 1) · u

for all n ≥ 2 and u ∈ [0, 1].

→ the left-hand bound of

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn.

suffices to show that

1− (n − 1) · u · xn ≤ x̂n

→ to establish the Theorem, we only need to focus on the right-hand
bound.

Reminder. . .

For t 6= 0, define

t =
t

2blog2 |t|c
.

We have,

Lemma 5

Let t ∈ R. If
2e ≤ w · 2e ≤ |t| < 2e+1, e ∈ Z (8)

(in other words, if 1 ≤ w ≤ |t|) then∣∣∣∣RN(t)− t
t

∣∣∣∣ ≤ u
w
.

Local maximum error for x6 as a function of x (p = 53)

Figure 4: The input interval [1, 2) is divided into 512 equal-sized subintervals. In
each subinterval, we calculate x6 for 5000 consecutive FP numbers x , compute
the relative error, and plot the largest attained error.

Main idea behind the proof

At least once in the execution of the algorithm, x · y is far enough from 1
to sufficiently reduce the error bound on the multiplication y ← RN(x · y),
so that the overall error bound becomes ≤ (n − 1) · u.

y ← x
for k = 2 to n do

y ← RN(x · y)
end for
return y

ψn−1 = (1 + u)n−1 − 1 = (n − 1) u +
(
1/2 n2 − 3/2 n + 1

)
u2 + · · ·

→ we have to save ≈ n2

2 u2, which requires one of the values x · y to be
larger than ≈ 1 + n2

2 u.

What we are going to show

Unless x is very near 1, at least once x · y ≥ 1 + n2u, so that in (6) the
term (1 + u)n−1 can be replaced by

(1 + u)n−2 ·
(
1 +

u
1 + n2u

)
.

→ we need to bound this last quantity. We have,

Lemma 6

If 0 ≤ u ≤ 2/(3n2) and n ≥ 3 then

(1 + u)n−2 ·
(
1 +

u
1 + n2u

)
≤ 1 + (n − 1) · u. (9)

Proof: tedious. . .

Two remarks

Remark 1

Assume n ≤
√

2/3 · 2p/2. If ∃k ≤ n s.t. RN(x · x̂k−1) ≤ x · x̂k−1 (i.e., if in
the algorithm at least one rounding is done downwards), then

x̂n ≤ (1 + (n − 1) · u)xn.

Proof.
We have

x̂n ≤ (1 + u)n−2xn.

Lemma 6 implies (1 + u)n−2 < 1 + (n − 1) · u. Therefore,

x̂n ≤ (1 + (n − 1) · u)xn.

Two remarks

Remark 2

Assume n ≤
√

2/3 · 2p/2. If ∃k ≤ n − 1, s.t. x · x̂k ≥ 1 + n2 · u, then

x̂n ≤ (1 + (n − 1) · u)xn.

Proof.
By combining Lemmas 5 and 6, if there exists k , 1 ≤ k ≤ n − 1, such that

x · x̂k ≥ 1 + n2 · u,

then

x̂n ≤ (1 + u)n−2 ·
(
1 +

u
1 + n2u

)
· xn ≤ (1 + (n − 1) · u) · xn.

Proof of Theorem 4

We assume n ≥ 5. Proof articulated as follows
if x is close enough to 1, then when computing RN(x2), the rounding
is done downwards;
in the other cases, ∃k ≤ n − 1 such that x · x̂k ≥ 1 + n2 · u.

Lemma 7

If 1 < x < 1 + 2p/2 · u, then x̂2 = RN(x2) < x2.

Proof.

x < 1 + 2p/2 · u ⇒ x = 1 + k · 2−p+1 = 1 + 2ku, with k < 2p/2−1. We
have x2 = 1 + 2k · 2−p+1 + k2 · 2−2p+2, which gives
RN(x2) = 1 + 2k · 2−p+1 < x2.

In the following, we assume that no rounding is done downwards, which
implies x ≥ 1 + 2p/2 · u.

Proof of Theorem 4: case x2 ≤ 1 + n2u

x ≥ 1 + 2p/2u > 1 + nu ⇒ xn > (1 + nu)n > 1 + n2u;
no downward rounding ⇒ x̂n−1 · x > (1 + n2u).

Therefore
if x̂n−1x < 2, then x̂n−1x ≥ (1 + n2u), so that, from Remark 2,
xn ≤ (1 + (n − 1) · u) · xn;
if x̂n−1x ≥ 2, let k be the smallest integer such that x̂k−1x ≥ 2.
x2 ≤ 1 + n2u ⇒ k ≥ 3. We have

x̂k−1 ≥
2
x
≥ 2√

1 + n2u
,

hence
x̂k−2 · x ≥

2√
1 + n2u · (1 + u)

. (10)

x̂k−2 · x ≥
2√

1 + n2u · (1 + u)
.

Define

αp =

√(
2p+1

2p + 1

)2/3

− 1.

For all p ≥ 5, αp ≥ α5 = 0.745 · · · , and αp ≤
√

22/3 − 1 = 0.766 · · · . If

n ≤ αp · 2p/2, (11)

then
2√

1 + n2u · (1 + u)
≥ 1 + n2u.

→ x̂k−2 · x ≥ 1 + n2u. Also, x̂k−2 · x < 2 since k is the smallest integer
such that x̂k−1x ≥ 2. Therefore

x̂k−2 · x ≥ 1 + n2u.

Which implies xn ≤ (1 + (n − 1) · u) · xn.

Proof of Theorem 4: case x2 > 1 + n2u

if x2 < 2 then x2 > 1 + n2u ⇒ xn ≤ (1 + (n − 1) · u);
x2 = 2 impossible (x is rational);

→ we assume x2 > 2 we also assume x2 < 2 + 2n2u (otherwise,
x2 ≥ 1 + n2u). This gives

xn−1 < (2 + 2n2u)
n−1

2 ,

therefore, using the classical bound (Property 1),

x̂n−1 < (2 + 2n2u)
n−1

2 · (1 + u)n−2,

which implies
x · x̂n−1 < (2 + 2n2u)

n
2 · (1 + u)n−2. (12)

Reminder:

x · x̂n−1 < (2 + 2n2u)n/2 · (1 + u)n−2 and n ≥ 5

Define
β =

√
21/3 − 1.

If n ≤ β · 2p/2 then 2 + 2n2u ≤ 24/3, so that

(2 + 2n2u)n/2 · (1 + u)n−2 ≤ 22n/3 · (1 + u)n−2. (13)

The function

g(t) = 2t−1 − 22t/3
(
1 +

1
2p

)t−2

= 22t/3

[
2t/3−1 −

(
1 +

1
2p

)t−2
]
.

is continuous, goes to +∞ as t → +∞, has one root only:

log(2) + 2 log
(
1 + 1

2p

)
1
3 log(2)− log

(
1 + 1

2p

) ,
which is < 4 as soon as p ≥ 5⇒ if p ≥ 5 then x · x̂n−1 < 2n−1.

Reminder: if p ≥ 5 then x · x̂n−1 < 2n−1.
define k as the smallest integer for which x · x̂k−1 < 2k−1,
3 ≤ k ≤ n (we have assumed x2 > 2),
x · x̂k−2 ≥ 2k−2 ⇒ x̂k−1 = RN(x · x̂k−2) ≥ 2k−2.

Therefore, x̂k−1 and x · x̂k−1 belong to the same binade, therefore,

x · x̂k−1 ≥ x >
√
2. (14)

The constraint n ≤ β · 2p/2 implies

1 + n2u ≤ 1 + β2 = 21/3 <
√
2. (15)

By combining (14) and (15) we obtain

x · x̂k−1 ≥ 1 + n2u.

Therefore, using Remark 2, we deduce that x̂n ≤ (1 + (n − 1) · u) · xn.

Final steps

∀p ≥ 5, αp ≥ β → combining the conditions found in the cases
x2 ≤ 1 + n2u and x2 > 1 + n2u, we deduce

If p ≥ 5 and n ≤ β · 2p/2, then for all x,

(1− (n − 1) · u) · xn ≤ x̂n ≤ (1 + (n − 1) · u) · xn.

where β =
√

21/3 − 1 = 0.5098245285339 · · ·

Q.E.D.
Questions:

is the restriction n ≤ β · 2p/2 problematic?
is the bound sharp?

On the restriction n ≤ β · 2p/2

format p nmax

binary32/single 24 2088
binary64/double 53 48385542
binary128/quad 113 51953580258461959

With the first n larger than the bound, xn under- or overflows, unless
in single precision, 0.95905406 ≤ x ≤ 1.0433863,
in double precision, 0.999985359 ≤ x ≤ 1.000014669422,

and nobody will use the “naive” algorithm for a huge n.

On the restriction n ≤ β · 2p/2

Furthermore, that restriction is not just a “proof artefact”. For very big n,
the bound does not hold:

If p = 10 and x = 891, when computing x2474, relative error 2473.299u.

Notice that:
for p = 10, nmax = β · 2p/2 = 16.31;
2474 is the smallest exponent for which the bound does not hold when
p = 10.

Tightness of the bound (n − 1) · u

Small p and not-too-large n: an exhaustive test is possible.

Table 1: Actual maximum relative error assuming p = 8, compared with γn−1 and
our bound (n − 1)u.

n actual maximum γn−1 our bound
4 1.73903u 3.0355u 3u
5 2.21152u 4.06349u 4u
6 2.53023u 5.099601u 5u
7 2.69634u 6.1440u 6u
8 = nmax 3.42929u 7.1967u 7u

→ our bound seems to be quite poor. . . however. . .

Tightness of the bound (n − 1) · u

For larger values of p:

single precision (p = 24), exhaustive search still possible, largest error
4.328005619u for n = 6, and 7.059603149u for n = 10;
double precision (p = 53), we have a case with error 4.7805779u for
n = 6 and 7.8618 · · · u for n = 10;
quad precision (p = 113), case with error 4.8827888185u for n = 6;

→ we seem to get close to (n − 1) · u for large p.

Building “bad cases” for the iterated product

Still in precision-p binary FP arithmetic, we approximate

a1 · a2 · · · · · · · an,

by
RN(· · · RN(RN(a1 · a2) · a3) · · · ·) · an)

πk = a1 · · · ak ,
π̂k = computed value,
relative error |πn − π̂n|/πn upper-bounded by γn−1,
conjecture: if n is “not too large” it is bounded by (n − 1)u.

Let us now show how to build a1, a2, . . . , an so that the relative error
becomes extremely close to (n − 1) · u.

Building “bad cases” for the iterated product

define a1 = 1 + k1 · 2−p+1, and a2 = 1 + k2 · 2−p+1. We have

π2 = a1a2 = 1 + (k1 + k2) · 2−p+1 + k1k2 · 2−2p+2.

If k1 and k2 are not too large, 1 + (k1 + k2) · 2−p+1 is a FP number
→ we wish k1 + k2 to be as small as possible, while k1k2 · 2−2p+2 is as
close as possible (yet less than) to 2−p. Hence a natural choice is

k1 = k2 =
⌊
2

p
2−1
⌋
,

which gives π̂2 < π2.
Now, if at step i − 1 we have

π̂i = 1 + gi · 2−p+1, with π̂i < πi ,

we choose ai+1 of the form 1 + ki+12−p+1, with
ki+1 =

⌈
2p−2

gi
− 1
⌉
if gi ≤ 2

p
2−1;

ki+1 = −
⌊

2p−2

gi
+ 1
⌋
otherwise.

Building “bad cases” for the iterated product

Table 2: Relative errors achieved with the values ai generated by our method.

p n relative error
24 10 8.99336984 · · · u
24 100 98.9371972591 · · · u
53 10 8.99999972447 · · · u
53 100 98.9999970091 · · · u
113 10 8.99999999999999973119 · · · u
113 100 98.99999999999999701662 · · · u

Conclusion on xn

error bound (n − 1) · u for computation of xn by the naive algorithm;

valid for n ≤
√

21/3 − 1 · 2p/2 → all practical cases;
small improvement: the main interest lies in the simplicity of the
bound;
seems to be “asymptotically sharp” (as p →∞) but not sure;
the bound γn−1 on iterated products is very sharp.

Thank you for your attention.

