Getting tight error bounds in floating-point arithmetic: illustration with complex functions, and the real x^{n} function

Jean-Michel Muller
collaborators: S. Graillat, C.-P. Jeannerod, N. Louvet V. Lefèvre NSV-2014

工-

Floating-Point Arithmetic

- too often, viewed as a set of cooking recipes;
- too many "theorems" that hold. . . provided no variable is very near a power of the radix, there is no underflow/overflow; or that are dangerously generalized from radix 2 to radix 10 , etc.
- simple models such as the standard model

$$
\circ(a \top b)=(a \top b) \cdot(1+\delta), \quad|\delta| \leq u
$$

($u=2^{-p}$ in radix 2, precision- p, rounded to nearest, arithmetic) do not allow to catch subtle behaviors such as those in

$$
s=a+b ; z=s-a ; r=b-z
$$

(fast2sum) and many others.

- by the way, are these "subtle behaviors" robust?

Long term goals

- revisit "folklore knowledge" on FP arithmetic, and determine which properties are really true, and in what context they are true;
- build new knowledge on FP arithmetic;
- try to get optimal/asymptotically optimal/close-to-optimal error bounds;
... all this in close collaboration with the formal proof folks.

Binary Floating-Point System

Parameters:

$$
\begin{cases}\text { radix (or base) : } 2 & \text { here; } \\ \text { precision } & p \geq 1 \\ \text { extremal exponents } & e_{\min }, e_{\max },\end{cases}
$$

A finite FP number x is represented by 2 integers:

- integral significand: $M,|M| \leq 2^{p}-1$;
- exponent $e, e_{\min } \leq e \leq e_{\text {max }}$.
such that

$$
x=M \times 2^{e+1-p}
$$

with $|M|$ largest under these constraints $\left(\rightarrow|M| \geq 2^{p-1}\right.$, unless $\left.e=e_{\text {min }}\right)$. (Real) significand of x : the number $m=M \times 2^{1-p}$, so that $x=m \times 2^{e}$.

Correct rounding

- In general, the sum, product, quotient, etc., of two FP numbers is not an FP number: it must be rounded;
- correct rounding: Rounding function \circ, and when $(a \top b)$ is performed, the returned value is $\circ(a \top b)$;
- default rounding function RN (round to nearest even):
(i) for all FP numbers $y,|\operatorname{RN}(t)-t| \leq|y-t|$
(ii) if there are two FP numbers that satisfy (i), $\mathrm{RN}(t)$ is the one whose integral significand is even.

In the following. . .

- a few "basic building blocks" of numerical computing: $a b \pm c d$, complex arithmetic, x^{n};
- "usual" error bounds:
- prove them;
- try to improve them;
- discuss their possible optimality or near-optimality.
- we assume than an FMA instruction is available: computes $\mathrm{RN}(a b+c)$.
(FMA: first appeared in IBMP RS/6000, then PowerPC and Itanium, now specified by IEEE 754-2008)

Relative error due to roundings, u, and ulp notations

Let $t \in \mathbb{R}, 2^{e} \leq t<2^{e+1}$, with $e \geq e_{\text {min }}$;

- we have $2^{e} \leq \mathrm{RN}(t) \leq 2^{e+1}$, and

$$
\begin{equation*}
|\mathrm{RN}(t)-t| \leq 2^{e-p} \tag{1}
\end{equation*}
$$

\rightarrow upper bound on the relative error due to rounding t :

$$
\begin{equation*}
\left|\frac{\mathrm{RN}(t)-t}{t}\right| \leq u=2^{-p} \tag{2}
\end{equation*}
$$

- $u=2^{-p}$: rounding unit.
- ulp $(t)=2^{e-p+1}$.

Relative error due to roundings, u, and ulp notations

Figure 1: In precision-p binary FP arithmetic, in the normal range, the relative error due to rounding to nearest is bounded by $u=2^{-P}$.

A small improvement

The bound on the relative error due to rounding can be slightly improved (using a remark by Jeannerod and Rump):
if $2^{e} \leq t<2^{e+1}$, then $|t-\mathrm{RN}(t)| \leq 2^{e-p}=u \cdot 2^{e}$, and

- if $t \geq 2^{e} \cdot(1+u)$, then $|t-\mathrm{RN}(t)| / t \leq u /(1+u)$;
- if $t=2^{e} \cdot(1+\tau \cdot u)$ with $\tau \in[0,1)$, then

$$
|t-\mathrm{RN}(t)| / t=\tau \cdot u /(1+\tau \cdot u)<u /(1+u)
$$

\rightarrow the maximum relative error due to rounding is bounded by

$$
\frac{u}{1+u} .
$$

attained \rightarrow no further "general" improvement.

"Wobbling" relative error

For $t \neq 0$, define

$$
\bar{t}=\frac{t}{2^{\left\lfloor\log _{2}|t|\right\rfloor}} .
$$

We have,
Lemma 1
Let $t \in \mathbb{R}$. If

$$
\begin{equation*}
2^{e} \leq w \cdot 2^{e} \leq|t|<2^{e+1}, e \in \mathbb{Z} \tag{3}
\end{equation*}
$$

(in other words, if $1 \leq w \leq|\bar{t}|$) then

$$
\left|\frac{\operatorname{RN}(t)-t}{t}\right| \leq \frac{u}{w} .
$$

Figure 2: The bound on the relative error due to rounding to nearest can be reduced to $u /(1+u)$. Furthermore, if we know that $w \leq \bar{t}=t / 2^{e}$, then $|\mathrm{RN}(t)-t| / t \leq u / w$.

Figure 3: Relative error due to rounding, namely $|\operatorname{RN}(t)-t| / t$, for $\frac{1}{5} \leq t \leq 8$, and $p=4$.

First example: $a b+c d$ with an FMA

Assume an fma instruction is available. Kahan's algorithm for $x=a b+c d$:

- using std model (Higham, 2002):

$$
\begin{aligned}
& \hat{w} \leftarrow \operatorname{RN}(c d) \\
& e \leftarrow \operatorname{RN}(\hat{w}-c d) \\
& \hat{f} \leftarrow \operatorname{RN}(a b+\hat{w}) \\
& \hat{x} \leftarrow \operatorname{RN}(\hat{f}-e) \\
& \operatorname{Return} \hat{x}
\end{aligned}
$$

Exood operation

$$
|\hat{x}-x| \leq J|x|
$$

with $J=2 u+u^{2}+\left(u+u^{2}\right) u \frac{|c d|}{|x|} \rightarrow$ high accuracy as long as $u|c d| \gg|x|$

- using properties of RN (Jeannerod, Louvet, M., 2011)

$$
|\hat{x}-x| \leq 2 u|x|
$$

asymptotically optimal error bound.

- Complex multiplication \& division.

A somewhat simpler algorithm for $a b+c d$

Cornea, Harrison and Tang (2002) approximate

$$
r=a b+c d
$$

by \hat{r} obtained as follows

```
algorithm \(\mathrm{CHT}(a, b, c, d)\)
    \(\hat{w}_{1}:=\mathrm{RN}(a b) ; \quad \hat{w}_{2}:=\mathrm{RN}(c d) ;\)
    \(e_{1}:=\operatorname{RN}\left(a b-\hat{w}_{1}\right) ; e_{2}:=\operatorname{RN}\left(c d-\hat{w}_{2}\right) ; \quad / /\) exact operations
    \(\hat{f}:=\operatorname{RN}\left(\hat{w}_{1}+\hat{w}_{2}\right) ;\)
    \(\hat{e}:=\operatorname{RN}\left(e_{1}+e_{2}\right) ;\)
    \(\hat{r}:=\operatorname{RN}(\hat{f}+\hat{e})\);
    return \(\hat{r}\);
```

They show that the error is $\mathcal{O}(u)$. Since the $2 u$ relative error bound of Kahan's algorithm was not known at that time, the CHT algorithm was favored.

A somewhat simpler algorithm for $a b+c d$

We have shown the following result (ACM TOMS, to appear).

Theorem 2
Provided no underflow/overflow occurs, and assuming radix-2, precision-p floating-point arithmetic, the relative error of Cornea et al's algorithm is bounded by $2 u+7 u^{2}+6 u^{3}$.

- improvement compared to the previous $\mathcal{O}(u)$.
- however, does not help to choose between Kahan and CHT.

An almost-worst-case example. . .

Consider

$$
\left\{\begin{array}{l}
a=2^{p}-1 \\
b=2^{p-3}+\frac{1}{2} \\
c=2^{p}-1 \\
d=2^{p-3}+\frac{1}{4}
\end{array}\right.
$$

One easily checks that a, b, c, and d are precision- p FP numbers. One easily finds:

$$
\begin{array}{ll}
a b+c d & =2^{2 p-2}+2^{p-1}-\frac{3}{4} \\
\pi_{1} & =2^{2 p-3}+2^{p-2}, \\
e_{1} & =2^{p-3}-\frac{1}{2}, \\
\pi_{2} & =2^{2 p-3}, \\
e_{2} & =2^{p-3}-\frac{1}{4}, \\
\pi & =2^{2 p-2}, \\
e & =2^{p-2}-\frac{3}{4}, \\
s & =2^{2 p-2}
\end{array}
$$

An almost-worst-case "generic" example...

The relative error $|s-(a b+c d)| /|a b+c d|$ is equal to

$$
\frac{2^{p-1}-\frac{3}{4}}{2^{2 p-2}+2^{p-1}-\frac{3}{4}}=\frac{2 u-3 u^{2}}{1+2 u-3 u^{2}}=2 u-7 u^{2}+20 u^{3}+\cdots
$$

This shows that our relative error bound

$$
2 u+7 u^{2}+6 u^{3}
$$

is asymptotically optimal (as $u \rightarrow 0$ or, equivalently, as $p \rightarrow \infty$).
So that Kahan's algorithm is to be preferred, unless one wishes to get the same result when computing $a b+c d$ and $c d+a b$ (e.g., to get a commutative complex \times).

The really difficult part...

Is not the theorem that gives the upper bound. It is to find the "generic" (i.e., valid $\forall p$) example.

- perform the algorithm for zillions of different input values, for a given p, find the largest obtained relative errors,
- try to hint patterns,
- try to show that the chosen patterns effectively lead to an error close to (or, better, asymptotically equal to, or, even better, equal to) the bound.
painful, error-prone \rightarrow we are trying to (partly) automatize that step, using a "symbolic floating point" arithmetic written in Maple.

Complex multiplication and division

Given $x=a+i b$ and $y=c+i d$, their product $z=x y$ can be expressed as

$$
z=a c-b d+i(a d+b c)
$$

and their quotient x / y can be expressed as

$$
q=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}} .
$$

In floating-point arithmetic, several issues:

- tradeoff accuracy vs speed,
- spurious overflow/underflow (e.g., $c^{2}+d^{2}$ overflows, whereas the real and imaginary parts of q are representable);
Here: accuracy problems. Scaling techniques to avoid spurious overflow/underflow dealt with in separately. Focus on very simple algorithms.

Componentwise and normwise relative errors

When \hat{z} approximates z :

- componentwise error:

$$
\max \left\{\left|\frac{\Re(z)-\Re(\hat{z})}{\Re(z)}\right| ;\left|\frac{\Im(z)-\Im(\hat{z})}{\Im(z)}\right|\right\} ;
$$

- normwise error:

$$
\left|\frac{z-\hat{z}}{z}\right| .
$$

Choosing between both kinds of error depends on the application.

- componentwise error $\leq \epsilon \Rightarrow$ normwise error $\leq \epsilon$;
- the converse is not true.

Naive multiplication algorithm without an FMA

$$
\mathcal{A}_{0}:(a+i b, c+i d) \mapsto \mathrm{RN}(\mathrm{RN}(a c)-\mathrm{RN}(b d))+i \cdot \mathrm{RN}(\mathrm{RN}(a d)+\mathrm{RN}(b c))
$$

- componentwise error: can be huge (yet finite);
- Normwise accuracy: studied by Brent, Percival, and Zimmermann (2007). The computed value has the form

$$
\hat{z}_{0}=z(1+\epsilon), \quad|\epsilon|<\sqrt{5} u,
$$

\rightarrow the normwise relative error $\left|\hat{z}_{0} / z-1\right|$ is always $\leq \sqrt{5} \cdot u$.
For any $p \geq 2$ they provide FP numbers a, b, c, d for which $\left|\hat{z}_{0} / z-1\right|=\sqrt{5} u-O\left(u^{2}\right) \rightarrow$ the relative error bound $\sqrt{5} u$ is asymptotically optimal as $u \rightarrow 0$ (or, equivalently, as $p \rightarrow+\infty$).

Can we do better if an FMA instruction is available?

Naive multiplication algorithm with an FMA

With an FMA, the simple way of evaluating $a c-b d+i(a d+b c)$ becomes:

$$
\mathcal{A}_{1}:(a+i b, c+i d) \mapsto \mathrm{RN}(a c-\mathrm{RN}(b d))+i \cdot \mathrm{RN}(a d+\mathrm{RN}(b c))
$$

Algorithm \mathcal{A}_{1} is just one of 4 variants that differ only in the choice of the products to which the FMA operations apply.

- componentwise error: can be huge (even infinite);
- normwise error:
- for any of these 4 variants the computed complex product \hat{z}_{1} satisfies

$$
\begin{equation*}
\left|\hat{z}_{1}-z\right| \leq 2 u|z| \tag{4}
\end{equation*}
$$

- we build inputs a, b, c, d for which $\left|\hat{z}_{1} / z-1\right|=2 u-O\left(u^{1.5}\right)$ as $u \rightarrow 0 \Rightarrow$ the error bound (4) is asymptotically optimal (given later on).
\rightarrow the FMA improves the situation from a normwise point of view.

Application of Kahan's algorithm to the complex product

- \mathbb{F}_{p} : precision- p, radix-2 FP numbers with unlimited exponents;
- Evaluate separately the real and imaginary parts of $z=a c-b d+i(a d+b c)$ using Kahan's algorithm;
- uses 8 floating-point operations;

$$
\mathcal{A}_{2}:(a+i b, c+i d) \mapsto \operatorname{Kahan}(a, c,-b, d)+i \cdot \operatorname{Kahan}(a, d, b, c)
$$

- componentwise error $\leq 2 u$ (asymptotically optimal);
- consequence: normwise error $\leq 2 u$.

The normwise bound is asymptotically optimal.

Theorem 3

Let $a, b \in \mathbb{F}_{p}$ be given by

$$
a=\operatorname{pred}\left(\sqrt{2^{p-2}}\right), \quad b=2^{p-1}+\left\lfloor\sqrt{2^{p-2}}\right\rfloor+1
$$

where, for $t \in \mathbb{R}_{>0}, \operatorname{pred}(t)=\max \left\{f \in \mathbb{F}_{p}: f<t\right\}$ denotes the predecessor of t in \mathbb{F}_{p}. Let also \hat{z}_{1} and \hat{z}_{2} be the approximations to $z=(a+i b)^{2}$ computed by algorithms \mathcal{A}_{1} and \mathcal{A}_{2}, respectively. If $p \geq 5$ then, barring underflow and overflow,

$$
\left|\hat{z}_{h} / z-1\right|>2 u-8 u^{1.5}-4 u^{2}, \quad h \in\{1,2\} .
$$

Iterated products and powers

Floating-point multiplication $\mathrm{a} * \mathrm{~b}$:

- exact result $z=a b$;
- computed result $\hat{z}=\mathrm{RN}(z)$;

$$
\begin{equation*}
(1-u) \cdot z \leq \hat{z} \leq(1+u) \cdot z \tag{5}
\end{equation*}
$$

\rightarrow when we approximate $\pi_{n}=a_{1} \cdot a_{2} \cdots \cdots \cdot a_{n}$ by

$$
\left.\hat{\pi}_{n}=\operatorname{RN}\left(\cdots \operatorname{RN}\left(\operatorname{RN}\left(a_{1} \cdot a_{2}\right) \cdot a_{3}\right) \cdot \cdots\right) \cdot a_{n}\right),
$$

we have
Property 1

$$
\begin{equation*}
(1-u)^{n-1} \pi_{n} \leq \hat{\pi}_{n} \leq(1+u)^{n-1} \pi_{n} \tag{6}
\end{equation*}
$$

γ notation

\rightarrow relative error on the product $a_{1} \cdot a_{2} \cdots \cdots \cdot a_{n}$ bounded by

$$
\psi_{n-1}=(1+u)^{n-1}-1 .
$$

- if we define (Higham)

$$
\gamma_{k}=\frac{k u}{1-k u}
$$

then, as long as $k u<1$ (holds in practical cases),

$$
k \cdot u \leq \psi_{k} \leq \gamma_{k}
$$

\rightarrow classical relative error bound: γ_{n-1}.

- For "reasonable" n, ψ_{n-1} is very slightly better than γ_{n-1}, yet γ_{n-1} is easier to manipulate;
- note that in single and double precision we never observed a relative error $\geq(n-1) \cdot u$.

Special case: $n \leq 4$

As we have seen before, the relative error bound u can be replaced by

$$
\frac{u}{1+u} .
$$

\rightarrow we can replace

$$
(1-u)^{n-1} \pi_{n} \leq \hat{\pi}_{n} \leq(1+u)^{n-1} \pi_{n}
$$

by

$$
\begin{equation*}
\left(1-\frac{u}{1+u}\right)^{n-1} \pi_{n} \leq \hat{\pi}_{n} \leq\left(1+\frac{u}{1+u}\right)^{n-1} \pi_{n} \tag{7}
\end{equation*}
$$

Special case: $n \leq 4$

Property 2
If $1 \leq k \leq 3$ then

$$
\left(1+\frac{u}{1+u}\right)^{k}<1+k \cdot u
$$

- $k=2$:

$$
\left(1+\frac{u}{1+u}\right)^{2}-(1+2 u)=-\frac{u^{2} \cdot(1+2 u)}{(1+u)^{2}}<0
$$

- $k=3$:

$$
\left(1+\frac{u}{1+u}\right)^{3}-(1+3 u)=-\frac{u^{3} \cdot(2+3 u)}{(1+u)^{3}}<0
$$

$k=n-1 \rightarrow$ for $n \leq 4$, the relative error of the iterative product of n FP numbers is bounded by $(n-1) \cdot u$.

The particular case of computing powers

- "General" case of an iterated product: no proof for $n \geq 5$ that ($n-1$) $\cdot u$ is a valid bound;
\rightarrow focus on x^{n}, where $x \in \mathbb{F}_{p}$ and $n \in \mathbb{N}$;
- we assume the "naive" algorithm is used:

```
y\leftarrowx
for }k=2\mathrm{ to }n\mathrm{ do
        y\leftarrowRN(x\cdoty)
end for
return y
```

- notation: $\hat{x}_{j}=$ value of y after the iteration corresponding to $k=j$ in the for loop.

Main result

We are going to show:
Theorem 4
Assume $p \geq 5$ (holds in all practical cases). If

$$
n \leq \sqrt{2^{1 / 3}-1} \cdot 2^{p / 2}
$$

then

$$
\left|\hat{x}_{n}-x^{n}\right| \leq(n-1) \cdot u \cdot x^{n} .
$$

- we can assume $1 \leq x<2$;
- two cases: x close to 1 , and x far from 1 .

Preliminary results

First,

$$
(1-u)^{n-1} \geq 1-(n-1) \cdot u
$$

for all $n \geq 2$ and $u \in[0,1]$.
\rightarrow the left-hand bound of

$$
(1-u)^{n-1} \pi_{n} \leq \hat{\pi}_{n} \leq(1+u)^{n-1} \pi_{n}
$$

suffices to show that

$$
1-(n-1) \cdot u \cdot x_{n} \leq \hat{x}_{n}
$$

\rightarrow to establish the Theorem, we only need to focus on the right-hand bound.

Reminder. . .

For $t \neq 0$, define

$$
\bar{t}=\frac{t}{2^{\left\lfloor\log _{2}|t|\right\rfloor}} .
$$

We have,
Lemma 5
Let $t \in \mathbb{R}$. If

$$
\begin{equation*}
2^{e} \leq w \cdot 2^{e} \leq|t|<2^{e+1}, e \in \mathbb{Z} \tag{8}
\end{equation*}
$$

(in other words, if $1 \leq w \leq|\bar{t}|$) then

$$
\left|\frac{\operatorname{RN}(t)-t}{t}\right| \leq \frac{u}{w} .
$$

Local maximum error for x^{6} as a function of $x(p=53)$

Figure 4: The input interval $[1,2)$ is divided into 512 equal-sized subintervals. In each subinterval, we calculate x^{6} for 5000 consecutive FP numbers x, compute the relative error, and plot the largest attained error.

Main idea behind the proof

At least once in the execution of the algorithm, $\overline{x \cdot y}$ is far enough from 1 to sufficiently reduce the error bound on the multiplication $y \leftarrow \operatorname{RN}(x \cdot y)$, so that the overall error bound becomes $\leq(n-1) \cdot u$.

$$
\begin{aligned}
& y \leftarrow x \\
& \text { for } k=2 \text { to } n \text { do } \\
& y \leftarrow \operatorname{RN}(x \cdot y)
\end{aligned}
$$

end for return y

$$
\psi_{n-1}=(1+u)^{n-1}-1=(n-1) u+\left(1 / 2 n^{2}-3 / 2 n+1\right) u^{2}+\cdots
$$

\rightarrow we have to save $\approx \frac{n^{2}}{2} u^{2}$, which requires one of the values $\overline{x \cdot y}$ to be larger than $\approx 1+\frac{n^{2}}{2} u$.

What we are going to show

Unless x is very near 1 , at least once $\overline{x \cdot y} \geq 1+n^{2} u$, so that in (6) the term $(1+u)^{n-1}$ can be replaced by

$$
(1+u)^{n-2} \cdot\left(1+\frac{u}{1+n^{2} u}\right)
$$

\rightarrow we need to bound this last quantity. We have,
Lemma 6
If $0 \leq u \leq 2 /\left(3 n^{2}\right)$ and $n \geq 3$ then

$$
\begin{equation*}
(1+u)^{n-2} \cdot\left(1+\frac{u}{1+n^{2} u}\right) \leq 1+(n-1) \cdot u \tag{9}
\end{equation*}
$$

Proof: tedious. . .

Two remarks

Remark 1

Assume $n \leq \sqrt{2 / 3} \cdot 2^{p / 2}$. If $\exists k \leq n$ s.t. $\mathrm{RN}\left(x \cdot \hat{x}_{k-1}\right) \leq x \cdot \hat{x}_{k-1}$ (i.e., if in the algorithm at least one rounding is done downwards), then

$$
\hat{x}_{n} \leq(1+(n-1) \cdot u) x^{n} .
$$

Proof.
We have

$$
\hat{x}_{n} \leq(1+u)^{n-2} x^{n} .
$$

Lemma 6 implies $(1+u)^{n-2}<1+(n-1) \cdot u$. Therefore,

$$
\hat{x}_{n} \leq(1+(n-1) \cdot u) x^{n} .
$$

Two remarks

Remark 2

Assume $n \leq \sqrt{2 / 3} \cdot 2^{p / 2}$. If $\exists k \leq n-1$, s.t. $\overline{x \cdot \hat{x}_{k}} \geq 1+n^{2} \cdot u$, then

$$
\hat{x}_{n} \leq(1+(n-1) \cdot u) x^{n} .
$$

Proof.
By combining Lemmas 5 and 6 , if there exists $k, 1 \leq k \leq n-1$, such that

$$
\overline{x \cdot \hat{x}_{k}} \geq 1+n^{2} \cdot u
$$

then

$$
\hat{x}_{n} \leq(1+u)^{n-2} \cdot\left(1+\frac{u}{1+n^{2} u}\right) \cdot x^{n} \leq(1+(n-1) \cdot u) \cdot x^{n}
$$

Proof of Theorem 4

We assume $n \geq 5$. Proof articulated as follows

- if x is close enough to 1 , then when computing $\mathrm{RN}\left(x^{2}\right)$, the rounding is done downwards;
- in the other cases, $\exists k \leq n-1$ such that $\overline{x \cdot \hat{x}_{k}} \geq 1+n^{2} \cdot u$.

Lemma 7

If $1<x<1+2^{p / 2} \cdot u$, then $\hat{x}_{2}=\operatorname{RN}\left(x^{2}\right)<x^{2}$.
Proof.
$x<1+2^{p / 2} \cdot u \Rightarrow x=1+k \cdot 2^{-p+1}=1+2 k u$, with $k<2^{p / 2-1}$. We have $x^{2}=1+2 k \cdot 2^{-p+1}+k^{2} \cdot 2^{-2 p+2}$, which gives
$\mathrm{RN}\left(x^{2}\right)=1+2 k \cdot 2^{-p+1}<x^{2}$.
In the following, we assume that no rounding is done downwards, which implies $x \geq 1+2^{p / 2} \cdot u$.

Proof of Theorem 4: case $x^{2} \leq 1+n^{2} u$

- $x \geq 1+2^{p / 2} u>1+n u \Rightarrow x^{n}>(1+n u)^{n}>1+n^{2} u$;
- no downward rounding $\Rightarrow \hat{x}_{n-1} \cdot x>\left(1+n^{2} u\right)$.

Therefore

- if $\hat{x}_{n-1} x<2$, then $\overline{\hat{x}_{n-1} x} \geq\left(1+n^{2} u\right)$, so that, from Remark 2, $x^{n} \leq(1+(n-1) \cdot u) \cdot x^{n}$;
- if $\hat{x}_{n-1} x \geq 2$, let k be the smallest integer such that $\hat{x}_{k-1} x \geq 2$. $x^{2} \leq 1+n^{2} u \Rightarrow k \geq 3$. We have

$$
\hat{x}_{k-1} \geq \frac{2}{x} \geq \frac{2}{\sqrt{1+n^{2} u}}
$$

hence

$$
\begin{equation*}
\hat{x}_{k-2} \cdot x \geq \frac{2}{\sqrt{1+n^{2} u} \cdot(1+u)} \tag{10}
\end{equation*}
$$

$$
\hat{x}_{k-2} \cdot x \geq \frac{2}{\sqrt{1+n^{2} u} \cdot(1+u)} .
$$

Define

$$
\alpha_{p}=\sqrt{\left(\frac{2^{p+1}}{2^{p}+1}\right)^{2 / 3}-1 .}
$$

For all $p \geq 5, \alpha_{p} \geq \alpha_{5}=0.745 \cdots$, and $\alpha_{p} \leq \sqrt{2^{2 / 3}-1}=0.766 \cdots$. If

$$
\begin{equation*}
n \leq \alpha_{p} \cdot 2^{p / 2} \tag{11}
\end{equation*}
$$

then

$$
\frac{2}{\sqrt{1+n^{2} u} \cdot(1+u)} \geq 1+n^{2} u
$$

$\rightarrow \hat{x}_{k-2} \cdot x \geq 1+n^{2} u$. Also, $\hat{x}_{k-2} \cdot x<2$ since k is the smallest integer such that $\hat{x}_{k-1} x \geq 2$. Therefore

$$
\overline{\hat{x}_{k-2} \cdot x} \geq 1+n^{2} u
$$

Which implies $x^{n} \leq(1+(n-1) \cdot u) \cdot x^{n}$.

Proof of Theorem 4: case $x^{2}>1+n^{2} u$

- if $x^{2}<2$ then $\overline{x^{2}}>1+n^{2} u \Rightarrow x^{n} \leq(1+(n-1) \cdot u)$;
- $x^{2}=2$ impossible (x is rational);
\rightarrow we assume $x^{2}>2$ we also assume $x^{2}<2+2 n^{2} u$ (otherwise, $\overline{x^{2}} \geq 1+n^{2} u$). This gives

$$
x^{n-1}<\left(2+2 n^{2} u\right)^{\frac{n-1}{2}}
$$

therefore, using the classical bound (Property 1),

$$
\hat{x}_{n-1}<\left(2+2 n^{2} u\right)^{\frac{n-1}{2}} \cdot(1+u)^{n-2}
$$

which implies

$$
\begin{equation*}
x \cdot \hat{x}_{n-1}<\left(2+2 n^{2} u\right)^{\frac{n}{2}} \cdot(1+u)^{n-2} . \tag{12}
\end{equation*}
$$

Reminder:

$$
x \cdot \hat{x}_{n-1}<\left(2+2 n^{2} u\right)^{n / 2} \cdot(1+u)^{n-2} \text { and } n \geq 5
$$

Define

$$
\beta=\sqrt{2^{1 / 3}-1}
$$

If $n \leq \beta \cdot 2^{p / 2}$ then $2+2 n^{2} u \leq 2^{4 / 3}$, so that

$$
\begin{equation*}
\left(2+2 n^{2} u\right)^{n / 2} \cdot(1+u)^{n-2} \leq 2^{2 n / 3} \cdot(1+u)^{n-2} \tag{13}
\end{equation*}
$$

The function

$$
g(t)=2^{t-1}-2^{2 t / 3}\left(1+\frac{1}{2^{p}}\right)^{t-2}=2^{2 t / 3}\left[2^{t / 3-1}-\left(1+\frac{1}{2^{p}}\right)^{t-2}\right]
$$

is continuous, goes to $+\infty$ as $t \rightarrow+\infty$, has one root only:

$$
\frac{\log (2)+2 \log \left(1+\frac{1}{2^{p}}\right)}{\frac{1}{3} \log (2)-\log \left(1+\frac{1}{2^{p}}\right)}
$$

which is <4 as soon as $p \geq 5 \Rightarrow$ if $p \geq 5$ then $x \cdot \hat{x}_{n-1}<2^{n-1}$.

Reminder: if $p \geq 5$ then $x \cdot \hat{x}_{n-1}<2^{n-1}$.

- define k as the smallest integer for which $x \cdot \hat{x}_{k-1}<2^{k-1}$,
- $3 \leq k \leq n$ (we have assumed $x^{2}>2$),
- $x \cdot \hat{x}_{k-2} \geq 2^{k-2} \Rightarrow \hat{x}_{k-1}=\operatorname{RN}\left(x \cdot \hat{x}_{k-2}\right) \geq 2^{k-2}$.

Therefore, \hat{x}_{k-1} and $x \cdot \hat{x}_{k-1}$ belong to the same binade, therefore,

$$
\begin{equation*}
\overline{x \cdot \hat{x}_{k-1}} \geq x>\sqrt{2} \tag{14}
\end{equation*}
$$

The constraint $n \leq \beta \cdot 2^{p / 2}$ implies

$$
\begin{equation*}
1+n^{2} u \leq 1+\beta^{2}=2^{1 / 3}<\sqrt{2} \tag{15}
\end{equation*}
$$

By combining (14) and (15) we obtain

$$
\overline{x \cdot \hat{x}_{k-1}} \geq 1+n^{2} u
$$

Therefore, using Remark 2, we deduce that $\hat{x}_{n} \leq(1+(n-1) \cdot u) \cdot x^{n}$.

Final steps

$\forall p \geq 5, \alpha_{p} \geq \beta \rightarrow$ combining the conditions found in the cases $x^{2} \leq 1+n^{2} u$ and $x^{2}>1+n^{2} u$, we deduce

$$
\begin{aligned}
& \text { If } p \geq 5 \text { and } n \leq \beta \cdot 2^{p / 2} \text {, then for all } x \\
& \qquad(1-(n-1) \cdot u) \cdot x^{n} \leq \hat{x}_{n} \leq(1+(n-1) \cdot u) \cdot x^{n} .
\end{aligned}
$$

$$
\text { where } \beta=\sqrt{2^{1 / 3}-1}=0.5098245285339 \ldots
$$

Q.E.D.

Questions:

- is the restriction $n \leq \beta \cdot 2^{p / 2}$ problematic?
- is the bound sharp?

On the restriction $n \leq \beta \cdot 2^{p / 2}$

format	p	$n_{\max }$
binary32/single	24	2088
binary64/double	53	48385542
binary128/quad	113	51953580258461959

With the first n larger than the bound, x^{n} under- or overflows, unless

- in single precision, $0.95905406 \leq x \leq 1.0433863$,
- in double precision, $0.999985359 \leq x \leq 1.000014669422$,
and nobody will use the "naive" algorithm for a huge n.

On the restriction $n \leq \beta \cdot 2^{p / 2}$

Furthermore, that restriction is not just a "proof artefact". For very big n, the bound does not hold:

If $p=10$ and $x=891$, when computing x^{2474}, relative error $2473.299 u$.
Notice that:

- for $p=10, n_{\max }=\beta \cdot 2^{p / 2}=16.31$;
- 2474 is the smallest exponent for which the bound does not hold when $p=10$.

Tightness of the bound $(n-1) \cdot u$

Small p and not-too-large n : an exhaustive test is possible.

Table 1: Actual maximum relative error assuming $p=8$, compared with γ_{n-1} and our bound ($n-1$) u.

n	actual maximum	γ_{n-1}	our bound
4	$1.73903 u$	$3.0355 u$	$3 u$
5	$2.21152 u$	$4.06349 u$	$4 u$
6	$2.53023 u$	$5.099601 u$	$5 u$
7	$2.69634 u$	$6.1440 u$	$6 u$
$8=n_{\max }$	$3.42929 u$	$7.1967 u$	$7 u$

\rightarrow our bound seems to be quite poor... however...

Tightness of the bound $(n-1) \cdot u$

For larger values of p :

- single precision ($p=24$), exhaustive search still possible, largest error $4.328005619 u$ for $n=6$, and $7.059603149 u$ for $n=10$;
- double precision $(p=53)$, we have a case with error $4.7805779 u$ for $n=6$ and $7.8618 \cdots u$ for $n=10$;
- quad precision $(p=113)$, case with error $4.8827888185 u$ for $n=6$;
\rightarrow we seem to get close to $(n-1) \cdot u$ for large p.

Building "bad cases" for the iterated product

Still in precision-p binary FP arithmetic, we approximate

$$
a_{1} \cdot a_{2} \cdots \cdots \cdot a_{n},
$$

by

$$
\left.\operatorname{RN}\left(\cdots \operatorname{RN}\left(\operatorname{RN}\left(a_{1} \cdot a_{2}\right) \cdot a_{3}\right) \cdot \cdots\right) \cdot a_{n}\right)
$$

- $\pi_{k}=a_{1} \cdots a_{k}$,
- $\hat{\pi}_{k}=$ computed value,
- relative error $\left|\pi_{n}-\hat{\pi}_{n}\right| / \pi_{n}$ upper-bounded by γ_{n-1},
- conjecture: if n is "not too large" it is bounded by $(n-1) u$.

Let us now show how to build $a_{1}, a_{2}, \ldots, a_{n}$ so that the relative error becomes extremely close to $(n-1) \cdot u$.

Building "bad cases" for the iterated product

- define $a_{1}=1+k_{1} \cdot 2^{-p+1}$, and $a_{2}=1+k_{2} \cdot 2^{-p+1}$. We have

$$
\pi_{2}=a_{1} a_{2}=1+\left(k_{1}+k_{2}\right) \cdot 2^{-p+1}+k_{1} k_{2} \cdot 2^{-2 p+2} .
$$

If k_{1} and k_{2} are not too large, $1+\left(k_{1}+k_{2}\right) \cdot 2^{-p+1}$ is a FP number \rightarrow we wish $k_{1}+k_{2}$ to be as small as possible, while $k_{1} k_{2} \cdot 2^{-2 p+2}$ is as close as possible (yet less than) to 2^{-p}. Hence a natural choice is

$$
k_{1}=k_{2}=\left\lfloor 2^{\frac{p}{2}-1}\right\rfloor
$$

which gives $\hat{\pi}_{2}<\pi_{2}$.

- Now, if at step $i-1$ we have

$$
\hat{\pi}_{i}=1+g_{i} \cdot 2^{-p+1}, \text { with } \hat{\pi}_{i}<\pi_{i}
$$

we choose a_{i+1} of the form $1+k_{i+1} 2^{-p+1}$, with

- $k_{i+1}=\left\lceil\frac{2^{p-2}}{g_{i}}-1\right\rceil$ if $g_{i} \leq 2^{\frac{p}{2}-1}$;
- $k_{i+1}=-\left\lfloor\frac{2^{p-2}}{g_{i}}+1\right\rfloor$ otherwise.

Building "bad cases" for the iterated product

Table 2: Relative errors achieved with the values a_{i} generated by our method.

p	n	relative error
24	10	$8.99336984 \cdots u$
24	100	$98.9371972591 \cdots u$
53	10	$8.99999972447 \cdots u$
53	100	$98.9999970091 \cdots u$
113	10	$8.99999999999999973119 \cdots u$
113	100	$98.99999999999999701662 \cdots u$

Conclusion on x^{n}

- error bound $(n-1) \cdot u$ for computation of x^{n} by the naive algorithm;
- valid for $n \leq \sqrt{2^{1 / 3}-1} \cdot 2^{p / 2} \rightarrow$ all practical cases;
- small improvement: the main interest lies in the simplicity of the bound;
- seems to be "asymptotically sharp" (as $p \rightarrow \infty$) but not sure;
- the bound γ_{n-1} on iterated products is very sharp.

Thank you for your attention.

