Getting tight error bounds in floating-point arithmetic:
illustration with complex functions, and the real x”
function

Jean-Michel Muller

collaborators: S. Graillat, C.-P. Jeannerod, N. Louvet V. Lefévre
NSV-2014

s

7

B Ve
i UnNIv=RSITE D= Lyon s i
— - — 5 2
EEEEEEEEE &Z 2LARA—

7

Floating-Point Arithmetic

@ too often, viewed as a set of cooking recipes;

@ too many “theorems” that hold. .. provided no variable is very near a
power of the radix, there is no underflow/overflow; or that are
dangerously generalized from radix 2 to radix 10, etc.

@ simple models such as the standard model
o(aTh)=(aTh)-(1+9), [<u,

(u=27P in radix 2, precision-p, rounded to nearest, arithmetic) do
not allow to catch subtle behaviors such as those in

s=a+b;z=s8-a;r=>b-2z

(fast2sum) and many others.

@ by the way, are these “subtle behaviors” robust?

Long term goals

o revisit “folklore knowledge” on FP arithmetic, and determine which
properties are really true, and in what context they are true;

@ build new knowledge on FP arithmetic;
@ try to get optimal/asymptotically optimal/close-to-optimal error
bounds;

all this in close collaboration with the formal proof folks.

Binary Floating-Point System

Parameters:
radix (or base) : 2 here;

precision p>1
extremal exponents €, Emax,
A finite FP number x is represented by 2 integers:
e integral significand: M, M| <2P — 1,
@ exponent e, enin < € < Enax-
such that

x = M x 2¢t1=p

with | M| largest under these constraints (— |M| > 2P~1 unless e = ey).
(Real) significand of x: the number m = M x 2'=P_ so that x = m x 2¢.

Correct rounding

@ In general, the sum, product, quotient, etc., of two FP numbers is not
an FP number: it must be rounded;

e correct rounding: Rounding function o, and when (aTb) is performed,
the returned value is o(aT b);

o default rounding function RN (round to nearest even):

(1) for all FP numbers y, |RN(t) — t| < |y — t
(ii) if there are two FP numbers that satisfy (i), RN(t) is the one whose
integral significand is even.

In the following. . .

@ a few “basic building blocks” of numerical computing: ab + cd,
complex arithmetic, x";
@ “usual” error bounds:
e prove them;
e try to improve them;
o discuss their possible optimality or near-optimality.
@ we assume than an FMA instruction is available: computes
RN(ab + c).

(FMA: first appeared in IBMP RS/6000, then PowerPC and Itanium, now
specified by IEEE 754-2008)

Relative error due to roundings, u, and ulp notations

Let t € R,2¢ < t < 2°TL, with e > en;

e we have 2¢ < RN(t) < 2¢+1, and
|RN(t) —t| <2°7P. (1)
— upper bound on the relative error due to rounding t:

’RN(t)_t <u=2""P (2)

t

@ u = 27P: rounding unit.
o ulp(t) =2¢PFL

Relative error due to roundings, u, and ulp notations

_E=RN(Y <y)
+"‘(u’:q'j 02'—“’{‘-"17 a-Lm/,g ¥ A

Figure 1: In precision-p binary FP arithmetic, in the normal range, the relative
error due to rounding to nearest is bounded by u = 27P.

A small improvement

The bound on the relative error due to rounding can be slightly improved
(using a remark by Jeannerod and Rump):

if 2¢ <t < 2¢! then |t — RN(t)| < 2°7P = u - 2¢, and

o if t > 2% (1+ u), then [t — RN(t)|/t < u/(1+ u);
o if t=2%-(1+7-u)with 7 €[0,1), then
[t —RN(t)|/t=7-u/(1+7-u) <u/(l+u),

— the maximum relative error due to rounding is bounded by

u
1+u

attained — no further “general” improvement.

“Wobbling" relative error

For t # 0, define

st
" ollogy Jt]] "
We have,
Lemma 1
Lett e R. If

2 <w-2°<|t|<2¢Mec

(in other words, if 1 < w < |t|) then

'RN(t) —t

<

S|

(3)

‘ £ S w
T
|

2¢ Y : z 2e+1
|

1 1 l 1 1 1 1 1 1 v 1 1 1 1 l 1
[52 = 1o Crgest) e |
¥ =RN(y) 2 =RN(z)

Figure 2: The bound on the relative error due to rounding to nearest can be
reduced to u/(1+ u). Furthermore, if we know that w <t = t/2¢, then
[RN(t) — t|/t < u/w.

0.06

0.05

0.04

0.03

0.02

0.01

-
N
w
IS
v
o
~
®

Figure 3: Relative error due to rounding, namely | RN(t) — t[/t, for 1 <t <8,
and p = 4.

First example: ab + cd with an FMA

Assume an fma instruction is available. Kahan's algorithm for x = ab + cd:

W — RN(cd)
e « RN(# — cd)
f < RN(ab + W)

% — RN(f —e)
Return X

@ using std model (Higham, 2002):
X = x| < Jlx|

with J = 2u+ v? + (u+ uz)u% — high

accuracy as long as ulcd| % |x|

@ using properties of RN (Jeannerod,
Louvet, M., 2011)

|X — x| < 2ulx]|

asymptotically optimal error bound.

@ Complex multiplication & division.

A somewhat simpler algorithm for ab + cd

Cornea, Harrison and Tang (2002) approximate

r=ab+ cd

by 7 obtained as follows

algorithm CHT(a, b, ¢, d)
w1 := RN(ab); W := RN(cd);
e; := RN(ab — Wy); & := RN(cd — Ww»); // exact operations

f = RN(Wl + W2);
é:=RN(e1 + &);
7:=RN (f + &);
return 7,

They show that the error is O(u). Since the 2u relative error bound of
Kahan's algorithm was not known at that time, the CHT algorithm was

favored.

A somewhat simpler algorithm for ab + cd

We have shown the following result (ACM TOMS, to appear).

Theorem 2

Provided no underflow/overflow occurs, and assuming radix-2, precision-p

floating-point arithmetic, the relative error of Cornea et al's algorithm is
bounded by 2u + Tu® + 61°.

@ improvement compared to the previous O(u).

@ however, does not help to choose between Kahan and CHT.

An almost-worst-case example. . .

Consider

One easily checks that a, b, ¢, and d are precision-p FP numbers.

easily finds:

ab+ cd
T
€1
2
)

oo N

Q 0O T L

2P 1,
-3 1
341
2P — 1,
-3 1
341

22p—2 + 2p—1 _ 3

3
22p—3 + 2p—2’
2p3 1,
22p—3
)
op—3 _ 1
4>
22p72
)
op—2 _ 3
4>
22p72

One

An almost-worst-case “generic’ example. ..

The relative error |s — (ab + cd)|/|ab + cd| is equal to

=2u—Tu® + 2003 + -

p -3 2u-—3uP
1 14 2u—3u?

This shows that our relative error bound
2u+T7u’ + 603
is asymptotically optimal (as u — 0 or, equivalently, as p — c0).

So that Kahan's algorithm is to be preferred, unless one wishes to get the
same result when computing ab + cd and cd + ab (e.g., to get a
commutative complex x).

The really difficult part. ..

Is not the theorem that gives the upper bound. It is to find the “generic”
(i.e., valid ¥p) example.

@ perform the algorithm for zillions of different input values, for a given
p, find the largest obtained relative errors,
@ try to hint patterns,

@ try to show that the chosen patterns effectively lead to an error close
to (or, better, asymptotically equal to, or, even better, equal to) the
bound.

painful, error-prone — we are trying to (partly) automatize that step, using
a “symbolic floating point” arithmetic written in Maple.

Complex multiplication and division

Given x = a+ib and y = ¢ + id, their product z = xy can be expressed as
z = ac — bd + i(ad + bc);
and their quotient x/y can be expressed as

ac+bd bc—ad

= 41 .
c2 +d? 2+ d?

In floating-point arithmetic, several issues:

o tradeoff accuracy vs speed,

e spurious overflow/underflow (e.g., c2 + d? overflows, whereas the real
and imaginary parts of g are representable);

Here: accuracy problems. Scaling techniques to avoid spurious
overflow/underflow dealt with in separately.
Focus on very simple algorithms.

Componentwise and normwise relative errors

When Z approximates z:

@ componentwise error:

o

|3(2)
' 3(z

@ normwise error:
zZ—Z

z
Choosing between both kinds of error depends on the application.

@ componentwise error < ¢ = normwise error < ¢;

@ the converse is not true.

Naive multiplication algorithm without an FMA

Ao : (a+ib, c+id) — RN (RN(ac) —RN(hd)) +i-RN (RN(ad) +RN(bc)

@ componentwise error: can be huge (yet finite);

@ Normwise accuracy: studied by Brent, Percival, and Zimmermann
(2007). The computed value has the form

20 =2z(1+¢), le| < V5 u,
— the normwise relative error |2/z — 1| is always < /5 - u.

For any p > 2 they provide FP numbers a, b, ¢, d for which
120/z — 1| = V5 u — O(u?) — the relative error bound v/5 u is
asymptotically optimal as u — 0 (or, equivalently, as p — +00).

Can we do better if an FMA instruction is available?

Naive multiplication algorithm with an FMA

With an FMA, the simple way of evaluating ac — bd + i(ad + bc) becomes:

A1 : (a+ib,c +id) — RN (ac — RN(bd)) + i - RN (ad + RN(bc))

Algorithm A; is just one of 4 variants that differ only in the choice of the
products to which the FMA operations apply.

@ componentwise error: can be huge (even infinite);
@ normwise error:

o for any of these 4 variants the computed complex product 2; satisfies
21— 2| < 2uls] (4)

o we build inputs a, b, ¢, d for which |2;/z — 1| = 2u — O(u'®) as
u — 0 = the error bound (4) is asymptotically optimal (given later on).

— the FMA improves the situation from a normwise point of view.

Application of Kahan's algorithm to the complex product

Fp: precision-p, radix-2 FP numbers with unlimited exponents;

Evaluate separately the real and imaginary parts of
z = ac — bd + i(ad + bc) using Kahan's algorithm;

uses 8 floating-point operations;

Ay : (a+ib,c+ id) — Kahan(a,c,—b,d) + i - Kahan(a, d, b, c)

The

componentwise error < 2u (asymptotically optimal);

consequence: normwise error < 2u.

normwise bound is asymptotically optimal.

Theorem 3

Let a,b € F,, be given by
a = pred (\/ 2P—2>, b=2r"14 L\/ 2P—2J +1,

where, for t € R-q, pred(t) = max{f € F, : f < t} denotes the
predecessor of t inF,. Let also 2; and 2, be the approximations to

z = (a+ ib)? computed by algorithms A; and A», respectively. If p > 5
then, barring underflow and overflow,

2n/z — 1| > 2u — 8u™® — 4u?, h e {1,2}.

Iterated products and powers

Floating-point multiplication a * b:
@ exact result z = ab;

e computed result 2 = RN(z);

(1-u)-z<z2<(1+u)-z

— when we approximate 7, = a;-az--- --- - a, by
#in = RN(--- RN(RN(a1 - a2) - a3) - -~
we have
Property 1

(1 - U)nilﬂ'n <7p < (1 + U)nilﬂ'n.

.).an)7

(5)

(6)

7 notation

— relative error on the product a; - ax--- -+ - a, bounded by
Y1 =1 +u)"t -1

o if we define (Higham)
_ ku

then, as long as ku < 1 (holds in practical cases),
ku<vp <.

— classical relative error bound: v, 1.

o For “reasonable” n, 1,_1 is very slightly better than ~,_1, yet v,_1 is
easier to manipulate;

@ note that in single and double precision we never observed a relative
error > (n—1) - u.

Special case: n <4

As we have seen before, the relative error bound u can be replaced by

u
1+u

— we can replace

(1—u)"'my < fn < (L4 u)" 'y

n—1 n—1
u . u
<11+u> 7T,7§7Tn§<1+1+u> Th.

Special case: n <4

Property 2

If1 < k <3 then

k
<1+u) <1l+k-u.
14+ u

e k=2:

u 2 u? - (14 2u
(1+1+u> —(1+2u)_—(1(+t)2)<0;

o k=23:

u 3 ud (24 3u
<1+1+u> (1+3u):(1(+t)3)<o.

k=n—1— for n < 4, the relative error of the iterative product of n FP
numbers is bounded by (n —1) - w.

The particular case of computing powers

@ “General” case of an iterated product: no proof for n > 5 that
(n—1)-uis a valid bound;

— focus on x”, where x € F, and n € N;

@ we assume the “naive” algorithm is used:

y—x

for k =2 to ndo
y < RN(x - y)

end for

return y

@ notation: X; = value of y after the iteration corresponding to k = j in
the for loop.

Main result

We are going to show:

Theorem 4
Assume p > 5 (holds in all practical cases). If

n<+2uU3_1. 2P/2’

then

1% = x"| < (n—=1)-u-x".

@ we can assume 1 < x < 2;

@ two cases: x close to 1, and x far from 1.

Preliminary results

First,
1-uw)"t>1—-(n-1)-u

forall n>2and u € [0, 1].
— the left-hand bound of
(1—u)"'mn < #p < (14 u)" .
suffices to show that
1—(n=1)-u-xp <X,

— to establish the Theorem, we only need to focus on the right-hand
bound.

Reminder. . .

For t # 0, define

st
" ollogy Jt]] "
We have,
Lemma 5
Lett e R. If

2 <w-2°<|t|<2¢Mec

(in other words, if 1 < w < |t|) then

S|

'RN(t) —t
t

<

(8)

Local maximum error for x° as a function of x (p = 53)

12 13 14~ 1516 ,ﬁ 15 19
“j TR e

l/;

Figure 4: The input interval [1,2) is divided into 512 equal-sized subintervals. In
each subinterval, we calculate x® for 5000 consecutive FP numbers x, compute
the relative error, and plot the largest attained error.

Main idea behind the proof

At least once in the execution of the algorithm, X~y is far enough from 1
to sufficiently reduce the error bound on the multiplication y « RN(x - y),
so that the overall error bound becomes < (n—1) - u.

y—X

for k =2 to ndo
y < RN(x-y)

end for

return y

Ypor=(1+u)"t—1=(n-1u+(1/2n* =3/2n+ 1) " + -

2 . . -
— we have to save ~ %u2, which requires one of the values X~y to be
2
~ n
larger than ~ 1+ - u.

What we are going to show

Unless x is very near 1, at least once X~y > 1+ nu, so that in (6) the
term (1 + u)"~! can be replaced by

1 n—2 (1 b)
(1+u) (+1+n2u>

— we need to bound this last quantity. We have,
Lemma 6

If0 < u<2/(3n) and n > 3 then

(1+u)"2-<1+)§1+(n—1)-u.

u
1+ n2u

Proof: tedious. ..

Two remarks

Remark 1

Assume n < \/2/3-2P/2. If 3k < n s.t. RN(x - %_1) < x - X1 (i.e., if in
the algorithm at least one rounding is done downwards), then

fn < (14 (n—1)-u)x".

Proof.

We have
Rn < (14 u)"2x".

Lemma 6 implies (1 + u)""2 < 1+ (n—1) - u. Therefore,

fn < (14 (n—1)-u)x".

Two remarks

Remark 2
Assume n < \/2/3 - 2°P/2 If3k<n—1,st x-X >1+n?-u, then

X <(1+(n—1)-u)x".

Proof.
By combining Lemmas 5 and 6, if there exists k, 1 < k < n— 1, such that

X-Xe>14n% u,

then

u

S -2
an(l—i-u)” (1+m

)-x”§(1+(n—1)-u)-x”.

Proof of Theorem 4

We assume n > 5. Proof articulated as follows

e if x is close enough to 1, then when computing RN(x?), the rounding
is done downwards:

@ in the other cases, 3k < n — 1 such that x - & > 1+ n®- u.

Lemma 7

If1< x <1+2P/2.u, then % = RN(x?) < x2.

Proof.

X <1422 4= x=1+k-27PH1 =1 4 2ku, with k < 2P/2~1. We
have x? =1+ 2k - 2P+ 4 k2. 272P*2 which gives

RN(x?) =1+ 2k -27P+1 < x2, O

In the following, we assume that no rounding is done downwards, which
implies x > 1+ 2P/2. 4.

Proof of Theorem 4: case x2 < 1+ nu

0 x>1+2P2u>14nu= x">(1+nu)">1+n’y;

@ no downward rounding = X, 1 - x > (1 + n?u).

Therefore
o if £,_1x < 2, then %,_1x > (1 + n2u), so that, from Remark 2,
xX"< 1+ (n=1) u)-x"
@ if X,_1x > 2, let k be the smallest integer such that X,_1x > 2.
x2 <1+ n?u= k> 3. We have

2 2
R 1> ">
X T VIt
hence 5
Xp—o - x> (10)

T V1+nPu-(14u)

2
Vi+n2u-(1+u)

op+1 \ 2/3

Forall p>5, ap > as=0.745---, and ap < /22/3 —1=0.766---. If

POEPED

Define

n<ap-2°2 (11)

then
2

V1+n?u-(1+u)

— Ri_p - x > 14 nu. Also, Rk_» - x < 2 since k is the smallest integer
such that X,_1x > 2. Therefore

> 1+ nu.

Xp_o - x > 1+ nu.

Which implies x” < (1+ (n—1) - u) - x".

Proof of Theorem 4: case x2 > 1 + n%u

o if x2<2then x2>1+nu=x"<(1+(n—1)-u);
@ x? =2 impossible (x is rational);

— we assume x? > 2 we also assume x? < 2 + 2n?u (otherwise,
x2 > 1+ n?u). This gives

n—1

x" 1 < (2+2n%u)"7,

therefore, using the classical bound (Property 1),

n—1

Soo1 < (2420°0)"7 - (14 0)" 2,

which implies
X fpo1 < (242n%u)2 - (14 u)"2 (12)

Reminder:
X %1 < (242n%u)"? - (14+u)"2and n>5

Define

=213 -1

If n < 3-2P/2 then 2 + 2n%u < 2*/3, so that
(24 2n2u)"? (14 u)""2 < 2273 (1 4 u)" 2 (13)

The function
2 —2
(t) — 2t—1 _ 22t/3 1 + i ‘ — 22t/3 2t/3—1 _ 1 + i ‘
g 2p 2p ’

is continuous, goes to +o00 as t — +00, has one root onIy:

log(2) + 2log (1 + 55)
3 log(2) —log (1+ 5)

which is < 4 as soon as p > 5 = if p > 5 then x - %,_; < 271,

Reminder: if p > 5 then x - %,_1 < 2",
o define k as the smallest integer for which x - &,_; < 2K71,
@ 3 < k < n (we have assumed x? > 2),
0 X R_p>2K"2= %1 = RN(x - Xe_p) > 2k72.

Therefore, X,_1 and x - Xx_1 belong to the same binade, therefore,
m > X > V2.
The constraint n < 3 - 2°/2 implies
1+nPu<14+ 3 =213<V2
By combining (14) and (15) we obtain
X-Ke_1>1+ nu.

Therefore, using Remark 2, we deduce that %, < (1 + (n—1) - u) - x".

(14)

(15)

Final steps

Vp > 5, ap > [— combining the conditions found in the cases
x?> <14 n?u and x? > 1+ n?u, we deduce

Ifp>5 andn§5-2p/2, then for all x,
1-(n—=1)-u) x"<%,<(1+(n—-1)-u) x"

where 3 = /21/3 — 1 = 0.5098245285339 - - -

Q.E.D.
Questions:

@ is the restriction n < 3 - 2P/2 problematic?

@ is the bound sharp?

On the restriction n < 3 - opP/2

’ format ‘ p ‘ Nmax
binary32/single | 24 | 2088
binary64/double | 53 | 48385542
binary128/quad | 113 | 51953580258461959

With the first n larger than the bound, x” under- or overflows, unless
@ in single precision, 0.95905406 < x < 1.0433863,
@ in double precision, 0.999985359 < x < 1.000014669422,

and nobody will use the “naive” algorithm for a huge n.

On the restriction n < 3 - opP/2

Furthermore, that restriction is not just a “proof artefact”. For very big n,
the bound does not hold:

If p =10 and x = 891, when computing x>*"*, relative error 2473.299u.

Notice that:
o for p =10, Nmax = 3 - 2P/2 = 16.31;

@ 2474 is the smallest exponent for which the bound does not hold when
p = 10.

Tightness of the bound (n—1) - u

Small p and not-too-large n: an exhaustive test is possible.

Table 1: Actual maximum relative error assuming p = 8, compared with ~,_; and
our bound (n — 1)u.

’ n ‘ actual maximum Yn—1 our bound
4 1.73903u 3.0355u 3u
5 2.21152u 4.06349u 4u
6 2.53023u 5.099601u 5u
7 2.69634u 6.1440u 6u
8 = Nmax 3.42929u 7.1967u Tu

— our bound seems to be quite poor... however. ..

Tightness of the bound (n—1) - u

For larger values of p:

@ single precision (p = 24), exhaustive search still possible, largest error
4.328005619u for n = 6, and 7.059603149u for n = 10;

@ double precision (p = 53), we have a case with error 4.7805779u for
n=6 and 7.8618 - u for n = 10;

@ quad precision (p = 113), case with error 4.8827888185u for n = 6;

— we seem to get close to (n — 1) - u for large p.

Building “bad cases” for the iterated product

Still in precision-p binary FP arithmetic, we approximate

31.32...... .an’
RN(~-- RN(RN(al-az)-ag)- -~-)~a,,)

® T =ay - a,

e 7, = computed value,

e relative error |7, — #t,|/ 7, upper-bounded by v,_1,

@ conjecture: if nis “not too large” it is bounded by (n — 1)u.

Let us now show how to build a1, a», ..., a, so that the relative error
becomes extremely close to (n—1) - u.

Building “bad cases” for the iterated product

o definea; =1+ k; -27PTL, and ay = 1+ ko - 27PHL. We have
Ty =aijar =1+ (kl + kg) .p7ptl + kiko - 2—2p+2,

If ky and ko are not too large, 1+ (ky + k2) - 27P*1 is a FP number
— we wish k1 + k> to be as small as possible, while kiko - 272P12 is as
close as possible (yet less than) to 27P. Hence a natural choice is

ky = ky = P%*lj ,
which gives Ty < m».
@ Now, if at step i — 1 we have
Ti=1+g- 2—p+1’ with 71; < 7,

we choose a1 of the form 14 k; 127P+!, with
° kit1 = P’_Z - 1} if g <2571

8i
2p—2

o kiy1=— { Faa 1J otherwise.

Building “bad cases” for the iterated product

Table 2: Relative errors achieved with the values a; generated by our method.

’ p ‘ n ‘ relative error

24| 10 |8.99336984 ---u

241100 | 98.9371972591 - - - u

53| 10 | 8.99999972447 ---u

53 | 100 | 98.9999970091 - - - u
113 | 10 | 8.99999999999999973119- - - u
113 | 100 | 98.99999999999999701662 - - - u

Conclusion on x"

@ error bound (n — 1) - u for computation of x” by the naive algorithm;
o valid for n < \/21/3 — 1.2P/2 — 3l practical cases;

@ small improvement: the main interest lies in the simplicity of the

bound;
@ seems to be “asymptotically sharp” (as p — oc) but not sure;

@ the bound ~,_1 on iterated products is very sharp.

Thank you for your attention.

