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A Way to Build Efficient Carry-Skip Adders
ALAIN GUYOT, BERTRAND HOCHET, AND JEAN-MICHEL MULLER

Abstract-In this paper, we present a way to obtain efficient
carry-skip adders, built with biocks of different sizes in VLSI
technologies. We give some results about two-level carry-skip
adders. We reduce our optimization problem to a geometrical
problem, solved by means of an algorithm easily implemented on
a microcomputer. Then we present an example of the realization
of such an adder.
Index Terms-Carry-skip adders, VLSI design.

I. INTRODUCTION

TN a classical ripple-carry adder, the carry is propagated in a

time proportional to the size of the adder, and the sum S of
two N-bit binary numbers A and B is obtained by means of the
well-known relations

co =0

Si=Ai @ Bi s Ci

C,±1 A Bi+AiCi+BiCi AiBi+PiCi

where

s is the XOR function

Pi=Ai (D Bi.

Since C,+I is dependent upon C,, one might think that the
problem of adding two N bit numbers is intrinsically linear;
but it is worth noting that if the terms Ai and Bi are equal (Pi =
0), there is no need to know Ci in order to obtain Ci, 1. (If Ai
= Bi = 0, then Ci+I = 0; if Ai = Bi = 1, then Ci,1 = 1.)
Thus, it is possible to build an adder whose average time of
computation would be proportional to the average size of the
longest chain of different digits ofA and B. It is possible to
show that this average size is upper bounded by log2 N (this
result is due to Burks, Goldstine, and Von Neumann [2]).

For instance, in the following example, all the blocks
separated by slashes can be added in parallel:

1010100011100100110110011101

1101 101 10111101lOOl1OIl10.
Practically, the adder must be based on "worst case" design,
thus we have to minimize the worst time of addition, instead
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of the average time. In the previous case, we exploit the
occurrences Ai = B,, but large chains of consecutive bits i
may arise, such that Ai * Bi. So, we may design an adder
divided in blocks, where a special circuit associated with each
block detects quickly if all the bits to be added are different (Pi
= 1 in all the blocks). In this case the carry entering into the
block may directly bypass it and so be transmitted to the next
block. This is the principle on which carry-skip adders are
based.
These adders are actually simple ripple-carry adders with a

special speedup carry chain (skip chain). This chain defines
the distribution of the blocks. This results in great topological
regularity (due to the ripple-carry part), small area, good
modularity, and design simplicity. Thus, carry-skip adders are
frequently used for adders of datawidth larger than or equal to
32 bits.

In each block, a special circuit compares Ai and Bi for the
different cells of the block.

* Iffor each cell in the block Ai . Bi (Pi = 1), then we
shall say that a carry can skip over the block. In this case, the
carry must immediately be transmitted to the next block.

* If Ai = Bi for some i in the block (Pi = 0), we shall say
that a carry is generated in the block (whether 1 or 0).

It is worth noting that if in each block there exists a cell i
such that Ai = Bi, no block is skipped, but in each block, a
carry is generated; thus, the carries are propagated in parallel
and the total time of computation is bounded by the time of
propagation of a carry in the largest block.
Our purpose here is to find a configuration of blocks which

minimizes the worst time of computation, i.e., which mini-
mizes the longest "life" of a carry (we shall call life of a carry
the time between its generation and the generation of the next
carry). In 1960, Lehman and Burla found the best configura-
tion with blocks of equal size [9], and showed that with such a
configuration, two N bit numbers are added in a time roughly
proportional to </ N, and suggested taking blocks of different
sizes.

In 1967, Majerski [10] studied this last case and attempted
to reduce the number of skips, but with VLSI techniques, the
number of gates has no importance: minimizing the total area
and the time of computation is the major goal.

In any case, the models of [9] and [10] are limited in regard
to the ratio a between the skip time (the time needed by a carry
to skip a block) and the ripple time (the time needed by a carry
to pass through a ripple-adder cell); they considered only the
case a = 1.

In [1], Barnes and Oklobdzija gave a strategy for finding
optimal sizes of blocks, but their method is valid only if the
ratio a is an integer which verifies 2 c a c 7. (See Theorem
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1 of [1, p. 5].) Since the logical gates of a carry skip adder are
built with a smiall number of different transistors, it is not
unreasonable to suppose that a is equal to a rational number
p/q, with q small. However, assuming that a is an integer is
only a straightforward approximation; of cotirse it is possible
to design the gates in order to obtain a E X, but generally the
delay of such gates is not optimal.
Our intention here is to consider the general case (a may be

any nonnegative number). Subsequently, we shall consider
two different models. The latter will be more precise than the
former, but we shall see that they give approximately the same
results.

In this paper, we shall assume that only restoring logic is
used in the design of the carry path of the adders. The carry
propagation into the blocks (ripple propagation) is linear.
The time needed to pass through N consecutive cells is T =
k1 N, where k1 is the delay of one cell.

Concerning the carry propagation around the blocks (skip
propagation), we shall consider the two following models.
Model 1: The skip propagation is linear, and depends only

on the number p of skipped blocks, and not on their size.
Thus, there exists a constant k2 such that

V= k2 * p is the time needed to skip over p blocks.

Model 2: The skip propagation depends on the size of the
skipped blocks. This case occurs in MOS technologies, where
delays are a function of the length of the interconnection lines.
Let us consider a block ofN cells. The path taken by the carry
in order to skip over the block is a line in series with a logic
gate. The delay of such a path is (see [16, p. 133])

rc
T =ttp+ 1I

2

tp is equal to the delay due to the logic gate, r and c are the
resistance and the capacitance per unit length, I is the length of
the line (nearly the length of the block). Thus, we may write

T' =k2+k3N2

with

rc /1\2
k2= tp and k3 =

2 N/

I/N represents the width of the basic cell. With two-metal
layer technologies, the interconnection line may be imple-
mented in one of the metal layers. In this case, k2 is much
greater than k3 (see [16, p. 136]) with a 2-Alu CMOS
technology, the order of magnitude of the ratio k2/k3 is
approximately 105); thus, Model 2 is equivalent to Model 1.

Then, we may consider the building of a carry-skip adder
with two levels ofskips, applying the carry-skip technique to
the blocks themselves. The great advantage of such a device is
that it only involves a small modification of the one-level carry

skip, thanks to its modularity.
At the end of this paper, we shall present the design of a 128

bit carry-skip adder with two levels of skips, built in a 2 /Am-
gate CMOS technology, with two metal layers. This adder has

been implemented in an arithmetic coprocessor which com-
putes elementary functions [4].

II. DEFINITIONS

A carry-skip adder with p blocks will be represented by an
array L of integers such that L(i) is the length of the block
numbered i. We shall note cleft(L) the index of the first
block (i.e., cleft(L) = min {iIL(i) * 0}), and cright(L)
the index of the last one (cright(L) = max {iIL(i) * 01. A
natural choice would have been to number the blocks starting
from a constant value (cleft(L) = 1 for instance), but our
notation will simplify the algorithm "transf" presented
below. We shall represent such an adder by p adjacent
columns of unit squares, with L(i) squares for the column i
(Fig. 1).

III. STUDY OF MODEL 1

We shall introduce the following notations.
If A is a set, IA will be the number of elements.

cright (L)

N (number of bits of the adder) = L (i)
i=cleft(L)

k2
a=
.ki

br(L) max {L (i) + a(i+l)}
iE [c left (L),c right (L)]

b1(L)= max {L(i)-a i}.
ifE [c left (L),cright (L)]

DJ(L) is the graph of the line y = a *x + bl(L). This line is

the lowest line of slope a which is above the columns-
representation of L.
Dr(L) is the graph of the liney = -ax + br(L). This line

is the lowest line of slope - a which is above the columns-
representation of L.

S(L)={i E [cleft (L), cright (L)] IL (i)

=a i+ b1(L) OR L(i)=- a (+ 1) + br(L)}

Smax(L)= IS(L)I
S(L) represents the set of the integers i such that column i is
adjacent to D,(L) or Dr(L).

H(L)={i E [cleft (L)-1, cright(L)+lII(L(i)

+ 1< a i+ bl(L)) AND (L(i) + 1< - a (i + 1) + br(L))}

Hmax(L)= IH(L)I.
(H(L) represents the set of the "holes" of the scheme, i.e.,
the set of the integers i e [cleft(L) - 1, cright(L) + 1] such
that if L(i ) is replaced by L(i ) + 1, then the ith column is still
strictly included in the triangle defined by Dr(L), D,(L) and
the line y = 0. We illustrate the preceding notations in Fig. 2.

Let us consider the following problem: a carry generated at
the beginning of the block numbered i skips p blocks, and
terminates at the end of the block numbered i + p + 1. The
propagation time obtained is Ti,p(L) = k,- (L(i) + L(i + p
+ 1)) + k2P
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LL(1)=4

LL(2)=2

_L (3)=4

L (4)t3

Fig. 1. Columns-representation of a carry-skip adder.

L(i)

DI-6,\r(L

y -x + 6 /i S y _x +8

.-I o 1 2 3 4 5 6 7 8

Fig. 2. We have

c left(L) = ,c right(L) = 5
L( - 1) -_ 4, L(O) =6, L(1) = L(2) =5, L(3) =4, L(4) =3,
L(S) =2
b,(L) =6, b,(L) =8
S(L) = {O, 2, 3, 4, 5},S max(L) = 5, H(L) = {-2}, Hmax(L)
=1I
The elements of S(L) are darkened.

Since we have

L(i)<a i+b,(L)

L(i+p+1)s-a (i+p+2)+br(L)

we deduce

Ti,p(L)<kl *(a i+b,(L)-a (i+p+2)+br(L))+k2p

=kl *(bi(L)±br(L)-a * p-2 * a)+k2p

=k2 (bi(L) + br(L)-2) = T(L).

(This propagation time T(L) is achieved if column i is
adjacent to DI and column i = p + is adjacent to Dr.)

Out purpose is to minimize T which is equivalent to
minimizing b,(L) + br(L).

Thus, our problem is reduced to a geometric problem:
we have to minimize the height of the triangle defined by
Dr(L), D1(L), and the line y = 0. It is worth noting that for
large values ofN we cannot solve this problem efficiently by
examining all the possible schemes L; since the total number
of schemes with N bits is equal to 2N.
Now, we shall introduce the concept ofH scheme, which is

not always optimal, but which gives efficient solutions.

The H Schemes

Definition 1: A scheme L is an H scheme if the
corresponding triangle contains no holes, i.e., if H(L) = 0.

Theorem 1: For each value ofN - 1 and kI, Ak2 E I&, kA,
k2 > 0, there exists an H scheme.

Proof: The proof is given by the following algorithm,

Transf, which transforms any scheme Lo into an H scheme.
The basic idea of this algorithm is to put adjacent squares
(elements of S) into the holes, until no hole is left.

Transf:
(We suppose that S(L)(i) represents the element numbered i

of S(L)).
(The same notation is chosen for H(L)).
(Any order of numeration may be chosen)

While (Hmax (L) > 0) do
begin

min min {Hmax (L), Smax (L)};
forj:= to min do

begin
L(S(L)(j)) L(S(L)(j))- 1;
L(H(L)(j)) L(H(L)(j)) + 1;

end;
Compute (cleft(L),cright(L),b1(L),br(L),S(L),

Smax(L),H(L),Hmax(L))
end.
This algorithm terminates and gives an H scheme because
Hmax decreases strictly at each step. Since this algorithm
gives decreasing successive values, we deduce that at least
one optimal scheme is an H scheme; this result is obtained
by starting with an initial solution Lo which is optimal.

Theorem 2: IfL is anH scheme with maximal propagation
time T(L), and if the maximal propagation time of an optimal
scheme is T* (with the same number N of bits) then

T*-c T(L)< T*+2k2.

This theorem shows that the algorithm transf always gives
convenient configurations of blocks for designing carry-skip
adders.

Proofof Theoremfl 2: Let F(n, L) (the nth "floor" ofL)
be the number of columns i such that L(i .-n. For instance,
with the example presented in Fig. 2 F(1, L) = F(2, L) = 7
and F(5, L) = 3.

Let X(n, L) = (br(L) + b,(L) - 2n)/a. (X(n, L) is the
distance between the two points of Dr(L) and D,(L) of
ordinate n). We have F(n, L) c X(n, L) (Fig. 3).
Lemma: IfL is anH scheme, then F(n, L) - X(n, L) - 2.
Proof of the lemma: Let

cleft (L, n)=min {ijL(i).n}

cright (L, -n)= max {ijL (i) n}.

(We have cright(L) = cright(L, 1) and cleft(L) = cleft(L,
1).) L is an H scheme, thus, H(L) * 0.

Thus,

L [cleft (L, n) - 1J+ l2 a * [cleft (L, n) - 1] + b(L) (i)

L [cright (L, n) + 1] + 1-- a

[cright (L, n) + 2] + br(L) (ii)

Thus, adding (i) and (ii)

2n .a [cleft (L, n) - cright (L, n)] + b(L) + br(L) - 3a

(iii)
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1 (2,L)

F(2,L)
l

'I \ r

Fig. 3. Notations F(n, L) and X(n,- L). I

since L[cleft(l, n) - 1] < n - 1 and L[cright(L, n) + 1] <
n - 1.
By (iii):

[cright (L, n) - cleft (L, n) + 1]

. [bl(L) + br(L) - 2a - 2n]/a.

Thus, F(n, L) > X(n, L) - 2. The lemma is proved.
Proofof Theorem 2: Let L be anH scheme, and L' be a

better scheme such that T(L') c T(L) - 2k2. For every n,
we have X(n, L') c X(n, L) - 2. Thus, for every n, we have
F(n, L') c F(n, L). Since there is at least one n such that L[c
left(n) - 1] = a[cleft(n) - 1] + bl(L)(S *D0), we can
prove that there is at least one n such that F(n, L) > X(n, L)
- 2, which implies F(n, L') < F(n, L).
Thus, YF(n, L') < ZF(n, L) = N. There is no scheme L'

such that T(L') c T(L) - 2k2. Thus, Theorem 2 isproved.

IV. STUDY OF MODEL 2

In order to find convenient solutions for Model 2, we shall
replace our problem by a continuous problem:

Let f be a continuous function such that f(i) = L(i) for
every i (see Fig. 4). As in the preceding study, we have to
minimize the longest life of a carry. Let us suppose that a carry
is generated at the beginning of block i, and that the following
carry is generated at the end of block j(j > i). Following the
assumptions of Model 2, the life of the carry is

ki(Li+Lj)+k2(j-i-1)+k(L 2+L 2. + * +L2).

A good approximation of L 2 + L2+l ** + L2 is Xj f2(t)
dt.

Thus, our "continuous" problem (P) is to find a continu-
ousfunction f offinite support Sf such thatf minimizes the
quantity

T(f) - max bf(X, y)
x,yE Sf
X<y.

where

-If(X, y) =kd[f(x)+f(y)] +k2(y-x)+k3 Jf2(t) dt.

If we find a family of functions f such that 4)f(X, y) does not
depend from x and y, thus we can use the same methodology
as for Model 1: we have to find in this family the function f
which minimizes cIf and such that a configuration of N unit
squares disposed like in Fig. 1 can be placed under the curve y
= f(x). Obviously, similar concepts of adjacent squares and
holes can be defined, and thus, an algorithm similar to transf
can be given.

First, let us search a functionf such that Sf(O, y), y E. Sf, y
> 0, is constant. Let us suppose that f has a continuous

f(x)

'4
I l

Fig. 4. Function f.

derivative f, we deduce

kif'(y) + k2 +k3f2(y) = 0

(E) is equivalent to

f' (y) k2

k (f(y))2+ 1

Thus, the solutions of (E) are

f(y)= ( Ykk +C)

(y E Sf,y>O). (E)

C real.

Now, if we search a functionf such that 4f(X, 0) (x < 0, x E
Sf), we obtain

f(x)= Atan( 2 C) C real.

If we examine these two last results, we deduce that a
continuous function f such that cIf(X, y) - constant must
verify

f(x) - tan
wk3

IFt k2k3XI+c) C real.

on the domain

E Ck, Ck, 1
- k-2k3 ,/k2k I

Now, let us prove that such a function f verifies 4f(X, y)
constant.

cIf(X, y) = ki [f(x) +f(y)] + k2(y - x) + k3 | f2(t) dt

= k1 [f(x) +f(0) + k2(0 - x) + k3- f2(t) dt

+k [f(0) +f(y)] + k2(y- 0) + k3 |f2(t) dt

- 2k,f(0)
= bf(X, 0) + 4sf (0, y) - 2k,f(0). (1)

10, I

r T
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Let us denote K- the number equal to 4by(u, 0) for every u <

0, and K+ the number equal to 4f(O, v) for every v - 0. We
have

4pf(O, 0)=K-
4Lf(O, 0)=K+.

Thus, K- = K+ = If(O, 0) = K.
Since we have

o
4f(0, 0) = 2kAf(0) + k2(0 - 0) + k3 f2(t) dt= 2klf(0).

We deduce from (1) that for every (x, y), 4)f(X, y) is equal to
2k1f(0); thus, Iy(X, y) is constant.
The function f associated with the solution of the problem

satisfies

| f(t) dt=N.
Sf

Thus,

N=2
CkVI/lkki tan (C-x ) dx

Ac3 0 Aci ,

I2k, C Vk
=~ ^C tan u du with u=C-x

k3 0 k,c

Thus, we can approximate the constant C of the solution, and
obtain

C=arctan Ve(k3/kl)N- 1.

Thus, function f of the solution is

f(y)= !S. tan AAI yI +arctan e(k3/ke)N_l)

Fig. 5, 6, and 7 present the graph off for some values of kA,
k2, and k3 (N = 32 bits). If k3 << kA, then

e(k3/k1)N_ I--N
ki

thus,

arctan ve(k3/kl)N- 1 cN

Nki
thus,

k I Y + arctan Ve(k3/kl)N- 1
A1

3 k
& YI 0

+ 15.3

kl =k2
k3= 0.1 *kl
N= 32

-4.3 +4.3

Fig. 5. k, = k2; k3 = k1/10.

kl = k2
k3 = 0.05 *k1
N= 32

-4.9 +4.9

Fig. 6. k, = k2; k3 = k,/20.

- 5.5

+ 6.1

kl = k2
k3= 0.01 *kl

\N=32

+ 5.5

Fig. 7. kA = k2; k3 = kA/100.

thus,

,,rtan (A-
k3 ki

Ik- ( Y + 0
thus,

ck2 Ac2+ N

And Model 2 is equivalent to Model 1, because f is a linear
function. Fig. 7 shows that Model 2 becomes equivalent to
Model 1 for k3 = kil/l00. Since, with the technology that we
used (2-Alu CMOS), k3 = 5.10-5kA, Model lis valid; thus
we did not apply an algorithm similar to transf to Model 2.

V. Two-LEVEL CARRY-SKIP ADDERS

As said in the Introduction of this paper, the carry-skip
technique may be applied recursively to the blocks themselves.

1 148

(k3 lkl),)y + arctanV.e F--l

Authorized licensed use limited to: INRIA. Downloaded on November 25,2020 at 06:39:27 UTC from IEEE Xplore.  Restrictions apply. 



GUYOT et al.: CARRY-SKIP ADDERS

Thus, the skip chain will have two levels; following a
terminology already used [10], we shall say that the adder is
divided into sections (this division forms the first layer), the
sections are themselves divided into groups of bits (this
subdivision forms the second layer).
We shall assume that Model 1 is valid; thus,
* The time needed to pass through p cells included in a

same group is proportional to p. Thus, this time is equal to
k1 p, where k, is the delay of one cell.

* The time needed to skip over q groups of the same
section is proportional to q. Let us call k2 the constant such
that this time is equal to k2 * q.

* The time needed to skip over r sections of the adder is
proportional to r. Let us call k3 the constant such that this time
is equal to k3 * r.
Now, let us build, as in Section II of this paper, a geometric

problem associated with our optimization problem. Let- us
consider N parallelepipeds like that presented in Fig. 8 (N is
the number of bits of the adder):
And let us consider the pyramid P(xh, Yh, Zh) of vertex (xh,

Yh, Zh) and of equation

rX+Y+Z<Xh+Yh+Zh

i-k3--
2

, .

Fig.8. T

'he parallelepipeds.

x

Fig. 9. Top view of the disposition.
X-y + Z Xh -Yh + Zh

X+Y -Z <Xh +Yh-Zh

X-y-Z<Xh Yh Zh

X>Oxy:- Z0 -h-Z

y.0

Z>O.

If we take four points A, B, C, D of the pyramid such that XA
= XB and XC = XD ((XA, YA, ZA) are the coordinates ofA, (XB,
YB, ZB) are those of B, and so on), and if we compute the
number

L=zA+(yB-yA)+zB+2(xD-xB)+ZD+(YD-YC)+ZC.

We obtain L = 4Zh; L does not depend on A, B, C, and D.
But if we dispose (as in Figs. 9 and 10) the Nparallelepipeds

under the pyramid, such that each plane of equation x =
constant represents a section, which is similar to the represen-
tation of a carry-skip adder given in Fig. 1, L represents the
propagation time of a carry generated in the section of
ordinate XA and relayed by the following carry generated in the
section of ordinate XB

Therefore, our optimization problem is equivalent to a
geometric problem similar to that of Section I of this
2aper: we have to minimize the height Zh of the lowest
pyramid P(xh, yh, Zh) which contains all the parallelepipeds.
Thus, an algorithm similar to transf can be built.
Transf2:
(We start from an initial configuration ofN parallelepipeds

similar to that of Fig. 9)

stop = false;
while not stop do

Fig. 10. The pyramid.

begin
1. Compute the parameters (Xh Yh,Zh) of the lowest

pyramid P(xh,yh,zh) which contains all the parallel-
epipeds.

2. Detect the set H of the "holes" of the configura-
tion, i.e., the set of the columns of parallelepipeds
such as if a parallelepiped is added to the column, it
remains under the pyramid.

3. Detect the set S of the columns of parallelepipeds
adjacent to the pyramid.

4. IfH * 0 then
begin

m := min.11Si, IHI};
move m parallelepipeds from m different

columns of S to m different columns ofH
end

else stop = true
end.
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VI. EXAMPLE OF A TWO-LEVEL CARRY-SKIP ADDER

We describe here the design of a 128 bit carry-skip adder
included in an arithmetic coprocessor designed at our labora-
tory: the FELIN chip [4]. The technology used is a 2 gm gate
CMOS with two metal layers, so the distribution follows
Model 1. The skip chain has two levels; the sections form the
first layer, and the groups form the second layer. In order to
simplify the basis cells and to linearize and speed up the ripple
propagation, we adopt the schemes shown in Fig. 11.
The XOR gates are designed as shown in Fig. 12.
The layout of these two cells is nearly the same. The tristate

gate of the ripple-carry part of the circuit introduces a delay t.
The groups are built by alternating the even and odd cells, and
they always contain an even number of cells. So, the carry
entering or leaving the groups is either C or its complement. In
order to skip over a group, the carry has to pass through a
logic gate which introduces a delay T, which has actually
nearly twice the value t. This gate is as shown in Fig. 13. The
pair of pass transistors at the output of the gate are actually
included in a multiplexor. If the propagate signal of the section
I is PI, and the propagate signals of the groups of the section I
are Pj, (j E {l, * * , k}, where k is the number of groups in
section I): the multiplexor is driven by a function of PI and
Pk,. The circuitry for the carry paths is presented in Fig. 14.
The sizing of the groups is guided by a straight line, whose

slope is equal to T/tr = 2. For the sections, the slope is 1. The
distribution of the complete adder is given here:

2(242)(2442)(24642)(246642)(246642)(24642)(2442)(242)2.

The total propagation time of the carry in this 128 bit adder
corresponds to the propagation through 12 gates of delay T.
Due to the simplicity of these gates, T is within 3-5 ns. Thus,
the computing time of this adder is around 50 ns.
We give here the distribution of a 66 bit two-level carry-skip

adder:

(22)(242)(2442)(24642)(2442)(242)(22).

The total propagation time of the carry in this adder is about 40
ns (9T ). We can see that the difference between the speed of
both adders is small despite their difference in size, but
differing results would be obtained with other slopes. Thus, it
is difficult to make general comparisons between carry-skip
techniques and other speedup techniques. However, for the
case presented here (66 bit adder) a comparison is possible. In
[3], a 64 bit carry-look ahead adder is described. If D is the
delay of a gate for the technology being used, it gives a result
in 13D. The 66 bit carry-skip described previously completes
it in

9T (total propagation time)
+ T (computation of p, = a1 a) b1)
+ 2T (computation of Pjj (groups) and PI (sections))
+ T (computation of S63 = P63 E C63)

13T

Actually, T corresponds to the propagation through two
inverters. But D is the delay of gates with two inputs or more,

Ci n ICi n

Aj~
B B

A B |A B

, d 0

Even Cell Odd Cell

Fig. 11. The two kinds of ripple cells.

x

Y X S=;X-Y+X7

Fig. 12. The XOR gates.

Fig. 13. The skip-over-groups gate.

L bais cell
grouplI group jIpropagate P1I propagate pjj

Section T Sectioni+i
propagate Pt

Fig. 14. Circuitry for the carry path.

so TandD are roughly equivalent. In [16, p. 181-183], Weste
and Eshraghian give the delay ratio between an inverter and
more complex gates. Hence, the 66 bit two-level carry-skip
adder is comparable in speed to the CLA.
The 128 bit carry-skip adder presented here is highly

modular. Its main component cells are
* the basis pair cells (odd and even) of the ripple part,
* dynamic NOR'S for the computation of the propagate

signals for the groups and the sections.
The whole adder has been assembled [14] automatically by

a Pascal program. A part of the layout is given in Fig. 15. We
can see that the carry-skip part about doubles the size of the
basis ripple-carry adder.

VII. CONCLUSION

The carry-skip adders seem to be a good compromise
between ripple-carry adders (very simple, but slow) and
sophisticated adders (like carry-look ahead adders, for in-
stance), which involve both large silicon areas and design
problems. Since the gates of the skip part are very simple,
their propagation time is interesting.
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Fig. 15. A portion of the two-level carry-skip adder of FELIN. The upper
aluminium layer is not shown.

N = 4bits

a L

0.4 11122333445554443322111
0.45 112233445555444332211
0.55 11223445566544332211
0.65 122344566655433221
0.75 11234456766544321
0.85 1234556776543321
0.95 1234456776544321
1.0 123456787654321
1.1 123456788765321
1.2 12356788765321
1.3 12356788765321

N = 12 bits S|iR

a L

0.4 11223334455566777766555443332211
0.45 11222334455666777766655443322211
0.55 1223344556678888766554433221
0.65 1223445667889987765544321
0.75 122345667899109877654432 1
0.85 1 223456778910109877654322 1
0.95 12345678991010998765432 1
1.0 23456789101111 109876542 1
1.1 23456789101211 109876532 1
1.2 1235678911 1212119876532 1
1.3 123567810 1112 1211 10876432

Fig. 16. Some configurations of blocks given by the algorithm trans.

We have given a way to find efficient carry-skip adders.
The algorithm transf, presented here, was written in Pascal on
a microcomputer (IBM PC), and gave us fine results for
different values ofN (from 32 to 1024 bits). Some of them,
tabulated for different values ofNand a, are given in Fig. 16.
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