Reduced Precision Elementary Functions

Jean-Michel Muller
CNRS/LIP, ENS Lyon
France

SIAM 2021 Conference on Computational Science and Engineering

Use of reduced-precision elementary functions ?

Sometimes a very fast rough approximation is useful:

first step of a more accurate, iterative, computation;

computer vision, multimedia:
e tolerate a slight loss in accuracy,
e need real-time processing;
o frequently deal with inherently inaccurate data;

activation functions (sigmoids, tanh...) in neural nets;

entertainment:

e Super Mario's pizza does not need to follow the laws of physics
accurately,
e fluidity matters.

Small number formats: blessing of exhaustivity

@ casy testing (try all possible inputs);
@ correct rounding becomes easily achievable

— reproducible results;
[Low precision and very accurate!]

@ tabulation becomes an option;
@ the return of hw implementation of a kernel of functions?

e was the case a long time ago (Intel 8087 and followers);

o Hw faster than Sftw,

e shortcoming: impossible to fix or improve an already shipped
circuit. ..

partly vanishes with exhaustive testing and correct rounding.

Methods for elementary function evaluation

Initial range reduction to some interval /.
For input variables € /,
@ polynomial or rational approximations (software); or

@ table-based methods (hardware, software); or

© shift-and-add algorithms (hardware);

Methods for elementary function evaluation

Initial range reduction to some interval /.

For input variables € /,
@ polynomial or rational approximations (software); or
@ table-based methods (hardware, software); or

© shift-and-add algorithms (hardware);

@ low precision only: bit-manipulation techniques.

Reduced precision and polynomial or rational approximations

Less accuracy constraints — larger domains and/or smaller degrees.

@ simpler, or even non-necessary range reduction when uniform
approximations can be used.
Example [Girones et al., 2013, Computer vision]:

k = 153 — 201
T 2567 128
ke [x|+x*

arctan(x) = sign(x) - p - 3 x a1 With error < 0.0029.
No branchings — vector implementations much easier.
@ small degrees of polynomial or rational approximations
— fine tuning of approximations,
— exhaustive search of “best” evaluation schemes,

e in terms of speed (optimal use of arithmetic pipeline)
e or in terms of evaluation error bound.

Tabulating functions (hardware)

Reduced precision — tabulation becomes a very interesting
option. ..

Tabulating functions (hardware)

Reduced precision — tabulation becomes a very interesting
option. ..

No, it's not boring news, it can be cleverly done!

Tabulating functions (hardware)

Reduced precision — tabulation becomes a very interesting
option. ..

No, it's not boring news, it can be cleverly done!

With current technology:

@ small tables: implemented as boolean functions of the entries
(specific optimizations);

@ big tables: all values are stored (matrix of Os and 1s). Address
decoding + propagation of signal through a line of the matrix.

— big gap. Threshold at around 21°-212 elements.

The Bipartite-Table Method

@ harware-oriented. Goal: overcoming the “2'2-element limit”

e Matula & Das Sarma (1995): reciprocal tables (seeds for NR)

TABLE P
2+l
[x 1% 1| 2+l bitsin, GkD)+2
Hlxg o
k+l k
NEENEN
K+l k
TABLE N
2t bits-in,

[xy 1% 1 | Ge1n2
‘bits-out.

Figure 1: A j+2=3k+1 bits-in j=3k-1 bits out Faithful Bipartite Reciprocal table

@ arbitrary (regular enough) functions: Schulte, Stine, (1997).

The Bipartite-Table Method

Approximate f(x), where x is a p-bit fixed-point number in [0, 1];
@ split x into three k-bit numbers xg, x1, and x2, kK = [p/3]:
X = X+ 27k><1 + 272k><2‘

with x; multiple of 27% and 0 < x; < 1.

@ approximate f(x) by A(xp, x1) + B(xo, x2), where

Alxo,x1) = f(xo+ 2=k + 2—2k—1)
Blxo,x2) = 27 (e —3) - F(0)

@ 2 tables of 2p/3 address bits instead of one with p address
bits.

A small example

0.000044

0.000024

-0.00002-

-0.000044

table

— bipartite

Figure 1: Error of a bipartite approximation of In(x) in [% 1] with k =5,
compared with error of a 15-address-bit table (table size 16 x larger).

A very odd trick (game Quake 1ll, 1999)

Positive « normal » FP number x

\ 1-bit right shift

* No operation, just consider it is an integer

|

(« magic constant »

+ 00011111101110110100111011001100 532369100 in decimal)

Integer addition

/ No operation, just consider it is a FP number

Vx

I4—

Q

v

A similar trick first appears in
The game Quake Il Arena

Dreamcast. ©

@ ARG [AaREN A

10

Bit-manipulation techniques

@ use the fact that the exponent field of x encodes |log, |x|].

@ Binary32 (a.k.a. single precision) representation of x:

s| E R |
31 30 23 22 0

o 1-bit sign S, 8-bit biased exponent E,, 23-bit fraction F; s.t.
x = (_1)5X . 2E>< 127 | (1 + 2—23 . Fx))

e the same bit-chain, if interpreted as 2's complement integer,
represents the number

e =(1-25)-22'+ (22 E + F).

11

Bit-manipulation method for /x

Remember:

= (_1)SX .2EX7127 . (1 +2—23 . Fx) _ (_l)Sx .08, (1 + fx)

&] z |
31 30 23 22

0
e If e, = E, — 127 is even (i.e., Ey is odd), we use:

iz~ (145) 20 1)

e if e, is odd (i.e., Ex is even), we use:

(I+F)- 20 = VEteg-22
~ (2+g)2" 2
G+%)-277,

(Taylor series for /4 + €4 at €x = 0, with e, = 2f, — 2)

12

Bit-manipulation method for /x (Blinn)

= (71)Sx . 2Ex7127 . (1 + 2723 . Fx) _ (71)S>< e (1 n f;()

s &] Fy l
31 30 23 22 5

o £ odd - (14 5) 2%,

(1+Fy.2—23) 26127 1 (14 F, . 2-24). LBt
= E, = &2 and F, = | & |
® E, even — (% 4T %) .2"“21_
(1+F, -27%). 2Ey*127 ~ (Bt F 2% Eei2s

= E, = EX+127 Land F, =224 L%J
In both cases:

I
ly = {J + 127 - 2?2
4 ’ 13

Bit-manipulation method for \/x (Blinn)

1 2 3 P
Figure 2: Plot of (approx — v/x)/+/x.

@ fast but rough approximation;

@ always > /x — replace 127 - 222 by a smaller value?

V/x with a better constant

0.03+

0.02-

-0.014

-0.02

-0.034

Figure 3: Plot of (approx — /x)/+/x with 127 - 2°% replaced by 532369100.

15

Quake Il function (1999): inverse square root

@ 1/4/x, possibly followed by
Newton-Raphson iteration;

@ reasoning very similar to
above-presented /x.

Ix
ly=— LQJ + 1597463007

@ non-optimal constant:

1597465647 is slightly
better.

0.03;

0.02;

0.01

-0.01

-0.02

-0.03

Figure 4: Plot of
(approx — 1/4/x) x +/x with the

“magic constant” 1597463007.

16

Bit-manipulation technique for the logarithm (Blinn)

273l —h) = (Ec—1271)+273.F,
e+ £
~ log,(x).

— |Og2(><) ~ 0223 Float(/\z - /1)_

where Float(/) is the FP number mathe-

matically equal to /.

Figure 5: Approx. to log,(x)

Linear interpolation at powers of 2.

17

And the winner is. ..

18

Nobody!

Different targets: hw vs sftw, low accuracy only vs “scalable”, only

a few functions vs versatile.

e Software:

e if error < a few % suffices, bit-manipulation techniques hard to
beat (typically 1 integer addition and 1 shift). They don't
scale up and are not versatile;

e otherwise: polynomial/rational (scalable and versatile).

@ Hardware:

e bipartite methods very versatile, do not scale-up well;
e shift-and-add algorithms fine tuning of speed-vs-accuracy
compromise. Scale-up well. Moderately versatile.

18

Thank youl

19

