Reduced Precision Elementary Functions

Jean-Michel Muller
CNRS/LIP, ENS Lyon

France

SIAM 2021 Conference on Computational Science and Engineering

Use of reduced-precision elementary functions ?

Sometimes a very fast rough approximation is useful:

- first step of a more accurate, iterative, computation;
- computer vision, multimedia:
- tolerate a slight loss in accuracy,
- need real-time processing;
- frequently deal with inherently inaccurate data;
- activation functions (sigmoids, tanh...) in neural nets;
- entertainment:
- Super Mario's pizza does not need to follow the laws of physics accurately,
- fluidity matters.

Small number formats: the blessing of exhaustivity

- easy testing (try all possible inputs);
- correct rounding becomes easily achievable
\rightarrow reproducible results;
[Low precision and very accurate!]
- tabulation becomes an option;
- the return of hw implementation of a kernel of functions?
- was the case a long time ago (Intel 8087 and followers);
- Hw faster than Sftw,
- shortcoming: impossible to fix or improve an already shipped circuit. . .
partly vanishes with exhaustive testing and correct rounding.

Methods for elementary function evaluation

Initial range reduction to some interval I.
For input variables $\in I$,
(1) polynomial or rational approximations (software); or
(2) table-based methods (hardware, software); or
(3) shift-and-add algorithms (hardware);

Methods for elementary function evaluation

Initial range reduction to some interval I.
For input variables $\in I$,
(1) polynomial or rational approximations (software); or
(2) table-based methods (hardware, software); or
(3) shift-and-add algorithms (hardware);
(9) low precision only: bit-manipulation techniques.

Reduced precision and polynomial or rational approximations

Less accuracy constraints \rightarrow larger domains and/or smaller degrees.

- simpler, or even non-necessary range reduction when uniform
approximations can be used.
Example [Girones et al., 2013, Computer vision]:

$$
\begin{aligned}
& k=\frac{153}{256}, \quad \mu=\frac{201}{128}, \\
& \arctan (x) \approx \operatorname{sign}(x) \cdot \mu \cdot \frac{k \cdot|x|+x^{2}}{2 k \cdot|x|+x^{2}+1}, \text { with error }<0.0029 .
\end{aligned}
$$

No branchings \rightarrow vector implementations much easier.

- small degrees of polynomial or rational approximations
\rightarrow fine tuning of approximations,
\rightarrow exhaustive search of "best" evaluation schemes,
- in terms of speed (optimal use of arithmetic pipeline)
- or in terms of evaluation error bound.

Tabulating functions (hardware)

Reduced precision \rightarrow tabulation becomes a very interesting option. . .

Tabulating functions (hardware)

> Reduced precision \rightarrow tabulation becomes a very interesting option. . .

No, it's not boring news, it can be cleverly done!

Tabulating functions (hardware)

Reduced precision \rightarrow tabulation becomes a very interesting option. . .

No, it's not boring news, it can be cleverly done!

With current technology:

- small tables: implemented as boolean functions of the entries (specific optimizations);
- big tables: all values are stored (matrix of 0 s and 1 s). Address decoding + propagation of signal through a line of the matrix.
\rightarrow big gap. Threshold at around $2^{10}-2^{12}$ elements.

The Bipartite-Table Method

- harware-oriented. Goal: overcoming the " 2^{12}-element limit"
- Matula \& Das Sarma (1995): reciprocal tables (seeds for NR)

Figure 1: A $\mathbf{j}+2=3 \mathbf{k}+1$ bits-in $\mathbf{j}=3 \mathbf{k}-1$ bits out Faithful Bipartite Reciprocal table

- arbitrary (regular enough) functions: Schulte, Stine, (1997).

The Bipartite-Table Method

Approximate $f(x)$, where x is a p-bit fixed-point number in $[0,1]$;

- split x into three k-bit numbers x_{0}, x_{1}, and $x_{2}, k=\lceil p / 3\rceil$:

$$
x=x_{0}+2^{-k} x_{1}+2^{-2 k} x_{2},
$$

with x_{i} multiple of 2^{-k} and $0 \leq x_{i}<1$.

- approximate $f(x)$ by $A\left(x_{0}, x_{1}\right)+B\left(x_{0}, x_{2}\right)$, where

$$
\left\{\begin{array}{l}
A\left(x_{0}, x_{1}\right)=f\left(x_{0}+2^{-k} x_{1}+2^{-2 k-1}\right) \\
B\left(x_{0}, x_{2}\right)=2^{-2 k}\left(x_{2}-\frac{1}{2}\right) \cdot f^{\prime}\left(x_{0}\right) .
\end{array}\right.
$$

- 2 tables of $2 p / 3$ address bits instead of one with p address bits.

A small example

Figure 1: Error of a bipartite approximation of $\ln (x)$ in $\left[\frac{1}{2}, 1\right]$ with $k=5$, compared with error of a 15 -address-bit table (table size $16 \times$ larger).

A very odd trick (game Quake III, 1999)

A similar trick first appears in
The game Quake III Arena

Bit-manipulation techniques

- use the fact that the exponent field of x encodes $\left\lfloor\log _{2}|x|\right\rfloor$.
- Binary32 (a.k.a. single precision) representation of x :

S_{x}		E_{x}		F_{x}	
31	30	23	22		0

- 1-bit sign $S_{x}, 8$-bit biased exponent $E_{x}, 23$-bit fraction F_{x} s.t.

$$
x=(-1)^{S_{x}} \cdot 2^{E_{x}-127} \cdot\left(1+2^{-23} \cdot F_{x}\right)
$$

- the same bit-chain, if interpreted as 2's complement integer, represents the number

$$
I_{x}=\left(1-2 S_{x}\right) \cdot 2^{31}+\left(2^{23} \cdot E_{x}+F_{x}\right)
$$

Bit-manipulation method for \sqrt{x}

Remember:

$$
\begin{gathered}
x=(-1)^{S_{x}} \cdot 2^{E_{x}-127} \cdot\left(1+2^{-23} \cdot F_{x}\right)=(-1)^{S_{x}} \cdot 2^{e_{x}} \cdot\left(1+f_{x}\right) . \\
\begin{array}{|l|l|l|l|}
\hline S_{x} & E_{x} & F_{x} \\
\begin{array}{cc}
31 & 30
\end{array} \quad 23 & 22 & 0
\end{array}
\end{gathered}
$$

- If $e_{x}=E_{x}-127$ is even (i.e., E_{x} is odd), we use:

$$
\begin{equation*}
\sqrt{\left(1+f_{x}\right) \cdot 2^{e_{x}}} \approx\left(1+\frac{f_{x}}{2}\right) \cdot 2^{e_{x} / 2} \tag{1}
\end{equation*}
$$

- if e_{X} is odd (i.e., E_{X} is even), we use:

$$
\begin{align*}
\sqrt{\left(1+f_{x}\right) \cdot 2^{e_{x}}} & =\sqrt{4+\epsilon_{x}} \cdot 2^{\frac{e_{x}-1}{2}} \\
& \approx\left(2+\frac{\epsilon_{x}}{4}\right) \cdot 2^{\frac{e_{x}-1}{2}} \tag{2}\\
& =\left(\frac{3}{2}+\frac{f_{x}}{2}\right) \cdot 2^{\frac{e_{x}-1}{2}}
\end{align*}
$$

(Taylor series for $\sqrt{4+\epsilon_{x}}$ at $\epsilon_{x}=0$, with $\epsilon_{x}=2 f_{x}-2$)

Bit-manipulation method for \sqrt{x} (Blinn)

$$
\begin{gathered}
x=(-1)^{S_{x}} \cdot 2^{E_{x}-127} \cdot\left(1+2^{-23} \cdot F_{x}\right)=(-1)^{S_{x}} \cdot 2^{e_{x}} \cdot\left(1+f_{x}\right) \\
\begin{array}{|l|l|l|l|l|}
\hline S_{x} & E_{x} & F_{x} \\
\hline 31 & 30 & 23 & 22 & 0
\end{array}
\end{gathered}
$$

- E_{x} odd $\rightarrow\left(1+\frac{f_{x}}{2}\right) \cdot 2^{\frac{e_{x}}{2}}$,

$$
\begin{gathered}
\left(1+F_{y} \cdot 2^{-23}\right) \cdot 2^{E_{y}-127} \approx\left(1+F_{x} \cdot 2^{-24}\right) \cdot 2^{\frac{E_{x}-127}{2}} \\
\Rightarrow E_{y}=\frac{E_{x}+127}{2} \text { and } F_{y}=\left\lfloor\frac{F_{x}}{2}\right\rfloor
\end{gathered}
$$

- E_{X} even $\rightarrow\left(\frac{3}{2}+\frac{f_{x}}{2}\right) \cdot 2^{\frac{e_{x}-1}{2}}$.

$$
\begin{aligned}
& \left(1+F_{y} \cdot 2^{-23}\right) \cdot 2^{E_{y}-127} \approx\left(\frac{3}{2}+F_{x} \cdot 2^{-24}\right) \cdot 2^{E_{x}-128} 2 \\
& \quad \Rightarrow E_{y}=\frac{E_{x}+127}{2}-\frac{1}{2} \text { and } F_{y}=2^{22}+\left\lfloor\frac{F_{x}}{2}\right\rfloor
\end{aligned}
$$

In both cases:

$$
I_{y}=\left\lfloor\frac{I_{x}}{2}\right\rfloor+127 \cdot 2^{22}
$$

Bit-manipulation method for \sqrt{x} (Blinn)

Figure 2: Plot of $(\operatorname{approx}-\sqrt{x}) / \sqrt{x}$.

- fast but rough approximation;
- always $\geq \sqrt{x} \rightarrow$ replace $127 \cdot 2^{22}$ by a smaller value?

\sqrt{x} with a better constant

Figure 3: Plot of $($ approx $-\sqrt{x}) / \sqrt{x}$ with $127 \cdot 2^{22}$ replaced by 532369100 .

Quake III function (1999): inverse square root

- $1 / \sqrt{x}$, possibly followed by Newton-Raphson iteration;
- reasoning very similar to above-presented \sqrt{x}.

$$
I_{y}=-\left\lfloor\frac{I_{x}}{2}\right\rfloor+1597463007
$$

- non-optimal constant: 1597465647 is slightly better.

Figure 4: Plot of
(approx $-1 / \sqrt{x}$) $\times \sqrt{x}$ with the "magic constant" 1597463007.

Bit-manipulation technique for the logarithm (Blinn)

Figure 5: Approx. to $\log _{2}(x)$

Linear interpolation at powers of 2.

And the winner is. . .

And the winner is...

Nobody!

Different targets: hw vs sftw, low accuracy only vs "scalable", only a few functions vs versatile.

- Software:
- if error < a few \% suffices, bit-manipulation techniques hard to beat (typically 1 integer addition and 1 shift). They don't scale up and are not versatile;
- otherwise: polynomial/rational (scalable and versatile).
- Hardware:
- bipartite methods very versatile, do not scale-up well;
- shift-and-add algorithms fine tuning of speed-vs-accuracy compromise. Scale-up well. Moderately versatile.

Thank you!

