Reduced Precision Elementary Functions

Jean-Michel Muller CNRS/LIP, ENS Lyon France

SIAM 2021 Conference on Computational Science and Engineering

Sometimes a very fast rough approximation is useful:

- first step of a more accurate, iterative, computation;
- computer vision, multimedia:
 - tolerate a slight loss in accuracy,
 - need real-time processing;
 - frequently deal with inherently inaccurate data;
- activation functions (sigmoids, tanh...) in neural nets;
- entertainment:
 - Super Mario's pizza does not need to follow the laws of physics accurately,
 - fluidity matters.

Small number formats: the blessing of exhaustivity

- easy testing (try all possible inputs);
- correct rounding becomes easily achievable
 - \rightarrow reproducible results;

[Low precision and very accurate!]

- tabulation becomes an option;
- the return of hw implementation of a kernel of functions?
 - was the case a long time ago (Intel 8087 and followers);
 - Hw faster than Sftw,
 - shortcoming: impossible to fix or improve an already shipped circuit...

partly vanishes with exhaustive testing and correct rounding.

Initial range reduction to some interval *I*.

```
For input variables \in I,
```

- polynomial or rational approximations (software); or
- table-based methods (hardware, software); or
- Shift-and-add algorithms (hardware);

Initial range reduction to some interval *I*.

```
For input variables \in I,
```

- polynomial or rational approximations (software); or
- table-based methods (hardware, software); or
- Shift-and-add algorithms (hardware);
- Iow precision only: bit-manipulation techniques.

Reduced precision and polynomial or rational approximations

Less accuracy constraints \rightarrow larger domains and/or smaller degrees.

• simpler, or even non-necessary range reduction when uniform approximations can be used.

Example [Girones et al., 2013, Computer vision]:

$$\begin{split} k &= \frac{153}{256}, \quad \mu = \frac{201}{128}, \\ \arctan(x) &\approx \text{sign}(x) \cdot \mu \cdot \frac{k \cdot |x| + x^2}{2k \cdot |x| + x^2 + 1}, \text{with error } < 0.0029. \end{split}$$

No branchings \rightarrow vector implementations much easier.

- small degrees of polynomial or rational approximations
 - \rightarrow fine tuning of approximations,
 - \rightarrow exhaustive search of "best" evaluation schemes,
 - in terms of speed (optimal use of arithmetic pipeline)
 - or in terms of evaluation error bound.

Reduced precision \rightarrow tabulation becomes a very interesting option. . .

Reduced precision \rightarrow tabulation becomes a very interesting option. . .

No, it's not boring news, it can be cleverly done!

Reduced precision \rightarrow tabulation becomes a very interesting option. . .

No, it's not boring news, it can be cleverly done!

With current technology:

- small tables: implemented as *boolean functions* of the entries (specific optimizations);
- big tables: all values are stored (matrix of 0s and 1s). Address decoding + propagation of signal through a line of the matrix.

 \rightarrow big gap. Threshold at around 2¹⁰-2¹² elements.

The Bipartite-Table Method

- harware-oriented. Goal: overcoming the "2¹²-element limit"
- Matula & Das Sarma (1995): reciprocal tables (seeds for NR)

Figure 1: A j+2=3k+1 bits-in j=3k-1 bits out Faithful Bipartite Reciprocal table

• arbitrary (regular enough) functions: Schulte, Stine, (1997).

Approximate f(x), where x is a p-bit fixed-point number in [0, 1];

• split x into three k-bit numbers x_0 , x_1 , and x_2 , $k = \lceil p/3 \rceil$:

$$x = x_0 + 2^{-k} x_1 + 2^{-2k} x_2$$

with x_i multiple of 2^{-k} and $0 \le x_i < 1$.

• approximate f(x) by $A(x_0, x_1) + B(x_0, x_2)$, where

$$\begin{cases} A(x_0, x_1) &= f(x_0 + 2^{-k}x_1 + 2^{-2k-1}) \\ B(x_0, x_2) &= 2^{-2k} \left(x_2 - \frac{1}{2} \right) \cdot f'(x_0). \end{cases}$$

• 2 tables of 2*p*/3 address bits instead of one with *p* address bits.

A small example

Figure 1: Error of a bipartite approximation of ln(x) in $[\frac{1}{2}, 1]$ with k = 5, compared with error of a 15-address-bit table (table size $16 \times larger$).

A very odd trick (game Quake III, 1999)

Bit-manipulation techniques

- use the fact that the exponent field of x encodes $\lfloor \log_2 |x| \rfloor$.
- Binary32 (a.k.a. single precision) representation of x:

• 1-bit sign S_x , 8-bit biased exponent E_x , 23-bit fraction F_x s.t.

$$x = (-1)^{S_x} \cdot 2^{E_x - 127} \cdot (1 + 2^{-23} \cdot F_x).$$

• the same bit-chain, if interpreted as 2's complement integer, represents the number

$$I_x = (1 - 2S_x) \cdot 2^{31} + (2^{23} \cdot E_x + F_x).$$

Bit-manipulation method for \sqrt{x}

Remember:

$$x = (-1)^{S_x} \cdot 2^{E_x - 127} \cdot (1 + 2^{-23} \cdot F_x) = (-1)^{S_x} \cdot 2^{e_x} \cdot (1 + f_x).$$

S_x	E	x	F _x	
31	30	23	22	0

• If $e_x = E_x - 127$ is even (i.e., E_x is odd), we use:

$$\sqrt{(1+f_x)\cdot 2^{e_x}} \approx \left(1+\frac{f_x}{2}\right)\cdot 2^{e_x/2},$$
 (1)

• if e_x is odd (i.e., E_x is even), we use:

$$\sqrt{(1+f_x) \cdot 2^{e_x}} = \sqrt{4+\epsilon_x} \cdot 2^{\frac{e_x-1}{2}} \\
\approx (2+\frac{\epsilon_x}{4}) \cdot 2^{\frac{e_x-1}{2}} \\
= (\frac{3}{2}+\frac{f_x}{2}) \cdot 2^{\frac{e_x-1}{2}},$$
(2)

(Taylor series for $\sqrt{4+\epsilon_x}$ at $\epsilon_x=$ 0, with $\epsilon_x=2f_x-2)$

Bit-manipulation method for \sqrt{x} (Blinn)

$$x = (-1)^{S_x} \cdot 2^{E_x - 127} \cdot (1 + 2^{-23} \cdot F_x) = (-1)^{S_x} \cdot 2^{e_x} \cdot (1 + f_x).$$

S_X	E	x	F _x	
31	30	23	22	0

• $E_x \text{ odd} \rightarrow \left(1 + \frac{f_x}{2}\right) \cdot 2^{\frac{e_x}{2}}$,

$$(1+F_y \cdot 2^{-23}) \cdot 2^{E_y - 127} \approx (1+F_x \cdot 2^{-24}) \cdot 2^{\frac{E_x - 127}{2}}$$
$$\Rightarrow E_y = \frac{E_x + 127}{2} \text{ and } F_y = \lfloor \frac{F_x}{2} \rfloor$$

• E_x even $\rightarrow \left(\frac{3}{2} + \frac{f_x}{2}\right) \cdot 2^{\frac{e_x-1}{2}}$.

$$(1 + F_y \cdot 2^{-23}) \cdot 2^{E_y - 127} \approx (\frac{3}{2} + F_x \cdot 2^{-24}) \cdot 2^{\frac{E_x - 128}{2}} \Rightarrow E_y = \frac{E_x + 127}{2} - \frac{1}{2} \text{ and } F_y = 2^{22} + \lfloor \frac{F_x}{2} \rfloor$$

In both cases:

$$I_y = \left\lfloor \frac{I_x}{2} \right\rfloor + 127 \cdot 2^{22}$$

13

Bit-manipulation method for \sqrt{x} (Blinn)

Figure 2: Plot of $(approx - \sqrt{x})/\sqrt{x}$.

- fast but rough approximation;
- always $\geq \sqrt{x} \rightarrow$ replace 127 \cdot 2²² by a smaller value?

\sqrt{x} with a better constant

Figure 3: Plot of $(approx - \sqrt{x})/\sqrt{x}$ with $127 \cdot 2^{22}$ replaced by 532369100.

Quake III function (1999): inverse square root

- 1/√x, possibly followed by Newton-Raphson iteration;
- reasoning very similar to above-presented \sqrt{x} .

$$I_y = -\left\lfloor \frac{I_x}{2} \right\rfloor + 1597463007$$

 non-optimal constant: 1597465647 is slightly better.

Figure 4: Plot of (approx $-1/\sqrt{x}$) × \sqrt{x} with the "magic constant" 1597463007.

Bit-manipulation technique for the logarithm (Blinn)

Figure 5: Approx. to $\log_2(x)$

Linear interpolation at powers of 2.

And the winner is...

Nobody!

Different targets: hw vs sftw, low accuracy only vs "scalable", only a few functions vs versatile.

- Software:
 - if error < a few % suffices, bit-manipulation techniques hard to beat (typically 1 integer addition and 1 shift). They don't scale up and are not versatile;
 - otherwise: polynomial/rational (scalable and versatile).
- Hardware:
 - bipartite methods very versatile, do not scale-up well;
 - shift-and-add algorithms fine tuning of speed-vs-accuracy compromise. Scale-up well. Moderately versatile.

Thank you!