
Reduced Precision Elementary Functions

Jean-Michel Muller
CNRS/LIP, ENS Lyon

France

SIAM 2021 Conference on Computational Science and Engineering

1

Use of reduced-precision elementary functions ?

Sometimes a very fast rough approximation is useful:

first step of a more accurate, iterative, computation;

computer vision, multimedia:
tolerate a slight loss in accuracy,
need real-time processing;
frequently deal with inherently inaccurate data;

activation functions (sigmoids, tanh. . .) in neural nets;

entertainment:
Super Mario’s pizza does not need to follow the laws of physics
accurately,
fluidity matters.

2

Small number formats: the blessing of exhaustivity

easy testing (try all possible inputs);

correct rounding becomes easily achievable
→ reproducible results;

[Low precision and very accurate!]

tabulation becomes an option;

the return of hw implementation of a kernel of functions?
was the case a long time ago (Intel 8087 and followers);
Hw faster than Sftw,
shortcoming: impossible to fix or improve an already shipped
circuit. . .

partly vanishes with exhaustive testing and correct rounding.

3

Methods for elementary function evaluation

Initial range reduction to some interval I .

For input variables ∈ I ,

1 polynomial or rational approximations (software); or

2 table-based methods (hardware, software); or

3 shift-and-add algorithms (hardware);

4 low precision only: bit-manipulation techniques.

4

Methods for elementary function evaluation

Initial range reduction to some interval I .

For input variables ∈ I ,

1 polynomial or rational approximations (software); or

2 table-based methods (hardware, software); or

3 shift-and-add algorithms (hardware);

4 low precision only: bit-manipulation techniques.

4

Reduced precision and polynomial or rational approximations

Less accuracy constraints → larger domains and/or smaller degrees.

simpler, or even non-necessary range reduction when uniform
approximations can be used.
Example [Girones et al., 2013, Computer vision]:

k = 153
256 , 𝜇 = 201

128 ,

arctan(x) ≈ sign(x) · 𝜇 · k·|x|+x2

2k·|x|+x2+1 ,with error < 0.0029.

No branchings → vector implementations much easier.
small degrees of polynomial or rational approximations
→ fine tuning of approximations,
→ exhaustive search of “best” evaluation schemes,

in terms of speed (optimal use of arithmetic pipeline)
or in terms of evaluation error bound.

5

Tabulating functions (hardware)

Reduced precision → tabulation becomes a very interesting
option. . .

No, it’s not boring news, it can be cleverly done!

With current technology:

small tables: implemented as boolean functions of the entries
(specific optimizations);

big tables: all values are stored (matrix of 0s and 1s). Address
decoding + propagation of signal through a line of the matrix.

→ big gap. Threshold at around 210–212 elements.

6

Tabulating functions (hardware)

Reduced precision → tabulation becomes a very interesting
option. . .

No, it’s not boring news, it can be cleverly done!

With current technology:

small tables: implemented as boolean functions of the entries
(specific optimizations);

big tables: all values are stored (matrix of 0s and 1s). Address
decoding + propagation of signal through a line of the matrix.

→ big gap. Threshold at around 210–212 elements.

6

Tabulating functions (hardware)

Reduced precision → tabulation becomes a very interesting
option. . .

No, it’s not boring news, it can be cleverly done!

With current technology:

small tables: implemented as boolean functions of the entries
(specific optimizations);

big tables: all values are stored (matrix of 0s and 1s). Address
decoding + propagation of signal through a line of the matrix.

→ big gap. Threshold at around 210–212 elements.

6

The Bipartite-Table Method

harware-oriented. Goal: overcoming the “212-element limit”

Matula & Das Sarma (1995): reciprocal tables (seeds for NR)

arbitrary (regular enough) functions: Schulte, Stine, (1997).

7

The Bipartite-Table Method

Approximate f (x), where x is a p-bit fixed-point number in [0, 1];

split x into three k-bit numbers x0, x1, and x2, k = ⌈p/3⌉:

x = x0 + 2−kx1 + 2−2kx2,

with xi multiple of 2−k and 0 ≤ xi < 1.

approximate f (x) by A(x0, x1) + B(x0, x2), where{︃
A(x0, x1) = f (x0 + 2−kx1 + 2−2k−1)

B(x0, x2) = 2−2k (︀x2 − 1
2

)︀
· f ′(x0).

2 tables of 2p/3 address bits instead of one with p address
bits.

8

A small example

Figure 1: Error of a bipartite approximation of ln(x) in [12 , 1] with k = 5,
compared with error of a 15-address-bit table (table size 16 × larger).

9

A very odd trick (game Quake III, 1999)

0

S E F

0

+ 00011111101110110100111011001100 (« magic constant »

532369100 in decimal)

1-bit right shift

No operation, just consider it is an integer

No operation, just consider it is a FP number

Integer addition

Positive « normal » FP number x

 y ≈ x

A similar trick first appears in

The game Quake III Arena

10

Bit-manipulation techniques

use the fact that the exponent field of x encodes ⌊log2 |x |⌋.
Binary32 (a.k.a. single precision) representation of x :

31 30 23 22 0

Sx Ex Fx

1-bit sign Sx , 8-bit biased exponent Ex , 23-bit fraction Fx s.t.

x = (−1)Sx · 2Ex−127 ·
(︀
1 + 2−23 · Fx

)︀
.

the same bit-chain, if interpreted as 2’s complement integer,
represents the number

Ix = (1 − 2Sx) · 231 +
(︀
223 · Ex + Fx

)︀
.

11

Bit-manipulation method for
√
x

Remember:
x = (−1)Sx · 2Ex−127 ·

(︀
1 + 2−23 · Fx

)︀
= (−1)Sx · 2ex · (1 + fx).

31 30 23 22 0

Sx Ex Fx

If ex = Ex − 127 is even (i.e., Ex is odd), we use:√︀
(1 + fx) · 2ex ≈

(︂
1 +

fx
2

)︂
· 2ex/2, (1)

if ex is odd (i.e., Ex is even), we use:√︀
(1 + fx) · 2ex =

√
4 + 𝜖x · 2

ex−1
2

≈
(︀
2 + 𝜖x

4

)︀
· 2

ex−1
2

=
(︀3

2 + fx
2

)︀
· 2

ex−1
2 ,

(2)

(Taylor series for
√

4 + 𝜖x at 𝜖x = 0, with 𝜖x = 2fx − 2)
12

Bit-manipulation method for
√
x (Blinn)

x = (−1)Sx · 2Ex−127 ·
(︀
1 + 2−23 · Fx

)︀
= (−1)Sx · 2ex · (1 + fx).

31 30 23 22 0

Sx Ex Fx

Ex odd →
(︀
1 + fx

2

)︀
· 2

ex
2 ,

(1 + Fy · 2−23) · 2Ey−127 ≈ (1 + Fx · 2−24) · 2
Ex−127

2

⇒ Ey = Ex+127
2 and Fy = ⌊Fx

2 ⌋

Ex even →
(︀3

2 + fx
2

)︀
· 2

ex−1
2 .

(1 + Fy · 2−23) · 2Ey−127 ≈ (3
2 + Fx · 2−24) · 2

Ex−128
2

⇒ Ey = Ex+127
2 − 1

2 and Fy = 222 + ⌊Fx
2 ⌋

In both cases:

Iy =

⌊︂
Ix
2

⌋︂
+ 127 · 222

13

Bit-manipulation method for
√
x (Blinn)

Figure 2: Plot of (approx −
√
x)/

√
x .

fast but rough approximation;
always ≥

√
x → replace 127 · 222 by a smaller value?

14

√
x with a better constant

Figure 3: Plot of (approx −
√
x)/

√
x with 127 · 222 replaced by 532369100.

15

Quake III function (1999): inverse square root

1/
√
x , possibly followed by

Newton-Raphson iteration;

reasoning very similar to
above-presented

√
x .

Iy = −
⌊︂
Ix
2

⌋︂
+ 1597463007

non-optimal constant:
1597465647 is slightly
better.

Figure 4: Plot of
(approx − 1/

√
x)×

√
x with the

“magic constant” 1597463007.

16

Bit-manipulation technique for the logarithm (Blinn)

2−23(Ix − I1) = (Ex − 127) + 2−23 · Fx

= ex + fx

≈ log2(x).

→ log2(x) ≈ 2−23 · Float(Ix − I1).

where Float(I) is the FP number mathe-

matically equal to I .

Figure 5: Approx. to log2(x)

Linear interpolation at powers of 2.

17

And the winner is. . .

Nobody!

Different targets: hw vs sftw, low accuracy only vs “scalable”, only
a few functions vs versatile.

Software:
if error < a few % suffices, bit-manipulation techniques hard to
beat (typically 1 integer addition and 1 shift). They don’t
scale up and are not versatile;
otherwise: polynomial/rational (scalable and versatile).

Hardware:
bipartite methods very versatile, do not scale-up well;
shift-and-add algorithms fine tuning of speed-vs-accuracy
compromise. Scale-up well. Moderately versatile.

18

And the winner is. . .

Nobody!

Different targets: hw vs sftw, low accuracy only vs “scalable”, only
a few functions vs versatile.

Software:
if error < a few % suffices, bit-manipulation techniques hard to
beat (typically 1 integer addition and 1 shift). They don’t
scale up and are not versatile;
otherwise: polynomial/rational (scalable and versatile).

Hardware:
bipartite methods very versatile, do not scale-up well;
shift-and-add algorithms fine tuning of speed-vs-accuracy
compromise. Scale-up well. Moderately versatile.

18

Thank you!

19

