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Abstract—The fused multiply accumulate-add (FMA) instruction, specified by the IEEE 754-2008 Standard for Floating-Point

Arithmetic, eases some calculations, and is already available on some current processors such as the Power PC or the Itanium. We
first extend an earlier work on the computation of the exact error of an FMA (by giving more general conditions and providing a formal

proof). Then, we present a new algorithm that computes an approximation to the error of an FMA, and provide error bounds and a

formal proof for that algorithm.

Index Terms—Floating-point arithmetic, FMA, fused multiply-add, computer arithmetic, error-free transforms, error compensation,
error of an FMA.
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1 INTRODUCTION

THE fused multiply-add (FMA) instruction makes it
possible to evaluate !ax! b, where a, x, and b are

floating-point numbers, with one final rounding only. That
instruction was introduced in 1990 on the IBM RS/6000
processor [2], [3]. It allows for faster, and, in general, more
accurate dot products, matrix multiplications, and polyno-
mial evaluations. It also makes it possible to design fast
algorithms for correctly rounded division and square root
[4], [5],which explainswhy, on current chips offering such an
instruction, there is no fully hardwired divider (see, e.g., [1]).
An FMA also eases the design of an accurate range reduction
algorithm for the trigonometric functions [6].

After the IBM RS/6000, FMA units were implemented in
several general-purpose processors. Examples are the IBM
PowerPC [7], the HP PA-8000 [8], [9], and the HP/Intel
Itanium [10]. A survey on FMA architectures, along with
suggestions for new architectures, is presented in [11].

The FMA instruction is included in the newly revised
IEEE 754-2008 standard for floating-point arithmetic [12].
An important consequence of this is that within a few years,
this instruction will probably be available on most general-
purpose processors.

It is well known [13], [14], [15], [16], [17] that (under some
assumptions such as requiring rounding to nearest in the
case of addition and square root, or assumptions on the radix;
see [5] for more details) the error of a floating-point addition
or multiplication, or the remainder of a division or square
root is exactly representable as a floating-point number of
the same format. Moreover, that error is computable using
reasonably simple algorithms, some of which will be quickly
recalled in Section 2. A natural question arises: Is there a
similar property for the FMA operation?

We addressed this question in [18] in the case of radix-2
arithmetic and assuming rounding to nearest. We showed
that two floating-point numbers always suffice for repre-
senting the error of an FMA, and we gave an algorithm
for computing these two numbers. The total number of
floating-point operations it requires is 20. That algorithm
was, for instance, used by Louvet [19], [20] for building a
fast compensated polynomial evaluation algorithm.

Nevertheless, the proofs of [18] were only in radix 2,
and were only pen-and-paper proofs. To increase the trust
in this algorithm, we have formally proved it, using the
Coq proof checker1 [21], and tried to get results as general
as possible (for instance, we no longer require the radix to
be two). This proof will be the first result presented in this
paper, in Section 3.

Also, in many applications (compensated algorithms
being a typical example), computing the error of an FMA
exactly may not be necessary: if there exists a much faster
algorithm that provides a good approximation to that error,
it may be preferable to use it, provided we have a bound on
the approximation error. We deal with this problem in
Section 4.

1.1 Notation

In a floating-point format of radix !, precision p, and
extremal exponents emin and emax, a finite floating-point (FP)
number is a number for which there exists at least one
representation ðM; eÞ such that

x ¼ M % !e&pþ1; ð1Þ

where

. M is an integer of absolute value, less than or equal
to !p & 1. It is called the integral significand of the
representation of x,

. e is an integer such that emin ( e ( emax, called the
exponent of the representation of x.

The significand of the representation of x is the number
m ¼ M % !1&p, so that

x ¼ m % !e:
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The representation ðM; eÞ is said normalized, if !p&1 ( jMj (
!p & 1 (or, equivalently, 1 ( jmj < !).

. When x has a normalized representation, that
representation is unique, x is said normal, and we
call integral significand, significand, and exponent of
x the integral significand, significand, and exponent
of its normalized representation.

. An FP number that has no normalized representa-
tion is said subnormal. If x is subnormal, then
jxj < !emin , and x has a unique representation, of
exponent emin.

The smallest positive normal FP number is !emin and the
smallest positive FP number is !emin&pþ1.

If x is normal and its normalized representation is ðM; eÞ,
we define ulpðxÞ as !e&pþ1. If x is subnormal, we define
ulpðxÞ as !emin&pþ1.

In the following, ) denotes the rounding operation under
round-to-nearest mode. For instance, if a and b are floating-
point (FP) numbers, )ðaþ bÞ is the computed, floating-point
approximation to aþ b, whereas aþ b is the exact, real value
of aþ b. On systems compliant with IEEE 754-2008, the
default rounding operation is round-to-nearest even: )ðxÞ is
the floating-point number nearest to x, and in the case of a
tie—i.e., if there are two FP numbers nearest x—the one
with an even integral significand is returned. Notice that all
rounding operations defined by the IEEE 754-2008 standard
are monotonic: if a ( b then )ðaÞ ( )ðbÞ. We will use this
property in our proofs.

We will also frequently use Sterbenz’s Theorem:

Theorem 1 (Sterbenz [24]). In a radix-! floating-point system

with subnormal numbers available, if x and y are finite

floating-point numbers such that

y

2
( x ( 2y;

then x& y is exactly representable.

2 BASIC OPERATIONS

Let us now present some basic algorithms, called error-free

transforms by Rump [22], that allow one, under some
conditions, to compute the error of a floating-point addition
or multiplication exactly.

We will assume in all our proofs that there is no
overflow. Nevertheless, we have looked into all our
algorithms: they may create an unjustified overflow (espe-
cially, if a* x does overflow but a* xþ b does not), but if
so, they will forward infinities. There cannot be any hidden
overflow in these algorithms: one will always get an infinity
as result, if an overflow occurs at any point.

2.1 Algorithm Fast2Sum

Fast2Sum was introduced in a paper by Dekker [15], [17] in
1971. Assume that ) is round-to-nearest, and that ! ( 3. Let
a and b be floating-point numbers such that the exponent
of a, noted ea, is larger than or equal to that of b. The
following algorithm computes two FP numbers s and "

such that sþ " ¼ aþ b exactly, and s ¼ )ðaþ bÞ (i.e., " is
the error of the FP addition of a and b).

Note that jaj + jbj implies ea + eb, the needed require-
ment for this algorithm.

Algorithm 1 (Fast2Sumða; bÞ):
s ¼ )ðaþ bÞ
t ¼ )ðs& aÞ
" ¼ )ðb& tÞ

2.2 Algorithm 2Sum

Fast2Sum only requires three floating-points additions, and
yet it has two drawbacks: first, it does not always work in
radices larger than three (in particular, in radix 10), and
second, the condition “the exponent of a is larger than or
equal to that of b” may require a comparison of a and b: on
recent processors, a wrong branch prediction, when
performing this comparison, may cost much. Hence, in
many cases, it may be preferable to use the following
algorithm, due to Knuth [14]:

Algorithm 2 (2Sumða; bÞ):
s ¼ )ðaþ bÞ
â ¼ )ðs& bÞ
b̂ ¼ )ðs& âÞ
#a ¼ )ða& âÞ
#b ¼ )ðb& b̂Þ
" ¼ )ð#a þ #bÞ

Knuth [14] showed that, if a and b are normal FP
numbers, then for any value of !, provided that no
underflow or overflow occurs, aþ b ¼ sþ ". Boldo et al.
[23] showed that in radix 2, this result still holds in the
presence of underflow.

2.3 Algorithm Fast2Mult

If no FMA instruction is available, there exists an algorithm,
due to Dekker, that computes the error of an FP multi-
plication using 17 FP operations [15] (multiplications and
additions/subtractions). On systems with an FMA instruc-
tion, the same calculation is performed much more quickly,
using the following, straightforward, algorithm, that works
for any value of !:

Algorithm 3 (Fast2Multða; bÞ):
t ¼ )ða % bÞ
" ¼ )ða % b& tÞ

Let ea and ab be the floating-point exponents of a and b.
If ea þ eb + emin þ p& 1, then the number " computed by
Fast2Multða; bÞ is exactly equal to the error of the
FP multiplication )ða % bÞ. Notice that the condition ea þ eb +
emin þ p& 1 cannot be avoided: if it is not satisfied, then
there are cases when t& a % b is not an FP number.

3 EXACT ERROR OF THE FMA
3.1 Algorithm

We presented in [18] the following algorithm to compute
the exact error of an FMA. The input values are three FP
numbers a, x, and y. The output values are r1, r2, and r3.
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Algorithm 4 (ErrFma):
r1 ¼ )ðaxþ yÞ
ðu1; u2Þ ¼ Fast2Multða; xÞ
ð$1; $2Þ ¼ 2Sumðy; u2Þ
ð!1; !2Þ ¼ 2Sumðu1; $1Þ

% ¼ )ð)ð!1 & r1Þ þ !2Þ
ðr2; r3Þ ¼ Fast2Sumð%; $2Þ

Property 1 (ErrFma_correctness). Assuming radix 2, round-
to-nearest and no underflows/overflows, we showed in [18]
that Algorithm 4 satisfies:

. axþ y ¼ r1 þ r2 þ r3 exactly,

. jr2 þ r3j ( 1
2 ulpðr1Þ, and

. jr3j ( 1
2 ulpðr2Þ.

Using property 1, if instead of exactly computing the
error of an FMA as a sum of two FP numbers we just want
to compute the FP number nearest that error, it is
straightforward to get it:

Algorithm 5 (ErrFmaNearest):
r1 ¼ )ðaxþ yÞ

ðu1; u2Þ ¼ Fast2Multða; xÞ
ð$1; $2Þ ¼ 2Sumðy; u2Þ
ð!1; !2Þ ¼ 2Sumðu1; $1Þ

% ¼ )ð)ð!1 & r1Þ þ !2Þ
r2 ¼ )ð% þ $2Þ

From the results of [18], we easily deduce that

jr1 þ r2 & ðaxþ yÞj ( 1

2
ulpðr2Þ:

3.2 Formal proof
Nevertheless, the proofs of [18] were only in radix 2, and
were only pen-and-paper proofs. As the proof is complex
and has many subcases (for example, !2 ¼ 0 or not), and to
increase the trust in this algorithm, we have formally
proved Algorithm 4, which directly gives us the correctness
of Algorithm 5. Also, building a formal proof forces to detail
all possible cases of underflow of an intermediate variable:
this tedious (and somewhat error-prone) task is almost
always skipped or overlooked in paper-and-pencil proofs.

The exact Coq theorem is given in Fig. 1. Its counterpart
in mathematical language is the following:

Theorem 2. Let p be the number of digits with p + 3. Let ! be the
radix with ! + 2. We assume that ! is even, and that ) is any
consistent round-to-nearest mode. This means that the round-
ing must be a rounding to nearest, but done in a consistent
way (a real number always rounds to the same FP value). This
is the case especially for the usual round-to-nearest, ties to even
and for the round-to-nearest, ties away from zero defined by
the IEEE 754-2008 standard.

Let a, b, and x be floating-point numbers (either normal
or subnormal).

Let r1, u1, u2, $1, $2, !1, !2, and % be computed as in
Algorithm 4.

Then we assume a few nonunderflow hypotheses:

. either $1 ¼ 0 or !eminþ1 ( j$1j

. either u1 ¼ 0 or !eminþ1 ( ju1j

. either !1 ¼ 0 or !eminþ2 ( j!1j

. either r1 ¼ 0 or r1 is normal, and

. the exponents of a and b are such that ea þ ex +
emin þ p& 1 (so the error when computing ax, namely
ax& )ðaxÞ, is an FP number).

Then

a* xþ y ¼ r1 þ % þ $2:

Note that there is no requirement on the radix except
that it should be even: for instance, the algorithm works
in radices 2, 10, 16. This limit is due to the fact that
1
2 ulpðfÞ is considered a floating-point number, which
greatly simplifies the proof. Odd radices should be
looked upon specifically. We do not believe this con-
straint is a problem for any real-life system. The only
actually built odd-radix system, we are aware of, was the
SETUN computer, built in the USSR in the late 1950s [25].

4 APPROXIMATED ERROR OF THE FMA

Algorithm 5 uses 20 FP operations. We were not able to find
an algorithm that returns the same result with fewer
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operations. And yet, for many applications such as
compensated polynomial evaluation [19], [20], really getting
the FP number, that is nearest the error of an FMA, is not
necessary: a good approximation to that error may suffice.

Hence, in the following, we aim at being faster than
Algorithm 5, and we accept to be (hopefully slightly) less
accurate. Let us now present a new algorithm, that only
requires 12 floating-point operations.

4.1 Algorithm
We make no assumption on the radix ! (except, of course,
that it is an integer larger than or equal to two). We assume
that the precision p is larger than or equal to four. Even
more general than previously, ) is any round-to-nearest: not
even consistence is needed here! Therefore, it works in
rounding to nearest, ties to even and in rounding to nearest,
ties away from zero, and it is even possible to switch
between these two rounding modes during the calculation.

Algorithm 6 (ErrFmaAppr):
z ¼ )ðaxþ bÞ
ðph; plÞ ¼ Fast2Multða; xÞ
ðuh; ulÞ ¼ 2Sumðb; phÞ
t ¼ )ðuh & zÞ
z0 ¼ )ðtþ )ðpl þ ulÞÞ

We are going to prove

Property 2 (ErrFmaAppr_correctness).

jzþ z0 & ðaxþ bÞj ( 3!

2
þ 1

2

! "
!2&2pjzj:

Property 2 implies that jzþ z0 & ðaxþ bÞj < 2 % !3&2p % jzj,
therefore, we have at least p& 1& log!ð2Þ correct digits
following z, as shown in Fig. 2.

4.2 Proof
We assume there is neither Underflow nor Overflow, and
that the working precision p is larger than or equal to four.
Note that concerning underflow, this assumption is just
here for simplifying the proof (see Section 4.3). We proved
that, if f ¼ )ðrÞ and f is normal, then jf j ( jrj

1&!1&p=2 and
jrj ( jf jð1þ !1&p=2Þ.

4.2.1 The Computation of t is Exact

Property 3. t is computed without error.

First, uh and z share the same sign: if axþ b + 0, then
z + 0. Moreover, in that case, ax + &b, so ph + &b, so
uh + 0. The same properties show that when axþ b ( 0,
then both z and uh are nonpositive. We now consider two
subcases depending on whether uh ¼ )ðph þ bÞ is the result
of a significant cancellation, or not.

Assuming jplj ( jphþbj
4 : As we are going to see, this

assumption of no or small cancellation will suffice to
guarantee that Theorem 1 can be applied to the computa-
tion of t. We have,

jzj ( jaxþ bj
1& !1&p=2

( jph þ bj þ jplj
1& !1&p=2

( 5

4
% jph þ bj
1& !1&p=2

( juhj %
5

4
% 1þ !1&p=2

1& !1&p=2

( 2 % juhj;

as p + 4.
Moreover,

jph þ bj ¼ jph þ pl þ b& plj
( jph þ pl þ bj þ jplj

( jaxþ bj þ jph þ bj
4

;

so jph þ bj ( 4
3 % jaxþ bj. Therefore,

juhj (
jph þ bj

1& !1&p=2

( 4

3
% jaxþ bj
1& !1&p=2

( jzj % 4
3
% 1þ !1&p=2

1& !1&p=2

( 2jzj;

as p + 4.
Therefore, from Theorem 1, juhj & jzj ¼ !ðuh & zÞ is

representable and uh & z is computed exactly.
Assuming jphþbj

4 < jplj: This assumption means a signifi-
cant cancellation during the computation of uh ¼ )ðph þ bÞ
as shown in Fig. 3. It, therefore, means that ph , &b. This
also implies that pl 6¼ 0, therefore the exponent of ph cannot
be the minimal exponent (otherwise, ph þ pl would fit in one
FP number only):

eph > emin:

Furthermore, since a is a multiple of ulpðaÞ ¼ !ea&pþ1 and x
is a multiple of !ex&pþ1, we deduce that ax (and, therefore,
pl) is a multiple of !eaþex&2pþ2. Since pl is nonzero, its
absolute value is at least !eaþex&2pþ2. From jplj ( 1=2ulpðphÞ
we immediately deduce

eph > ea þ ex & pþ 1:
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Moreover,

jph þ bj < 4 % jplj ( 2 % ulpðphÞ ¼ 2!eph&pþ1:

Also,

jbj + jphj & jph þ bj + jphj & 2 % !eph&pþ1 + jphj & 2 % jphj % !&p;

therefore (since we assumed p + 4),

jbj + 1

2
% jphj;

and eph & 1 ( eb. We easily prove that jbj ( 2jphj. Therefore,
from Theorem 1, the computation of ph þ b is exact, i.e.,

uh ¼ ph þ b;

and the result is a multiple of !eph&p.
Furthermore, since ax is a multiple of !eaþex&2pþ2 and

eb + eph & 1 + ea þ ex & pþ 1 (which implies that b is a
multiple of !eaþex&2pþ2), we find that axþ b is a multiple of
!eaþex&2pþ2. So, z ¼ )ðaxþ bÞ is a multiple of !eaþex&2pþ2.

Finally, uh & z is a multiple of !eaþex&2pþ2, say uh & z ¼
T % !eaþex&2pþ2. To show that t ¼ uh & z exactly, it only
remains to show that uh & z is a floating-point number. To
that purpose, we show that jT j ( !p & 1. We have,

jT j ¼ juh & zj % !&ea&exþ2p&2 ¼ jph þ b& zj % !&ea&exþ2p&2

( ðjplj þ jaxþ b& zjÞ!&ea&exþ2p&2

( 1

2
!eph&ea&exþp&1 þ !ez&ea&exþp&1
# $

:

Moreover, ez < eph as

jaxþ bj ( jph þ bj þ jplj
( 5 % jplj

( 5

2
!eph&pþ1;

so jzj ( 3!eph&pþ1.
Therefore,

jT j ¼ juh & zj % !&ea&exþ2p&2 < !eph&ea&exþp&1:

It remains to be proved that eph & ea & ex þ p& 1 ( p, i.e.,
that eph ( ea þ ax þ 1, which is easy, since

jaxj ( ! & 1

!p&1

! "2

% !eaþex

( ! & 1

!p&1

! "
% !eaþexþ1;

which implies

jphj ( ! & 1

!p&1

! "
% !eaþexþ1:

We have ended the proof of the fact that the computation
of t is exact. We now separately consider the two subcases
uh ¼ ph þ b and uh 6¼ ph þ b.

4.2.2 When uh ¼ ph þ b

Property 4. When uh ¼ ph þ b, Theorem 2 holds.

This is the easiest case and is represented by Fig. 4. In
fact, the hypothesis means that ul ¼ 0 so that z0 ¼ )ðtþ plÞ.

Therefore,

zþ z0 & ðaxþ bÞ ¼ uh & tþ )ðtþ plÞ & ph & pl & b

¼ )ðtþ plÞ & t& pl;

and jzþ z0 & ðaxþ bÞj ( 1
2 ulpðz

0Þ.
Moreover,

jz0j ( jz& ðaxþ bÞj þ j ) ðtþ plÞ & t& plj;

so

jz0j & 1

2
ulpðz0Þ ( 1

2
ulpðzÞ:

This easily implies that jz0j ( ulpðzÞ, and that

jzþ z0 & ðaxþ bÞj ( 1

2
ulpðz0Þ ( 1

2
!1&pjz0j

( 1

2
!2&2pjzj

( 3!

2
þ 1

2

! "
!2&2pjzj:

4.2.3 When uh 6¼ ph þ b

This assumption guarantees that there is no cancellation in
the computation of )ðaxÞ þ b. It allows us to bound the
relative exponents of the various FP numbers.

Property 5. eph ( euh þ 1.

Let us suppose that eph > euh þ 1 so that euh ( eph & 2. As
uh ¼ )ðph þ bÞ; this means that this computation was a
cancellation, therefore exact (following Theorem 1) so that
uh ¼ ph þ b, which we assumed was wrong.

Property 6. euh ( ez þ 1.

We have

juh & zj ¼ jðuh & ðph þ bÞÞ þ ðph & axÞ þ ðaxþ b& zÞj

( 1

2
ulpðuhÞ þ

1

2
ulpðphÞ þ

1

2
ulpðzÞ

( ! þ 1

2
ulpðuhÞ þ

1

2
ulpðzÞ

( ! þ 1

2
% juhj % !1&p þ 1

2
% jzj % !1&p;

using the preceding property.
Therefore, juhj % ð1& !þ1

2 !1&pÞ ( jzjð1þ !1&p

2 Þ and juhj (
! % jzj as p + 4.

Property 7. It cannot happen that eph ¼ euh þ 1 ¼ ez þ 2.

Let us assume that these equalities hold.
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To prove the absurdity, we will prove that jzj + !ezþ1,
which is impossible.

First, jaxþ bj + jaxj & jbj. As ph ¼ )ðaxÞ, we know that

jaxj + !p&1 & 1

2!

! "
!eph&pþ1;

since the smallest possible real number to be rounded into a
floating-point number with exponent eph is the smallest
floating-pointnumberwith this exponent, namely!eph ,minus
half the difference between this number and its predecessor.

Furthermore,

jbj ( ð!p & 1Þ!eb&pþ1:

And eb ( euh & 1 ¼ ez: if this was not the case, then the
exponent of uh ¼ )ðph þ bÞ would be smaller than the
minimum of the exponents of b and ph, which would imply
that the addition ph þ b is exact, which is impossible by
assumption.

Then,

jaxþ bj + jaxj & jbj

+ !p&1 & 1

2!

! "
% !eph&pþ1 & !p & 1ð Þ % !eb&pþ1

+ !p&1 & 1

2!

! "
% !ez&pþ3 & !p & 1ð Þ % !ez&pþ1

¼ !ezþ1ð! & 1Þ & !ez&pþ1 !

2
& 1

! "
:

When ! ¼ 2, this last value is exactly equal to !ezþ1.
When ! + 3, this value is greater than

2 % !ezþ1 & !ez&pþ1 !

2
& 1

! "
+ !ezþ1:

In all cases, we have

jzj + !ezþ1;

which is impossible.

Property 8. juh & zj ( ð! þ 1Þ % ulpðzÞ.

From the last three properties, we either have

eph ( euh ( ez þ 1

or both

eph ( euh þ 1

and

euh ( ez:

This means that !euh þ !eph ( 2 % !ezþ1 in all cases.
Then,

juh & zj ¼ jðuh & ðph þ bÞÞ þ ðph & axÞ þ ðaxþ b& zÞj

( 1

2
ulpðuhÞ þ

1

2
ulpðphÞ þ

1

2
ulpðzÞ;

so that

juh & zj ( 1

2
% !euh&pþ1 þ 1

2
% !eph&pþ1 þ 1

2
% !ez&pþ1

( 1

2
% !&pþ1 !euh þ !ephð Þ þ 1

2
% !ez&pþ1

( ð! þ 1Þ % !ez&pþ1:

Property 9. When uh 6¼ ph þ b, Theorem 2 holds.

We first bound jul þ plj ( !ez&p, which gives

j ) ðul þ plÞj ( !ezþ1:

We then bound jtþ )ðpl þ ulÞj ( ð2! þ 1Þ!ez , which gives

jz0j ( ð2! þ 1Þ!ez :

Moreover,

zþ z0 & ðaxþ bÞ ¼ uh & tþ z0 & ph & pl & b

¼ z0 & t& pl & ul;

so the error only comes from the computations inside z0 that
occur on numbers that are small compared to z.

Therefore,

jzþ z0 & ðaxþ bÞj ( 1

2
ulpð)ðpl þ ulÞÞ þ

1

2
ulpðz0Þ

( 1

2
!1&p!ez&pþ1ð3! þ 1Þ

( !2&2p % jzj % 3!

2
þ 1

2

! "
:

4.3 Formal Proof

Theproof given in Section 4.2 is rather long and tedious.Also,
we assumed no underflows, to avoid making it even more
tedious. This is the typical case when formal proof is helpful.

The formal proof was done using Coq. The exact
theorem is given in Fig. 5.

Its counterpart in mathematical language is the following:

Theorem 3. Let ! be the radix with ! + 2. Let p be the
significand, with p + 4. Let ) be any round-to-nearest mode.

Let a, b, and x be floating-point numbers (either normal or
subnormal).

Let z, ph, pl, uh, ul, t, and z0 be computed as in Algorithm 6.
Let v ¼ )ðpl þ ulÞ be the intermediate result in the computa-
tion of z0.

Then we assume that z, ph, uh, v, and z0 must either be
normal or zero. We also assume that the exponents of a and
x are such that ea þ ex + emin þ p& 1 (so that the error of
a* x is an FP).

Then

jzþ z0 & ðaxþ bÞj ( 3!

2
þ 1

2

! "
% !2&2p % jzj:

Note that there is no requirement on the radix: the
algorithm works in radices 2, 3, 4, 5, 10, 16, 43 . . .

4.4 Limits
Note that Theorem 3 does not mean that z0 is nearly correct.
Indeed, it can be very wrong! The error can be as much as
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z0=4 in some cases (with p ¼ 4, a ¼ 1001, x ¼ 1010, then
ax ¼ 100001110 and b ¼ 1101) but it implies jz0j - ulpðzÞ as
exemplified in Fig. 6.

5 CONCLUSION

The cost of these algorithms is rather high, but it can be
greatly improved if there are several FMAs available. A
possible parallelization of Algorithm 4 is described in Fig. 7
for two and three FMAs. A possible parallelization of
Algorithm 6 is described in Fig. 8.

Then, the cost of the various algorithms is given in the
following table:

We have improved a previously obtained result on the
computation of the (exact) error of an FMA, by providing a
formal proof and showing that the algorithm actually works
in a more general case than what was shown before. Also,
we have provided and formally proved a faster algorithm
that computes an approximate (yet, accurate) value of the

error of an FMA. These algorithms may be used for

building compensated algorithms (e.g., for polynomial

evaluation) that use the FMA instruction. They might also

be usable for performing accurate range reduction when

computing some transcendentals. Also, this work illustrates

the usefulness of formal proving in computer arithmetic: it

allows one to really make sure that tedious and long proofs

do not have flaws. It also makes it possible to check whether

frequently made assumptions such as the nonoccurrence of

possible intermediate underflows are necessary or not.
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Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
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